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Abstract
The keystone of state-of-the-art Extreme Multi-001
Label Text Classification (XMTC) models is002
the multi-label attention layer within the de-003
coder, which deftly directs label-specific focus004
to salient tokens in input text. Nonetheless,005
the process of acquiring these optimal atten-006
tion weights is onerous and resource-intensive.007
To alleviate this strain, we introduce PLANT –008
Pretrained and Leveraged AtteNTion – an in-009
novative transfer learning strategy to fine-tune010
XMTC decoders. The central notion involves011
transferring a pretrained learning-to-rank (L2R)012
model, utilizing its activations as attention013
weights, thereby serving as the ‘planted’ atten-014
tion layer in the decoder. On the full MIMIC-III015
dataset, PLANT excels in four out of seven met-016
rics and surpasses in five for the top-50 code017
set, demonstrating its effectiveness. Remark-018
ably, for the rare-50 code set, PLANT achieves019
a significant 12.7−52.2% improvement in four020
metrics. On MIMIC-IV, it leads in three met-021
rics. Notably, in low-shot scenarios, PLANT022
matches traditional attention models’ precision023
despite using significantly less data ( 1

10 for pre-024
cision at 5, 1

5 for precision at 15), highlighting025
its efficiency with skewed label distributions.026

1 Introduction027

Extreme Multi-Label Text Classification (XMTC)028

addresses the problem of automatically assigning029

each data point with most relevant subset of labels030

from an extremely large label set, often containing031

hundreds of thousands, even millions of labels and032

samples in various real-world XMTC applications.033

One major application of XMTC is in the global034

healthcare system, specifically in the context of035

the International Classification of Diseases (ICD)1.036

ICD coding is the process of assigning codes repre-037

senting diagnoses and procedures performed dur-038

ing a patient visit using clinical notes documented039

by health professionals (Table 1). ICD codes are040

1https://www.who.int/standards/
classifications/classification-of-diseases

998.32 : Disruption of external operation wound
· · · wound infection, and wound breakdown · · ·
428.0 : Congestive heart failure
· · · DIAGNOSES: 1. Acute congestive heart failure
2. Diabetes mellitus 3. Pulmonary edema · · ·
202.8 : Other malignant lymphomas
· · · a 55 year-old female with non Hodgkin’s lymphoma
and acquired C1 esterase inhibitor deficiency · · ·
770.6 : Transitory tachypnea of newborn
· · · Chest x-ray was consistent with transient tachypnea
of the newborn · · ·
424.1 : Aortic valve disorders
· · · mild aortic stenosis with an aortic valve area of
1.9 cm squared and 2+ aortic insuffiency · · ·

Table 1: Examples of clinical text fragments and their
corresponding ICD codes (Li and Yu, 2020).

used for both epidemiological studies and billing 041

of services (Bottle and Aylin, 2008). XMTC has 042

been utilized to automate the manual ICD coding 043

performed by clinical coders which is time inten- 044

sive and prone to human errors (O’malley et al., 045

2005; Nguyen et al., 2018). 046

Main Challenge: Building XMTC models is chal- 047

lenging because datasets often consist of texts with 048

multiple lengthy narratives – more than 1500 to- 049

kens (i.e., words) on average. However, only a 050

small fraction of tokens are most informative with 051

regard to assigning relevant labels. Automatically 052

assigning labels become even more challenging 053

when, (1) the label space is extremely high dimen- 054

sional, and, (2) the label distribution is heavily 055

skewed. For example, in automatic ICD coding, 056

there are over 18000 and 170000 codes in ICD- 057

9-CM and ICD-10-CM/PCS2, respectively. The 058

skewness of ICD-9-CM label distribution in the 059

MIMIC-III dataset (Johnson et al., 2016) is evident 060

from the fact that approximately 5411 out of all 061

the 8929 codes appear less than 10 times (refer to 062

Appendix A.1, Figure 5 for a visual). 063

2https://www.cdc.gov/nchs/icd/icd10cm_pcs_
background.htm
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How SOTA models address the main challenge064

in XMTC? (Red Box) In state-of-the-art (SOTA)065

NLP models, the inclusion of attention mecha-066

nisms is crucial, benefiting various applications like067

Machine Translation, Summarization, Text Repre-068

sentation, Sentiment Analysis, and Question An-069

swering (Vaswani et al., 2017; Tang et al., 2018;070

Xu et al., 2020; Kiela et al., 2018; Wang et al.,071

2020; Dehghani et al., 2018). In XMTC, these at-072

tention mechanisms play a vital role in addressing073

the challenges of high-dimensional label spaces074

and skewed label distributions. XMTC models075

(Mullenbach et al., 2018; Xie et al., 2019; Li and076

Yu, 2020; Cao et al., 2020; Vu et al., 2021; Zhou077

et al., 2021; Liu et al., 2021; Yuan et al., 2022;078

Zhang et al., 2022; Yang et al., 2022) consistently079

feature a multi-label attention layer, dynamically080

allocating label-specific attention weights to the081

most informative tokens in input text. Refer to the082

components highlighted in red in Figure 1, which083

illustrate this critical attention layer in action. Re-084

gardless of the specific encoder architecture, re-085

moving this attention layer leads to a significant086

drop in performance.087

Main Shortfall in Red Box: Current SOTA088

XMTC models often begin with random attention089

weights, requiring them to rank all tokens for each090

label from scratch, a computationally intensive pro-091

cess, which, given the high-dimensional label space092

characteristic of XMTC datasets, leads to extensive093

computational requirements and prolonged training094

times. Moreover, the presence of heavily skewed la-095

bel distributions further exacerbates this challenge,096

as rare labels necessitate even longer training dura-097

tions and increase the risk of overfitting (Figure 4).098

Corroborating the issue of rare codes, the study099

in (Edin et al., 2023) reveals that SOTA models100

exhibit considerable difficulties when predicting101

rare ICD diagnosis codes (Figure 2). Models tend102

to perform similarly across codes with compara-103

ble frequencies, implicating the higher proportion104

of rare codes in ICD as a significant factor in per-105

formance disparities. Correlations between code106

frequency and F1 score are moderately high, indi-107

cating that rare codes are predicted with less accu-108

racy than common ones. This inherent complexity109

underscores the need for efficient mechanisms to110

learn optimal attention configurations in XMTC111

models, as starting with random weights may not112

suffice.113
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Figure 1: Architecture of PLANT showcasing the inte-
gration of contemporary SOTA components (grey box),
multi-label attention (red box), planted attention (green
box), and mutual information gain (yellow box) to en-
hance label prediction efficacy.

Our Contributions (Green Box): 114

1. To address this shortfall, we propose PLANT – 115

Pretrained and Leveraged AtteNTion, a novel 116

transfer learning mechanism to fine-tune atten- 117

tion in XMTC. The core idea is to bootstrap 118

using mutual information gain (refer to the 119

yellow components in Figure 1) a standalone 120

model that learns to rank (L2R) tokens based 121

on their relevance to labels. The pretrained 122

L2R model (refer to the green components in 123

Figure 1) that leverages its activations as atten- 124

tion weights serves as the ‘planted’ attention 125

layer in the XMTC decoder. This tranferring 126

of the L2R model ensures the decoder starts 127
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Figure 2: Comparative analysis of model performance
from (Edin et al., 2023) on rare versus common ICD
diagnosis codes, highlighting that rare codes have near
zero macro-F1scores.

with well-informed attention weights rather128

than training from scratch with randomly ini-129

tialized weights. Subsequent fine-tuning en-130

ables not only efficient convergence toward131

optimal attention weight configurations but132

also enhances the model’s ability to priori-133

tize salient features of the input texts while134

minimizing the risk of overfitting by adapting135

them to the specific characteristics of the tar-136

get dataset. Notably, we compared PLANT137

with a SOTA model LAAT (Vu et al., 2021) on138

MIMIC-IV-full, showing that PLANT avoids139

overfitting during training (Figure 4).140

2. Addressing the shortfall in rare code predic-141

tion (Edin et al., 2023), PLANT is particularly142

effective in dealing with high dimenstional143

skewed label distributions in a low shot set-144

ting. It demonstrates comparable precision to145

traditional attention models, even with sub-146

stantially less data – 1
10 for precision at 5, 1

5147

for precision at 15 (Figure 3).148

3. We introduce the inattention technique, which149

strategically filters out less relevant tokens, en-150

hancing the significance of attention weights151

and enabling a sharper focus on critical ele-152

ments within a token sequence. Additionally,153

inspired by Backpropagation-Through-Time-154

for-Text-Classification (Howard and Ruder,155

2018), we propose a stateful decoder that ac-156

cumulates information across segments, en-157

abling cumulative predictions. This mech-158

anism utilizes batch-level states, improv-159

ing adaptability to large documents and160

model convergence, eliminating text trunca-161

tion needs, and ensuring stable GPU memory162

usage, thereby enhancing both performance163

and efficiency (Table 7).164

4. We extensively evaluated PLANT on bench- 165

mark MIMIC-III and newly available MIMIC- 166

IV datasets, widely used in automatic ICD 167

coding research. Compared to 10 existing 168

SOTA models (Section 3.2), PLANT outper- 169

formed them across 7 different evaluation 170

metrics. Specifically, in MIMIC-III-full, 171

MIMIC-III-top50, MIMIC-III-rare50, and 172

MIMIC-IV-full datasets, PLANT exhibited 173

significant performance improvements (Ta- 174

ble 3, Table 4, Table 5, Table 6). We 175

also conducted rigorous ablation analysis 176

(Section 4) and made our trained models 177

and code available at https://anonymous. 178

4open.science/r/brainsplant/. 179

2 Approach 180

XMTC: The input is a set of documents and 181

their corresponding labels, D = {(xi, yi) | yi ∈ 182

{0, 1}|L|, i = 1, . . . , d
}

, where L is the set of la- 183

bels. The goal of XMTC is to learn a prediction 184

function ŷ(xi) ∈ R|L|. The function ŷ should be 185

optimized such that the ŷ(xil) is high when yil = 1 186

(i.e., label l is relevant to xi ), and is low when 187

yil = 0. 188

Intuition behind our XMTC model - PLANT 189

(Figure 1): The intuitive flow starts with docu- 190

ment tokenization into embeddings processed by a 191

pretrained AWD-LSTM to grasp textual contexts. 192

The decoder introduces planted attention (green 193

box), leveraging a L2R model’s ability to rank to- 194

ken significance by label relevance, enriching the 195

model with a pre-understanding of token-label dy- 196

namics. This is adeptly paired with multi-label 197

attention (red box), merging learned and pretrained 198

insights for feature prominence. Additionally, mu- 199

tual information gain (yellow box) is utilized to en- 200

hance the decision-making process by calculating 201

the relevance of each token to the potential labels, 202

providing an informed basis for further attention 203

refinement. A subsequent boost attention phase 204

fine-tunes this for label-specific discernment, cul- 205

minating in a sigmoid-derived label probability pre- 206

diction. Section 2.1 provides a detailed description 207

of the L2R model components, while Section 2.2 208

explains how we utilize the pretrained L2R model 209

for planted attention, illustrating the integration of 210

the green boxes in Figure 1. 211
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2.1 L2R Model212

We use superscript to denote the id of a label213

and subscript to denote the id of a token. The214

training set of the L2R model contains a set215

of labels L =
{

l(1), l(2), · · · , l(m)
}

, and a set216

of tokens T = {t1, t2, · · · , tn}. Furthermore,217

G =
[
g(1), g(2), · · · , g(m)

]
∈ Rn×m, and g(i) =218 [

g
(i)
1 , g

(i)
2 , · · · , g

(i)
n

]T
∈ Rn, where g

(i)
j denotes219

the relevance of the token tj with respect to label220

l(i). We represent each label l(i) and token tj with221

word embeddings e
l(i) and etj

, respectively. A222

feature vector223

x
(i)
j = Ψ

(
e

l(i) , etj

)
(1)224

is created from each label-token pair
(
l(i), tj

)
, i =225

1, 2, · · · , m; j = 1, 2, · · · , n, by concatenat-226

ing the corresponding word embeddings e
l(i)227

and etj
. The feature matrix, X(i) =228 [

x
(i)
1 , · · · , x(i)

n

]
and the corresponding scores,229

g(i) =
[
g

(i)
1 , g

(i)
2 , · · · , g

(i)
n

]T
then form an ‘in-230

stance’. The training set can be denoted as231 {(
X(i), g(i)

)}m

i=1
. The L2R model is associated232

with a ranking function, f : x
(i)
j 7→ R. At any233

point in the training, the model outputs the score234

z(i) =
[
f
(
x

(i)
1

)
, · · · , f

(
x(i)

n

)]T
∈ Rn. We di-235

rect readers to Appendix A.2 for detailed specifics236

about the L2R model, including our methods for237

bootstrapping it with mutual information gain and238

subsequent training procedures.239

2.2 Leveraging L2R as Pretrained Attention240

Pretrained and Fine-tuned AWD-LSTM: We use241

the AWD-LSTM architecture (Merity et al., 2017)242

as LM in our experiments3. That means, AWD-243

LSTM model learns hidden features from a se-244

quence of n tokens ⟨t1, t2, · · · , tn⟩, where each245

token is represented by word embedding etj
∈ Rse .246

The hidden feature learned by AWD-LSTM corre-247

sponding to the jth token is represented as:248

hj = AWD-LSTM(⟨et1 , · · · , etj ⟩), hj ∈ Rse

(2)249

Note that all the pretrained word embeddings etj250

and the parameters of the AWD-LSTM model are251

finetuned on the target task using the mechanisms252

proposed in Howard and Ruder (2018).253

3We used the pretrained LM from https://docs.fast.
ai/text.models.awdlstm.html

Decoder – PLANT L2R as Attention: To allocate 254

label-specific attention weights to the most infor- 255

mative tokens in the sequence ⟨t1, t2, · · · , tn⟩ we 256

take the following three steps. 257

First, the hidden features h1, h2, · · · , hn of the 258

sequence ⟨t1, t2, · · · , tn⟩ are concatenated to for- 259

mulate the matrix H = [h1, h2, · · · , hn]T ∈ 260

Rn×se . To transform H into label-specific vec- 261

tors, we compute label-specfic attention weights 262

as: 263

A = softmax(HUT ), A ∈ Rn×|L| (3) 264

where U ∈ R|L|×se is the label embedding ma- 265

trix.The ith column in A represents the attention 266

weights corresponding to the ith label in L for each 267

of the n tokens. To ensure the bulk of the weight is 268

placed on the most informative tokens, the softmax 269

is applied at the column level. Here A denotes the 270

learned attention weights. 271

Second, we perform attention planting by uti- 272

lizing two types of attention weights: static- 273

planted (S) and differentiable-planted (P ). The 274

static-planted attention (S) remains constant and 275

is based on mutual information gain, while the 276

differentiable-planted attention (P ) comprises 277

trainable parameters. These mechanisms en- 278

hance the model’s ability to prioritize relevant 279

tokens. We determine the static-planted atten- 280

tion as S =
[
g(1), g(2), · · · , g(|L|)

]
∈ Rn×|L|, 281

is comprised of individual vectors g(i) = 282[
g

(i)
1 , g

(i)
2 , · · · , g

(i)
n

]T
∈ Rn. Each element g

(i)
j 283

of these vectors represents the relevance of token 284

tj with respect to label l(i), as precisely defined 285

in section 2.1. We determine the differentiable- 286

planted attention by computing feature vectors 287

x
(i)
j = Ψ

(
e

l(i) , etj

)
for each label-token pair 288(

l(i), tj

)
, i = 1, 2, · · · , |L|; j = 1, 2, · · · , n as 289

per equation 1. Then utilizing pretrained embed- 290

dings e
l(i) and etj

from the L2R model in sec- 291

tion 2.1, the pretrained L2R model computes scores 292

P =
[
p(1), p(2), · · · , p(|L|)

]
∈ Rn×|L|, where 293

p(i) =
[
f
(
x

(i)
1

)
, · · · , f

(
x(i)

n

)]T
∈ Rn, and f 294

is the ranking function from equation 7. In a de- 295

parture from the standard attention approach, we 296

introduce inattention, a pre-softmax thresholding 297

technique that strategically elevates the significance 298

of attention weights. By effectively zeroing out less 299

relevant tokens, this method ensures maximal focus 300
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on pivotal tokens:301

P = softmax(threshold(P , k)) (4)302

where both threshold (Appendix A.3) and softmax303

are applied at the column level.304

Third, to compute the label-specific vectors, we305

perform linear combinations of the hidden features306

h1, h2, · · · , hn using the attention weights from307

three sources: the learned attention weights in each308

column of A, the static-planted attention weights309

in each column of S, and the differentiable-planted310

attention weights in each column of P . This is311

followed by element-wise matrix multiplication312

with a weight matrix W ∈ R|L|×se :313

V = (AT H + ST H + P T H) ⊙ W , V ∈ R|L|×se

(5)
314

The purpose of W is to boost attention. The ith row315

vi of V , can be thought of as the information re-316

garding the ith label captured by attention from the317

token sequence ⟨t1, t2, · · · , tn⟩. Finally, this label-318

specific information is summed and added with a319

label-specific bias followed by sigmoid activation320

to produce predictions:321

ŷ = sigmoid(1V T + b); 1 ∈ Rse ; b, ŷ ∈ R|L|

(6)322

The training objective is to mimimize the binary323

cross-entropy loss between ŷ and the target y as:324

Loss(y, ŷ, θ) =
|L|∑
i=1

yi log ŷi+(1 − yi) log (1 − ŷi) ,325

where θ denotes all trainable model parameters.326

Inattention: In contrast to traditional attention327

mechanisms, we introduce inattention (Equation 4)328

a novel technique that strategically enhances atten-329

tion weights’ significance by filtering less relevant330

tokens, ensuring focus on critical elements within a331

token sequence. Our ablation analysis consistently332

identifies the optimal threshold parameter k in the333

range [1, 10k′], where k′ is from the nDCG@k loss334

function (Equation 8) for L2R model pretraining335

(Section 2.1). This aligns with our motivation to336

use an L2R model to learn token ranks, concen-337

trating attention on informative tokens with higher338

ranks while reducing attention to less relevant to-339

kens.340

Stateful Decoder: Our decoder innovates with a341

stateful mechanism inspired by backpropagation342

through time (BPTT) (Howard and Ruder, 2018).343

Segmentation into fixed-size batches preserves the 344

state, consisting of the last hidden feature hn and 345

prediction ŷb for each batch. This state guides sub- 346

sequent batches, allowing cumulative predictions 347

through initializing the AWD-LSTM encoder with 348

hn and continuously adding predictions. Gradients 349

propagate back across batches, improving adapt- 350

ability to large documents and model convergence. 351

Our stateful decoder eliminates the need for text 352

truncation (Li and Yu, 2020; Xie et al., 2019), pre- 353

venting performance loss, and ensures stable GPU 354

memory usage by processing long texts in manage- 355

able batches. 356

Discriminative Fine-tuning and Gradual Un- 357

freezing: To fine-tune our pretrained model ef- 358

fectively for attention planting, we employ two 359

essential strategies. First, we leverage discrimina- 360

tive fine-tuning (Howard and Ruder, 2018). This 361

technique assigns distinct learning rates (LR) to 362

different parameter groups θl ∈
{

θe, θp, θd
}

corre- 363

sponding to AWD-LSTM encoder, planted decoder, 364

and the remaining model components. This ap- 365

proach optimizes the pretrained model by focusing 366

on areas that need the most adjustment. The update 367

rule for discriminative fine-tuning is as follows: 368

θl
t = θl

t−1 − ηl · ∇θlJ(θ) 369

where ∇θlJ(θ) is the gradient with respect to the 370

model’s loss function. For experiments we applied 371

half or a third of the LR for already proficient L2R 372

model parameters compared to others. Second, we 373

embrace gradual unfreezing (Howard and Ruder, 374

2018). This method fine-tunes the model in a layer- 375

wise sequence, starting from the last layer and mov- 376

ing gradually towards the initial layers. 377

Bidirectional Language Model: For the 378

MIMIC-III-full and MIMIC-IV-full (Table 2), 379

we pretrain both a forward and backward LM. We 380

fine-tune an XMTC model for each LM indepen- 381

dently and average the classifier predictions. On 382

MIMIC-III-full P@15 increased from 60.61 to 383

61.67, and on MIMIC-IV-full, from 54.5 to 55.6. 384

3 Experiments 385

3.1 Experimental Setup 386

Datasets: We compare PLANT to SOTA ICD 387

coding models (Yang et al., 2022; Zhang et al., 388

2022; Yuan et al., 2022; Liu et al., 2021; Vu et al., 389

2021; Li and Yu, 2020; Cao et al., 2020; Xie 390

et al., 2019; Mullenbach et al., 2018). Our pri- 391

mary datasets are MIMIC-III (Johnson et al., 2016) 392
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and the newly available MIMIC-IV (Johnson et al.,393

2023). These datasets contain rich textual and struc-394

tured records from ICU settings, with a focus on395

discharge summaries. These summaries are metic-396

ulously annotated with ICD-9 codes (MIMIC-III)397

and ICD-10 codes (MIMIC-IV) to represent di-398

agnoses and procedures. MIMIC-III comprises399

52,722 discharge summaries and 8,929 unique ICD-400

9 codes. We follow the methodology in (Mul-401

lenbach et al., 2018), including patient ID-based402

splits for full-code experiments and a subset of403

50 frequent codes. We also evaluate our model404

on the few-shot MIMIC-III-rare50 dataset (Yang405

et al., 2022), featuring 50 rare ICD codes. Addi-406

tionally, we explore MIMIC-IV, with 122,279 dis-407

charge summaries and 7,942 unique ICD-10 codes,408

following Edin et al. (2023). We denote these409

datasets as MIMIC-III-full, MIMIC-III-top50,410

MIMIC-III-rare50, and MIMIC-IV-full. Refer411

to Table 2 for dataset statistics.412

MIMIC-III-full MIMIC-IV-full

Number of documents 52,723 122,279
Number of patients 41,126 65,659
Number of unique codes 8,929 7,942
Codes pr. instance: Median (IQR) 14(10 − 20) 14(9 − 20)
Words pr. document: Median (IQR) 1, 375(965 − 1, 900) 1, 492(1, 147 − 1, 931)
Documents: Train/val/test [%] 90.5/3.1/6.4 72.9/10.9/16.2

Table 2: Descriptive statistics for MIMIC-III-full and
MIMIC-IV-full discharge summary training sets.

Preprocessing, Implementation and Hyperpa-413

rameters: We direct readers to Appendix A.4 and414

Appendix A.5 for specifications.415

Evaluation metrics: To compare with prior ICD416

studies, we use various metrics, focusing on mi-417

cro and macro F1 scores, AUC, and P@k. Micro-418

averaging treats each (text, code) pair individually,419

while macro-averaging computes metrics per label.420

Micro-R reflects the ratio of true positives to the421

sum of true positives and false negatives for each422

label, while Macro-R represents the average recall423

across all labels. Precision follows a similar calcu-424

lation pattern. Macro-averaged metrics prioritize425

infrequent labels. P@k denotes the proportion of426

the k top-scored labels that match the ground truth.427

Baselines: These included models such as CAML428

(Mullenbach et al., 2018), MSATT-KG (Xie et al.,429

2019), MUltiResCNN (Li and Yu, 2020), Hyper-430

Core (Cao et al., 2020), LAAT/JointLAAT (Vu431

et al., 2021), ISD (Zhou et al., 2021), Effective-432

CAN (Liu et al., 2021), MSMN (Yuan et al., 2022),433

DiscNet (Zhang et al., 2022), and KEPTLong-434

former (Yang et al., 2022).435

3.2 Main Results 436

MIMIC-III-full (Table 3): PLANT demonstrated 437

notable enhancements over existing SOTA mod- 438

els. Specifically, when compared with Effective- 439

CAN, LAAT, and DiscNet, PLANT yielded su- 440

perior performance in terms of micro-F1, P@5, 441

P@8, and P@15 metrics, with improvements of 442

0.5%, 2.7%, 0.6%, and 0.3%, respectively. Signifi- 443

cantly, PLANT achieved a remarkable P@5 score 444

of 84%, indicative of an average of 4.2 correct pre- 445

dictions among the top 5; while demonstrating only 446

a slightly lower micro-AUCthan DiscNet.

Model
AUC F1 P@k

Macro Micro Macro Micro P@5 P@8 P@15
CAML/DR-CAML 89.7 98.6 8.8 53.9 - 70.9 56.1
MSATT-KG 91.0 99.2 9.0 55.3 - 72.8 58.1
MultiResCNN 91.0 98.6 8.5 55.2 - 73.4 58.4
HyperCore 93.0 98.9 9.0 55.1 - 72.2 57.9
LAAT/JointLAAT 92.1 98.8 10.7 57.5 81.3 73.8 59.1
ISD 93.8 99.0 11.9 55.9 - 74.5 -
Effective-CAN 92.1 98.9 10.6 58.9 - 75.8 60.6
MSMN 95.0 99.2 10.3 58.4 - 75.2 59.9
DiscNet 95.6 99.3 14.0 58.8 - 76.5 61.4
PLANT (Ours) 90.4 98.9 10.1 59.4∗ 84.0∗ 77.1∗ 61.7∗

Table 3: Results (in %) on the MIMIC-III-full test set.
We ran our model 5 times each with different random
seeds for initialization and report mean scores. * indi-
cates that the performance difference between PLANT
and the next best is significant (p < 0.01, using the Ap-
proximate Randomization test). All scores in tables 3,
4, 5 and 6 are reported under the same experimental
setup.

447
MIMIC-III-top50 (Table 4): PLANT outper- 448

formed the previous SOTA baseline models of 449

MSMN and LAAT with regard to macro-F1, 450

micro-F1, P@8 and P@15, respectively; while 451

matching micro-AUCwith ISD and achieving 452

a slightly lower P@5 as compared to MSMN. 453

PLANT produced improvements of 0.4%, 0.3%, 454

0.3% and 1.4% for macro-F1, micro-F1, P@8 455

and P@15, respectively. 456

Model
AUC F1 P@k

Macro Micro Macro Micro P@5 P@8 P@15
CAML/DR-CAML 88.4 91.6 57.6 63.3 61.8 - -
MSATT-KG 91.4 93.6 63.8 68.4 64.4 - -
MultiResCNN 89.9 92.8 60.6 67.0 64.1 - -
HyperCore 89.5 92.9 60.9 66.3 63.2 - -
LAAT/JointLAAT 92.5 94.6 66.6 71.6 67.5 54.7 35.7
ISD 93.5 94.9 67.9 71.7 68.2 - -
Effective-CAN 92.0 94.5 66.8 71.7 66.4 - -
MSMN 92.8 94.7 68.3 72.5 68.0 - -
PLANT (Ours) 93.1 94.9 68.7 72.8 67.2 55.0∗ 36.3∗

Table 4: Results on the MIMIC-III-top50 test set.

MIMIC-III-rare50 (Table 5): PLANT surpassed 457

the prior SOTA baseline, KEPTLongformer, by 458

astounding margins. Specifically, by 12.9% in 459

macro-AUC, 12.7% in micro-AUC, 52.2% in 460
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Model
AUC F1

Macro Micro Macro Micro
MSMN 75.3 76.2 17.1 17.2
KEPTLongformer 82.7 83.3 30.4 32.6
PLANT (Ours) 95.6∗ 96.0∗ 82.6∗ 84.2∗

Table 5: Results on the MIMIC-III-rare50 test set.

macro-F1, and 51.6% in micro-F1. Intriguingly,461

it’s worth noting that these remarkable results were462

achieved by training with only unfrozen PLANT463

layers, without even utilizing the entire model’s464

capacity. This underscores the extraordinary po-465

tential of PLANT in delivering outstanding perfor-466

mance with efficient training strategies in low-shot467

settings.468

MIMIC-IV-full (Table 6): PLANT outperformed469

previous SOTA baseline model of LAAT with re-470

gard to P@8 and P@15 while matching micro-471

AUCwith LAAT. PLANT produced improvements472

of 1.7%, 1.3% for P@8 and P@15, respectively.

Model
AUC F1 P@k

Macro Micro Macro Micro P@5 P@8 P@15
CAML/DR-CAML 91.1 98.5 16.0 55.4 - 66.8 52.2
MultiResCNN 94.5 99.0 21.1 56.9 - 67.8 53.5
LAAT/JointLAAT 95.4 99.0 20.3 57.9 - 68.9 54.3
PLANT (Ours) 94.8 99.0 19.6 57.1 78.1∗ 70.6∗ 55.6∗

Table 6: Results on the MIMIC-IV-full test set. The
comparitive results are reported from Edin et al. (2023).

473

4 Analysis474

Firstly, except for the Gradual Unfreezing and Bidi-475

rectionality, we selectively unfreeze the layers in476

decoder, keeping the encoder frozen—meaning no477

backpropagation was performed on their weights478

during training. This ensures that performance im-479

provements are attributed directly to the decoder,480

our primary focus. Secondly, all reported perfor-481

mance metrics stem from the full test sets of both482

MIMIC-III-full and MIMIC-IV-full datasets.483

Thirdly, reported enhancements were statistically484

significant (p < 0.01, using the Approximate Ran-485

domization test).486

Impact of PLANT (Figure 3,4): We evaluate487

PLANT and LAAT (Vu et al., 2021) in contexts488

with skewed label distributions. PLANT uses pre-489

trained L2R activations P and mutual information490

gain S, initializing the decoder’s attention weights.491

While LAAT relies solely on learned attention A,492

initialized randomly and learned from scratch. That493

is LANT omits P and S form Equation 5. Our494

analysis involves training both PLANT and LAAT495

models across varying fractions of a balanced train- 496

ing dataset, with both models trained for up to five 497

epochs. The test set remains constant, and we mea- 498

sure P@5 and P@15 as the performance metric for 499

both models. The results were notable: the PLANT 500

model consistently matched or surpassed the LAAT 501

model’s performance across all training sizes, even 502

with significantly less data. For instance, in the case 503

of MIMIC-IV-full, PLANT achieved a P@5 of 504

0.50 and P@15 of 0.37 with a smaller training split 505

of 1090 and 2743 instances, respectively, matching 506

the performance of the LAAT model trained on a 507

significantly larger split of 10, 337 and 12, 902 in- 508

stances. Similarly, in the case of MIMIC-III-full, 509

PLANT achieved a P@5 of 0.47 and P@15 of 0.30, 510

trained with only 136 and 235 instances, respec- 511

tively. This performance equates to that of the 512

LAAT model trained on a dataset comprising 1342 513

and 1578 instances. These findings are visually 514

represented in Figure 3 through vertical and hori- 515

zontal lines, illustrating the substantial efficiency 516

gains of PLANT in terms of training data require- 517

ments while maintaining or improving model per- 518

formance. Since PLANT achieves comparable 519

performance to LAAT with significantly less data, 520

which also implies a lower number of instances 521

per label (aka skewed label distribution), this out- 522

come underscores the inefficiencies of the LAAT 523

approach in such scenarios. To examine overfit- 524

ting (Figure 4), we trained both PLANT and LAAT 525

on MIMIC-IV-full for 60 epochs. While PLANT 526

remained stable, LAAT began overfitting after 40 527

epochs, diverging train and test loss, leading to a 528

decline in P@15.

Figure 3: P@15 for PLANT vs. LAAT (Vu et al.,
2021) with different number of training examples on
MIMIC-III-full and MIMIC-IV-full.

529

Figure 4: PLANT does not overfit on MIMIC-IV-full,
LAAT (Vu et al., 2021) does.
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Ablation MIMIC-III-full MIMIC-IV-full

Without Inattention 50.95 42.40
With Inattention 51.05 42.51
Stateless 52.80 43.38
Stateful 52.90 44.22
− disc 51.40 43.29
+ disc 52.21 44.34
full unfreezing 57.78 49.78
gradual unfreezing 58.31 50.97

Table 7: P@15 for MIMIC-III-full and
MIMIC-IV-full (train split 49, 579) test set.

Impact of Inattention (Table 7): We investigated530

the impact of the inattention threshold k (Equa-531

tion 4) within PLANT on MIMIC-III-full and532

MIMIC-IV-full. The training splits comprised533

22, 525 instances (average 49 instances per la-534

bel) and 49, 579 instances (average 97 instances535

per label) for the respective datasets. We trained536

each model for 5 epoch and measured P@15.537

For MIMIC-III-full, the model without inatten-538

tion (k = 72) achieved a P@15 of 50.95, while539

the model with inattention (k = 56) achieved a540

slightly higher P@15 of 51.05. In the case of541

MIMIC-IV-full, the model without inattention at-542

tained a P@15 of 42.4, which improved to 42.51543

with inattention (k = 8).544

Impact of Sateful Decoder (Table 7): On the545

MIMIC-III-full training dataset, using the state-546

ful decoder for three epochs yielded a P@15 of547

52.9, a slight improvement over 52.8 without it.548

Similarly, on the MIMIC-IV-full (training split of549

49, 579), employing the stateful decoder for seven550

epochs significantly boosted P@15, from 43.28 to551

44.22. These improvements highlight the stateful552

decoder’s role in enhancing PLANT’s performance553

with extensive text data.554

Impact of Discriminative Fine-tuning and555

Gradual Unfreezing (GU) (Table 7): On the556

MIMIC-III-full, training PLANT for one epoch557

with discriminative fine-tuning, applying half the558

learning rate to L2R parameters, improved P@15559

from 51.40 to 52.21 on the test set. Similarly, on560

MIMIC-IV-full (training split of 49, 579), training561

PLANT for seven epochs with a third of the learn-562

ing rate for L2R parameters increased P@15 from563

43.29 to 44.34. For GU we explored two scenarios:564

one gradually unfreezing the model layer by layer,565

and the other unfreezing the entire model simultane-566

ously. Both models were trained for 10 epochs. On567

the MIMIC-III-full, GU increased P@15 from568

57.78 to 58.31; and on MIMIC-IV-full from 49.78569

518.81: Acute respiratory failure
PLANT: ...patient had a gcs3t and required intubation ...fio2 · · · temp po2 pco2 ph ...
MSATT-KG: ... left hemothorax, ETOH, depression, stable discharge condition...
CAML: ...small apical pneumothorax remained unchanged ... now tolerating a ...
Text-CNN: ...revealed a persistent left pleural effusion and due to concern for loculated hemothorax...
530.81: Esophageal reflux
PLANT: ... gastroesophageal reflux ... home o2 gerd osteoporosis ... one puff hospital1 prilosec 20mg....
MSATT-KG: ... tracheostomy & feeding gastrostomy ... GERD, anxiety ...
CAML: ... rib fx requiring tracheostomy & feeding gastrostomy,, GERD, anxiety, cataracts...
Text-CNN: ... right thoracotomy, decortication of lung, mobilization of liver off of chest wall...

Table 8: Interpretability evaluation results for different
models.

to 50.97. 570

Interpretability Case Study (Table 8): We com- 571

pare PLANT’s interpretability against three base- 572

lines: MSATT-KG, CAML, and Text-CNN(Kim, 573

2014). While PLANT selects top 5 tokens per label 574

based on attention values, baseline methods extract 575

informative n-grams. MSATT-KG employs multi- 576

scale and label-dependent attention, while CAML 577

and Text-CNN use label-dependent attention and 578

different phrase selection strategies. CAML uses 579

a receptive field, and Text-CNN selects positions 580

based on maximum channel values. In the inter- 581

pretability case study, PLANT attends to tokens 582

like ‘intubation’, ‘fio2’, and ‘pc02’. ‘fio2’ repre- 583

sents Fraction of Inspired Oxygen, critical in deter- 584

mining oxygen concentration delivered to a patient. 585

‘PCO2’ signifies partial pressure of carbon dioxide, 586

indicative of conditions like respiratory acidosis 587

or alkalosis. In another example, informative to- 588

kens include ‘gastrophageal’, ‘reflux’, ‘gerd’, and 589

‘prilosec’, where ‘gerd’ denotes Gastroesophageal 590

Reflux Disease and ‘prilosec’ is a proton pump 591

inhibitor. 592

5 Related Work: Automatic ICD Coding 593

Xie and Xing (2018) introduced LSTM with tree 594

structures and adversarial learning, Prakash et al. 595

(2017) utilized condensed memory neural networks 596

on MIMIC-III (Johnson et al., 2016). Baumel et al. 597

(2017) proposed a hierarchical GRU network. Fur- 598

ther enhancements include Xie et al. (2019)’s con- 599

volutions and multi-scale feature attention, Li and 600

Yu (2020)’s convolutional layers, and Cao et al. 601

(2020)’s graph convolution and hyperbolic rep- 602

resentation. Vu et al. (2021) introduced LSTM- 603

based attention models, Zhou et al. (2021) pro- 604

posed shared representation networks, Liu et al. 605

(2021) improved convolutional networks, and Yuan 606

et al. (2022) introduced multi-synonyms attention 607

networks. Zhang et al. (2022) addressed discourse 608

structure and code-description reconciliation, in- 609

cluding physician informal abbreviations. 610
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Limitations611

The PLANT method, while effective, presents a no-612

table trade-off in terms of computational resources.613

The necessity to pretrain and load the L2R model614

imposes a substantial memory overhead compared615

to traditional attention mechanisms. Consequently,616

our memory constraints limited the number of617

epochs for which PLANT could be trained. This as-618

pect of PLANT, particularly its scalability to larger619

XMTC datasets, warrants further investigation. Fu-620

ture work will explore strategies to optimize mem-621

ory usage, ensuring that the benefits of PLANT622

can be harnessed more broadly without the current623

limitations on training duration and dataset size.624

Broader Impacts and Ethical625

Considerations626

Our research contributes to the broader field of nat-627

ural language processing (NLP) and machine learn-628

ing (ML), advancing the SOTA in XMTC. In the629

context of XMTC, our research has the potential630

to significantly impact various sectors, including631

healthcare, finance, and e-commerce. By automat-632

ing labor-intensive tasks such as medical coding633

and diagnosis, these models can enhance healthcare634

accessibility, particularly in underserved commu-635

nities. This can lead to improved patient outcomes636

and reduced disparities in healthcare access. Ad-637

ditionally, in education, XMTC models can sup-638

port personalized learning experiences by catego-639

rizing educational resources and recommending640

tailored learning materials to students. Further-641

more, XMTC can contribute to policy development642

by analyzing public opinion and sentiment from643

social media and news sources, providing valu-644

able insights for policymakers to develop evidence-645

based policies and interventions. These applica-646

tions demonstrate the diverse and far-reaching so-647

cietal implications of XMTC technology. How-648

ever, we acknowledge the importance of ensuring649

that automated systems do not perpetuate biases650

or discrimination present in the data. Therefore,651

we prioritize fairness, transparency, and account-652

ability in our model development process. In sum-653

mary, while our research presents exciting oppor-654

tunities for automation and efficiency gains, we655

recognize the importance of ethical considerations656

and broader societal impacts. By upholding ethical657

principles and promoting responsible AI develop-658

ment, we aim to maximize the positive impact of659

our work while mitigating potential risks.660

References 661

Tal Baumel, Jumana Nassour-Kassis, Raphael Cohen, 662
Michael Elhadad, and Noémie Elhadad. 2017. Multi- 663
label classification of patient notes a case study on icd 664
code assignment. arXiv preprint arXiv:1709.09587. 665

Alex Bottle and Paul Aylin. 2008. Intelligent infor- 666
mation: a national system for monitoring clinical 667
performance. Health services research, 43(1p1):10– 668
31. 669

Christopher JC Burges. 2010. From ranknet to lamb- 670
darank to lambdamart: An overview. Learning, 671
11(23-581):81. 672

Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao, Sheng- 673
ping Liu, and Weifeng Chong. 2020. HyperCore: Hy- 674
perbolic and co-graph representation for automatic 675
ICD coding. In Proceedings of the 58th Annual Meet- 676
ing of the Association for Computational Linguistics, 677
pages 3105–3114, Online. Association for Computa- 678
tional Linguistics. 679

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, 680
Jakob Uszkoreit, and Łukasz Kaiser. 2018. Universal 681
transformers. arXiv preprint arXiv:1807.03819. 682

Joakim Edin, Alexander Junge, Jakob D Havtorn, Lasse 683
Borgholt, Maria Maistro, Tuukka Ruotsalo, and Lars 684
Maaløe. 2023. Automated medical coding on mimic- 685
iii and mimic-iv: A critical review and replicability 686
study. arXiv preprint arXiv:2304.10909. 687

Jeremy Howard and Sebastian Ruder. 2018. Universal 688
language model fine-tuning for text classification. 689
In Proceedings of the 56th Annual Meeting of the 690
Association for Computational Linguistics (Volume 1: 691
Long Papers), pages 328–339, Melbourne, Australia. 692
Association for Computational Linguistics. 693

Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin 694
Gayles, Ayad Shammout, Steven Horng, Tom J Pol- 695
lard, Sicheng Hao, Benjamin Moody, Brian Gow, 696
et al. 2023. Mimic-iv, a freely accessible electronic 697
health record dataset. Scientific data, 10(1):1. 698

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H 699
Lehman, Mengling Feng, Mohammad Ghassemi, 700
Benjamin Moody, Peter Szolovits, Leo Anthony Celi, 701
and Roger G Mark. 2016. Mimic-iii, a freely accessi- 702
ble critical care database. Scientific data, 3(1):1–9. 703

Douwe Kiela, Changhan Wang, and Kyunghyun Cho. 704
2018. Dynamic meta-embeddings for improved sen- 705
tence representations. In Proceedings of the 2018 706
Conference on Empirical Methods in Natural Lan- 707
guage Processing, pages 1466–1477, Brussels, Bel- 708
gium. Association for Computational Linguistics. 709

Yoon Kim. 2014. Convolutional neural net- 710
works for sentence classification. arXiv preprint 711
arXiv:1408.5882. 712

Fei Li and Hong Yu. 2020. Icd coding from clinical 713
text using multi-filter residual convolutional neural 714

9

https://doi.org/10.18653/v1/2020.acl-main.282
https://doi.org/10.18653/v1/2020.acl-main.282
https://doi.org/10.18653/v1/2020.acl-main.282
https://doi.org/10.18653/v1/2020.acl-main.282
https://doi.org/10.18653/v1/2020.acl-main.282
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/D18-1176
https://doi.org/10.18653/v1/D18-1176
https://doi.org/10.18653/v1/D18-1176


network. In proceedings of the AAAI conference on715
artificial intelligence, volume 34, pages 8180–8187.716

Yang Liu, Hua Cheng, Russell Klopfer, Matthew R.717
Gormley, and Thomas Schaaf. 2021. Effective con-718
volutional attention network for multi-label clinical719
document classification. In Proceedings of the 2021720
Conference on Empirical Methods in Natural Lan-721
guage Processing, pages 5941–5953, Online and722
Punta Cana, Dominican Republic. Association for723
Computational Linguistics.724

Stephen Merity, Nitish Shirish Keskar, and Richard725
Socher. 2017. Regularizing and optimizing lstm lan-726
guage models. arXiv preprint arXiv:1708.02182.727

James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng728
Sun, and Jacob Eisenstein. 2018. Explainable predic-729
tion of medical codes from clinical text. In Proceed-730
ings of the 2018 Conference of the North American731
Chapter of the Association for Computational Lin-732
guistics: Human Language Technologies, Volume733
1 (Long Papers), pages 1101–1111, New Orleans,734
Louisiana. Association for Computational Linguis-735
tics.736

Anthony N Nguyen, Donna Truran, Madonna Kemp,737
Bevan Koopman, David Conlan, John O’Dwyer,738
Ming Zhang, Sarvnaz Karimi, Hamed Hassanzadeh,739
Michael J Lawley, et al. 2018. Computer-assisted740
diagnostic coding: effectiveness of an nlp-based ap-741
proach using snomed ct to icd-10 mappings. In AMIA742
Annual Symposium Proceedings, volume 2018, page743
807. American Medical Informatics Association.744

Kimberly J O’malley, Karon F Cook, Matt D Price, Kim-745
berly Raiford Wildes, John F Hurdle, and Carol M746
Ashton. 2005. Measuring diagnoses: Icd code accu-747
racy. Health services research, 40(5p2):1620–1639.748

Aaditya Prakash, Siyuan Zhao, Sadid Hasan, Vivek749
Datla, Kathy Lee, Ashequl Qadir, Joey Liu, and750
Oladimeji Farri. 2017. Condensed memory networks751
for clinical diagnostic inferencing. In Proceedings752
of the AAAI Conference on Artificial Intelligence,753
volume 31.754

Gongbo Tang, Mathias Müller, Annette Rios, and Rico755
Sennrich. 2018. Why self-attention? a targeted eval-756
uation of neural machine translation architectures.757
In Proceedings of the 2018 Conference on Empiri-758
cal Methods in Natural Language Processing, pages759
4263–4272, Brussels, Belgium. Association for Com-760
putational Linguistics.761

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob762
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz763
Kaiser, and Illia Polosukhin. 2017. Attention is all764
you need. Advances in neural information processing765
systems, 30.766

Thanh Vu, Dat Quoc Nguyen, and Anthony Nguyen.767
2021. A label attention model for icd coding from768
clinical text. In Proceedings of the Twenty-Ninth769
International Joint Conference on Artificial Intelli-770
gence, IJCAI’20.771

Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan, 772
and Rui Wang. 2020. Relational graph attention net- 773
work for aspect-based sentiment analysis. In Pro- 774
ceedings of the 58th Annual Meeting of the Asso- 775
ciation for Computational Linguistics, pages 3229– 776
3238, Online. Association for Computational Lin- 777
guistics. 778

Pengtao Xie and Eric Xing. 2018. A neural architecture 779
for automated icd coding. In Proceedings of the 56th 780
Annual Meeting of the Association for Computational 781
Linguistics (Volume 1: Long Papers), pages 1066– 782
1076. 783

Xiancheng Xie, Yun Xiong, Philip S. Yu, and Yangyong 784
Zhu. 2019. Ehr coding with multi-scale feature at- 785
tention and structured knowledge graph propagation. 786
In Proceedings of the 28th ACM International Con- 787
ference on Information and Knowledge Management, 788
CIKM ’19, page 649–658, New York, NY, USA. As- 789
sociation for Computing Machinery. 790

Song Xu, Haoran Li, Peng Yuan, Youzheng Wu, Xi- 791
aodong He, and Bowen Zhou. 2020. Self-attention 792
guided copy mechanism for abstractive summariza- 793
tion. In Proceedings of the 58th annual meeting of 794
the association for computational linguistics, pages 795
1355–1362. 796

Zhichao Yang, Shufan Wang, Bhanu Pratap Singh 797
Rawat, Avijit Mitra, and Hong Yu. 2022. Knowledge 798
injected prompt based fine-tuning for multi-label few- 799
shot icd coding. In Proceedings of the Conference 800
on Empirical Methods in Natural Language Process- 801
ing. Conference on Empirical Methods in Natural 802
Language Processing, volume 2022, page 1767. NIH 803
Public Access. 804

Zheng Yuan, Chuanqi Tan, and Songfang Huang. 2022. 805
Code synonyms do matter: Multiple synonyms 806
matching network for automatic ICD coding. In 807
Proceedings of the 60th Annual Meeting of the As- 808
sociation for Computational Linguistics (Volume 2: 809
Short Papers), pages 808–814, Dublin, Ireland. As- 810
sociation for Computational Linguistics. 811

Shurui Zhang, Bozheng Zhang, Fuxin Zhang, Bo Sang, 812
and Wanchun Yang. 2022. Automatic ICD cod- 813
ing exploiting discourse structure and reconciled 814
code embeddings. In Proceedings of the 29th Inter- 815
national Conference on Computational Linguistics, 816
pages 2883–2891, Gyeongju, Republic of Korea. In- 817
ternational Committee on Computational Linguistics. 818

Tong Zhou, Pengfei Cao, Yubo Chen, Kang Liu, Jun 819
Zhao, Kun Niu, Weifeng Chong, and Shengping Liu. 820
2021. Automatic ICD coding via interactive shared 821
representation networks with self-distillation mech- 822
anism. In Proceedings of the 59th Annual Meet- 823
ing of the Association for Computational Linguistics 824
and the 11th International Joint Conference on Natu- 825
ral Language Processing (Volume 1: Long Papers), 826
pages 5948–5957, Online. Association for Computa- 827
tional Linguistics. 828

10

https://doi.org/10.18653/v1/2021.emnlp-main.481
https://doi.org/10.18653/v1/2021.emnlp-main.481
https://doi.org/10.18653/v1/2021.emnlp-main.481
https://doi.org/10.18653/v1/2021.emnlp-main.481
https://doi.org/10.18653/v1/2021.emnlp-main.481
https://doi.org/10.18653/v1/N18-1100
https://doi.org/10.18653/v1/N18-1100
https://doi.org/10.18653/v1/N18-1100
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.18653/v1/2020.acl-main.295
https://doi.org/10.18653/v1/2020.acl-main.295
https://doi.org/10.18653/v1/2020.acl-main.295
https://doi.org/10.1145/3357384.3357897
https://doi.org/10.1145/3357384.3357897
https://doi.org/10.1145/3357384.3357897
https://doi.org/10.18653/v1/2022.acl-short.91
https://doi.org/10.18653/v1/2022.acl-short.91
https://doi.org/10.18653/v1/2022.acl-short.91
https://aclanthology.org/2022.coling-1.254
https://aclanthology.org/2022.coling-1.254
https://aclanthology.org/2022.coling-1.254
https://aclanthology.org/2022.coling-1.254
https://aclanthology.org/2022.coling-1.254
https://doi.org/10.18653/v1/2021.acl-long.463
https://doi.org/10.18653/v1/2021.acl-long.463
https://doi.org/10.18653/v1/2021.acl-long.463
https://doi.org/10.18653/v1/2021.acl-long.463
https://doi.org/10.18653/v1/2021.acl-long.463


A Appendix829

A.1 Skewness of Codes830
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Figure 5: The skewness of ICD-9-CM code distribution
for MIMIC-III (Johnson et al., 2016).

A.2 L2R Model (continued from Section 2.1)831

The ranking function, f : x
(i)
j 7→ R, of the L2R832

model is an L layered feed forward network,833

f(x(i)
j ) = yL, y(l) = a(W (l) · y(l−1) + b(l)), (7)834

where y(l) is layer l output, y(0) = x is input, W (l)835

is layer l weight matrix, b(l) is layer l bias vector,836

and a(·) is the activation function. In our experi-837

ments we trained the L2R model with L = 2.838

At any point in the training, the model outputs839

the score z(i) =
[
f
(
x

(i)
1

)
, · · · , f

(
x(i)

n

)]T
∈840

Rn. The objective of the L2R model is to minimize841

the total loss,842

m∑
i=1

nDCG@k
(
z(i), g(i)

)
, (8)843

where nDCG@k is the maximum allowable844

DCG@k, which is defined as:845

DCG@k
(
z(i), g(i)

)
:=

∑
l∈rankk(z(i))

2
g

(i)
l

log(l + 1) .4846

Bootstrapping L2R Model: Let (I, J) be a847

pair of random variables for the label l(i) and848

token tj over the space I × J , where I =849

{label i present, label i not present} and J =850

{token j present, token j not present}. Then, gi
j is851

defined as the mutual information gain of I and J :852

g
(i)
j =

∑
x∈I,y∈J

P(I,J)(x, y) log
(

P(I,J)(x, y)
PI(x)PJ(y)

)
,853

4here rankk(z(i)) returns the k largest indices of g(i)

ranked in descending order.

where P(I,J) is the joint, and PI , PJ are the 854

marginal probability mass function of I and J , re- 855

spectively. 856

Training L2R Model: Gradient update rule to 857

train the L2R model on
{(

X(i), g(i)
)}m

i=1
are de- 858

fined as follows. Let I(i) denote the set of pairs of 859

token indices {j, k}, such that g
(i)
j > g

(i)
k . Also, 860

let z
(i)
j = f

(
x

(i)
j

)
and z

(i)
k = f

(
x

(i)
k

)
. The pa- 861

rameters of L2R model, wp ∈ R, are updated as 862

(Burges, 2010): 863

δwp = −η
∑

j

λj

∂z
(i)
j

∂wk
, 864

λj =
∑

k:{j,k}∈I(i)

λjk −
∑

k:{k,j}∈I(i)

λkj , 865

λjk = − σ

1 + e
σ

(
z

(i)
j −z

(i)
k

) |∆nDCG@k|jk, 866

where |∆nDCG@k|jk denotes the change in 867

nDCG@k by swapping j and k in rank(z(i)). 868

A.3 Threshold 869

threshold(pi, k) =
{

pj , if pj > kth largest p

0 otherwise.
870

A.4 Preprocessing 871

Following prior research (Mullenbach et al., 2018; 872

Xie et al., 2019; Li and Yu, 2020), we tokenize and 873

lowercase all text while eliminating non-alphabetic 874

tokens containing numbers or punctuation. A dis- 875

tinctive feature of our approach is the absence of 876

preprocessed word embeddings. Instead, we fine- 877

tune a pretrained AWD-LSTM model on our tar- 878

get dataset, allowing for parameter refinement, in- 879

cluding word embeddings, and the generation of 880

context-specific embeddings for new words in the 881

dataset. While the concept of fine-tuning pretrained 882

models is not new (Howard and Ruder, 2018), our 883

innovation lies in its application to the XMTC do- 884

main. Contrary to previous practices (Li and Yu, 885

2020), we refrain from truncating text, as our ex- 886

periments and findings align with those of Zhang 887

et al. (2022), which demonstates substantial per- 888

formance variation due to truncation. To handle 889

longer texts, we employ our stateful decoder (refer 890

to Section 2.2). 891

A.5 Implementation and Hyperparameters 892

We ensure robustness across diverse XMTC 893

datasets by fine-tuning hyperparameters on the 894
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MIMIC-III-full and MIMIC-IV-full validation895

sets. Experiments are conducted on an NVIDIA896

QUADRO RTX 8000 GPU with 48 GB VRAM.897

We utilize the AWD-LSTM LM with an embedding898

size of 400, 3 LSTM layers with 1152 hidden ac-899

tivations, and the Adam Optimizer with β1 = 0.9,900

β2 = 0.99, and weight decay of 0.01. During901

fine-tuning, we apply dropout rates and weight902

dropout, with a batch size of 384, BPTT of 80,903

20 epochs, and a learning rate of 1e − 5. Classi-904

fier training also includes dropout rates and weight905

dropout, with a batch size of 16, BPTT of 72, and906

discriminative fine-tuning with gradual unfreezing907

over 115 epochs (on MIMIC-III-full), alongside908

scheduled weight decay and learning rate ranges.909
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