
Published as a conference paper at ICLR 2022

CROSSBEAM: LEARNING TO SEARCH IN BOTTOM-UP
PROGRAM SYNTHESIS

Kensen Shi ∗
Google Research
kshi@google.com

Hanjun Dai ∗
Google Research
hadai@google.com

Kevin Ellis †
Cornell University
kellis@cornell.edu

Charles Sutton †
Google Research
charlessutton@google.com

ABSTRACT

Many approaches to program synthesis perform a search within an enormous
space of programs to find one that satisfies a given specification. Prior works have
used neural models to guide combinatorial search algorithms, but such approaches
still explore a huge portion of the search space and quickly become intractable as
the size of the desired program increases. To tame the search space blowup, we
propose training a neural model to learn a hands-on search policy for bottom-up
synthesis, instead of relying on a combinatorial search algorithm. Our approach,
called CROSSBEAM, uses the neural model to choose how to combine previously-
explored programs into new programs, taking into account the search history and
partial program executions. Motivated by work in structured prediction on learn-
ing to search, CROSSBEAM is trained on-policy using data extracted from its own
bottom-up searches on training tasks. We evaluate CROSSBEAM in two very dif-
ferent domains, string manipulation and logic programming. We observe that
CROSSBEAM learns to search efficiently, exploring much smaller portions of the
program space compared to the state-of-the-art.

1 INTRODUCTION

Program synthesis is the problem of automatically constructing source code from a specification of
what that code should do (Manna & Waldinger, 1971; Gulwani et al., 2017). Program synthesis has
been long dogged by the combinatorial search for a program satisfying the specification—while it
is easy to write down input-output examples of what a program should do, actually finding such
a program requires exploring the exponentially large, discrete space of code. Thus, a natural first
instinct is to learn to guide these combinatorial searches, which has been successful for other discrete
search spaces such as game trees and integer linear programs (Anthony et al., 2017; Nair et al., 2020).

This work proposes and evaluates a new neural network approach for learning to search for pro-
grams, called CROSSBEAM1, based on several hypotheses. First, learning to search works best
when it exploits the symbolic scaffolding of existing search algorithms already proven useful for
the problem domain. For example, AlphaGo exploits Monte Carlo Tree Search (Silver et al., 2016),
while NGDS exploits top-down deductive search (Kalyan et al., 2018). We engineer CROSSBEAM
around bottom-up enumerative search (Udupa et al., 2013), a backbone of several successful recent
program synthesis algorithms (Shi et al., 2020a; Odena et al., 2021; Barke et al., 2020). Bottom-
up search is particularly appealing because it captures the intuition that a programmer can write
small subprograms first and then combine them to get the desired solution. Essentially, a model can
learn to do a soft version of a divide-and-conquer strategy for synthesis. Furthermore, bottom-up
search enables execution of subprograms during search, which is much more difficult in a top-down
approach where partial programs may have unsynthesized portions that impede execution.
∗Equal contribution.
†Equal contribution.
1https://github.com/google-research/crossbeam

1

https://github.com/google-research/crossbeam

Published as a conference paper at ICLR 2022

Search Context

CrossBeam
Model

Operation

Input / Output
Examples

Set of Explored
Values

Argument
Lists

Beam search or
UniqueRandomizer

Main Synthesis Loop

f (●) Execute candidate programs

DSL

Inputs,
Constants

Repeatedly loop
over all operations

Figure 1: An overview of CROSSBEAM. The search builds a set of explored values, starting with
the inputs and constants. It repeatedly loops over all DSL operations, and for each operation, the
model takes the search context and produces argument lists for that operation, choosing among the
previously-explored values. Executing the operation on the argument lists produces new values.

Second, the learned model should take a “hands-on” role during search, meaning that the learned
model should be extensively queried to provide guidance. This allows the search to maximally ex-
ploit the learned heuristics, thus reducing the effective branching factor and the exponential blowup.
This is in contrast to previous methods that run the model only once per problem (Shi et al., 2020a;
Balog et al., 2017), or repeatedly but at lower frequency (Barke et al., 2020).

Third, learning methods should take the global search context into account. When the model is
choosing which part of the search space to explore further, its decision should depend not only on
recent decisions, but on the full history of what programs have already been explored and their exe-
cution results. This is in contrast to hill-climbing or genetic programming approaches that only keep
the “best” candidate programs found so far (Schkufza et al., 2013; Shi et al., 2019), or approaches
that prune or downweight individual candidate programs without larger search context (Zohar &
Wolf, 2018; Odena et al., 2021). Search context can be powerful because one subprogram of the
solution may not seem useful initially, but its utility may become more apparent after other use-
ful subprograms are discovered, enabling them to be combined. Additionally, the model can learn
context-specific heuristics, for example, to combine smaller expressions for more breadth earlier in
the search, and combining larger expressions when the model predicts that it is closer to a solution.

Combining these ideas yields CROSSBEAM, a bottom-up search method for programming by ex-
ample (Figure 1). At every iteration, the algorithm maintains a search context that contains all of
the programs considered so far during search, as well as their execution results. New programs are
generated by combining previously-explored programs chosen by a pointer network (Vinyals et al.,
2015). The model is trained on-policy using beam-aware training (Negrinho et al., 2018; 2020), i.e.,
the training algorithm actually runs the CROSSBEAM search, and the loss function encourages the
model to progress towards the correct program instead of other candidates proposed by the model.
This avoids the potential problems of distribution shift that can arise if the search model is trained
off-policy, as in previous works for learning-based synthesis (Devlin et al., 2017; Odena et al., 2021).

On two different domains, we find that CROSSBEAM significantly improves over state-of-the-art
methods. In the string manipulation domain, CROSSBEAM solves 62% more tasks within 50K
candidate expressions than BUSTLE (Odena et al., 2021) on the same test sets used in the BUSTLE
paper. In inductive logic programming, CROSSBEAM achieves nearly 100% success rate on tasks
with large enough solutions that prior state-of-the-art has a 0% success rate.

2 CROSSBEAM OVERVIEW

In this section we provide an overview of CROSSBEAM, leaving model and training details to Sec-
tion 3. In our task of program synthesis from input/output examples, we have a domain-specific
language (DSL) L describing a space of programs, and a set of example inputs I = {I1, . . . , IN}
and corresponding outputs O = {O1, . . . , ON}. The goal is to find a program P ∈ L such that
P (Ii) = Oi for all i ∈ {1 . . . N}. The DSL L describes atomic values (constants and input vari-
ables) and operations that can be applied to arguments to produce new values. Programs in L are
arbitrarily-nested compositions of operations applied to atomic values or other such compositions.

Bottom-Up Enumerative Search. CROSSBEAM extends a basic bottom-up enumerative search
algorithm, originally from Udupa et al. (2013) and recently used in other synthesis works (Shi et al.,
2020a; Barke et al., 2020; Odena et al., 2021). This basic enumeration considers programs in order
of increasing size (number of nodes in the abstract syntax tree), starting from the input variables

2

Published as a conference paper at ICLR 2022

Algorithm 1 The CROSSBEAM algorithm, with training data generation in blue
Input: Input-output examples (I,O), DSLL describing constants Consts and operations Ops , and

(during training) a ground-truth trace T
Output: A program P ∈ L consistent with the examples, and (during training) training data DT

Auxiliary Data: A model M trained as described in Section 3 and beam size K
1: S ← Consts ∪ I . A set of explored values, initially with constants and input variables
2: DT ← ∅ . A set of training datapoints (during training)
3: repeat until search budget exhausted
4: for all op ∈ Ops do
5: A← DRAWSAMPLES(M(S, op, I,O),K) . Draw K argument lists from the model
6: for all [a1, . . . , an] ∈ A do . [a1, . . . , an] is an argument list
7: V ← EXECUTE(op, [a1, . . . , an]) . Evaluate the candidate program
8: if V 6∈ S then . The value has not been encountered before
9: V.op ← op, V.arglist ← [a1, . . . , an] . Store execution history

10: S ← S ∪ {V }
11: if V = O then . Solution found
12: return P := EXPRESSION(V), DT

13: if IsTraining ∧ T [0].op = op then
14: DT ← DT ∪ {((S, op, I,O), T [0].arglist)} . Save model inputs and ground-truth
15: if T [0].arglist 6∈ A then . If beam search did not generate the ground-truth
16: S ← S ∪ {T [0]} . Continue as if we did generate the ground-truth
17: T.pop(0)

and DSL constants. For each program, the algorithm stores the value that results from executing the
program on the inputs. Then, at each iteration of search, it enumerates all programs of the given
target size, which amounts to enumerating all ways of choosing a DSL operation and choosing its
arguments from previously-explored values, such that the resulting program typechecks and has the
target size. Each candidate program results in a new value, which is added to the set of explored
values if it is not semantically equivalent (with respect to the I/O examples) to an existing value.
Values constructed in this way store the operation and argument list used. Once we encounter a value
that is semantically equivalent to the example outputs, we have found a solution and can recursively
reconstruct its code representation. This search algorithm is complete, but the search space grows
exponentially so it quickly becomes intractable as the size of the solution program grows.

CROSSBEAM Algorithm. To combat the exponential blowup of the search space, the CROSSBEAM
approach (Figure 1, Algorithm 1) uses a neural model in place of complete enumeration in the basic
bottom-up search. We still build a set of explored values, but we no longer enumerate all argument
lists nor consider programs strictly in order of expression size. Instead, the model determines which
programs to explore next, that is, which previously-explored values to combine in order to generate
the next candidate program. More specifically, we repeatedly loop over all operations in the DSL.
For each operation, the model takes as input the entire search context, including the I/O examples,
the current operation, and the set S of previously-explored values. The model defines a distribution
over argument lists for the operation, in the form of pointers to existing values in S. From this
distribution, we can draw argument lists from the model using sampling or beam search, to produce
candidate programs. Finally, we execute each of the candidate programs and add the resulting values
to S, with pruning of semantically-equivalent values as in the basic bottom-up search. The search
continues until a solution is found or the search budget is exhausted.

UniqueRandomizer. We use beam search to draw argument lists from the model during training.
Because the model may choose the same argument list for the same operation in different iterations
of search, the search algorithm may stall if no new values are explored. This is especially problem-
atic during evaluation, where we may search for a long time. Therefore, during evaluation, instead
of beam search we use UniqueRandomizer (Shi et al., 2020b), which draws distinct samples from
a sequence model incrementally by storing the previous samples in a trie so as to avoid duplicates.
Using UniqueRandomizer, we draw distinct samples (argument lists) until we produceK values that
have not been seen yet, up to a budget of λ ·K samples per operation per iteration, where K is the
“beam size” and λ is a hyperparameter describing how hard we should try to produceK new values.
During evaluation in our experiments, we set K = λ = 10.

3

Published as a conference paper at ICLR 2022

WeightValue
1
1

2

Set of Explored Values

["ABCC",
"1233"]

...

Operation
find(str, str, int)

-1

"CC"

Output Values

["AEF","156"]

Input Values
var1 var2

Ex. 1
Ex. 2

["ABC","DEF"]

["123","456"]

(value embeddings)

...

Pool

Value
M

odule

C
oncat

M
LP

LSTM LSTM

 (search
context summary)

... ...

Type
Checking

Type
Checking

Type
Checking

str str int

...

0 0 00

Embedding
Lookup

Embedding
Lookup

Search Context

 find("CC",
 ["ABCC",
 "1233"],
 -1)OutputModel

Domain
specific
encoders

I/O
M

odule

Search
Context
Summary
Module

Argument
Selector
Module

LSTM

Figure 2: Model that proposes new candidate programs during search. Each new candidate program
consists of an operation and an argument list. Each argument in the list is a pointer to a value
produced from a previously explored program.

3 MODEL DETAILS

Our neural model for CROSSBEAM is a policy for bottom-up search. It takes as input an operation
in the DSL and a search context, and outputs a distribution over argument lists for the operation, in
the form of pointers to previously-explored values. The model has four components (Figure 2): (1)
the I/O module, (2) the value module, (3) the search context summary module and (4) the argument
selector module. For different domains one can make different design choices for these modules.
For example, in the string manipulation domain, we leverage property signatures (Odena & Sutton,
2020) in the same way as in BUSTLE (Odena et al., 2021), and for the logic programming domain,
we propose two variants based on the MLP or GREAT Transformer (Hellendoorn et al., 2019)
architectures. Below we present the generic design of these modules; for details, see Appendix A.

I/O module. The I/O module takes the input-output examples (I,O) as input and produces a
d-dimensional vector representation eIO ∈ Rd that summarizes the specification. Depending on
the application domain, one can use RNNs (Devlin et al., 2017), property signatures (Odena &
Sutton, 2020), or other domain-specific approaches to embed the I/O example into eIO.

Value module. The value module embeds the set of explored values S into a matrix ES ∈ R|S|×d.
The i-th row of the matrix, ESi

, is the embedding of the i-th explored value Vi ∈ S. Each value
embedding ESi

= si + zi sums up two components. First, si is a domain-specific embedding that
can be implemented differently for different domains, but likely using similar techniques as the I/O
module. Second, a size embedding zi makes the search procedure aware of the “cost” of the value
Vi. To implement this, we compute min{size(Vi),ms} and look it up in an embedding matrix in
Rms×d to get the size embedding zi, where ms is a maximum size cutoff for embedding purposes.

Search context summary module. This module summarizes the search context, which includes
the set of explored values S, the I/O examples (I,O), and the current operation op, into a vector
representation ec ∈ Rd. The search context summary ec would then be given to the argument
selector module. Since the cardinality of S changes during the search procedure, and it should be
permutation-invariant by nature, we can use an approach like DeepSets (Zaheer et al., 2017) to get
a summary es for ES . In particular, we set es to be the max-pooling over ES across the values. We
then obtain ec = MLPop([es, eIO]) via an operation-specific MLP on top of the concatenation of
the value embedding summary es and the I/O embedding eIO.

Argument selector module. With all of the context provided above, the argument selector module
is designed to pick the most likely sequences of arguments in the combinatorially large space of size
|S|op.arity, where op.arity is the arity of the currently chosen operation. Since the arity of each op-

4

Published as a conference paper at ICLR 2022

eration is typically small, we can use an autoregressive model (in our case an autoregressive LSTM)
to approximately output the argument list with maximum likelihood with O(|S| × op.arity) cost.
This also allows us to perform beam search to approximately select the K most likely combinations
of arguments. Our LSTM uses the search context summary ec as the initial hidden state. At each
argument selection step t ∈ {1, . . . , op.arity} we use the LSTM’s output gate ht ∈ Rd to select
the argument from S. Unlike in the language modeling case where the decoding space is given by a
fixed vocabulary, here we have a growing vocabulary S. Inspired by pointer networks (Vinyals et al.,

2015), we model the output distribution at the t-th step as p(Vi | ht, S) =
exp(h>

t ESi
)∑|S|

j=1 exp(h>
t ESj

)
. Since

not all values are type compatible for the t-th argument of operation op, we mask out infeasible
values before computing p(Vi | ht, S). After the model selects a certain argument at ∈ S at step
t, the LSTM updates the hidden states with the embedding ESat

and proceeds with the next step if
t < op.arity, or stops if we have obtained an entire argument list for op.

Training. Unlike typical supervised learning, our model uses context that results from searching
according to the model. One approach is to provide supervision for how the model should proceed
given a randomly-generated search context. However, the resulting distribution shift could lead to
inferior generalization. Thus, we instead train the model on-policy, where we run the model in
a search to produce realistic search contexts for training. Because the training data includes the
model’s previous decisions in the search context, the model learns to correctly continue the search,
e.g., extending promising search directions or recovering from mistakes.

The overall training algorithm can be found in Algorithm 1. The main idea is that we run search
during training and collect supervised training examples for the model as it searches. Given a task
specified by (I,O) with a ground-truth program P , we create a trace T , which is a list of steps
the search should take to construct P in a bottom-up fashion. Each element T [i] ∈ T contains an
operation T [i].op and an argument list T [i].arglist that builds one node of the abstract syntax tree
for P . Then, in each search step with context S where we are considering the operation T [i].op, we
collect a training example with input (S, T [i].op, I,O) and target T [i].arglist . Note that we do not
make a separate copy of S for each training example, but rather we record the current size of S and
refer to the final S for each task, since |S| grows monotonically during the search. During the search
we also add T [i] to S, so that we may construct correct argument lists involving T [i] in future steps.
We use collected training examples to train the model using standard maximum likelihood training.

Note that T is not necessarily unique for a given program P , because the syntax tree for P could
be linearized in different orders. In this case, we sample a ground-truth trace randomly from the
possible orderings. We denote T ≡ P if T is a possible trace of P . We then formulate the training
loss as the expectation of the negative log-likelihood of the ground-truth argument lists under the
corresponding search context and current model parameters θ:

L(P, I,O; θ) = ET :T≡P

 1

|DT |
∑

((S,op,I,O),arglist)∈DT

− log p(arglist | S, op, I,O; θ)

 (1)

We take gradient descent steps in between searches on the training tasks, so that the model improves
over time while producing better-quality data for gradient descent. To generate training tasks, we
use a technique from prior work (Shi et al., 2020a; Odena et al., 2021) where we run the bottom-up
enumerative search starting from different random inputs, randomly selecting explored values to
serve as target outputs. Even though CROSSBEAM is trained using randomly-generated tasks, our
experiments show that it still performs well on realistic test tasks. We train CROSSBEAM with a
distributed synchronized Adam optimizer on 8 V100 GPUs, with gradient accumulation of 4 for an
effective batch size of 32. We generate 10M training tasks for string manipulation and 1M for logic
programming. The models train for at most 500K steps or 5 days, whichever limit is reached first.
We use K = 10 and learning rate 1 × 10−4 during training. After every 10K training steps, we
evaluate on synthetic validation tasks to choose the best model.

4 EXPERIMENTS

Our experiments compare CROSSBEAM to state-of-the-art methods in two very different domains,
string manipulation and inductive logic programming.

5

Published as a conference paper at ICLR 2022

Figure 3: Results on the two sets of benchmark tasks used in the BUSTLE paper. For non-
deterministic CROSSBEAM variations, we plot the mean over 5 trials with shading between the min-
imum and maximum results over those 5 trials. CROSSBEAM is 15.9× (left) or 25.5× (right) more
efficient than BUSTLE, in terms of the number of candidate programs needed to reach BUSTLE’s 15
solves (left) or 44 solves (right). Overall, CROSSBEAM solves 62% more tasks than BUSTLE.

4.1 STRING MANIPULATION

For the string manipulation domain, we use the same DSL, success criteria (satisfying the I/O ex-
amples), training task generation procedure, and test tasks as used in BUSTLE (Odena et al., 2021).
See Appendix B for details. The BUSTLE approach extends the same enumerative bottom-up search
as CROSSBEAM, but BUSTLE trains a neural model to predict how useful values are (i.e., whether
a value is a subexpression of a solution) and prioritizes values during the search accordingly. BUS-
TLE is still a complete enumerative search and will eventually explore the entire space of programs
in the DSL, and thus it still suffers from the issue of search space blowup, albeit to a much lesser
degree than plain enumeration. In contrast, CROSSBEAM trades off completeness for exploration
efficiency, as we have no guarantee that the model will eventually explore the entire search space.

We run CROSSBEAM on both sets of test tasks used to evaluate BUSTLE, with a search budget of
50,000 candidate programs. Every value obtained by applying an operation to an argument list,
including those pruned due to semantic equivalence, is a “candidate program.” Figure 3 shows the
number of programs synthesized as a function of the number of candidate programs considered.
Because CROSSBEAM is not deterministic due to sampling argument lists with UniqueRandomizer,
we run it 5 times and plot the mean, minimum, and maximum performance.

We borrow the following comparisons and results from the BUSTLE paper. (1) BUSTLE refers to
the best approach in the paper, i.e., using both the model and heuristics. (2) The baseline bottom-up
enumerative search is the same as described in Section 2. (3) RobustFill (Devlin et al., 2017) is
an LSTM that predicts end-to-end from the I/O examples to the program tokens. For RobustFill, a
“candidate program” is one unique sample from the generative model, obtained via beam search and
ordered by decreasing likelihood. (4) DeepCoder-style (Balog et al., 2017) premise selection uses a
neural model to predict which DSL operations will be used given the I/O examples. The least likely
operations according to the model are removed, and then the baseline bottom-up search is run.

Figure 3 shows that CROSSBEAM significantly outperforms the other methods on both sets of bench-
marks, on average solving 36.4 more problems in total compared to BUSTLE (an improvement of
62%). In fact, in order to match BUSTLE’s performance after 50,000 candidate programs, CROSS-
BEAM considers about 20× fewer candidate programs. CROSSBEAM still outperforms BUSTLE
when using a much larger budget of 1 million candidate programs (Appendix C). Thus, we con-
clude that CROSSBEAM explores the search space much more efficiently than the prior approaches.

Ablations. We perform an ablation study to quantify the effects of training the model on-policy and
using UniqueRandomizer during evaluation. We try the following 3 variations of CROSSBEAM:

1. Random training: instead of using beam search on the model to produce argument lists A during
training, we instead obtain argument lists by randomly sampling values from the set S of explored
values. As the search progresses, the search context (specifically the set S) diverges from what
the model would produce during evaluation. Hence, this variation trains the model off-policy.

6

Published as a conference paper at ICLR 2022

A p(X,Y) = ∃Z : q(X,Z) ∧ r(Z, Y) JOIN
p(X,Y) = q(Y,X) TRANSPOSE
p(X) = q(X) ∨ r(X)

}
DISJUNCT

p(X,Y) = q(X,Y) ∨ r(X,Y)
p(X) = b(X) ∨ ∃U, V : q(X,U) ∧ r(U, V) ∧ p(V)

}
RECURSE

p(X,Y) = b(X,Y) ∨ ∃U, V : q(X,U) ∧ r(Y, V) ∧ p(U, V)

p(X) = q(X,X) CAST2→1
p(X,Y) = q(X) ∧ q(Y) CAST1→2

zero(X) = (X = 0) (primitive)
succ(X,Y) = (X + 1 = Y) (primitive)
eq(X,Y) = (X = Y) (primitive)

B Program in DSL Translation to Prolog

RECURSE(
TRANSPOSE(zero1→2),
TRANSPOSE(successor),
TRANSPOSE(

JOIN(successor,
JOIN(successor,

successor))))

both_zero(X,Y) :- zero(X), zero(Y).
sub1(X,Y) :- succ(Y,X).
add2(X,Y) :- succ(X,Z), succ(Z,Y).
add3(X,Y) :- succ(X,Z), add2(Z,Y).
sub3(X,Y) :- add3(Y,X).
p(X,Y) :- both_zero(X,Y).
p(X,Y) :- sub1(X,U), sub3(Y,V), p(U,V).

Figure 4: A. (Top) Our four operators for building logic programs. Each operator builds a new
predicate p from smaller predicates (q, r, b). The disjunct and recursion operators automatically
have different forms depending on the arity of their arguments. (Middle) We assume each predicate
has arity 1 or 2, and automatically cast the arity of input predicates as needed using CAST2→1 and
CAST1→2. (Bottom) The three primitive relations given to the system. B. Example program for the
relation 3x = y. A cast from arity 1 to arity 2 (zero1→2) is performed automatically. This size 11
program represents a recursive Prolog routine with 7 clauses and 5 invented predicates, equivalent to
saying that the relation 3x = y holds for (0, 0) and that it holds for (x, y) if it holds for (x−1, y−3).

2. Beam search evaluation: instead of using UniqueRandomizer to draw argument lists A during
evaluation, we simply perform beam search with the same beam size K = 10. Note that the
beam search is deterministic, so the search is prone to stalling if all argument lists result in values
that are semantically equivalent to values already explored, leading to repeated looping without
progress. This stalling behavior is quite apparent in our experimental results.

3. Sampling evaluation: instead of using UniqueRandomizer to draw argument lists during evalua-
tion, we sample K = 10 argument lists according to the distribution given by the model. This
leads to more randomness in the argument lists and less stalling, but some stalling can still occur
if the high-probability argument lists all produce values semantically equivalent to ones already
explored. This motivates our use of UniqueRandomizer in normal CROSSBEAM, where we sam-
ple up to λ ·K argument lists without replacement in search for semantically different values.

As shown in Figure 3, all of these ablations perform worse than normal CROSSBEAM but better
than all prior approaches. Interestingly, using beam search or sampling for evaluation results in the
method being much more efficient when there are few candidate programs considered (i.e., when
the search has not yet stalled), but using UniqueRandomizer allows normal CROSSBEAM to reach
higher performance later as the search continues to explore thousands of candidates.

Wallclock Time. Despite CROSSBEAM’s impressive performance when controlling for the number
of expressions considered, CROSSBEAM does not quite beat BUSTLE when we control for wallclock
time (but it does outperform the baseline bottom-up search). However, this comparison is not com-
pletely fair to CROSSBEAM. We compare to the BUSTLE implementation from the original authors,
but this is an optimized Java implementation and was designed to enable easy batching of the model
predictions. In contrast, CROSSBEAM is implemented in Python, and batching model predictions
for all operations in an iteration and batching the UniqueRandomizer sampling are both feasible but
challenging engineering hurdles that would lead to speedups, but are currently not implemented. In
Appendix D we discuss this comparison further with quantitative experimental results.

7

Published as a conference paper at ICLR 2022

Figure 5: Success rate of different methods on randomly-generated logic tasks in 30 seconds.
CROSSBEAM maintains very high success rates on the more difficult tasks where prior works fail.

4.2 INDUCTIVE LOGIC PROGRAMMING

Inductive Logic Programming or ILP (Cropper et al., 2021) is the program synthesis problem of
learning logical relations (predicates) from examples, which we specify with truth tables. Here,
these predicates are represented by logic programs (Prolog or Datalog; see Bratko (2001)) expressing
first-order logical statements with quantified variables and recursion. ILP systems have been used
to make inferences over large knowledge graphs (Muggleton & Lin, 2013), do programming-by-
example (Lin et al., 2014), and perform common sense reasoning (Katz et al., 2008).

Search in ILP is especially difficult when the learned programs can be recursive, and when they can
define auxiliary “invented” predicates (analogous to defining helper subroutines). As such, most ILP
systems limit themselves to learning a handful of logical clauses, and many forego either recursion
or predicate invention. We apply CROSSBEAM to ILP with the goal of synthesizing larger programs
with both recursion and predicate invention. We first define a DSL over predicates (Figure 4) that
works by building larger predicates out of smaller ones, starting from primitive predicates computing
successorship, equality, and the “zero” predicate. Because CROSSBEAM executes every partially-
constructed program, we think of each predicate as evaluating to the set of tuples of entities for
which the predicate is true. To ensure this set remains small, we bound the arity of synthesized
predicates (arity ≤ 2) and work with entities in a relatively small domain of numbers in {0, . . . , 9}.
We study CROSSBEAM’s ILP abilities by synthesizing both randomly-generated and handcrafted
predicates from examples, with the goal of answering the questions of whether the system can per-
form predicate invention, whether it can learn recursive programs, and how it compares to state-of-
the-art ILP systems. Our synthetic test set contains tasks of varying size, i.e., the minimum number
of nodes in the expression tree of a solution. For each size in {5, . . . , 19}, we randomly select 50
tasks among all possible tasks of that size, excluding those appearing in the training dataset.2 Our
handcrafted test set, inspired by Peano arithmetic, comprises 30 common mathematical relation-
ships, e.g., whether a number is even, or if a number is greater than another. For each synthesis task,
the system is given every positive/negative example for numbers in {0, . . . , 9} as a truth table.

We run CROSSBEAM with either a MLP- or Transformer-based value encoder for predicates (see
Appendix A.2). We compare with the classic Metagol (Muggleton & Lin, 2013), a state-of-the-art
system Popper (Cropper & Morel, 2021a), and the basic bottom-up enumerative search. We run all
methods for a time limit of 30 seconds per task. CROSSBEAM significantly outperforms all of the
other methods in both test sets. We summarize our findings here with more details in Appendix E.

Figure 5 shows the results on the randomly-generated test set, where CROSSBEAM achieves close
to 100% success rate on tasks up to size 16 and over 50% success rate on tasks up to size 19,
while the success rates of all other methods drop to 0% by size 13. This is evidence that CROSS-
BEAM is a major forward step in tackling the issue of search space explosion. For the handcrafted
tasks, CROSSBEAM achieves a 93% success rate, versus a 60% success rate for Metagol and Popper
(Figure 7 in Appendix E). CROSSBEAM also does not appear to struggle with recursion (every hand-
crafted task can only be solved with recursion) and consistently solves problems requiring predicate

2We ran the bottom-up search to exhaustively explore all distinct values up to size 19 inclusive, which takes
about 6 hours. We sampled 1 million of those values to serve as training tasks. For sizes 5 and 6, there were
fewer than 50 tasks not used in training, so we included all such tasks in our synthetic test set.

8

Published as a conference paper at ICLR 2022

invention (Popper without predicate invention solves 37%, which serves as a guide to what fraction
of the problems require defining auxiliary predicates).

To our surprise, the baseline bottom-up enumeration also outperforms Metagol and Popper, at least
on our test sets where the domain of the predicates is small. To our knowledge, bottom-up enumer-
ation (and pruning based on observational equivalence) has never been tried for ILP before.

5 RELATED WORK

Machine learning for program synthesis has been an active area (Gottschlich et al., 2018; Gulwani
et al., 2017; Allamanis et al., 2018). For example, DeepCoder (Balog et al., 2017) uses a learned
model to select useful operations once at the beginning of search. Although this idea is pragmatic,
the disadvantage is that once the search has started, the model can give no further feedback. Odena
& Sutton (2020) use property signatures within a DeepCoder-style model for premise selection.

Many learning based approaches to synthesis can be viewed as using learning to guide search. Some
methods employ models that emit programs token-by-token (Bunel et al., 2018; Devlin et al., 2017;
Parisotto et al., 2017), which can be interpreted as using learning to guide beam search. Recent
versions of this idea use large pretrained language models to generate programs (Chen et al., 2021;
Austin et al., 2021). Rubin & Berant (2021) builds a semi-autoregressive bottom-up generative
model for semantic parsing, where the beam decoding is embedded in the model decoding to achieve
logarithmic runtime. Alternately, top-down search can be guided by learning with a syntax guided
search over programs (Yin & Neubig, 2017; Lee et al., 2018). Another line of work uses learning to
guide a two-level search by first generating a sketch of the program (Nye et al., 2019; Murali et al.,
2018) or latent representation (Hong et al., 2021). None of this work uses execution information to
guide the search, or uses the rich information from the search context, as CROSSBEAM does.

Execution-guided neural synthesis methods use the results of executing partial programs to guide
search, which is a powerful source of information. Zohar & Wolf (2018) learns to write straight-
line code line-by-line, and to ignore (“garbage collect”) lines deemed irrelevant to further search.
A similar approach is to rewrite a programming language so that it can be evaluated “left-to-right,”
allowing values to be used to prioritize a tree search in a reinforcement learning framework (Ellis
et al., 2019). Similarly, Chen et al. (2019) use intermediate values while synthesizing a program us-
ing a neural encoder-decoder model, but again this work proceeds in a variant of left-to-right search
that is modified to handle conditionals and loops. To illustrate the potential differences between
left-to-right and bottom-up methods, imagine that the correct program is f(A,B), where A and
B are arbitrary subprograms. Then if a left-to-right search makes a mistake in generating A, that
search branch will never recover. In contrast, because bottom-up search maintains a population of
many partial programs, it can build up subprograms A and B roughly independently. While all these
execution-guided methods have “hands-on” neural models, our approach differs by looking at the
global search context—and it learns to do so effectively because it learns on-policy.

Our string domain is inspired by the symbolic synthesizer FlashFill (Gulwani, 2011) and subsequent
work on learning-based synthesis for string manipulation (Menon et al., 2013; Odena et al., 2021).
Our use of imitation to guide search is inspired by work in learning to search (Daumé III et al., 2009;
Ross et al., 2011; Chang et al., 2015) and beam-aware training (Negrinho et al., 2018; 2020).

6 CONCLUSION

CROSSBEAM combines several powerful ideas for learning-guided program synthesis. First,
bottom-up search provides a symbolic scaffolding that enables execution of subprograms during
search, which provides an important source of information for the model. Second, the learned model
takes a “hands-on” role during search, having sufficient freedom to manage the effective branching
factor of search. Third, the model takes the search context into account, building a continuous rep-
resentation of the results of all programs generated so far. Finally, training examples are generated
on-policy during search, so that the model learns correct followups for its previous decisions. Our
experiments show that this is an effective combination: in the string manipulation domain, CROSS-
BEAM solves 62% more tasks than BUSTLE, and in the logic domain, CROSSBEAM achieves nearly
100% success rate on difficult tasks where prior methods have a 0% success rate.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

The authors would like to thank Rishabh Singh and the anonymous reviewers for their helpful com-
ments.

REFERENCES

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of machine
learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4), 2018.

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and
tree search. In Advances in Neural Information Processing Systems (NIPS), 2017.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis with
large language models. arXiv preprint arXiv:2108.07732, 2021. URL https://arxiv.org/
abs/2108.07732.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
DeepCoder: Learning to write programs. In International Conference on Learning Represen-
tations (ICLR), 2017.

Shraddha Barke, Hila Peleg, and Nadia Polikarpova. Just-in-time learning for bottom-up enumera-
tive synthesis. In Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), 2020.

Ivan Bratko. Prolog Programming for Artificial Intelligence. Pearson Education, 2001.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
grammar and reinforcement learning for neural program synthesis. In International Conference
on Learning Representations (ICLR), 2018.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé III, and John Langford. Learn-
ing to search better than your teacher. In International Conference on Machine Learning (ICML),
2015.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harri Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick
Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Win-
ter, Philippe Tillet, Felipe Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Eliz-
abeth Barnes, Ariel Herbert-Voss, Will Guss, Alex Nichol, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, Andrew Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evalu-
ating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In Interna-
tional Conference on Learning Representations (ICLR), 2019.

Andrew Cropper and Rolf Morel. Learning programs by learning from failures. Machine Learning,
110(4), 2021a.

Andrew Cropper and Rolf Morel. Predicate invention by learning from failures. arXiv preprint
arXiv:2104.14426, 2021b. URL https://arxiv.org/abs/2104.14426.

Andrew Cropper, Sebastijan Dumančić, and Stephen H Muggleton. Turning 30: New ideas in in-
ductive logic programming. In International Joint Conferences on Artificial Intelligence (IJCAI),
2021.

Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured prediction. Machine
Learning, 75(3), 2009.

10

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2104.14426

Published as a conference paper at ICLR 2022

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-Rahman Mohamed, and
Pushmeet Kohli. RobustFill: Neural program learning under noisy I/O. In International Confer-
ence on Machine Learning (ICML), 2017.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a REPL. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

Justin Gottschlich, Armando Solar-Lezama, Nesime Tatbul, Michael Carbin, Martin Rinard, Regina
Barzilay, Saman Amarasinghe, Joshua B Tenenbaum, and Tim Mattson. The three pillars of
machine programming. In International Workshop on Machine Learning and Programming Lan-
guages (MAPL at PLDI), 2018.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In
Symposium on Principles of Programming Languages (POPL), 2011.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Foundations and
Trends R© in Programming Languages, 4(1-2), 2017.

Vincent Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. Global re-
lational models of source code. In International Conference on Learning Representations (ICLR),
2019.

Joey Hong, David Dohan, Rishabh Singh, Charles Sutton, and Manzil Zaheer. Latent programmer:
Discrete latent codes for program synthesis. In International Conference on Machine Learning
(ICML), 2021.

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gul-
wani. Neural-guided deductive search for real-time program synthesis from examples. Interna-
tional Conference on Learning Representations (ICLR), 2018.

Yarden Katz, Noah D Goodman, Kristian Kersting, Charles Kemp, and Joshua B Tenenbaum. Mod-
eling semantic cognition as logical dimensionality reduction. In Proceedings of the Annual Meet-
ing of the Cognitive Science Society (CogSci), 2008.

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based program syn-
thesis using learned probabilistic models. In Conference on Programming Language Design and
Implementation (PLDI), 2018.

Dianhuan Lin, Eyal Dechter, Kevin Ellis, Joshua B Tenenbaum, and Stephen H Muggleton. Bias
reformulation for one-shot function induction. In European Conference on Artificial Intelligence
(ECAI), 2014.

Zohar Manna and Richard J Waldinger. Toward automatic program synthesis. Communications of
the ACM, 14(3):151–165, 1971. URL https://doi.org/10.1145/362566.362568.

Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and Adam Kalai. A machine learn-
ing framework for programming by example. In International Conference on Machine Learning
(ICML), 2013.

Stephen Muggleton and Dianhuan Lin. Meta-interpretive learning of higher-order dyadic Datalog:
Predicate invention revisited. In International Joint Conference on Artificial Intelligence (IJCAI),
2013.

Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. Neural sketch learning
for conditional program generation. In International Conference on Learning Representations
(ICLR), 2018.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra
Addanki, Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yu-
jia Li, Oriol Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks.
arXiv preprint arXiv:2012.13349, 2020. URL https://arxiv.org/abs/2012.13349.

11

https://doi.org/10.1145/362566.362568
https://arxiv.org/abs/2012.13349

Published as a conference paper at ICLR 2022

Renato Negrinho, Matthew Gormley, and Geoffrey Gordon. Learning beam search policies via
imitation learning. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Renato Negrinho, Matthew Gormley, and Geoffrey Gordon. An empirical investigation of beam-
aware training in supertagging. In Findings of the Association for Computational Linguistics:
EMNLP, 2020.

Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and Armando Solar-Lezama. Learning to infer
program sketches. In International Conference on Machine Learning (ICML), 2019.

Augustus Odena and Charles Sutton. Learning to represent programs with property signatures. In
International Conference on Learning Representations (ICLR), 2020.

Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, and Hanjun Dai. BUS-
TLE: Bottom-up program synthesis through learning-guided exploration. In International Con-
ference on Learning Representations (ICLR), 2021.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Push-
meet Kohli. Neuro-symbolic program synthesis. In International Conference on Learning Rep-
resentations (ICLR), 2017.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Conference on Artificial Intelligence and Statistics
(AISTATS), 2011.

Ohad Rubin and Jonathan Berant. SmBoP: Semi-autoregressive bottom-up semantic parsing. In
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), 2021.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In International Con-
ference on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2013.

Kensen Shi, Jacob Steinhardt, and Percy Liang. FrAngel: Component-based synthesis with control
structures. Proceedings of the ACM on Programming Languages, 3(POPL), 2019.

Kensen Shi, David Bieber, and Rishabh Singh. TF-Coder: Program synthesis for tensor manipu-
lations. arXiv preprint arXiv:2003.09040, 2020a. URL https://arxiv.org/abs/2003.
09040.

Kensen Shi, David Bieber, and Charles Sutton. Incremental sampling without replacement for se-
quence models. In International Conference on Machine Learning (ICML), 2020b.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587), 2016.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim, Milo M K Martin,
and Rajeev Alur. TRANSIT: Specifying protocols with concolic snippets. In Conference on
Programming Language Design and Implementation (PLDI), 2013.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems (NIPS), 2015.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation.
In Assocation for Computational Linguistics (ACL), 2017.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems (NIPS),
2017.

Amit Zohar and Lior Wolf. Automatic program synthesis of long programs with a learned garbage
collector. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

12

https://arxiv.org/abs/2003.09040
https://arxiv.org/abs/2003.09040

Published as a conference paper at ICLR 2022

Appendix

A DETAILS OF MODEL ARCHITECTURES

A.1 MODEL DESIGN FOR STRING MANIPULATION

We follow the BUSTLE paper (Odena et al., 2021) in using property signatures (Odena & Sutton,
2020) to featurize individual values and relationships between two values, using properties such as
“does the string contain digits,” “is the integer negative,” and “is the first string a substring of the
second.” We use the same set of properties as used in BUSTLE. Given a set of properties and one
or two values to featurize, we can compute whether that property is always true across examples,
always false across examples, sometimes true and sometimes false, or not applicable (due to type
mismatch). By evaluating all properties on a value and its relationship to the target output, we obtain
a property signature used in the I/O module and the value module.

I/O module. As in BUSTLE, we use property signatures to featurize all of the input variables and
the output, as well as the relationships between each input variable and the output. The result is a
feature vector (“property signature”) fIO ∈ CLIO where C = {true, false,mixed,N/A} is the set of
possible results for a single property, and LIO is the length of the property signature for the entire
I/O example. We project each element of C into a 2-dimensional embedding, pass each signature
element fIOi ∈ C through this embedding, and project the concatenation of the embeddings into
eIO using a multilayer perceptron MLPIO.

Value module. Here we again follow BUSTLE and compute the property signature fVi
∈ CLval ,

where Lval is the length of a property signature when we featurize V individually and compared to
the output O. As in the I/O module, we pass fVi

through a 2-dimensional embedding followed by a
multilayer perceptron MLPval, to obtain the signature embedding si.

A.2 MODEL DESIGN FOR LOGIC PROGRAMMING

In the logic programming domain, every program is a predicate with arity 1 or 2 over the domain
of entities {0, . . . , 9}. We think of each such predicate as computing a binary-valued tensor with
shape (10,) for arity-1 predicates, or (10, 10) for arity-2 predicates. Both the I/O specification and
program values are modeled as tensors of these shapes. For the I/O module and the value module,
we consider two different architectures for encoding these tensors.

MLP Encoder. This encoder flattens the binary tensor representing the predicate, pads it with zeros
to have length 100 (as binary relations can have size 10 × 10 = 100), and prepends a single binary
variable indicating the arity of the relation. The resulting 101-dimensional object is processed by a
4-layer MLP with 512 hidden units and ReLU activations.

Relational Transformer. This encoder embeds each element of the domain of entities (the numbers
{0, . . . , 9}) and then applies a relational transformer to these entities. Our relational transformer is
based on GREAT (Hellendoorn et al., 2019).3 Each layer of self-attention is modulated by the truth-
value judgment of the predicate we are encoding. Concretely, the unnormalized attention coefficient
between entity i and entity j in layer l of the transformer, written αl

ij , is a function of the key klj , the
query qli, and the embedding of the relation between those entities, written rlij :

αl
ij = (qli + rlij)

>klj (2)

The relation embedding rlij is a function of the predicate we are encoding, written p. The intuition is
that we want different valuations of p(i), p(j), p(i, j), and p(j, i) to be embedded as different vector
representations. We also want the relation to be a function of whether we are encoding a value or
the specification (written “spec”). We define the following function, which assigns a unique integer
from 0 to 15 to every unique relation on ≤ 2 inputs:

UNIQUEID(p, i, j) = 1 · p(i) + 2 · p(j) + 4 · 1 [p has arity 2]

+ 1 · p(i, j) + 2 · p(j, i) + 8 · 1 [p = spec]

3The model differs from GREAT only in that the relation modulates attention coefficients via a vector rather
than a scalar.

13

Published as a conference paper at ICLR 2022

Expression E := S | I | B
String expression S := Concat(S1, S2) | Left(S, I) | Right(S, I) | Substr(S, I1, I2)

| Replace(S1, I1, I2, S2) | Trim(S) | Repeat(S, I) | Substitute(S1, S2, S3)

| Substitute(S1, S2, S3, I) | ToText(I) | LowerCase(S) | UpperCase(S)
| ProperCase(S) | T | X | If(B,S1, S2)

Integer expression I := I1 + I2 | I1 − I2 | Find(S1, S2) | Find(S1, S2, I) | Len(S) | J
Boolean expression B := Equals(S1, S2) | GreaterThan(I1, I2) | GreaterThanOrEqualTo(I1, I2)

String constants T := "" | " " | "," | "." | "!" | "?" | "(" | ")" | "[" | "]" | "<" | ">"
| "{" | "}" | "-" | "+" | " " | "/" | "$" | "#" | ":" | ";" | "@" | "%" | "0"
| string constants extracted from I/O examples

Integer constants J := 0 | 1 | 2 | 3 | 99
Input X := x1 | . . . | xk

Figure 6: The string manipulation DSL used in our experiments, taken from Odena et al. (2021).

We then compute the modulating effect of the relation upon the attention coefficient, rlij , as

rlij =R
l EMBED(UNIQUEID(p, i, j)) (3)

where EMBED is a learned embedding of the sixteen possible values of UNIQUEID, and Rl is a
weight matrix that depends on the transformer layer l. We use four of these relational transformer
layers with an embedding size of 512, hidden size of 2048, and 8 attention heads. After running the
transformer we have a 10 × 512 tensor (number of entities by embedding dimension). We flatten
this tensor and linearly project to a 512 tensor to produce the final embedding of the relation we are
encoding.

B STRING MANIPULATION DSL

Our string manipulation DSL comes from BUSTLE (Odena et al., 2021) and is shown in Figure 6.
It involves standard string manipulation operations, basic integer arithmetic, and if-then-else con-
structs with boolean conditionals. As an example, to compute a two-letter acronym, where we want
to transform “product area” into “PA” and “Vice president” into “VP”, we could use the program
Upper(Concatenate(Left(in0, 1), Mid(in0, Add(Find(" ", in0), 1), 1))).

BUSTLE extracts long repeatedly-appearing substrings of the I/O examples to use as constants, and
we use this heuristic in CROSSBEAM as well for a fair comparison.

C EFFECT OF LARGER SEARCH BUDGET IN THE STRING DOMAIN

In our main string manipulation experiments (Section 4.1), we use a budget of 50,000 candidate
programs to compare approaches. As shown in Figure 3, CROSSBEAM outperforms BUSTLE:

• BUSTLE solves 15 / 38 of their new tasks, and 44 / 89 of the SyGuS tasks, or 59 / 127 tasks total.
• CROSSBEAM solves 28.8 / 38 of their new tasks, and 66.6 / 89 of the SyGuS tasks, or 95.4 / 127

tasks total (averaged over 5 runs).

We repeat this experiment with a budget of 1 million candidates:

• BUSTLE solves 24 / 38 of their new tasks, and 70 / 89 of the SyGuS tasks, or 94 / 127 tasks total.
• CROSSBEAM solves 31.6 / 38 of their new tasks, and 73.0 / 89 of the SyGuS tasks, or 104.6 /

127 tasks total (averaged over 5 runs).

CROSSBEAM again outperforms BUSTLE. It is encouraging to see that CROSSBEAM continues to
provide significant benefits for very difficult problems requiring a large amount of search.

14

Published as a conference paper at ICLR 2022

Table 1: String manipulation results versus wallclock time, attempting to adjust time limits to ac-
count for different implementation languages.

Time limit (s) 38 New Tasks 89 SyGuS Tasks 127 Total Tasks

CROSSBEAM (Python) 30 26.6 65.2 91.8
Baseline enum (Python) 30 20 54 74
Baseline enum (Java) 3.4 21 53 74
BUSTLE (Java) 3.4 29 72 101

Baseline enum (Java) 30 26 65 91
BUSTLE (Java) 30 32 80 112

D WALLCLOCK TIME COMPARISON IN THE STRING DOMAIN

Despite CROSSBEAM’s impressive performance when controlling for the number of expressions
considered, CROSSBEAM does not quite beat BUSTLE when we control for wallclock time. Note
that CROSSBEAM is implemented in Python, while for BUSTLE we use the authors’ Java implemen-
tation, which is faster in general than Python. To get a rough sense of the impact, we implemented
the baseline bottom-up search in Python and found that it obtains very similar synthesis performance
as the Java implementation from BUSTLE when controlling for the number of candidate programs
considered, but the Python version is about 9× slower than the Java one: our Python baseline solves
74 total tasks within 30 seconds, and the Java baseline solves 74 tasks within 3.4 seconds (but
73 in 3.3 seconds, and 75 in 3.5 seconds). This serves as a reference point for the difference in
speed between the languages, but since no neural models are involved in the baselines, it is not di-
rectly applicable to the CROSSBEAM versus BUSTLE time comparison which does involve models.
Nevertheless, Table 1 compares Python implementations with a 30 second time limit versus Java
implementations with a 3.4 second time limit.

Even when we do our best to adjust the time limits fairly, BUSTLE still solves more tasks than
CROSSBEAM. However, the original BUSTLE implementation has other optimizations: the BUSTLE
model has a simple and small architecture, the method was designed to enable batching of the
model predictions, operations in the string manipulation domain are extremely quick to execute,
and the entire system is implemented in Java. In contrast, CROSSBEAM is implemented in Python,
and our work as a whole is more focused on searching efficiently in terms of candidate programs
explored instead of wallclock time, favoring improvements in deep learning methodology and ease
of iteration on modeling ideas over runtime speed. In CROSSBEAM, batching model predictions
for all operations in an iteration and batching the UniqueRandomizer sampling are both feasible but
challenging engineering hurdles that would lead to speedups, but are currently not implemented.

E ADDITIONAL INDUCTIVE LOGIC PROGRAMMING RESULTS

For the ILP experiments, we compare CROSSBEAM, the baseline bottom-up enumerative search,
two variations of Metagol (using metarules corresponding to our logic programming DSL, or using
the 6 metarules suggested in the official repo’s README), and two variations of Popper (with and
without predicate invention (Cropper & Morel, 2021b)).

To test the ability of our model to learn arithmetic relations, we handcrafted a small corpus of 30
arithmetic problems. These problems were removed from the training data. For all of the methods
being compared, we measure whether a program implementing the target relation can be found
within a 30 second time limit. The results are shown in Figure 7, and we see that CROSSBEAM
solves the most tasks among all methods considered.

Additionally, on the randomly-generated test set, we observed that CROSSBEAM usually solves
problems incredibly quickly (in under 2 seconds) or not at all within 30 seconds, while the other
approaches, especially the baseline enumerative search, can take much longer to find solutions. This
is illustrated in Figure 8, which shows the gap between CROSSBEAM and other methods increasing
as the time limit decreases from 30 seconds to 1 second.

15

https://github.com/metagol/metagol/blob/master/README.md

Published as a conference paper at ICLR 2022

Relation CROSSBEAM Enum Metagol1 Metagol2 Popper1 PopperInv1 Popper2 PopperInv2

|x− y| = 1
|x− y| = 2
|x− y| = 3
|x− y| = 4
|x− y| = 5
|x− y| = 6
|x− y| = 7
x mod 2 = 0
x mod 3 = 0
x mod 4 = 0
x+ 2 = y
x+ 3 = y
x+ 4 = y
x+ 5 = y
x+ 6 = y
x− 2 = y
x− 3 = y
x− 4 = y
x− 5 = y
x− 6 = y
x/2 = y
x/3 = y
x/4 = y
x ∗ 2 = y
x ∗ 3 = y
x ∗ 4 = y
x < y
x > y
x ≤ y
x ≥ y

4
4
4
4
4
7
7
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

4
4
7
7
7
7
7
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
7
4
4
7
4
4
4
4

4
4
4
4
7
7
7
7
7
7
4
4
4
4
4
4
4
4
4
4
7
7
7
7
7
7
4
4
4
4

4
4
7
7
7
7
7
7
7
7
4
4
4
7
7
4
4
4
7
7
7
7
7
7
7
7
4
4
4
4

4
4
4
7
7
7
7
4
4
7
4
4
7
7
7
4
4
7
7
7
7
7
7
7
7
7
4
4
7
7

4
4
4
7
7
7
7
4
4
4
4
4
4
4
4
4
4
4
4
4
7
7
7
7
7
7
4
4
7
7

4
4
7
7
7
7
7
4
4
7
4
4
7
7
7
4
4
7
7
7
7
7
7
7
7
7
4
4
4
4

4
4
7
7
7
7
7
4
4
7
4
4
4
7
4
4
4
4
7
7
7
7
7
7
7
7
4
4
4
4

Total Solved 28 23 18 12 11 18 12 15

Figure 7: Testing on 30 unseen handcrafted test problems. We report whether each system can
synthesize a logic program implementing the target relation, given a 30 second time limit. CROSS-
BEAM uses the Transformer architecture from Appendix A.2 (the MLP architecture solves 1 fewer
task). Metagol1 uses metarules corresponding to our logic programming DSL, while Metagol2 uses
the 6 metarules suggested in the official repo’s README. PopperInv uses predicate invention while
Popper does not. Popper2 and PopperInv2 have access to the same primitive predicates that CROSS-
BEAM does (iszero, successor, and isequal) while Popper1 and PopperInv1 only have
access to iszero and successor. In principle, logic programs can implement equality by reuse
of variables, so we ran both with and without the isequal predicate.

16

https://github.com/metagol/metagol/blob/master/README.md

Published as a conference paper at ICLR 2022

Figure 8: Results on the randomly-generated logic tasks, for different time limits. As the time limit
gets shorter, the gap between CROSSBEAM and other methods increases.

17

	Introduction
	CrossBeam Overview
	Model Details
	Experiments
	String Manipulation
	Inductive Logic Programming

	Related Work
	Conclusion
	Details of Model Architectures
	Model Design for String Manipulation
	Model Design for Logic Programming

	String Manipulation DSL
	Effect of Larger Search Budget in the String Domain
	Wallclock Time Comparison in the String Domain
	Additional Inductive Logic Programming Results

