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Abstract
We study how to use naturally available user feed-
back, such as clicks, to optimize large language
model (LLM) pipelines for generating personal-
ized sentences using prompts. Naive approaches,
which estimate the policy gradient in the prompt
space, suffer either from variance caused by the
large action space of prompts or bias caused by
inaccurate reward predictions. To circumvent
these challenges, we propose a novel kernel-based
off-policy gradient method, which estimates the
policy gradient by leveraging similarity among
generated sentences, substantially reducing vari-
ance while suppressing the bias. Empirical results
on our newly established suite of benchmarks,
demonstrate the effectiveness of the proposed ap-
proach in generating personalized descriptions for
movie recommendations, particularly when the
number of candidate prompts is large.

1. Introduction
As more systems with large language model (LLM)-
generated text are starting to become operational, we are
naturally collecting increasing amounts of logged user feed-
back from their system interactions. These feedback signals
provide valuable information on whether the prompt or gen-
erated sentence was effective for the user. Unlike conven-
tional datasets used for LLM training (Stiennon et al., 2020),
this feedback is available for all users at little cost, provid-
ing opportunities for personalizing sentence generation in
applications ranging from search and recommendations to
improving student motivation in educational chatbots. This
creates the need for methods that can use such naturally
logged user feedback to enhance the quality and outcome
(i.e., reward) of language generation.

To optimize sentence generation, we focus on learning a
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prompt policy (i.e., which prompt to use for a particular
user or situation). As detailed in the following, learning
a prompt policy is attractive for reasons of (1) safety, (2)
cost, and (3) accessibility. First, for most applications it
is a key requirement to not produce harmful outputs (Bai
et al., 2022). By only adapting the prompts without fine-
tuning the LLM itself, we do not run the risk of removing
the safety properties of the underlying LLM. Second, com-
pared to the LLM itself, a prompt policy can be a small
model, which reduces the required computational resources
and the amount of data needed for training (Deng et al.,
2022). Additionally, compared to using a hand-engineered
prompt, a prompt policy enables automated prompt opti-
mization and promises greater personalization. Third, a
prompt policy can be trained even in situations where the
LLM is closed-weights and available only through an in-
ference API, which makes prompt-policy learning feasible
even for small companies or individuals.

While learning a prompt policy is attractive as argued
above, using logged user feedback and performing Off-
Policy Learning (OPL) of a new prompt policy entails sev-
eral challenges due to the partial nature of the feedback.
Specifically, the logged data is bandit feedback, containing
the reward for only the action (prompt) chosen by the log-
ging policy (i.e., the one used in past operations) and not
for the other actions that a new policy may choose. This
data-generating process is outlined in Figure 2: for each
coming user, the logging policy chooses which prompt to
use for generating the sentence; then, each user observes
only the sentence generated by the chosen prompt and thus
reveals the reward (e.g., click) for only this sentence. A
naive way to deal with such counterfactuals is to regress
the reward and use imputed rewards instead (Stiennon et al.,
2020; Jaques et al., 2017; Snell et al., 2022b). However,
imputation is often not accurate enough under covariate
shift (Swaminathan & Joachims, 2015) and complex rela-
tions between prompts and rewards. An alternative is impor-
tance sampling, which re-weighs reward observations w.r.t.
the ratio of prompt distribution between the logging and tar-
get policies. Nonetheless, this approach suffers from severe
variance when the action space is large (Saito et al., 2024)
and bias when the logging policy does not fully explore
the action space (Sachdeva et al., 2020). These challenges
can be particularly problematic in our language generation
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setting, where we need to deal with a rich and diverse set of
candidate prompts as actions.

The key shortcoming of the standard approaches lies in treat-
ing each prompt independently, not taking the information
about the generated sentence into account. In response,
this paper explores and presents a method to leverage
the similarity among generated sentences to make large-
scale OPL for prompt-guided language generation ef-
ficient and tractable. Specifically, our Direct Sentence
Off-policy gradient (DSO) estimates the policy gradient in
the sentence space (i.e., not in the action space of prompts)
to take the generated sentence into account. We enable this
by applying the importance weight in the (marginalized)
sentence space and by re-sampling the action conditioned
on the sentence when calculating the score function. Since
marginalization contributes to reducing the scale of the im-
portance weights and since re-sampling works as an implicit
data augmentation about the prompt, we can achieve vari-
ance reduction of DSO compared to typical OPL methods.
Moreover, by aggregating similar prompts and sentences
using kernels, DSO also keeps the bias small.

Finally, we develop and conduct experiments on a newly-
developed OPL benchmark suite, called OfflinePrompts,
in both synthetic and full-LLM settings. The results demon-
strate the effectiveness of our approach, particularly when
the number of prompts is large, showing a 5x increase in
the performance in the full-LLM experiment. We also
provide our benchmark suite, including the full-LLM en-
vironment for generating personalized movie descriptions
for recommendations based on the MovieLens (Harper &
Konstan, 2015) dataset, as an open-source resource. Its easy-
to-use API will accelerate both future research and practical
applications of OPL of prompt-guided language generation
with logged feedback.

2. Problem Formulation
We start by formulating prompt optimization as a new type
of OPL problem, which we call contextual bandits with
auxiliary outputs.

Let u ∈ U ⊆ Rdu be a du-dimensional user feature vector
(e.g., demographic profile or user id), sampled from an
unknown distribution p(u). Let q ∈ Q ⊆ Rdq be a query
(e.g., query to a frozen LLM), sampled from a conditional
distribution p(q|u). Let a ∈ A be a (discrete) prompt, where
each prompt is associated with some vectorial embedding,
ea ∈ Rde , where de is the dimension of the embeddings.
The prompt is used to generate a sentence via a frozen
LLM. This process can be formulated as a procedure of
sampling sentence s ∈ S as an auxiliary output from the
stochastic output distribution of the LLM: pLLM(s|q, a). A
user will respond to the output sentence and provide some

reward r ∈ R (e.g., click, like, or purchase), where r follows
p(r|u, q, s). Let π ∈ Π be a prompt policy where π(a|u, q)
is the probability of choosing prompt a for context x :=
(u, q) ∈ X . Our goal is to optimize the prompt policy to
maximize the expected reward, defined as

V (π) := Ep(u)p(q|u)︸ ︷︷ ︸
=p(u,q)

π(a|u,q) pLLM(s|q, a)p(r|u, q, s)︸ ︷︷ ︸
=p(r,s|u,q,a)

[r]

= Ep(x)π(a|x)p(r,s|x,a)[r].

When running a prompt policy π0 (̸= π) as part of an oper-
ational system, it works as a logging policy and generates
logged feedback of the following form:

D := {xi, ai, si, ri}ni=1

∼
n∏
i=1

p(x)π0(a|x)pLLM(s|x, a)p(r|x, s)

where n is the data size and i is its index. The logged
data informs us whether the prompt (ai) results in a high
reward or not (ri) for a particular context (xi). However, a
difficult aspect of using the logged data is that the reward
observation is partial, i.e., it is observed only for the prompt
chosen by the logging policy (π0) but not for all the other
actions. This can be particularly challenging when training
a new policy π on the logged data, as π may choose actions
that are not chosen by π0. Thus, we need to address such
counterfactuals and distribution shift between the logging
and learning policies when using logged data for a reliable
policy optimization (Swaminathan & Joachims, 2015).

In the rest of the paper, we parameterize the policy as πθ
using some parameters θ ∈ Θ (e.g., a neural network). We
also define q(x, a) := E[r|x, a] and q(x, s) := E[r|x, s].
Finally, z ∼ p(z) indicates that we sample a single random
variable z from the probability distribution p(·), for any
random variable z and its probability distribution.

2.1. Conventional approaches

We first review direct applications of typical OPL methods
and discuss their limitations.

Regression (Konda & Tsitsiklis, 1999). A typical way of
using logged data is to train a reward predictor q̂ (Stiennon
et al., 2020; Snell et al., 2022b), and then use the predicted
reward to estimate the policy gradient (PG)1.

∇θV (πθ) ≈
1

n

n∑
i=1

Ea∼πθ(a|xi) [∇θ log πθ(a|xi)q̂(xi, a)] .

Oftentimes, an accurate regression for OPL is difficult to
obtain when the relation between prompts and reward is

1The estimation target is the true PG defined as ∇θV (πθ) =
Ep(x)πθ(a|x)p(r|x,a)[∇θ log πθ(a|x)r].
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complex. This is because the reward observation is par-
tial and covariate shift arises between the logging policy
(π0) and the target policy (πθ). If the learned regression
model q̂ is inaccurate, the estimated PG can be heavily bi-
ased (Swaminathan & Joachims, 2015).

Importance sampling (IS) (Swaminathan & Joachims,
2015). Instead of using potentially inaccurate regres-
sion, IS corrects the distribution shift between π0 and πθ by
reweighing the observations:

∇θV (πθ) ≈
1

n

n∑
i=1

πθ(ai|xi)
π0(ai|xi)

∇θ log πθ(ai|xi)ri.

IS is unbiased under the action support condition, i.e.,
∀(x, a) ∈ X × A, πθ(a|x) > 0 =⇒ π0(a|x) > 0.
However, IS produces considerable bias due to the viola-
tion of the condition (deficient support) (Sachdeva et al.,
2020) and extremely high variance due to large importance
weight (Saito et al., 2023; 2024; Sachdeva et al., 2024),
which are likely when the action space is large. The key
shortcoming here is that the typical methods treat each
prompt independently and discard the rich information about
the generated sentence when estimating the policy gradient.

3. Direct Sentence Off-Policy Gradient (DSO)
The key idea is to make the most of the information about the
generated sentence by taking the policy gradient directly
in the sentence space as follows.

∇θV (πθ) = Ep(x)πθ(s|x)[∇θ log πθ(s|x)q(x, s)].

Even when we parameterize the policy in the prompt
space, this is conceptually possible because we can
write the sentence distribution and the score func-
tion as πθ(s|x) =

∑
a∈A pLLM(s|x, a)πθ(a|x) and

∇θ log πθ(s|x) = Eπθ(a|x,s)[∇θ log πθ(a|x)], respectively
(See Appendix F.1 for the derivation). However, one poten-
tial concern of this approach is that we may suffer from data
sparsity when estimating the gradient for each sentence s, as
sentences are high-dimensional. Thus, we further consider
taking the gradient in the marginalized sentence space to
enable data-efficient OPE as

∇θV (πθ) = Ep(x)πθ(ϕ(s)|x)[∇θ log πθ(ϕ(s)|x)qπθ (x, ϕ(s))],

where ϕ(s) ∈ Φ(S) is the kernel-based neighbors of sen-
tence s. Its probability density, policy distribution, and
expected reward are defined as follows.

• P(ϕ(s)|·) :=
∫
s′∈S K(s′, s; x, τ)P(s′|·)ds′, ∀P,

• π(ϕ(s)|x) :=
∑
a∈A pLLM(ϕ(s)|x, a)π(a|x), ∀π,

• qπ(x, ϕ(s)) :=
∫
s′∈S

K(s,s′; x,τ)π(s′|x)
π(ϕ(s)|x) q(x, s′)ds′, ∀π,

where K(·) is a kernel function, which must satisfy∫
s′∈S K(s′, s;x, τ) = 1, and τ is a bandwidth hyperpa-

rameter that controls the magnitude of marginalization. The
intuition behind DSO is to implicitly augment the data by
taking the observations for the neighboring sentences into
account. In contrast, when using a piecewise constant ker-
nel like a uniform kernel, all the sentences within a certain
threshold is equally weighted, while all the others are re-
jected with the weight of 0.

To estimate the policy gradient in the marginalized sentence
space induced by kernels, Direct Sentence Off-policy Gra-
dient (DSO) applies IS as follows.

∇θV (πθ) ≈
1

n

n∑
i=1

πθ(ϕ(si)|xi)
π0(ϕ(si)|xi)︸ ︷︷ ︸
:=w(ϕ(si),xi)

∇θ log πθ(ϕ(si)|xi) ri.

By applying IS on the marginalized sentence space (Φ(S)),
DSO avoids large importance weights, making large-scale
OPL more scalable regarding the number of candidate
prompts, while keeping the bias small by leveraging the
similarity among sentences. Moreover, even though we ob-
serve only a single prompt in the original logged data, DSO
can further distribute the reward observation among multi-
ple prompts that generate similar sentences. This implicit
data augmentation among multiple counterfactual prompts
also contributes to reducing variance. The detailed analy-
sis of bias and variance is provided in Appendix B. While
the precise computation of the marginal importance weight
(w(ϕ(s), x)) and the score function (∇θπθ(ϕ(s)|x)) seems
non-trivial, below we present how to train a model to esti-
mate these distributions in a tractable way.

3.1. Estimation of the weighted score function

The key trick of DSO is to use the following expression of
the weighted score function:

w(ϕ(s), x)∇θ log πθ(ϕ(s)|x)

= E(a,s′)∼πθ(a|x)pLLM(s′|x,a)

[
K(s, s′; x, τ)∇θ log πθ(a|x)

π0(ϕ(s)|x)

]
.

We provide the derivation in Appendix F.2. This expression
indicates that DSO can be seen as performing soft rejection
sampling on the data (a, s′) augmented by πθ, while cor-
recting the bias in the logged data by applying the inverse
propensity of π0 in the marginalized sentence space. The
above equation also suggests that our estimation problem of
the weighted score function is reduced to only the estima-
tion of π0(ϕ(s)|x). This is useful, as π0(ϕ(s)|x) does not
depend on the parameterized policy (πθ), and it thus suffices
to fit a marginal density model only once before running the
policy gradient method. Because the marginal distribution is
defined as π0(ϕ(s)|x) = Eπ0(s′|x)[K(s, s′; x, τ)], we can
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estimate the marginal density via the monte-carlo sampling:

π0(ϕ(si)|xi) ≈
1

m

m∑
j=1

Esj∼π0(sj |x)[K(si, sj ;xi, τ)],

where m is the number of the monte-carlo samples. Simi-
larly, we can also estimate the marginal density with func-
tion approximation (fψ(x, s) ≈ π0(ϕ(s)|x)) using the fol-
lowing loss:

ℓ(fψ) ≈
1

n

n∑
i=1

E(s,s′)∼π0(s|xi)π0(s′|xi)[

(fψ(xi, s)−K(s, s′; xi, τ))
2].

Since the computation of this loss does not scale with the
size of the action space |A|, we can easily apply DSO even
when the action (i.e., prompt) space is large.

4. Full-LLM Experiment with MovieLens
This section compares the proposed method to four base-
lines: regression, IS, DR (Dudı́k et al., 2011), and
POTEC (Saito et al., 2024) in a personalized generation task
of movie descriptions using the MovieLens-10M (Harper &
Konstan, 2015) dataset. The MovieLens dataset contains
10M ratings between 71,567 users and 10,681 movies. To
use this data in our personalized sentence generation task,
we first augment the data by generating a (general) movie
description using Mistral-7B (Jiang et al., 2023). Then, we
train a sentence-based reward simulator on the augmented
dataset using DistilBERT (Sanh et al., 2019). After obtain-
ing a reward simulator, we collect the logged data in the
following procedure. First, we randomly sample a user (u)
and a movie (query) (q) as a context (x). Next, a logging
policy (π0) chooses which prompt (a) to use in the sentence
generation task. Then, a frozen LLM generates sentence
s, taking the prompt a and query q as the input. Finally,
we generate a reward (r) using the reward simulator. Ap-
pendix D.2 and Figure 9 describe the workflow of OPL and
that of pre-training a reward simulator in detail.

In the full-LLM experiment, we define the logging policy by
applying the softmax function on top of the logits learned
by the online policy. The total number of candidate prompts
used in this experiment is |A| = 1000. The reward is
defined as 10× (q(x, s(a))− q(x, s(∅))), where q(·) is the
[0, 1]-score simulated by the aforementioned DistilBERT
sentence discriminator and s(∅) is the sentence generated
without adding prompts. The data size is n = 50000 and
the reward noise is σr = 0.05. For DSO, we use a Gaussian
kernel with τ = 1.0 to estimate the logging marginal density.
The distance between two sentences are measured by the
sentence embeddings obtained from the frozen Mistral-7B
model (see Appendix E for the details). We report the results

Figure 1. Performance comparison of OPL methods in the full-
LLM experiment.: The policy value indicates how much im-
provement of reward we have by using a (learned) prompt policy
compared to the sentence generation without prompts (called no-
prompt baseline). From the top, the horizontal lines refer to the
value of an on-policy trained (impractical) skyline and the no-
prompt baseline.

with a total of 25 trials, on 5 different datasets and 5 runs
on each data with different random seeds.

Result Figure 1 compares the performance of the OPL
methods by the degree of improvement that the learned pol-
icy observed over the sentences generated without prompts
(which we call no-prompt baseline). The results indicate
that DSO often improves the effectiveness of the sentences
more than other OPL methods, by effectively leveraging the
information about similar sentences. Specifically, DSO is
more resilient to performance corruption than IS by substan-
tially reducing the variance and than regression by reducing
the bias. As a result, we have 5x increase of the perfor-
mance than other baselines on average. It should also be
worth noting that this result is observed for the off-the-shelf
embeddings of sentences, which do not require extensive
tuning of the embedding model. This minimizes the dif-
ficulty in applying the proposed OPL method in practice.
We also refer the reader to Appendix C for the additional
synthetic experiments with varying configurations.

5. Conclusion
This paper studied how to use naturally logged user feed-
back to optimize a prompt policy for language generation.
We started by formulating the problem as OPL of contextual
bandits with auxiliary outputs. Then, we pointed out the lim-
itations of the naive approaches – (1) existing OPL methods
often suffer from the large action space of prompts and (2)
even though we observe generated sentences, existing meth-
ods do not use the information about these sentences. To
overcome these shortfalls, we proposed Direct Setence Off-
policy gradient (DSO), which applies importance sampling
taking the similarity of sentences into account. We also
show the effectiveness of the proposed approach in both the-
oretical and empirical ways. Furthermore, our benchmarks
suite called OfflinePrompts, provided as open-source soft-
ware, accelerates future research and practical application.

4



Prompt Optimization with Logged Bandit Data

References
Agrawal, S. and Goyal, N. Thompson sampling for contex-

tual bandits with linear payoffs. In Proceedings of the
30th International Conference on Machine Learning, pp.
127–135, 2013.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-
non, C., et al. Constitutional ai: Harmlessness from ai
feedback. arXiv preprint arXiv:2212.08073, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. Advances in Neural Infor-
mation Processing Systems, 33:1877–1901, 2020.

Chowdhury, S. R. and Gopalan, A. On kernelized multi-
armed bandits. In Proceedings of the 34th International
Conference on Machine Learning, pp. 844–853, 2017.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in Neural Information
Processing Systems, 30, 2017.

Deng, M., Wang, J., Hsieh, C.-P., Wang, Y., Guo, H., Shu,
T., Song, M., Xing, E., and Hu, Z. Rlprompt: Optimizing
discrete text prompts with reinforcement learning. In Pro-
ceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pp. 3369–3391, 2022.

Ding, N., Hu, S., Zhao, W., Chen, Y., Liu, Z., Zheng, H.,
and Sun, M. Openprompt: An open-source framework
for prompt-learning. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics:
System Demonstrations, pp. 105–113, 2022.

Dudı́k, M., Langford, J., and Li, L. Doubly robust policy
evaluation and learning. In Proceedings of the 28th In-
ternational Conference on International Conference on
Machine Learning, pp. 1097–1104, 2011.

Dwaracherla, V., Asghari, S. M., Hao, B., and Van Roy, B.
Efficient exploration for llms. In Proceedings of the 41th
International Conference on Machine Learning, volume
235, pp. 12215–12227, 2024.

Fu, J., Norouzi, M., Nachum, O., Tucker, G., Novikov, A.,
Yang, M., Zhang, M. R., Chen, Y., Kumar, A., Paduraru,
C., et al. Benchmarks for deep off-policy evaluation. In
International Conference on Learning Representations,
2020.

Gao, Y., Sheng, T., Xiang, Y., Xiong, Y., Wang, H., and
Zhang, J. Chat-rec: Towards interactive and explainable
llms-augmented recommender system. arXiv preprint
arXiv:2303.14524, 2023.
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Figure 2. Overview of the prompt-based sentence personalization with logged bandit feedback. For each coming user, a policy
chooses which prompt to use to generate sentences with a frozen LLM. Each user observes only the sentence generated by the chosen
prompt and provides the reward for the corresponding sentence. Logged bandit feedback is partial in that we cannot observe rewards for
the sentences generated by prompts not chosen by the logging policy. Examples are generated by ChatGPT-3.5 (Brown et al., 2020).

A. Related Work
Prompt Tuning. Prompt tuning is a cost-efficient approach for optimizing language generation for some specific down-
stream applications, including translation, summarization, and sentiment analysis. Unlike fine-tuning, which requires the
updates of the millions of parameters of the LLM itself, prompt tuning reuses a “frozen” pre-trained LLM and optimizes
only the choice of the special tokens added to the original input sentence called prompts (Brown et al., 2020). Deng et al.
(2022) presented a reinforcement learning (RL) formulation of prompt tuning, which optimizes the prompts via policy
gradient by treating a frozen LLM as a black-box reward generator. While this formulation is relevant to ours, the critical
limitation of Deng et al. (2022) and similar online exploration papers (Dwaracherla et al., 2024) is to assume that feedback
(i.e., reward) is easily accessible. Unfortunately, such an assumption is unrealistic in many real-world applications where
online interactions with users can be costly, harmful, or sometimes even unethical (Matsushima et al., 2021; Gilotte et al.,
2018). Instead, we present a way to leverage logged user feedback naturally collected through past operations.

Reinforcement Learning for Language Generation. RL from Human Feedback (RLHF) is a widely-studied approach to
align the output of LLMs using human annotation (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022; Lin
et al., 2024). Specifically, RLHF asks human annotators to compare two sentences and provide labels to indicate which
sentence is more appropriate for a downstream task (e.g., translation). Then, using the pairwise feedback, RLHF trains
a model to predict the task-specific score of each sentence to preserve the preference. The key challenges of RLHF are
twofold: (1) RLHF incurs substantial cost and ethical concerns for human annotation (Bai et al., 2022; Lee et al., 2023) and
(2) monitoring if annotators provide sufficiently reliable labels for RLHF, as done in Stiennon et al. (2020); Ouyang et al.
(2022), can be difficult when preferred sentences change among annotators in tasks related to personalization. Our approach
of learning a contextual prompt policy using logged bandit feedback naturally resolves the above difficulties of RLHF.

Off-Policy Evaluation and Learning. Off-Policy Evaluation and Learning (OPE/OPL) studies how to use naturally
collected user feedback to evaluate and learn new contextual bandit or RL policies (Saito et al., 2021; Fu et al., 2020).
Regression-based and importance sampling (IS)-based approaches are prevalent in OPL. First, the regression-based approach
trains a reward predictor and then optimizes a new policy using imputed rewards. While this approach performs well when
the reward predictor is accurate for the entire action (i.e., prompt) space, such an accurate regression is often demanding
due to the issues such as counterfactuals and covariate shift (Swaminathan & Joachims, 2015). In contrast, the IS-based
approach aims to estimate the policy gradient unbiasedly from actually observed rewards by correcting the distribution
shift (Precup et al., 2000). However, IS often suffers from high variance and deficient support, particularly when the action
space is large (Saito & Joachims, 2022; Saito et al., 2023; Sachdeva et al., 2024). To overcome the limitations of naive
approaches, Saito et al. (2024) has recently proposed a two-stage OPL framework called POTEC, which first chooses which
cluster among pre-defined action-clusters to use by applying cluster-wise IS and then chooses which action within the
chosen cluster to use. However, good clusterings are often hard to identify, and this approach discards information about the
generated sentences. In response, we present a way to leverage similarity among sentences by estimating the policy gradient
directly in the sentence space. Another related literature is Kallus & Zhou (2018), which discuss OPE of deterministic
policies in a continuous action space. While we share the ideas of using kernels with Kallus & Zhou (2018), our idea comes
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from a different notion of deriving the gradient directly in the (marginalized) sentence space. Moreover, the theoretical
analysis is entirely different, as we apply kernels to the logging policy, while Kallus & Zhou (2018) do not. Finally, our new
benchmark, which simulates the personalized generation of sentences, is a unique contribution of ours to the OPE/OPL
community.

(Online) linear and kernelized contextual bandits. Linear bandits (Li et al., 2010; Agrawal & Goyal, 2013; Rus-
mevichientong & Tsitsiklis, 2010) and kernelized contextual bandits (Chowdhury & Gopalan, 2017; Valko et al., 2013; Zhou
et al., 2020) is relevant to ours in using the similarity among actions and rewards for improving data efficiency. Specifically,
linear bandits assume that the reward function is expressed as an inner-product between (non-linear representations of)
context features and action-specific coefficients and aims to learn the linear action features (Li et al., 2010). By assuming the
linear structure in the reward function, the corresponding bandit algorithm makes the exploration more efficient than treating
each action independently. Similarly, kernelized bandits (Valko et al., 2013) generalize the idea of leveraging similarity
among action representations under less restrictive assumptions on the rewards. Specifically, it assumes that similar features
can result in similar rewards without assuming a linear structure and implicitly augments the reward observation using
the Reproducing kernel Hilbert space (RKHS). Our paper demonstrates that leveraging the similarity among auxiliary
outputs (i.e., sentences) of action can improve the data efficiency in the offline learning setting, not only limited to the online
exploration discussed in the existing literature.

Offline reinforcement learning (Offline RL) for dialog generation. Offline RL (Levine et al., 2020) has emerged as a
new paradigm for fine-tuning language models in dialog systems (Jaques et al., 2020; Snell et al., 2022a;b; Verma et al.,
2022). Among them, Snell et al. (2022a) and Verma et al. (2022) focus on goal-oriented dialog system, which aims to solve
some specific tasks by combining RL-based planning and dialog generation. Jaques et al. (2020) and Snell et al. (2022a)
aim to improve the quality of conversations by maximizing the users’ sentiment signals observed in text or interface (e.g.,
thumb up). While these works are relevant to ours in using offline data, our work has several distinctions over existing
works. First, while existing work focuses on RL-based fine-tuning, which requires expensive computation and is affordable
only for the companies releasing pre-trained models, our work considers prompt tuning. Since prompt tuning is available
for some third-party companies (e.g., advertising agencies) or even individual users that access models through APIs (e.g.,
ChatGPT), a more diverse population can customize language generation with our framework. Moreover, while existing
work formulates the problem as an RL problem and considers only the regression-based approach for policy learning, ours
formulates the problem as contextual bandits and considers applying IS in the marginalized sentence space. This makes the
bias-variance tradeoff of policy learning more controllable than existing works. Thus, we can expect an improved policy
performance, as we have shown in the experiments.

Relevant open-source softwares and benchmarks. There are several open-source libraries for language generation
relevant to ours. First, RL4LMs (Ramamurthy et al., 2022) provides a framework for RL-based fine-tuning of LLMs for
optimizing language generation for reward maximization. In prompt tuning, OpenPrompt (Ding et al., 2022) works as
a testbed for comparing (online) gradient-based prompting strategies with various frozen LLMs. OpenICL (Wu et al.,
2023) also benchmarks (more sophisticated) prompt conditioning strategies called in-context learning (ICL), such as
chain-of-thoughts reasoning for solving complex mathematical problems (Wei et al., 2022). Similarly, OpenAgents (Xie
et al., 2023) provides an interface for generating text for various real-world web applications using frozen LLMs, especially
for the purpose of providing a platform for online RL-based prompt tuning. However, these platforms are not capable of
handling logged bandit feedback, and ours are the first to streamline OPL procedures for prompt tuning with naturally
collected user feedback data.

In an independent field of benchmark study, OpenBanditPipeline (Saito et al., 2021) and SCOPE-RL (Kiyohara et al., 2023;
2024) are representative open-source libraries to handle OPE and OPL procedures in contextual bandits and RL. Although
these libraries streamline the workflow of using logged data in organized ways, they are not applicable to language generation.
Thus, we release a new benchmark suite for OPL of prompt tuning for language generation, putting emphasis on connecting
OPL modules and language generation modules, while following the basic design principles of OpenBanditPipeline (Saito
et al., 2021) and SCOPE-RL (Kiyohara et al., 2023; 2024).

Finally, there is also a benchmark called BanditBench (Nie et al., 2024) , which simulates the LLM-based item recommenda-
tions based on the MovieLens (Harper & Konstan, 2015) dataset. While this benchmark uses the same MovieLens dataset
for semi-synthetic simulation, the tasks are different from each other. Specifically, BanditBench (Nie et al., 2024) aims
to use LLMs as recommender policies that choose items (Yang et al., 2023; Gao et al., 2023), while our work focuses on
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Figure 3. Bias-variance tradeoff of DSO and its relations to the bandwidth hyperparameter (τ ) of a kernel function: When τ is
large, the overlap between the logging policy (π0) and the current policy (πθ) within ϕ(s) becomes large, thus the scale of the importance
weight becomes small. This contributes to reducing the variance compared to naive IS. In contrast, a small value of τ helps keep the bias
small, as the within-neighbor reward shift (i.e., the difference between qπ0(x, ϕ(s)) and qπθ (x, ϕ(s))) becomes small. The gray regions
are rejected when using a uniform kernel.

steering the generation of sentence description with prompts given (already chosen) items as a query.

B. Theoretical Analysis
Here, we analyze the bias and variance of the DSO estimator (the proofs are in Appendix F). We first introduce a new
condition about support in the marginalized sentence space.

Definition 1. (Similar sentence support) Similar sentence support is satisfied when πθ(ϕ(s)|x) > 0 =⇒ π0(ϕ(s)|x) > 0
holds for all (x, ϕ(s)) ∈ X × Φ(S).

The similar sentence support condition relaxes the action support condition of IS. That is, because we have π(ϕ(s)|x) =∑
a∈A pLLM(ϕ(s)|a, x)π(a|x) by definition, the similar sentence support condition is always satisfied when the action

support condition is satisfied. This means that deficient support under the similar sentence support is more unlikely
happening compared to the action support. Under this condition, we have the following degree of bias.

Theorem 1. (Bias of DSO) When the similar sentence support is satisfied, the bias is

Bias((̂∇θV )DSO)

= Eπθ(ϕ(s)|x)[∇θ log πθ(ϕ(s)|x)∆q(πθ, π0; x, ϕ(s))]

+ Eπ0(ϕ(s)|x)π0(s′|x,ϕ(s))[∆(w∇θ)(ϕ(s
′), ϕ(s);x)q(x, s′)]

+ Eπθ(ϕ(s)|x)πθ(s′|x,ϕ(s))[∆(∇θ)(ϕ(s), s
′;x)q(x, s′)].

where ∆q(πθ, π0; x, ϕ(s)) is the difference of q̂π(x, ϕ(s)) between πθ and π0. ∆(w∇θ)(ϕ(s
′), ϕ(s);x) is the difference of

weighted score function between ϕ(s′) and ϕ(s). ∆(∇θ)(ϕ(s), s
′;x) is the difference between the score function of ϕ(s) and

s′, which is equivalent to the difference of Eπθ(a|x,ϕ(s))[∇θ log πθ(a|x)] and Eπθ(a|x,s′)[∇θ log πθ(a|x)].

Theorem 1 suggests that the bias of DSO comes from three factors. The first term is the dominant term, which arises from
the within-neighbor reward shift (i.e., the difference between qπ0(x, ϕ(s)) and qπθ (x, ϕ(s))), as illustrated in Figure 3. This
term becomes small in two cases: (i) when reward does not change too much within ϕ(s), and (ii) when the within-cluster
distribution shift of π(s′|x, ϕ(s)) is small. Either case is satisfied when the radius of neighbors (i.e., kernel bandwidth
hyperparameter τ ) is small. At the same time, smooth kernels like a Gaussian kernel are also useful, as they allocate larger
weights to similar sentences depending on the distance from the pivotal sentence. In contrast, the second and third terms are
caused by calculating the gradient in the marginalized sentence space (Φ(S)) instead of the original sentence space (S).
These terms also become small when the bandwidth hyperparameter τ is small. Thus, a small value of τ is preferable in
reducing the bias.

Next, we have the following degree of variance using DSO.

10



Prompt Optimization with Logged Bandit Data

Theorem 2. (Variance of DSO) When the similar sentence support is satisfied, the conditional variance is expressed as

nVD|x((̂∇θV )DSO)

= Vπ0(s|x)(w(ϕ(s), x)∇θ log πθ(ϕ(s)|x)q(x, s))
+ Ep(x)π0(s|x)[(w(ϕ(s), x))

2(∇θ log πθ(ϕ(s)|x))2σ2(x, s)].

Compared to the naive (action) IS, the importance weight and the gradient reduce the variance by
Eπ0(ϕ(s)|x)[Vπ0(a|x,ϕ(s))(w(a, x))] and Eπ0(ϕ(s)|x)[Vπ0(a|x,ϕ(s))(∇θ log πθ(a|x))], respectively, where w(x, a) is the action
importance weight.

Theorem 2 suggests that DSO gains variance reduction from two sources: ∇θ log πθ(ϕ(s)|x) and w(ϕ(s)|x). The first
variance reduction of ∇θ log πθ(ϕ(s)|x) comes from the fact that the sentence-based score function is expressed as
Eπθ(a|x,ϕ(s))[∇θ log πθ(a|x)], demonstrating the benefit of applying the implicit data augmentation and soft rejection
sampling (instead of applying hard rejection sampling). The variance reduction becomes especially large when multiple
different prompts result in similar sentences; thus, πθ(a|x, ϕ(s)) becomes adequately stochastic. Moreover, by using
w(ϕ(s), x) instead of w(a, x), we can expect a significant variance reduction as we avoid the variance caused by the
within-neighbor importance weight, i.e., w(a, x;ϕ(s)) := πθ(a|x, ϕ(s))/π0(a|x, ϕ(s)). This means that a larger value of τ
(i.e., the radius of neighbors) leads to a larger variance reduction. Together with the analysis of bias, we can see that the
value of τ plays an important role in trading off the bias and variance of DSO, as shown in Figure 3. Later in the experiment
section, we study how the performance changes with varying values of the bandwidth hyperparameter τ .

C. Synthetic Experiments
We first evaluate the proposed DSO approach on synthetic benchmarks in OfflinePrompts, since they allow us to explore a
wide range of conditions.

C.1. Experiment setting

To generate candidate actions, we first sample 5-dimensional embedding ea from a normal distribution. Each embedding ea
is a deterministic embedding associated with an action a. Then, to generate logged data, we sample 5-dimensional user and
query vectors from a multivariate normal distribution. Next, for each query-action pair (q, a), we sample 5-dimensional
sentence embeddings s as

s ∼ N (fs(q, ea), σ
2
s), fs(q, ea) = c · sin(q⊤Mq+e⊤aMe),

where Mq and Me are coefficient matrices sampled from a uniform distribution. c = 5.0 is a scaling factor and σs = 1.0 is
the noise level of the action-output mapping. By using the sine function, we simulate a situation where two different prompts
(ea) can result in a similar sentence (s), while preserving the smoothness between the prompt and sentence embedding
spaces. Then, a user responds to the generated sentence (s) with the following reward function:

r ∼ N (fr(x, s), σ
2
r), fr(x, s) = (u⊤Mu + q⊤Mq)Mss

⊤,

where Mu, Mq , and Ms are the coefficient matrices and σr is the reward noise.

We generate logged data with a softmax logging policy: π0(a|x) := exp(β0 R̂0(x, a))/(
∑
a∈A exp(β0 R̂0(x, a))). R̂0 is

the base reward model, trained on n0 = 10000 of data points collected by the uniform random policy. β0 = 1.0 is the
inverse temperature.

We compare DSO to four baselines: regression, IS, DR, and POTEC. DR (Dudı́k et al., 2011) combines IS and regression
efficiently. POTEC (Saito et al., 2024) employs a two-stage policy learning, which first chooses which cluster to use
via DR and then chooses which action within the cluster to use via regression. All the baselines estimate the gradient
in the action space. For the metrics to compare the OPL methods, we use the optimality of the learned policy, defined
as (V (π) − V (πunif))/V (πopt − V (πunif)), where πopt is the optimal policy and πunif is the uniform random policy. The
implementation details are in Appendix E.

The experiment varies the following configurations (the bold font represents the default value): (1) data size: n ∈
{500, 1000, 2000, 4000, 8000}, (2) number of candidate actions: |A| ∈ {10, 50, 100, 500, 1000}, and (3) reward noises:
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Figure 4. Comparing the performance of the policies learned by various OPL methods with (Left) varying data sizes (n), (Middle)
varying number of candidate actions (|A|), and (Right) varying reward noises (σr). DSO uses a Gaussian kernel and function
approximation of π0(ϕ(s)|x). “online” refers to an on-policy trained skyline, which is often infeasible in practice.

Figure 5. Ablation results of DSO with varying bandwidth hyperparameters (τ ), w/ and w/o function approximation of π0(ϕ(s)|x),
and two kernels, Gaussian and uniform.

σr ∈ {0.0, 1.0, 2.0, 3.0}. For the ablation of DSO, we additionally report the results with the varying bandwidth hyper-
parameters of τ ∈ {0.5, 1.0, 2.0, 4.0}, {w/ and w/o} function approximation of the marginal density, and two different
kernels, {Gaussian and uniform}. When not using function approximation, we estimate the marginal density via monte-
carlo sampling with m = 100 samples. Finally, to evaluate the robustness of DSO to the accuracy of the distance measure in
the kernel, we add noise sampled from a normal distribution with std ∆s = 1.0 to the sentence embeddings. We report the
mean and standard deviation of the performance based on 20 random seeds.

C.2. Result

Figure 4 compares the policy learning results of the OPL methods with varying data sizes (n), number of candidate actions
(|A|), and reward noises (σr), respectively. The results demonstrate that DSO works particularly well in challenging
scenarios where the baselines fall short due to variance. Specifically, while we observe a sharp drop of performance for
the baselines when the action space is large (|A| ≥ 500) and reward noise is large (σr ≥ 1.0), DSO maintains a favorable
performance even under these configurations. Moreover, comparing the performance with |A| = 1000 and σr = 1.0, we
observe that the performance of DSO at n = 500 outperforms that of the baselines at n = 8000. This indicates that DSO
is far more data-efficient than the baselines when the action space is large, leveraging the similarity among sentences via
kernels and performing implicit data augmentation.

Next, we study how the choice of kernels affects the performance of DSO, as shown in Figure 5. The results tell us several
interesting findings: using (1) a Gaussian kernel and (2) function approximation improve the robustness of DSO to the
choice of bandwidth hyperparameter τ . The first observation is evident from the fact that a Gaussian kernel allocates larger
weights to closer sentences compared to a uniform kernel. However, when using monte-carlo estimation, we observe that
even a Gaussian kernel needs careful tuning of τ , where a small value of τ incurs high variance and a large value of τ
produces non-negligible bias. In contrast, by using function approximation, we can avoid a small value of π̂0(ϕ(s)|x),
which contributes to the variance reduction2. Therefore, using function approximation helps improve the robustness to a

2This is because, for example, when the true marginal density is 1e-5, estimating it as 1e-5 and 1e-4 does not change the MSE loss too
much. However, in terms of variance, 1e-4 and 1e-5 make a significant difference. Using function approximation, we can avoid being too
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Figure 6. Off-policy learning (OPL) workflow and OfflinePrompts modules.

Figure 7. Two benchmarks (synthetic and full-LLM) of OfflinePrompts with four configurable submodules. Compared to
the existing OPE/OPL frameworks (Saito et al., 2021; Kiyohara et al., 2023; 2024), our benchmark is distinctive in providing
AuxiliaryOutputGenerator/FrozenLLM to simulate language generation tasks as contextual bandits with auxiliary outputs.

small value of τ , and we do not need extensive hyperparameter tuning of τ . This implies that DSO is applicable to practical
situations, where a pre-trained model of π̂0(ϕ(s)|x) can provide substantial efficiency gains.

D. OfflinePrompts: Open-source software of OPL for language generation
Due to the lack of existing benchmark suites for OPL of prompt policies, we implemented and will release open-source
software called OfflinePrompts. This benchmark suite come with two settings: synthetic and full-LLM to enable extensive
and reproducible experiments. In particular, the full-LLM benchmark simulates movie recommendation tasks with
personalized sentence descriptions based on the (sentence-augmented) MovieLens dataset (Harper & Konstan, 2015).
Moreover, OfflinePrompts also enables prompt tuning on users’ own logged data, facilitating the practical application of
OPL. The following subsection summarizes related benchmarks and the distinctive features of our software. Appendix H
also demonstrates the easy-to-use APIs of OfflinePrompts.

D.1. Overview and workflow

The primal goals of OfflinePrompts are to (1) provide a standardized benchmark to compare OPL methods and (2) facilitate
the smooth implementation of the OPL workflow. For these purposes, OfflinePrompts (1) provides two standardized
benchmarks and (2) streamlines the implementation with three modules: dataset, OPL, and policy, as shown in Figure 6. All
implementations are based on PyTorch (Paszke et al., 2019). We elaborate on the details of each feature below.

precise about small values of the marginal density.
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Dataset module and benchmarks OfflinePrompts provides two benchmarks including synthetic and movie description.
First, the synthetic benchmark simulates (general) contextual bandits with auxiliary outputs with feature vectors, without
involving language generation tasks. In contrast, the movie description task is a full-LLM, semi-synthetic benchmark,
which simulates personalized generation of movie description (i.e., actual language generation) based on the MovieLens
datasets (Harper & Konstan, 2015). These benchmarks can be used for separate purposes. The synthetic benchmark is
lighter and more suitable for extensive studies of how the performance of OPL methods changes with various configurations
than the actual full-LLM benchmark. In contrast, the movie description benchmark is preferable to see the performance
of OPL methods in more realistic settings than the synthetic benchmark. The key remark is that the movie description
benchmark is the first benchmark for prompt-guided language generation from logged user feedback.

Both benchmarks provide a standardized setting and configurable submodules to control the data generation pro-
cess. Specifically, as illustrated in Figure 7, each benchmark consists of four submodules: ContextQueryModule,
CandidateActionsModule, AuxiliaryOutputGenerator/FrozenLLM, and RewardSimulator. Com-
pared to the existing OPE/OPL benchmarks (Saito et al., 2021; Kiyohara et al., 2023; 2024), our benchmark is distinctive
in modeling AuxiliaryOutputGenerator/FrozenLLM, which enable us to simulate language generation tasks
as contextual bandits with auxiliary outputs. Moreover, since our FrozenLLM and RewardSimulator modules are
compatible with HuggingFace (Wolf et al., 2019), users can easily employ various language models in the full-LLM
experiments. The semi-synthetic/full-LLM dataset module can also load custom dataset in a manner similar to the movie
description benchmark. We believe this feature of OfflinePrompts also facilitates practical applications of prompt tuning
from naturally logged feedback.

OPL and policy modules Figure 8 summarizes the implementation choices of OPL modules:

Figure 8. Implementation choices of OPL modules of OfflinePrompts.

As shown above, we implement two regression models (naive and conservative), three model-based policies (softmax,
epsilon-greedy, and uniform random), and four policy gradient methods (online, naive, two-stage, DSO), and three gradient
types (regression-based, IS-based, and hybrid). Each component is independently configurable. Thus, we can easily try any
combination of the above policies and OPL methods. Moreover, by following the abstract base implementation provided in
OfflinePrompts, researchers can test their own policies and policy gradient methods.

Example codes for streamlining OPL workflow and customizing each module are available in Appendix H. The documenta-
tion of OfflinePrompts, which describes further details of the software, is also available at: (forthcoming).

D.2. Task description and reward simulation for the movie description task

We build a semi-synthetic simulator using the MovieLens dataset (Harper & Konstan, 2015) for the personalized generation
task of movie descriptions. The movies consist of (partially observed) 5-star ratings between users and items and have
movie title information as the metadata. To learn a reward simulator, which generates reward depending on the generated
movie description, we first augmented the movielens dataset with item description using a frozen LLM as follows.

1. For each movie, retrieve its title.

2. Then, using zero-shot inference of a frozen LLM, we generate the movie description by providing instruc-
tion: "Broadly describe in a sentence the genres of the movie without including
the name or any specifics of the movie. Title: {title of the movie}, Movie
description: ".
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Figure 9. Procedures of reward simulation (Top) and personalized sentence generation (Bottom). The reward simulator uses a
sentence encoder to get item embeddings. In the personalized sentence generation task, a policy aims to identify a suitable prompt (e.g.,
genres of the movie) for each user so the generated sentence aligns with the user-dependent preference.

In our standardized benchmark, we use Mistral (”mistralai/Mistral-7B-Instruct-v0.2”) (Jiang et al., 2023) as the frozen LLM.
Once augmenting the dataset with item description, we train a sentence encoder-based collaborative filtering model (as
shown in Figure 9 (Top)) in the following procedures.

1. Using movielens dataset without item description, we first train a naive neural collaborative filtering (CF) model (He
et al., 2017), which uses user and item id embeddings.

2. Initialize the encoder-based CF model, which uses user id embeddings and encoded item description features, with the
user id embeddings learned by naive CF model.

3. Finetune the encoder-based CF model with the (augmented) movielens dataset with item description.

The default reward simulator in our benchmark uses the fine-tuned DistilBert model (Sanh et al., 2019) as the item
description encoder, and the user and item embeddings are set to be 20 dimensional. Note that, before training the models,
we preprocess the MovieLens-10M to have binary labels – the rating of 5 is positive, and the ratings of 0-3 are negative.
Then, we prune the dataset so that the dataset has balanced positive and negative labels, and each user and item has at
least 10 positive and negative labels. After processing the data, 36,395 users, 4,796 items, and 2,316,912 ratings remained.
When using the fine-tuned model as the reward simulator in our benchmark, we use the following normalized reward:
10× (q(x, s(a))− q(x, s(∅))), where q(·) is the original [0, 1]-score simulated by the model. s(a) is the sentence generated
by the prompt a, and s(∅) is the sentence generated without any prompt. We report the reward simulation results in Figure 10.

Finally, we simulate the data generation of the movie description task as follows.

1. Randomly sample user and item id and let the user embedding learned by the naive CF as the user context u. We also
let the title of the movie be query q. This is handled by ContextQueryLoader. (x)

2. (A policy chooses which prompt to use, taking the user and query embeddings as inputs.) (a)

3. FrozenLLM takes query and prompt as input in the following instruction: "Broadly describe
in a sentence the genres of the movie without including the name or any
specifics of the movie. Title: {title of the movie}, Keyword: {prompt}
Movie description: " and generate movie description. (s).
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Figure 10. The reward simulation results on the MovieLens dataset (Harper & Konstan, 2015). (Left) Showing the original reward
simulated by the fine-tuned DistilBert model (Sanh et al., 2019) for 2000 samples of the validation data. ”positive” indicates the data that
originally received the rating of 5 by users, and ”negative” indicates the data that received 0-3 ratings. (Right) Showing the normalized
reward generated for a single user and two movies with varying prompts. This demonstrates how much reward difference each prompt can
make compared to without prompts (which we call prompt effect), suggesting that effective prompts are sparse among the candidate set,
and we have skewed distribution on the prompt effect.

4. RewardSimulator simulates reward by taking user id, item id, and the generated sentence as inputs. User and item
ids are used to retrieve user-and item-specific bias terms. (r)

Note that the candidate prompts (A) are retrieved from relatedwords.io3 with keywords {”movie”, ”genre”, ”culture”},
where |A| = 1000. Our model is agnostic to the complexity of the prompts, so it is also possible to use more complex
prompts. However, we use a single-word prompt in our experiment to demonstrate the steerability of sentence generation
even with a naive choice of prompts, making the practical application easy. Additionally, by pre-training the reward simulator
with item descriptions, we expect the model to learn matchings between user preferences and movie genres (e.g., user A
prefers sci-fi movies). We expect this differentiates the reward among varying prompts in the movie description task – e.g.,
for sci-fi lovers, we should focus on the sci-fi aspects rather than the romance aspects of a movie. The goal of OPL task is to
identify specific features or keywords that generate suitable sentence for each user from the logged data. For reference,
Figure 11 shows the example of sentences generated with varying prompts and their rewards simulated in our benchmark.

D.3. Data generation process for the synthetic benchmark

The synthetic benchmark simulates the contextual bandits with auxiliary output using feature vectors without involving
actual language generation. Specifically, the synthetic benchmark generates the logged data in the following process:

1. Sample size n of context and query from ContextQueryGenerator. (x)

2. Sample embeddings (ea) for size |A| of actions to define a candidate set of actions. Then, for each context, sample
action from the candidates with some logging policy. (a)

3. Input both query and the chosen action to AuxiliaryOutputGenerator to generate a feature vector as an
auxiliary output. The auxiliary output corresponds to output sentence in language generation tasks. (s)

4. Finally, simulate base reward R(x, s) by inputting context and auxiliary output into RewardSimulator. Then,
sample reward from a normal distribution N (R(x, s), σr) for the auxiliary output observed by the logging policy. (r)

By running a synthetic experiment, we can easily control and study the effect of various relationship between prompt and
sentence (action a, e and auxiliary output s) and that between sentence and reward (auxiliary output s and reward r) through
varying AuxiliaryOutputGenerator and RewardSimulator, respectively. Therefore, we expect our synthetic
benchmark to be a easy-to-use testbed for checking the behaviors of OPL methods before working on a more complex,
actual language generation task.

3https://relatedwords.io/
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Figure 11. Example of sentences generated with varying prompts and their reward simulated in the full-LLM benchmark. We use
the frozen Mistral-7B (Jiang et al., 2023) model to generate descriptions of the movie Star Trek VI (1991) with three different prompts,
{ movie, scifi, tragedy } and highlight sentences that differ from the baseline generated without prompts. The red font indicates the
reward simulated by the DistilBert model fine-tuned on the MovieLens dataset. While abstract keywords like ”movie” do not make much
difference, more specific keywords like ”scifi” or ”tragedy” can be impactful in the reward simulation.

E. Implementation details of experiments
Basically, we follow the default implementation of OfflinePrompts.

E.1. Synthetic experiments

The policy is parameterized by a two-layer neural network, where the hidden dimension is 100, the activation function is
ReLU, and the optimizer is Adam (Kingma, 2014). All single-stage policies (which are used in regression-based, IS-based,
and DSO) take (x, ea) as inputs and generate logit values. The probability of each prompt chosen by the policy is calculated
by taking the softmax of the logit values. Similarly, the first stage policy of POTEC takes (x, ec) as inputs, where ec is the
cluster centers of prompts in the action embedding space. For all IS and DR-type methods, we apply the weight clipping
with a maximum of 200. To avoid the extensive tuning of learning rates, we use the one that worked well for the online
policy gradient in all the compared methods, which is 5e-4. The regression model (q̂(x, ea)), used for regression-based,
DR, and POTEC, and the logging marginal density model used for DSO are parameterized by a two-layer neural network
with a 100 dimensional hidden state. The regression model is trained on the logged data with the following MSE loss:∑n

i=1(ri − q̂(xi, ai))
2, while the marginal density model is trained by the loss function described in Section 3.1. The

learning rates of the regression and the marginal density models are both based on the validation loss, and are set to 1e-4.
Note that because ϕ(s) ranges within [−3τ, 3τ ] with probability more than 99% under the Gaussian kernel, we let ϕ(s) of
the uniform kernel to range [−3τ, 3τ ] to the corresponding value of τ . Finally, the action clustering used by POTEC is based
on k-means clustering with k = 10, implemented in scikit-learn (Pedregosa et al., 2011).

E.2. Full-LLM experiment

The implementation of the full-LLM experiment is almost the same as the synthetic experiment. The only difference is
that, because (q, a, s) are words or sentences, we applied some encoding to get vectorial embeddings of these variables. We
learn the embeddings by the following steps. We first randomly sample 1000 movies and sentences from the (augmented)
MovieLens dataset and sample 1000 prompts from the action set. Then, we get the last hidden states of Mistral-7B (Jiang
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et al., 2023) by providing the following instructions:

• "Broadly describe in a sentence the genres of the movie without including the
name or any specifics of the movie. Title: { title of the movie }" for each movie
(q),

• "Associate the word - { prompt } - in the context of movie genres" for each prompt
(a),

• " { sentence } " for each sentence s.

After obtaining (high-dimensional) embeddings from Mistral-7B, we fit PCA (Maćkiewicz & Ratajczak, 1993) to reduce the
dimension of embeddings to 20. In contrast, for the user context x, we use 20-dimensional embeddings of user ids learned
by (naive) collaborative filtering, which is different from that used in the reward simulator. We use the learning rate of 8e-4
with Adagrad for policy gradients. The learning rate of the regression and the marginal density models are 1e-4 with Adam.

It is worth mentioning that because the full-LLM benchmark is challenging due to the sparsity of effective prompts as
demonstrated in Figure 10, a similar learning instability to the OPL results is also observed for the online policy (e.g.,
even the online policy sometimes fall short with a near-zero policy value like 0.01, regardless the choice of the learning
rates). Therefore, in the experiment, we picked an online policy that performed well when defining a logging policy, so that
meaningful reward signals should be included in the logged data.

E.3. Doubly Robust (DR) estimators

Here, we provide the details of the DR estimators used in the experiments.

Doubly Robust (DR) (Dudı́k et al., 2011). DR is a hybrid approach, which effectively combines the regression and IS to
exploit the benefits of the two.

∇θV (πθ) ≈
1

n

n∑
i=1

πθ(ai|xi)
π0(ai|xi)

∇θ log πθ(ai|xi)(ri − q̂(xi, ai))

+
1

n

n∑
i=1

Ea∼πθ(a|xi)[∇θ log πθ(ai|xi)q̂(xi, a)].

By using the regressed reward as a control variate, DR often reduces the variance of IS, while remaining unbiased under the
same condition as IS. However, when the regression is inaccurate, the variance reduction is limited and DR often suffers
from high variance when the action space is large (Saito & Joachims, 2022).

POTEC (Saito et al., 2024). To deal with the variance issue of DR, POTEC considers the clustering in the action space and
decomposes the policy into two stages as follows.

πθ(a|x) =
∑
c∈C

π1st
θ (c|x)π2nd(a|x, c),

where c indicates the cluster of the action a, which can be learned by applying an off-the-shelf clustering method to action
embeddings. Using this decomposition, POTEC chooses clusters via a DR-style approach as follows, and chooses actions
within a cluster via regression.

∇θV (πθ) ≈
1

n

n∑
i=1

π1st
θ (c(ai)|xi)

π1st
0 (c(ai)|xi)

∇θ log π
1st
θ (c(ai)|xi)(ri − q̂(xi, ai))

+
1

n

n∑
i=1

Ea∼πθ(a|xi)[∇θ log π
1st
θ (c(ai)|xi)q̂(xi, a)],

where π1st
0 (c(a)|x) =

∑
a′∈A,c(a′)=c(a) π0(a|x). The second-stage policy greedily chooses action as π2nd(a|x, c) =

I{q̂(x, a) = argmaxa′∈A,c(a′)=c(a) q̂(x, a
′)}. By applying IS on the clustered action space, POTEC reduces the variance

of naive IS. POTEC is also able to convert regression to a pair-wise regression within a cluster. However, especially when
the relation between actions and rewards is complex, a good clustering is often hard to identify, and POTEC cannot take the
rich information about generated sentences into account.
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F. Omitted proofs and derivations
This section provide proofs and derivations ommited in the main text.

F.1. Derivation of the PG in the sentence space

We first derive ∇θ log πθ(s|x) = Ea∼πθ(a|x,s)[∇θ log πθ(a|x)].

∇θ log πθ(s|x) =
∇θπθ(s|x)
πθ(s|x)

=

∑
a∈A ∇θπθ(a|x)pLLM(s|x, a)

πθ(s|x)

=
∑
a∈A

∇θπθ(a|x)
πθ(a|x)

πθ(a|x, s)

= Eπθ(a|x,s)[∇θ log πθ(a|x)]

Similarly, we also have ∇θ log πθ(ϕ(s)|x) = Eπθ(s′|x,ϕ(s))[∇θ log πθ(s
′|x)] thus ∇θ log πθ(ϕ(s)|x) =

Eπθ(s′|x,ϕ(s))[Eπθ(a|x,s′)[∇θ log πθ(a|x)]] = Eπθ(a|x,ϕ(s))[∇θ log πθ(a|x)].

F.2. Derivation of the weighted score function

We first show w(ϕ(s), x) = Eπ0(a|x,ϕ(s))[w(a, x)].

Eπ0(a|x,ϕ(s))[w(a, x)] =
∑
a∈A

π0(a|x, ϕ(s))
πθ(a|x)
π0(a|x)

=
∑
a∈A

π0(a|x, ϕ(s))
πθ(a|x,ϕ(s))πθ(ϕ(s)|x)

pLLM(ϕ(s)|x,a)
π0(a|x,ϕ(s))π0(ϕ(s)|x)

pLLM(ϕ(s)|x,a)

=
∑
a∈A

π0(a|x, ϕ(s))
πθ(a|x, ϕ(s))
π0(a|x, ϕ(s))

πθ(ϕ(s)|x)
π0(ϕ(s)|x)

= Eπθ(a|x,ϕ(s))[w(x, ϕ(s))]

= w(ϕ(s), x)

Next, using the above expression and that derived in Appendix F.1, we have

w(ϕ(s)|x)∇θ log πθ(ϕ(s)|x)

=
πθ(ϕ(s)|x)
π0(ϕ(s)|x)

Eπθ(s′|x,ϕ(s))[Eπθ(a|x,s′)[∇θ log πθ(a|x)]]

=
πθ(ϕ(s)|x)
π0(ϕ(s)|x)

∫
s′∈S

πθ(s
′|x, ϕ(s))

∑
a∈A

πθ(a|x, s′)∇θ log πθ(a|x)ds′

=
πθ(ϕ(s)|x)
π0(ϕ(s)|x)

∫
s′∈S

pK(ϕ(s)|x, s′)πθ(s′|x)
πθ(ϕ(s)|x)

∑
a∈A

pLLM(s′|x, a)πθ(a|x)
πθ(s′|x)

∇θ log πθ(a|x)ds′

=
1

π0(ϕ(s)|x)

∫
s′∈S

K(s, s′; x, τ)
∑
a∈A

pLLM(s′|x, a)πθ(a|x)∇θ log πθ(a|x)ds′

=
∑
a∈A

πθ(a|x)
∫
s′∈S

pLLM(s′|x, a)K(s, s′; x, τ)

π0(ϕ(s)|x)
∇θ log πθ(a|x)ds′

= Eπθ(a|x)pLLM(s′|x,a)

[
K(s, s′; x, τ)

π0(ϕ(s)|x)
∇θ log πθ(a|x)

]
where pK(ϕ(s)|x, s′) = K(s, s′; x, τ).
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F.3. Derivation of the bias of DSO (Proofs of Theorem 1)

Proof. To derive the bias of DSO, we first decompose the expectation of DSO as follows.

ED[w(ϕ(s
′), x)∇θ log πθ(ϕ(s

′)|x)r]
= Eπ0(s′|x)[w(ϕ(s

′), x)∇θ log πθ(ϕ(s
′)|x)q(x, s′)]

= Eπ0(ϕ(s)|x)π0(s′|x,ϕ(s))[w(ϕ(s
′), x)∇θ log πθ(ϕ(s

′)|x)q(x, s′)]
= Eπ0(ϕ(s)|x)π0(s′|x,ϕ(s))[w(ϕ(s

′), x)∇θ log πθ(ϕ(s
′)|x)q(x, s′)]

− Eπ0(ϕ(s)|x)π0(s′|x,ϕ(s))[w(ϕ(s), x)∇θ log πθ(ϕ(s)|x)q(x, s′)]
+ Eπ0(ϕ(s)|x)π0(s′|x,ϕ(s))[w(ϕ(s), x)∇θ log πθ(ϕ(s)|x)q(x, s′)]

= Eπ0(ϕ(s)|x)π0(s′|x,ϕ(s))[(w(ϕ(s
′), x)∇θ log πθ(ϕ(s

′)|x)− w(ϕ(s), x)∇θ log πθ(ϕ(s)|x))q(x, s′)]
+ Eπ0(ϕ(s)|x)π0(s′|x,ϕ(s))[w(ϕ(s), x)∇θ log πθ(ϕ(s)|x)q(x, s′)]

= Eπ0(ϕ(s)|x)π0(s′|x,ϕ(s))[∆(w∇θ)(ϕ(s
′), ϕ(s);x)q(x, s′)]

+ Eπ0(ϕ(s)|x)[w(ϕ(s), x)∇θ log πθ(ϕ(s)|x)qπ0(x, ϕ(s))].

Then, for the second term, we have

Eπ0(ϕ(s)|x)[w(ϕ(s), x)∇θ log πθ(ϕ(s)|x)qπ0(x, ϕ(s))]

Eπ0(ϕ(s)|x)

[
πθ(ϕ(s)|x)
π0(ϕ(s)|x)

∇θ log πθ(ϕ(s)|x)qπ0(x, ϕ(s))

]
=

∑
ϕ(s)∈Φ(S)

π0(ϕ(s)|x)
πθ(ϕ(s)|x)
π0(ϕ(s)|x)

∇θ log πθ(ϕ(s)|x)qπ0(x, ϕ(s))

=
∑

ϕ(s)∈Φ(S)

πθ(ϕ(s)|x)∇θ log πθ(ϕ(s)|x)qπ0(x, ϕ(s))

= Eπθ(ϕ(s)|x)[∇θ log πθ(ϕ(s)|x)qπ0(x, ϕ(s))].

Next, we also transform the true gradient in the sentence space as follows:

Eπθ(s′|x)[∇θ log πθ(s
′|x)q(x, s′)]

= Eπθ(ϕ(s)|x)πθ(s′|x,ϕ(s))[∇θ log πθ(s
′|x)q(x, s′)]

= Eπθ(ϕ(s)|x)πθ(s′|x,ϕ(s))[∇θ log πθ(s
′|x)q(x, s′)]

− Eπθ(ϕ(s)|x)πθ(s′|x,ϕ(s))[∇θ log πθ(ϕ(s)|x)q(x, s′)]
+ Eπθ(ϕ(s)|x)πθ(s′|x,ϕ(s))[∇θ log πθ(ϕ(s)|x)q(x, s′)]

= Eπθ(ϕ(s)|x)πθ(s′|x,ϕ(s))[(∇θ log πθ(s
′|x)−∇θ log πθ(ϕ(s)|x))q(x, s′)]

+ Eπθ(ϕ(s)|x)πθ(s′|x,ϕ(s))[∇θ log πθ(ϕ(s)|x)q(x, s′)]
= Eπθ(ϕ(s)|x)πθ(s′|x,ϕ(s))[∆(∇θ)(s

′, ϕ(s))q(x, s′)]

+ Eπθ(ϕ(s)|x)[∇θ log πθ(ϕ(s)|x)qπθ (x, ϕ(s))].
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Therefore, the bias is

Bias((̂∇θV )DSO)

= ED[w(ϕ(s
′), x)∇θ log πθ(ϕ(s

′)|x)r]− Eπθ(s′|x)[∇θ log πθ(s
′|x)q(x, s′)]

= Eπθ(ϕ(s)|x)[∇θ log πθ(ϕ(s)|x)qπ0(x, ϕ(s))]

+ Eπ0(ϕ(s)|x)π0(s′|x,ϕ(s))[∆(w∇θ)(ϕ(s
′), ϕ(s);x)q(x, s′)]

− Eπθ(ϕ(s)|x)[∇θ log πθ(ϕ(s)|x)qπθ (x, ϕ(s))]

− Eπθ(ϕ(s)|x)πθ(s′|x,ϕ(s))[∆(∇θ)(s
′, ϕ(s))q(x, s′)]

= Eπθ(ϕ(s)|x)[∇θ log πθ(ϕ(s)|x)(qπ0(x, ϕ(s))− qπθ (x, ϕ(s)))]

+ Eπ0(ϕ(s)|x)π0(s′|x,ϕ(s))[∆(w∇θ)(ϕ(s
′), ϕ(s);x)q(x, s′)]

+ Eπθ(ϕ(s)|x)πθ(s′|x,ϕ(s))[∆(∇θ)(ϕ(s), s
′)q(x, s′)]

= Eπθ(ϕ(s)|x)[∇θ log πθ(ϕ(s)|x)∆q(πθ, π0; x, ϕ(s))]

+ Eπ0(ϕ(s)|x)π0(s′|x,ϕ(s))[∆(w∇θ)(ϕ(s
′), ϕ(s);x)q(x, s′)]

+ Eπθ(ϕ(s)|x)πθ(s′|x,ϕ(s))[∆(∇θ)(ϕ(s), s
′)q(x, s′)].

where we define

∆q(πθ, π0; x, ϕ(s)) := qπθ (x, ϕ(s))− qπ0(x, ϕ(s)),

∆(w∇θ)(ϕ(s
′), ϕ(s);x) := w(ϕ(s′), x)∇θ log πθ(ϕ(s

′)|x)− w(ϕ(s), x)∇θ log πθ(ϕ(s)|x),
∆(∇θ)(ϕ(s), s

′) := ∇θ log πθ(s
′|x)−∇θ log πθ(ϕ(s)|x).

F.4. Derivation of the variance of DSO (Proofs of Theorem 2)

Proof. From the total law of variance, we have

nV((̂∇θV )DSO) = Vp(x)(ED[(̂∇θV )DSO|x])
+ Ep(x)[Vπ0(s|x)(w(ϕ(s)|x)∇θ log πθ(ϕ(s)|x)q(x, s))]
+ Ep(x)π0(s|x)[(w(ϕ(s)|x))

2(∇θ log πθ(ϕ(s)|x))2σ2(x, s)].

Because we have w(ϕ(s)|x) = Eπ0(a|x,ϕ(s))[w(x, a)] and ∇θ log πθ(ϕ(s)|x) = Eπ0(a|x,ϕ(s))[∇θ log πθ(a|x)], the follow-
ing holds.

Vπ0(a,s|x)(w(a, x))− Vπ0(a,s|x)(w(ϕ(s)|x)) = Eπ0(s|x)[Vπ0(a|ϕ(s),x)(w(a, x))]

Vπ0(a,s|x)(∇θ log πθ(s|x))− Vπ0(a,s|x)(∇θ log πθ(a|x)) = Eπ0(s|x)[Vπ0(a|ϕ(s),x)(∇θ log πθ(a|x))]

G. Future work: Discussion about DR variants of DSO
From the above theoretical analysis, the regression-based baseline required for a DR-style estimator like Dudı́k et al. (2011);
Saito et al. (2023) should be

Eπθ(ϕ(s)|x)[∇θ log πθ(ϕ(s)|x)q̂π0(x, ϕ(s))]

in expectation to achieve the same degree of bias as IS. However, a way of computing such baselines is not trivial because
estimating log πθ(ϕ(s)|x) from data without applying importance sampling is challenging. Specifically, while it is possible
to estimate the score function as follows, as we did in estimating the weighted score function,

∇θ log πθ(ϕ(s)|x) =
π0(ϕ(s)|x)
π0(ϕ(s)|x)

∇θ log πθ(ϕ(s)|x)

= E(a,s′)∼π0(a|x)pLLM(s′|x,a)

[
K(s, s′; x, τ)∇θ log πθ(a|x)

π0(ϕ(s)|x)

]
,
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we need additional importance sampling in the regression-based baseline term, not only in the original IS term. Therefore,
even though DR approaches often aim for a further variance reduction, this naive definition of DSO-hybrid does not reduce
the variance of DSO-IS. Figuring out an efficient way of combining IS and regression would be a promising future work.

H. Example usages of OfflinePrompts
H.1. Semi-synthetic benchmark with language generation

Here, we provide example codes to streamline the OPL procedure using OfflinePrompts. While we focus on the movie
description (semi-synthetic) benchmark in this section, a similar workflow is also applicable to the synthetic benchmark.
Please also refer to additional example codes including those with the synthetic benchmark at: (double blind review).

H.1.1. SETTING UP A SEMI-SYNTHETIC SIMULATION

To set up the default movie description benchmark, users can follow the codes in Code snippet 1. The default datasets,
candidate prompts, and finetuned parameters are stored in src/dataset/assets/ in the OfflinePrompts repository.

To customize the benchmark setting, it is also possible to use configurable submodules: ContextQueryLoader,
CandidateActionsLoader, FrozenLLM, and RewardSimulator. Specifically, users can first create customized
instances of these submodules and then pass them to SemiSyntheticDataset as exemplified in Code snippet 2-5.

H.1.2. LOGGING POLICY

After setting up the simulator, the next step is to define a logging policy to collect logged feedback. We describe the
procedure in Code snippets 6 and 7. Specifically, in Code snippet 6, we first fit the dimension reduction model to obtain low
dimensional embeddings of query, prompt, and sentence. These encoders are used across various models, e.g., to define the
logging policy and to define a reward preditor, etc. Then, Code snippet 7 describes how to define a softmax logging policy.
In the example code, we first train a regression model used in the logging policy and then pass it to the softmax policy class.

H.1.3. DATA COLLECTION AND REGRESSIONS

Once defining a logging policy, we collect logged data as shown in Code snippets 8. The outputs, including
logged feedback and meta data, contain the following keys.

• logged feedback:
{ user id, item id, context, query, action, action choice probability∗, sentence,
expected reward∗, reward }

• meta data∗:
{ size, reward type, reward std, action list }

Note that the keys with an asterisk (∗) are optional outputs, and action is returned by index. reward type indicates
whether the reward is binary or continuous, and action list contains the list of candidate prompts, corresponding to
each action index.

After obtaining the logged data, we regress the reward and train a logging marginal density model as described
in Code snippets 8 and 9. prompt reward predictor is used by naive PG and two-stage PG, while
sentence reward predictor and marginal density model are used by DSO.

H.1.4. (ONLINE POLICY GRADIENT)

In OPL experiments, we often use the performance of online policy gradient as a baseline. To learn a policy online, we can
run online policy gradient as shown in Code snippet 10.

H.1.5. SINGLE STAGE POLICY GRADIENTS

Code snippet 11 shows the example codes to run naive PGs, including regression-based, IS-based, and hybrid ones. The
procedure consists of only 3 steps: (1) define a policy, (2) then setup a learner class (PolicyLearner), and (3) call one
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of the policy gradient methods. As seen in the example code, all policy gradient methods can be called in similar formats.
Researchers can also implement their own policy gradient methods in a similar way.

H.1.6. DIRECT SENTENCE OFF-POLICY GRADIENT (DSO)

DSO can also be run in a very similar way as the naive policy gradient. As exemplified in Code snippet
12, the key difference is that DSO uses KernelPolicyLearner, logging marginal density model, and
sentence reward predictor. Only the IS-based policy gradient is implemented for DSO.

H.2. (Online) performance evaluation

Finally, after learning a policy, we test its performance through online interaction. This can be done in a single line of code,
as shown in Code snippet 13.

We also provide additional quickstart examples at: (double blind review)
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