
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PDTRIM: TARGETED PRUNING FOR PREFILL-DECODE
DISAGGREGATION IN INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) demonstrate exceptional capabilities across vari-
ous tasks, but their deployment is constrained by high computational and memory
costs. Model pruning provides an effective means to alleviate these demands.
However, existing methods often ignore the characteristics of prefill-decode (PD)
disaggregation in practice. In this paper, we propose a novel pruning method for
PD disaggregation inference, enabling more precise and efficient block and KV
Cache pruning. Our approach constructs pruning and distillation sets to perform
iterative block removal independently for the prefill and decode stages, obtain-
ing better pruning solutions. Moreover, we introduce a cache pruning mechanism
that selectively reuses entries corresponding to the first and last token sequences
within designated layers, reducing communication costs while incurring only neg-
ligible computational overhead. Extensive experiments demonstrate that our ap-
proach consistently achieves strong performance in both PD disaggregation and
PD unified settings without disaggregation. Under the same (default) settings, our
method achieves improved performance and faster inference, along with a 4.95×
reduction in data transmission bandwidth consumption.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as revolutionary tools, achieving state-of-the-art
(SOTA) results across diverse tasks and applications (Ding et al., 2022; Qin et al., 2023; Zhu et al.,
2023; Li et al., 2023a). However, the rapid growth in model scale has posed significant challenges
for their practical deployment (Zhang et al., 2023a; Choi et al., 2025; Long et al., 2025). To address
it, various techniques have been proposed, including pruning (Ma et al., 2023; Ashkboos et al., 2024;
Li et al., 2023c; Sun et al., 2025), quantization (Liu et al., 2021; Zhou et al., 2023b; Cai et al., 2023;
Zhou et al., 2024) and knowledge distillation (Hinton et al., 2015; Gou et al., 2021; Yang et al.,
2021; Zhang et al., 2024). Among them, pruning stands out as an effective strategy for reducing
model size by eliminating redundant or less critical components, thereby lowering computational
and storage costs.

While pruning offers clear benefits, its application to LLMs remains challenging. During inference,
the prefill and decode stages are usually disaggregated (PD disaggregation) (Zhong et al., 2024;
Patel et al., 2024; Qin et al., 2024; Dong et al., 2025), allowing each stage to be optimized accord-
ing to its specific resource requirements. Without such disaggregation, heterogeneous workloads
must conform to a single resource profile, which results in suboptimal utilization and ultimately
degrades performance. However, existing pruning methods often ignore the characteristics of PD
disaggregation deployment in real deployments. In such systems, pruning is confronted with two
key challenges: (1) Heterogeneous Pruning Sensitivity: The prefill and decode stages exhibit
markedly different sensitivities to pruning, making uniform strategies ineffective. (2) Significant
Bandwidth Overhead: The physical disaggregation of prefill and decode nodes demands extensive
data transfer, such as KV Cache, imposing significant communication costs.

Given these challenges, we propose addressing them through two complementary approaches: block
and KV Cache pruning (each targeting a key point, rather than a simple combination). However,
existing techniques are difficult to apply directly to PD disaggregation. (1) On one hand, current
block pruning methods (Men et al., 2024; Kim et al., 2022; Yang et al., 2024b; Kim et al., 2024;
Song et al., 2024) are unstable, and greedy selection strategies are limited to achieving local optimal

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Embedding

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

LM Head

Embedding

Block 1

Block 2

Block 3

Block 4

Block 5

Block [6,7]

Block 8

LM Head

KV Cache (1)

KV Cache (3)

KV Cache (6)

KV Cache (8) KV Cache (8)

KV Cache (6)

KV Cache (3)

KV Cache (1)

Decode Node Prefill Node

Calibration Set

Pruning Set Pfinal

Distillation Set D

Removal Solution

Iterative Update

Decode Removal

Prefill Removal

Embedding

Block 1

Block 2

Block 3

Block 4

Block 5

Block [6,7]

Block 8

LM Head

Decode Node

KV Cache (Decode)

KV Cache (Prefill)

KV Cache (Pruned)

Figure 1: Overview of our pruning method combined with PD disaggregation. After execution on
the prefill node, prompts are distributed to multiple decode nodes. Prefill and decode nodes use
distinct block removal solutions, drawn from pruning and distillation sets. We select specific layers
(such as 3 and 8), for which only partial KV Cache from the prefill node is transmitted, while the
decode node KV Cache is fully preserved.

solutions. (2) On the other hand, existing KV Cache pruning methods (Xiao et al., 2023; Zhang et al.,
2023b; Sun et al., 2024; Liu et al., 2024; Lee et al., 2024; Li et al., 2024) typically require retraining,
add management overhead, and overlook the detailed perspective of attention heads, which limits
throughput in PD disaggregation systems. Therefore, these fail to meet the deployment requirements
of PD disaggregation systems.

In this paper, we propose a pruning method that is highly integrated with PD disaggregation, en-
abling more precise and efficient pruning of blocks and KV Cache. (1) Specifically, we propose an
iterative block removal strategy for LLMs, guided by dedicated pruning and distillation sets. Our
approach enables the identification of stage-specific removable blocks, independently tailored to the
prefill and decode stages. Compared to prior block pruning approaches, our method achieves bet-
ter solutions. (2) Moreover, we identify layers in the model at the granularity of attention heads
where the sum of attention scores for the first and last token sequences is high. For the selected lay-
ers, we leverage the KV Cache only for the first and last token sequences. This efficiently reduces
bandwidth consumption. Compared to prior approaches, our KV Cache pruning incurs negligible
overhead. (3) Extensive experiments demonstrate that our approach consistently achieves strong
performance in both PD disaggregation and PD unified (non-PD disaggregation) settings. Under the
same (default) settings, our method achieves improved performance and faster inference, along with
a 4.95× reduction in data transmission bandwidth consumption.

Our contributions are as follows:

1. We introduce a novel pruning approach that is seamlessly integrated with PD disaggregation.
This method facilitates more precise and efficient pruning of blocks and KV Cache. Extensive
experiments demonstrate that our approach consistently achieves strong performance in both PD
disaggregation and PD unified settings without disaggregation.

2. We construct pruning and distillation sets to perform iterative block removal, independently
tailored to the prefill and decode stages, achieving superior performance over prior methods under
identical settings.

3. We select layers with high combined scores corresponding to the first and last token sequences.
For these layers, we selectively leverage partial KV Cache. This strategy introduces only negligible
overhead compared to prior approaches.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 METHOD

In this section, we describe our pruning method that is deeply integrated with PD disaggregation,
allowing for more precise and efficient pruning of blocks and KV Cache. Figure 1 illustrates an
overview of our method.

2.1 IMPLEMENTATION OF STAGE-AWARE STRATEGY FOR OPTIMAL BLOCK REMOVAL

In the following, we introduce an iterative block removal approach applied independently to the
prefill and decode stages. Our goal is to select the k blocks whose removal minimally impacts
performance.

2.1.1 STRATEGIC DESIGN OF SETS FOR PRUNING AND DISTILLATION

We use a combined pruning and distillation strategy for refined block removal. Specifically, we first
assess the redundancy of each block by calculating the cosine similarity (Men et al., 2024) between
its input and output (note that the similarity metric is not a core contribution of ours). We provide
further details on this in Appendix I. The redundancy of blocki is mathematically defined as follows:

ri = cos(hi−1, hi) (1)

Here, ri denotes the redundancy of blocki and the cos measures the similarity between the input
hi−1 and the output hi of blocki. Based on this redundancy metric, we directly identify the Top

⌈
k
2

⌉
blocks with the highest cosine similarity for removal. Given their high redundancy, these blocks are
deemed suitable for direct pruning, thereby forming an initial pruning set of

⌈
k
2

⌉
blocks. The initial

pruning set Pinitial can be represented as follows:

Pinitial = {blocki | ri ∈ Top
⌈
k
2

⌉
({r1, r2, . . . , rL})} (2)

For the blocks that are not included in the initial
⌈
k
2

⌉
blocks designated for pruning, we consider

incorporating them into the construction of the distillation set. To ensure the effectiveness of the
distillation, we limit distillation to pairs of consecutive blocks. Specifically, for a pair of consecutive
blocks, denoted as blocki and blocki+1, we define a metric di to determine whether they should be
included in the distillation set. The metric di is defined as follows:

di =
1
2 (cos(hi−1, hi+1) + max(cos(hi−1, hi), cos(hi, hi+1))) (3)

This metric is designed from two complementary perspectives. Here, the cos(hi−1, hi+1) measures
redundancy when treating two blocks as a single unit; higher values imply weaker transformation
and easier merging. During distillation, we merge consecutive blocks by finetuning the block with
lower redundancy and transferring representational capacity from the block with higher redundancy.
The more redundant block is identified by max(cos(hi−1, hi), cos(hi, hi+1)); a larger value indi-
cates higher redundancy and easier capacity transfer. We incorporate a pair of consecutive blocks
into the distillation set and distill them into a single block only when the metric di exceeds a prede-
fined threshold dT . The distillation set D can be represented as follows:

D = {(blocki, blocki+1) | di ≥ dT and {blocki, blocki+1} ∩ Pinitial = ∅} (4)

If a block meets the threshold with both its preceding and succeeding blocks, we select the one
with the higher metric to include in the distillation set. Through this approach, we construct the
distillation set, where each element represents the distillation of a pair of consecutive blocks into
one block. Once the distillation set is constructed, all blocks not included in it are assigned to the
pruning set. The final pruning set Pfinal can be represented as follows:

Pfinal = {blocki| {(blocki−1, blocki), (blocki, blocki+1)} ∩ D = ∅} (5)

In this setup, each block in the model is assigned to either the pruning set or the distillation set.
Ingeniously, the number of blocks removed by each element in the distillation set matches that in
the pruning set, with both strategies removing exactly one block. This consistency establishes a
foundation for iterative optimization strategies.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.1.2 ITERATIVE OPTIMIZATION TOWARD OPTIMAL BLOCK REMOVAL

To determine the optimal combination of block removals, we iteratively refine the removal set to
minimize the impact on model performance. Specifically, we first initialize the block removal set by
selecting the Top

⌈
k
2

⌉
blocks with the highest cosine similarity from the pruning set. The remaining

k −
⌈
k
2

⌉
blocks Bpartial are chosen from the distillation set based on the aforementioned metrics

di in descending order. If the number of blocks in the distillation set is insufficient, we supplement
them from the pruning set in descending order of cosine similarity, excluding the Top

⌈
k
2

⌉
blocks

that need to be pruned. The initial block removal set Binitial can be represented as follows:

Bpartial =

{
Top(k −

⌈
k
2

⌉
)(D) if |D| ≥ k −

⌈
k
2

⌉
D ∪ Top

(
k −

⌈
k
2

⌉
− |D|

)
(Pfinal \ Pinitial) if |D| < k −

⌈
k
2

⌉ (6)

Binitial = Pinitial ∪ Bpartial (7)

We define several key parameters for the optimization process. The initial temperature T0 controls
the randomness in the block iteration, the decay coefficient α is employed to gradually reduce the
temperature and the termination temperature Tmin determines when to stop the entire block iteration
(we provide the analysis of these parameters in experiments). In each iteration, we select an element
from the unremoved set based on probability to replace a random element in the current removed
set, thereby generating a new neighborhood solution. To determine the probability of each element
being selected, we assign a weight ωi to each element i in the unremoved set. For every element i,
blocki in the pruning set or element blocki and blocki+1 in the distillation set, the weight ωi and the
probability pi are related to formula 1, being selected can be defined as follows:

ωi =

{
ri pruning set
1
2 (ri + ri+1) distillation set

pi =
ωi∑N

j=1 ωj (8)

Here, N denotes the total number of elements in the unremoved set. For the new candidate block
removal solution s′, we calculate its accuracy on the calibration set as the objective function value
fs′ , and compare it with the current solution’s (s) objective function value fs. If the accuracy of the
candidate solution is higher (fs′ > fs), we directly accept it. However, if the candidate solution’s
accuracy is lower (fs′ < fs), we decide whether to accept it based on a probability. The acceptance
probability Ps′ is calculated using the following formula:

Ps′ = e−
∆f
T ∆f = fs − fs′ (9)

where ∆f is the difference in objective function values between the current solution and the new
candidate solution, and T is the current temperature. This probability based acceptance mechanism
allows us to escape local optima and explore the solution space more comprehensively. After eval-
uating the new solution, we update the temperature using the decay factor T = αT . We repeat this
process until the temperature reaches the minimum threshold Tmin. Our experiments show that even
with fewer iterations, performance still remains strong. Throughout the entire iterative process, we
continuously record the block removal combination with the highest performance, considering it as
the optimal solution. The optimal solution Boptimal can be represented as follows:

Boptimal = arg max
B∈solutions

fB (10)

where fB is the objective function value of solution B. This strategy yields better solutions that
approximate the global optimum, as confirmed by experiments. It requires only a few iterations
to achieve improved results, and the partial randomness introduced does not noticeably degrade
performance. Moreover, it incurs substantially lower pruning overhead compared to other global
search methods, as verified empirically.

2.1.3 HETEROGENEOUS STRATEGIES ACROSS PREFILL AND DECODE NODES

The prefill stage is more sensitive to pruning than the decode, pruning during this stage tends to lead
to a more significant drop in performance. Here, we provide an abstract analysis, ignoring other
complex effects. Denote by X ∈ RN×d the input sequence in the prefill stage and by xt ∈ R1×d

the initial input in the decode stage. We denote the perturbations of the attention parameters WQ,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

WK and WV by ∆WQ, ∆WK and ∆WV , respectively. The query vector q and its perturbation ∆q
for xt are as follows:

q = xtWQ, ∆q = xt∆WQ (11)

The concatenated key and value matrices (K,V), along with their perturbations (∆K,∆V), can be
represented as follows:

K = [Kpre, xtWK], V = [Vpre, xtWV] (12)

∆K = [∆Kpre, xt∆WK], ∆V = [∆Vpre, xt∆WV] (13)

Here, Kpre = XWK and ∆K = X∆WK ; the same applies to the others. Then, the attention output
before (o) and after perturbation (õ), as well as the resulting error (E), can be expressed as follows:

o = softmax
(

qK⊤
√
d

)
V, õ = softmax

(
(q+∆q)(K+∆K)⊤√

d

)
(V +∆V) (14)

Ã = softmax
(

(q+∆q)(K+∆K)⊤√
d

)
, ∆A = Ã− softmax

(
qK⊤
√
d

)
(15)

E = õ− o = ∆AV + Ã∆V (16)

Considering the above analysis, we obtain the following formulas (The detailed derivation of these
formulas can be found in Appendix A and B):

∥E∥F ≤ Lsoftmax√
d

(
∥∆q∥2 ∥K∥F + ∥q∥2 ∥∆K∥F

)
∥V ∥F + ∥∆V ∥F (17)

E = G(xt, Ypre,∆) (18)

Here, Lsoftmax denotes the Lipschitz constant of the softmax, ∥E∥F denotes the Frobenius norm of
the error E, and G is an abstract error function. Ypre denotes the set of all results (including both in-
termediate and final outputs) produced in the previous step that can be reused in the current step, and
∆ represents the set of perturbations. From this, we observe that pruning errors accumulate as the
sequence is generated. During the prefill stage, a perturbation simultaneously contaminates the rep-
resentations of all N tokens. These corrupted representations are repeatedly accessed in subsequent
decode steps, causing the error to accumulate and amplify over time. In contrast, a single decode
step only affects the current input and its subsequent states, limiting the scope of impact. Therefore,
after determining the optimal combination of removed blocks, we further adjust the removed blocks
for each stage. Specifically, for each element in the current combination of removed blocks, we test
it on the calibration set. If removing only in the decode stage can significantly improve performance,
then that element is removed only in the decode stage while being retained in the prefill stage. If
there is no significant performance improvement, then the removing operation for that element will
be applied in both the prefill and decode stages. More details can be found in Appendix M and C.
This approach allows us to determine the removed blocks for the prefill and the decode separately.

2.2 SELECTIVE KV CACHE PRUNING FOR REDUCED BANDWIDTH CONSUMPTION

In attention mechanisms, the highest scoring tokens are typically concentrated on the initial tokens
and within a local sliding window (Xiao et al., 2023). However, prior approaches often introduce
additional management overhead, making them unable to meet the high throughput demands of PD
disaggregation systems. Based on this observation, we implement an efficient KV Cache pruning
strategy that effectively reduces the transmission bandwidth consumption. This incurs negligible
overhead and is robust across datasets, as confirmed by our experiments. We implement different
strategies for the prefill and decode stages. During the prefill stage, the KV Cache is fully gen-
erated and utilized, whereas in the decode stage, only the first and last token sequences from the
prefill stage are preserved for the selected layers. Specifically, we run inference on a calibration
set to collect token attention scores for each attention head in every layer. We then calculate the
sum of the attention scores for the first p and last p tokens of each attention head as the attention
score metric (where p denotes the proportion of tokens preserved from the beginning and the end).
Mathematically, for each attention head h in layer l, the attention score S

(l)
h is given by:

S
(l)
h =

⌊p·N⌋∑
i=1

A
(l)
h (i) +

N∑
j=N−⌊p·N⌋+1

A
(l)
h (j), p < 0.5 (19)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where A
(l)
h (i) denotes the attention score of the i-th token and N is the total number of tokens. Our

goal is to prune the KV Cache at the granularity of attention heads by selecting the top n layers
with the highest attention scores for the first and last token sequences. Meanwhile, we ensure that
none of the attention heads in these layers have very low attention scores for the first and last token
sequences. For the selected n layers, we retain the KV Cache only for the first and last token
sequences, while pruning the KV Cache for the remaining tokens. We first filter out any layers that
contain attention heads with attention scores for the first and last token sequences below γ (where
γ is the filtering threshold). Specifically, for each layer l, we check if all attention heads satisfy the
condition:

∀h ∈ H(l), S
(l)
h ≥ γ (20)

where H(l) denotes the set of all attention heads in layer l. If a layer fails to meet this criterion, it is
subsequently excluded from further consideration. Then, we will use the following scoring formula
to calculate the score ρl for each layer l:

ρl = µl · (1− σl/(µl + ϵ)) (21)

Here, µl and σl denote the mean and standard deviation of all attention heads in layer l, and ϵ is
an infinitesimal constant. This formula requires both high mean values and low standard deviations
to be satisfied. We select the top layers with the highest scores in descending order. In practical
deployment, we generate and use the full KV Cache during the prefill stage. In decode stage, only the
KV Cache of the first and last token sequences from prefill is reused for selected layers, significantly
reduces the bandwidth usage for data transfer from the prefill nodes to the decode nodes.

The primary goal of our KV Cache pruning is to reduce communication bandwidth consumption.
As such, pruning is applied only to the KV Cache generated on the prefill node, while the cache
generated on the decode node is fully preserved. We divide the generation process into three stages
for the selected layers. Initial Stage: The tokens with the highest attention scores correspond closely
to the KV Cache retained on the prefill node. Intermediate Stage: As the generated sequence length-
ens, the tokens with the highest attention scores become the first and last several tokens retained
on the prefill node, along with the newly generated tokens on the decode node. Late Stage: As the
generated sequence further grows, attention scores concentrate on the first several tokens retained
on the prefill node, and the latest several tokens generated on the decode node.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Models and Benchmarks To demonstrate the effectiveness of our method, we conduct extensive
evaluations on representative LLMs with diverse architectures and scales, including LLaMA3.1-8B
(Grattafiori et al., 2024), LLaMA2-13B (Touvron et al., 2023), Qwen2.5-7B (Yang et al., 2024a) and
Qwen2.5-14B (Yang et al., 2024a). We also use Qwen2.5-32B (Yang et al., 2024a) and OPT-6.7B
(Zhang et al., 2022) in the supplementary experiments. We employ a wide range of benchmarks.
These benchmarks include MMLU (Hendrycks et al., 2020), CMMLU (Li et al., 2023b), PIQA (Bisk
et al., 2020), Winogrande (ai2, 2019), HellaSwag (Zellers et al., 2019), BoolQ (Clark et al., 2019),
MathQA (Amini et al., 2019), ARC-Easy and ARC-Challenge (Clark et al., 2018), RTE (Wang,
2018), WNLI (Wang, 2018), CB (Wang et al., 2019) and SST-2 (Wang, 2018). This comprehensive
protocol ensures thorough assessment.

Baselines We conduct comparative evaluations against other methods, including LLM-Pruner (Ma
et al., 2023), FLAP (An et al., 2024), Shortened LLaMA (abbreviated as Shortened)(Kim et al.,
2024), ShortGPT (Men et al., 2024) and SLEB (Song et al., 2024). Additionally, we also use
SliceGPT (Ashkboos et al., 2024) to test inference speed. We also compare with other methods in
Appendix G. We implement PD disaggregation versions of the classic channel pruning LLM-Pruner
and block pruning ShortGPT according to our algorithm, and use them as additional baselines. These
comparisons highlight the strengths of our approach. More details can be found in Appendix C.

Implementation Details Our experiments are conducted using the PyTorch framework (Paszke
et al., 2019) and the Hugging Face Transformers library (Wolf, 2020). We use two nodes within
the same local area network, with each node equipped with one NVIDIA H100 80GB GPU. When
distilling two blocks, we use the weights of the block with low cosine similarity as the initial weights.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of pruning methods in LLMs across a variety of benchmarks. To
increase the diversity of evaluation, we apply pruning rates of 13.6%, 24.4%, 15.3% and 18.6% for
the four models, corresponding to commonly used pruning ratios for structured pruning.

LLM Method MMLU CMMLU ARC-E ARC-C PIQA Winog HSwag BoolQ MathQA WNLI SST-2 RTE CB AVG

L
L

aM
A

3.
1-

8B

Dense 63.35 50.85 81.52 51.28 80.30 74.03 60.05 82.26 39.56 59.15 76.83 71.12 60.71 65.46
LLM-Pruner 52.01 41.12 67.36 42.06 74.54 69.32 51.50 73.78 32.35 50.78 69.37 49.40 55.28 56.07

FLAP 52.11 41.13 67.42 42.15 74.63 69.36 51.56 73.82 32.39 50.82 69.41 49.44 55.34 56.11
Shortened 33.54 34.28 72.31 42.15 72.63 69.61 47.96 45.23 34.27 56.34 52.52 67.15 69.64 53.66
ShortGPT 51.92 41.11 67.34 42.06 74.48 69.38 51.56 73.76 32.50 50.70 69.31 49.50 55.36 56.08

SLEB 28.35 25.51 71.04 36.18 75.46 62.98 49.70 57.89 27.30 46.48 55.85 57.04 35.71 48.42
Ours 60.82 46.66 73.15 43.86 76.99 73.56 53.80 69.85 34.28 60.56 83.03 70.76 73.21 62.99

L
L

aM
A

2-
13

B

Dense 52.10 34.73 79.42 48.38 79.05 72.22 60.07 80.61 32.09 66.20 87.61 69.31 80.36 64.78
LLM-Pruner 50.11 33.57 61.16 37.67 71.38 70.71 47.37 62.53 24.41 43.24 65.37 59.19 51.38 52.16

FLAP 49.89 33.91 60.90 37.65 71.44 70.69 47.54 62.43 24.78 43.26 64.91 59.19 51.34 52.15
Shortened 26.71 25.50 26.26 22.61 51.14 48.22 25.76 38.93 18.89 43.66 46.56 52.71 37.50 35.73
ShortGPT 50.13 33.97 61.32 37.88 71.44 70.80 47.71 62.54 24.82 43.66 65.37 59.57 51.79 52.38

SLEB 23.76 25.41 67.85 33.87 75.41 63.77 48.76 62.42 25.46 45.07 50.92 58.84 41.07 47.89
Ours 51.52 35.37 69.78 40.02 74.43 70.72 53.11 62.84 28.44 53.52 80.16 64.26 46.43 56.20

Q
w

en
2.

5-
7B

Dense 71.92 81.69 80.56 48.21 78.73 72.93 59.92 84.46 43.22 71.83 91.86 81.23 87.50 73.39
LLM-Pruner 36.96 36.71 71.33 38.20 74.86 55.79 47.71 55.67 31.08 60.43 70.79 54.42 38.81 51.75

FLAP 37.17 36.39 71.47 37.83 76.21 55.65 47.47 57.23 30.11 61.61 70.68 54.59 37.32 51.82
Shortened 24.90 25.08 25.25 20.31 53.65 50.99 25.69 37.83 19.50 53.52 50.92 46.21 19.64 34.88
ShortGPT 36.89 31.07 71.46 37.80 76.12 55.80 48.67 63.21 30.59 42.25 80.62 54.87 41.07 51.57

SLEB 38.56 38.25 71.84 39.42 76.77 55.96 47.98 57.49 31.12 61.97 72.25 56.32 39.29 52.86
Ours 52.96 51.34 71.09 39.16 77.04 56.99 51.19 72.20 30.95 66.20 63.53 65.34 57.14 58.09

Q
w

en
2.

5-
14

B

Dense 77.45 84.44 82.37 56.31 81.12 75.37 63.37 85.23 53.03 77.46 89.11 79.78 80.36 75.80
LLM-Pruner 43.09 42.01 73.33 40.54 73.58 58.47 47.79 61.89 31.53 48.79 54.26 56.88 49.27 52.42

FLAP 44.86 44.77 50.29 31.00 60.72 51.44 34.14 65.16 25.65 65.28 89.95 76.87 68.74 54.53
Shortened 24.63 25.31 25.04 20.14 52.88 50.43 25.69 37.92 18.93 52.11 48.62 51.99 37.50 36.25
ShortGPT 45.75 45.63 50.63 31.40 61.81 52.64 34.41 65.72 26.16 66.20 91.28 78.34 69.64 55.35

SLEB 43.77 42.90 74.07 41.04 74.37 58.96 48.43 62.57 32.23 49.30 54.93 57.40 50.00 53.07
Ours 72.01 76.82 68.81 44.37 71.38 70.17 47.98 64.80 34.91 61.97 82.11 74.01 69.65 64.54

By default, we use 256 randomly sampled examples from PIQA and MMLU as the calibration set.
The hyperparameter settings and training details can be found in Appendix C.

3.2 MAIN RESULTS

We evaluate our method against strong baselines on four representative LLMs and multiple bench-
marks under identical experimental settings, including the calibration set. To diversify the evalu-
ation, we adopt pruning ratios of 13.6%, 24.4%, 15.3% and 18.6% across the four models. The
Dense configuration corresponds to the original uncompressed model, serving as a reference prior
to pruning. The experiments are conducted with consistent parameter settings and implementation
details. As shown in Table 1, our method consistently outperforms all baselines across different
models. These results clearly confirm the effectiveness and robustness of our method under diverse
pruning scenarios, ensuring broad applicability and reliable performance.

Our approach serves as an optimization for PD disaggregation and can be readily combined with
other pruning methods. We extend two representative approaches, the channel pruning method
LLM-Pruner and the block pruning method ShortGPT. Specifically, we incorporate our proposed PD
disaggregation scheme into these methods, denoted as LLM-Pruner (Ours) and ShortGPT (Ours).
As shown in Table 2, both methods exhibit substantial performance improvements on the evaluated
datasets after applying PD disaggregation. Moreover, our approach consistently achieves the best
overall results. These findings highlight the effectiveness of PD disaggregation as a general principle
for enhancing pruning strategies in LLMs.

To validate the scalability and generality of our method, we conduct experiments on larger model,
additional datasets, and an extra metric (perplexity), achieving promising results (see Appendix D.1,
G). We further compare our approach against various baselines in the PD unified setting, where it
still remains competitive (see Appendix D.3). Additionally, we evaluate our method under both PD
disaggregation and unified settings, confirming the effectiveness of PD disaggregation in pruning
(see Appendix D.4). Comparisons with other KV Cache pruning methods further show that our
approach consistently outperforms alternatives (see Appendix G). Collectively, these results demon-
strate that our method achieves efficient pruning while preserving representation capability.

3.3 EFFICIENCY ANALYSIS

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of our method with LLM-Pruner and ShortGPT, as well as their
variants. LLM-Pruner (Ours) and ShortGPT (Ours) are our PD disaggregation extensions.

LLM Method MMLU CMMLU ARC-E ARC-C HSwag MathQA WNLI RTE AVG

LLaMA3.1-8B

LLM-Pruner 52.01 41.12 67.36 42.06 51.50 32.35 50.78 49.40 48.32
ShortGPT 51.92 41.11 67.34 42.06 51.56 32.50 50.70 49.50 48.34

LLM-Pruner (Ours) 54.95 44.30 72.46 43.82 52.84 34.13 53.94 52.88 51.16
ShortGPT (Ours) 54.62 43.89 71.38 43.11 53.55 35.08 53.62 52.63 50.98

Ours 60.82 46.66 73.15 43.86 53.80 34.28 60.56 70.76 55.49

LLaMA2-13B

LLM-Pruner 50.11 33.57 61.16 37.67 47.37 24.41 43.24 59.19 44.59
ShortGPT 50.13 33.97 61.32 37.88 47.71 24.82 43.66 59.57 44.88

LLM-Pruner (Ours) 52.58 34.27 65.55 39.19 49.99 25.96 44.53 62.54 46.83
ShortGPT (Ours) 53.70 34.28 64.25 38.98 50.76 26.50 46.84 63.41 47.34

Ours 51.52 35.37 69.78 40.02 53.11 28.44 53.52 64.26 49.50

Qwen2.5-7B

LLM-Pruner 36.96 36.71 71.33 38.20 47.71 31.08 60.43 54.42 47.11
ShortGPT 36.89 31.07 71.46 37.80 48.67 30.59 42.25 54.87 44.20

LLM-Pruner (Ours) 38.99 39.42 72.41 38.66 50.54 33.34 61.89 56.83 49.01
ShortGPT (Ours) 39.51 33.01 73.04 39.01 51.18 32.88 62.96 56.64 48.53

Ours 52.96 51.34 71.09 39.16 51.19 30.95 66.20 65.34 53.53

Qwen2.5-14B

LLM-Pruner 43.09 42.01 73.33 40.54 47.79 31.53 48.79 56.88 48.00
ShortGPT 45.75 45.63 50.63 31.40 34.41 26.16 66.20 78.34 47.32

LLM-Pruner (Ours) 65.75 45.32 74.49 43.13 48.75 32.43 51.27 58.44 52.45
ShortGPT (Ours) 68.34 47.36 52.21 33.16 36.37 28.05 67.64 78.89 51.50

Ours 72.01 76.82 68.81 44.37 47.98 34.91 61.97 74.01 60.11

Table 3: Comparison of inference time (ms) for
the LLaMA3.1-8B on different pruning methods.

Method Dense SliceGPT LLM-Pruner FLAP Ours

Time (13.58%) 287.35 263.35 278.19 259.81 236.63

Time (∼50%) 287.35 202.69 252.69 184.16 151.89

Inference Latency We measure the execution
time for a single inference of the LLaMA3.1-
8B model with an input tensor of shape
[1, 1024] in FP32 format. Specifically, we eval-
uate the effects of pruning 13.58% and approx-
imately 50% of the parameters in LLaMA3.1-
8B. We then compare our proposed method
against several other widely used pruning algorithms, including SliceGPT, LLM-Pruner and FLAP.
As shown in Table 3, our approach consistently achieves the fastest runtime, significantly reducing
inference latency. This demonstrates that our block pruning approach enables faster inference speed.

Table 4: Comparison of data transmission volume
and transmission time for LLaMA series models.

Model Method DataVol (G) Time (µs)

LLaMA3.1-8B Original 4.0 11628
Ours 0.8 2347

LLaMA2-13B Original 7.0 20277
Ours 1.4 4072

Bandwidth Consumption To provide a
comprehensive evaluation, we further assess
LLaMA3.1-8B and LLaMA2-13B under de-
fault settings with batch size 1 and maximum
input length. Our primary focus is on the com-
munication cost between prefill and decode
nodes, a critical yet often overlooked aspect
of distributed inference. To evaluate this, we
carefully measure both the data volume and
transmission time, allowing for a precise and
comprehensive assessment of bandwidth usage.
As shown in Table 4, our method substantially reduces data transmission and overall bandwidth
consumption, highlighting its effectiveness in mitigating communication overhead during inference.

Table 5: Comparison of prun-
ing time between our method and
SLEB on LLaMA series models.

Model Method Time (s)

LLaMA3.1-8B SLEB 183.6
Ours 44.06

LLaMA2-13B SLEB 858.12
Ours 96.52

Pruning Overhead We conduct a comparison of the compu-
tational overhead between our proposed pruning method and
SLEB. SLEB (Song et al., 2024) is also a pruning strategy that
aims to identify the optimal pruning solution; however, it re-
quires performing multiple calibration set evaluations in each
pruning iteration, which significantly increases its computa-
tional cost. We prune five blocks on LLaMA3.1-8B. The hy-
perparameters we use have been provided in the experiment
details in the previous section. As shown in Table 5, our
method achieves an average runtime of only 44.06 seconds,
whereas SLEB requires 183.6 seconds on average. Moreover,
we conduct a comparison of pruning overhead on LLaMA2-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

13B under a pruning rate of 24.4%, where our approach continues to demonstrate a significant
advantage. This efficiency improvement is attributed to our iterative pruning strategy, which can
more rapidly converge to an effective pruning configuration.

We further evaluate the latency of the calibration process on the LLaMA series models, where our
calibration requires only minimal computational time (see Appendix J.2).

4 RELATED WORK

PD Disaggregation LLM inference can be divided into the prefill and decode stages. The prefill
stage processes the entire input sequence to compute contextual representations and generate KV
Cache. The decode stage then autoregressively generates tokens conditioned on previously gen-
erated outputs. PD disaggregation is a technique that explicitly decouples these two stages during
inference, enabling deployment strategies tailored to the unique resource requirements of each stage.
DistServe (Zhong et al., 2024) is one of the seminal works in PD disaggregation. It assigns the prefill
and decode stages to different GPUs, allowing for optimizations tailored to the unique characteris-
tics of each stage. Splitwise (Patel et al., 2024) disaggregates the prompt computation and token
generation stages and runs them on different machines. The TetriInfer (Hu et al., 2024b) also lever-
ages PD disaggregation to reduce interference between different downstream tasks. MemServe (Hu
et al., 2024a) further explores memory optimization techniques within the PD disaggregation ar-
chitecture. TaiChi (Wang et al., 2025) integrates PD disaggregation and aggregation by leveraging
differentiated GPU roles and adaptive scheduling to optimize goodput across diverse SLO regimes.
Adrenaline (Liang et al., 2025) offloads part of decode phase attention computation to prefill in-
stances, improving LLM serving. The widespread application of PD disaggregation drives ongoing
improvements in LLM inference efficiency.

Block Pruning To develop a straightforward pruning algorithm that is easy to deploy for LLMs,
several studies have proposed removing less important blocks, a strategy that can lead to significant
inference acceleration and improved computational efficiency. For example, methods (Men et al.,
2024) using cosine similarity to evaluate block importance combined with greedy pruning have been
introduced. However, greedy approaches often fail to identify the globally optimal pruning config-
uration and tend to exhibit instability in practice. Techniques like LaCo (Yang et al., 2024b) merge
subsequent layers into preceding ones but typically sacrifice accuracy compared to direct layer re-
moval. LLM-Streamline (Chen et al., 2024) reduces model size by distilling multiple consecutive
blocks into a single block. However, overly aggressive distillation can significantly degrade model
performance, and the approach still relies on a greedy block selection strategy. Other methods,
such as SLEB (Song et al., 2024) and Shortened LLaMA (Kim et al., 2024), adopt iterative pruning
strategies guided by carefully designed importance metrics. However, these methods require recal-
culating importance scores using a calibration set after each block removal, resulting in substantial
computational overhead. Consequently, developing a block pruning algorithm that is both highly
accurate and computationally efficient remains a difficult and unresolved challenge.

5 CONCLUSION

In this paper, we propose a pruning method that is deeply integrated with PD disaggregation. Our de-
sign explicitly takes into account the practical challenges and constraints that arise when deploying
LLMs. In particular, we construct pruning and distillation sets to perform iterative block removal,
independently tailored to the prefill and decode, achieving better solutions compared to prior block
pruning approaches. Moreover, we select layers with high combined scores for the first and last to-
ken sequences. The prefill stage generates and utilizes all KV Cache, while the decode stage accesses
only part of the KV Cache in the selected layers, reducing bandwidth usage. This incurs negligi-
ble overhead compared to prior methods. Under the same (default) settings, our method achieves
improved performance and faster inference. Extensive experiments demonstrate that our approach
consistently achieves strong performance in both PD disaggregation and PD unified settings without
disaggregation, achieving effective inference acceleration and reduced bandwidth consumption.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, nor per-
sonal or sensitive data. All datasets utilized in this paper are publicly available and widely adopted
within the research community, and we strictly follow their respective licenses and intended usage.

REPRODUCIBILITY STATEMENT

We strive to ensure the reproducibility of our results. Full details are provided in the main paper
and the appendix. Our implementation is built on PyTorch and standard open-source libraries. We
provide key code implementations to facilitate reproducibility and further research.

REFERENCES

Winogrande: An adversarial winograd schema challenge at scale. 2019.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-
malisms. arXiv preprint arXiv:1905.13319, 2019.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive struc-
tured pruning for large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865–10873, 2024.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Yuchen Cai, Zhen Wang, Yujun Li, Sheng Wang, Zhiyuan Liu, and Maosong Sun. Gptq:
Accurate post-training quantization for generative pre-trained transformers. arXiv preprint
arXiv:2302.06557, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Streamlining
redundant layers to compress large language models. arXiv preprint arXiv:2403.19135, 2024.

Seonghwan Choi, Beomseok Kang, Dongwon Jo, and Jae-Joon Kim. Retrospective sparse attention
for efficient long-context generation. arXiv preprint arXiv:2508.09001, 2025.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

G. Ding et al. Efficient fine-tuning for resource-constrained systems. Proceedings of the Machine
Learning Conference, 2022.

Xianzhe Dong, Tongxuan Liu, Yuting Zeng, Liangyu Liu, Yang Liu, Siyu Wu, Yu Wu, Hailong
Yang, Ke Zhang, and Jing Li. Hydrainfer: Hybrid disaggregated scheduling for multimodal large
language model serving. arXiv preprint arXiv:2505.12658, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International journal of computer vision, 129(6):1789–1819, 2021.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Cunchen Hu, Heyang Huang, Junhao Hu, Jiang Xu, Xusheng Chen, Tao Xie, Chenxi Wang,
Sa Wang, Yungang Bao, Ninghui Sun, et al. Memserve: Context caching for disaggregated llm
serving with elastic memory pool. arXiv preprint arXiv:2406.17565, 2024a.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng,
Chenxi Wang, Sa Wang, Yungang Bao, et al. Inference without interference: Disaggregate llm
inference for mixed downstream workloads. arXiv preprint arXiv:2401.11181, 2024b.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 11, 2024.

Byungmo Kim, Jaewon Oh, and Cheonhong Min. Investigation on applicability and limitation of
cosine similarity-based structural condition monitoring for gageocho offshore structure. Sensors,
22(2):663, 2022.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative
inference of large language models with dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 155–172, 2024.

C. Li et al. Fine-tuning techniques for efficient model adaptation. AI Research Journal, 2023a.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timo-
thy Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. arXiv
preprint arXiv:2306.09212, 2023b.

Yong Li, Wei Du, Liquan Han, Zhenjian Zhang, and Tongtong Liu. A communication-efficient,
privacy-preserving federated learning algorithm based on two-stage gradient pruning and differ-
entiated differential privacy. Sensors, 23(23):9305, 2023c.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947–22970, 2024.

Yunkai Liang, Zhangyu Chen, Pengfei Zuo, Zhi Zhou, Xu Chen, and Zhou Yu. Injecting adrenaline
into llm serving: Boosting resource utilization and throughput via attention disaggregation. arXiv
preprint arXiv:2503.20552, 2025.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems,
6:87–100, 2024.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Reza Haffari, and Bohan Zhuang. Minicache: Kv cache
compression in depth dimension for large language models. Advances in Neural Information
Processing Systems, 37:139997–140031, 2024.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quanti-
zation for vision transformer. Advances in Neural Information Processing Systems, 34:28092–
28103, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lingkun Long, Rubing Yang, Yushi Huang, Desheng Hui, Ao Zhou, and Jianlei Yang. Slim-
infer: Accelerating long-context llm inference via dynamic token pruning. arXiv preprint
arXiv:2508.06447, 2025.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact lan-
guage models via pruning and knowledge distillation. Advances in Neural Information Processing
Systems, 37:41076–41102, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed Maleki, and Ri-
cardo Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), pp. 118–
132. IEEE, 2024.

A. Qin et al. Advances in state-of-the-art natural language processing. Journal of NLP Research,
2023.

Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin Zheng, and Xinran
Xu. Mooncake: A kvcache-centric disaggregated architecture for llm serving. arXiv preprint
arXiv:2407.00079, 2024.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:
Streamlining llms through redundancy verification and elimination of transformer blocks. arXiv
preprint arXiv:2402.09025, 2024.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

Weigao Sun, Jiaxi Hu, Yucheng Zhou, Jusen Du, Disen Lan, Kexin Wang, Tong Zhu, Xiaoye Qu,
Yu Zhang, Xiaoyu Mo, et al. Speed always wins: A survey on efficient architectures for large
language models. arXiv preprint arXiv:2508.09834, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Chao Wang, Pengfei Zuo, Zhangyu Chen, Yunkai Liang, Zhou Yu, and Ming-Chang Yang. Prefill-
decode aggregation or disaggregation? unifying both for goodput-optimized llm serving. arXiv
preprint arXiv:2508.01989, 2025.

Thomas Wolf. Transformers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2020.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024b.

Zhen Yang, Zilun Zhang, Sheng Wang, Jie Li, Meishan Zhang, Zhiyuan Liu, and Maosong Sun.
Knowledge distillation: A survey. arXiv preprint arXiv:2106.05860, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

D. Zhang et al. Parameter-efficient fine-tuning methods for llms. Journal of Machine Learning
Research, 2023a.

Qifan Zhang, Yunhui Guo, and Yu Xiang. Continual distillation learning: Knowledge distillation in
prompt-based continual learning, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023b.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao
Zhang. {DistServe}: Disaggregating prefill and decoding for goodput-optimized large language
model serving. In 18th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24), pp. 193–210, 2024.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023a.

Yuxiao Zhou, Zhen Wang, Yujun Li, Sheng Wang, Zhiyuan Liu, and Maosong Sun. Smoothquant:
Accurate and efficient post-training quantization for large language models. arXiv preprint
arXiv:2302.06557, 2023b.

Yuxiao Zhou, Zhen Wang, Yujun Li, Sheng Wang, Zhiyuan Liu, and Maosong Sun. Framequant:
Flexible low-bit quantization for transformers. arXiv preprint arXiv:2402.06557, 2024.

B. Zhu et al. Large language models: Progress and applications. Advances in NLP, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DETAILED DERIVATION OF THE THEORETICAL FORMULA

Denote by X ∈ RN×d the input sequence in the prefill stage and by xt ∈ R1×d the initial input
in the decode stage. We denote the perturbations of the attention parameters WQ, WK and WV by
∆WQ, ∆WK and ∆WV , respectively. The query vector q and its perturbation ∆q for xt are as
follows:

q = xtWQ, ∆q = xt∆WQ (22)

The concatenated key and value matrices (K,V), along with their perturbations (∆K,∆V), can be
represented as follows:

K = [Kpre, xtWK], V = [Vpre, xtWV] (23)

∆K = [∆Kpre, xt∆WK], ∆V = [∆Vpre, xt∆WV] (24)

Here, Kpre = XWK and ∆K = X∆WK ; the same applies to the others. Then, the attention output
before (o) and after perturbation (õ), as well as the resulting error (E), can be expressed as follows:

o = softmax
(

qK⊤
√
d

)
V, õ = softmax

(
(q+∆q)(K+∆K)⊤√

d

)
(V +∆V) (25)

Ã = softmax
(

(q+∆q)(K+∆K)⊤√
d

)
, ∆A = Ã− softmax

(
qK⊤
√
d

)
(26)

E = õ− o = ∆AV + Ã∆V (27)

To bound the Frobenius norm of the attention output perturbation E, we apply the triangle inequality
to separate the contributions from the two terms, yielding the following expression:

∥E∥F ≤ ∥∆AV ∥F + ∥Ã∆V ∥F (28)

Then, using the submultiplicativity of matrix norms, we can directly obtain the following bounds:

∥∆AV ∥F ≤ ∥∆A∥F ∥V ∥F , ∥Ã∆V ∥F ≤ ∥Ã∥2 ∥∆V ∥F (29)

By the Lipschitz continuity of the softmax, the perturbation ∆A can naturally be bounded as follows:

∥∆A∥F ≤ Lsoftmax
∥(q +∆q)(K +∆K)⊤ − qK⊤∥F√

d
(30)

Here, Lsoftmax is the Lipschitz constant of the softmax. Upon expanding the product, we can
explicitly obtain the resulting expression as follows:

(q +∆q)(K +∆K)⊤ − qK⊤ = ∆q K⊤ + q (∆K)⊤ + (∆q)(∆K)⊤ (31)

where the last term (∆q)(∆K)⊤ is of second order and can be neglected in a first order analysis.
Applying the submultiplicativity of the Frobenius norm, we can further obtain the following bounds:

∥∆q K⊤∥F ≤ ∥∆q∥2 ∥K∥F , ∥q(∆K)⊤∥F ≤ ∥q∥2 ∥∆K∥F (32)

Considering all above analysis, we can express the Frobenius norm of the error E as follows:

∥E∥F ≤ Lsoftmax√
d

(
∥∆q∥2 ∥K∥F + ∥q∥2 ∥∆K∥F

)
∥V ∥F + ∥Ã∥2 ∥∆V ∥F (33)

Considering that ∥Ã∥2 ≤ 1, we obtain the following expression:

∥E∥F ≤ Lsoftmax√
d

(
∥∆q∥2 ∥K∥F + ∥q∥2 ∥∆K∥F

)
∥V ∥F + ∥∆V ∥F (34)

Building on the above formula, and to more clearly illustrate the effect of pruning, we can express
the error E at step t using an abstract error function G as follows:

E = G(xt, Ypre,∆) (35)

where Ypre denotes the set of all results (including both intermediate and final outputs) produced in
the previous step that can be reused in the current step, and ∆ represents the set of perturbations.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B FROBENIUS NORM OF ∆A VIA SOFTMAX LIPSCHITZ CONTINUITY

For any a, b ∈ Rn, the softmax function is Lipschitz continuous with respect to the Frobenius norm,
which can be expressed as follows:

∥softmax(a)− softmax(b)∥F ≤ Lsoftmax∥a− b∥F (36)

Here, Lsoftmax is the Lipschitz constant of the softmax. Based on the derivations in the main text,
we obtain the following expression:

∆A = softmax
(

(q+∆q)(K+∆K)⊤√
d

)
− softmax

(
qK⊤
√
d

)
(37)

By jointly considering Equations 36 and 37, we can derive the following expression:

∥∆A∥F ≤ Lsoftmax
∥(q +∆q)(K +∆K)⊤ − qK⊤∥F√

d
(38)

C EXPERIMENTAL SETUP

Baselines We conduct extensive comparative evaluations against other pruning algorithms. LLM-
Pruner (Ma et al., 2023) adopts structural pruning that selectively removes non-critical coupled
structures based on gradient information. FLAP (An et al., 2024) is a structured pruning frame-
work that reduces storage by leveraging fluctuation based metrics and adaptive model compression.
Shortened LLaMA (Kim et al., 2024) selectively removes less important blocks based on block
level importance scores, thereby accelerating model inference without significantly impacting per-
formance. ShortGPT (Men et al., 2024) defines a BI metric to measure the importance of each layer
within the model and directly removes those layers. SLEB (Song et al., 2024) employs a logit based
approach to identify unnecessary transformer layers and updates the importance scores after each
layer removal. SliceGPT (Ashkboos et al., 2024) is a post-training sparsification scheme which re-
places each weight matrix with a smaller matrix. Through these comprehensive comparisons, we
thoroughly assess the strengths of our approach.

Implementation Details Our experiments are conducted using the PyTorch framework (Paszke
et al., 2019) and the Hugging Face Transformers library (Wolf, 2020). We use two nodes within
the same local area network, with each node equipped with one NVIDIA H100 80GB GPU. We
follow the respective compression strategies for prefill and decode as mentioned above. We set the
parameter dT to 0.95 by default. During the iterative block selection process, we initialize the an-
nealing temperature T0 at 15 to ensure sufficient exploration in the early stages. The temperature
is then gradually reduced with a decay coefficient α = 0.85 until it reaches the minimum temper-
ature Tmin = 0.05. When distilling two blocks, we use the weights of the block with low cosine
similarity as the initial weights. We distill the block using the PIQA and MMLU as the training
set. The training is performed using the Adam optimizer with a learning rate of 1 × 10−5, a batch
size of 64 for 10 epochs. When sparsifying the KV Cache, we set the pruning ratio p = 0.3, with
an attention score threshold γ = 0.75 to preserve the most semantically important key value pairs.
We set the performance improvement threshold mentioned in Section 2.1.3 to 3%. We conduct ex-
periments with various hyperparameters to demonstrate the stability of our method. By default, we
use 256 randomly sampled examples from PIQA and MMLU as the calibration set. In the zero shot
performance comparisons, we maintain consistent experimental settings, including the calibration
datasets.

D EXPERIMENTS ON STRONG SCALABILITY AND ROBUST GENERALITY

D.1 LARGER MODEL, MORE DATASETS AND ADDITIONAL METRIC

We further evaluate our method on the larger Qwen2.5-32B model with a pruning ratio of 25%. As
reported in Table 6, our approach consistently achieves strong performance. Additionally, we re-
port perplexity on WikiText2 using LLaMA2-13B and OPT-6.7B with pruning ratios of 24.37% and
20%, respectively, where our method achieves the best results (Table 7). Beyond these evaluations,
we assess LLaMA3.1-8B-Instruct (Grattafiori et al., 2024) under a pruning ratio of 15.3% on two

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

further benchmarks: the instruction-following dataset IFEval (Zhou et al., 2023a) and the code gen-
eration dataset HumanEval (Chen et al., 2021). As shown in Table 8, our method maintains strong
performance across these tasks.

Table 6: Performance comparison of various methods on Qwen2.5-32B under 25% pruning.

Method PIQA Winog HSwag ARC-E ARC-C
Dense 81.88 75.3 64.91 80.51 53.41

LLM-Pruner 78.02 61.64 55.02 70.24 42.24
FLAP 77.56 61.08 55.23 70.36 42.37

Shortened 76.55 61.81 55.39 71.31 41.7
ShortGPT 76.66 72.53 52.4 72.85 42.24

SLEB 72.28 65.88 56.32 69.22 38.61
Ours 78.45 72.85 57 75.8 46.67

Table 7: Evaluation of perplexity on WikiText2 for LLaMA2-13B and OPT-6.7B with pruning.

Model Dense LLM-Pruner FLAP Shortened ShortGPT SLEB Ours
OPT-6.7B 10.86 11.92 11.68 12.51 13.68 12.94 11.28

LLaMA2-13B 4.88 8.16 9.73 10.81 9.25 8.96 7.38

Table 8: Evaluation of LLaMA3.1-8B-Instruct under 15.3% pruning on IFEval and HumanEval.

Benchmark Dense LLM-Pruner FLAP Shortened ShortGPT SLEB Ours
IFEval 76.36 65.41 65.45 62.60 65.42 56.48 73.48

HumanEval 68.95 59.36 60.26 57.27 60.44 51.39 66.99

D.2 ORTHOGONAL TO QUANTIZATION

To evaluate the compatibility and effectiveness of our method under combined compression strate-
gies, we further integrate it with quantization techniques. Specifically, we apply our approach to the
Qwen2.5-32B model with a pruning ratio of 25% in conjunction with 8-bit AWQ quantization (Lin
et al., 2024). As summarized in Table 9, our method consistently demonstrates robust performance,
indicating that the pruning strategy is largely orthogonal to quantization and can be effectively com-
bined without significant degradation.

D.3 PERFORMANCE COMPARISON IN THE NON-PD DISAGGREGATION SETTING

We compare the performance of our method with other approaches in the non-PD disaggregation
setting, referred to as PD Unified. Specifically, we evaluate our method on the LLaMA2-13B model
with 24.4% of its parameters pruned across multiple benchmarks. As shown in Table 10, our ap-
proach continues to exhibit strong and consistent performance in the PD Unified scenario, demon-
strating its robustness even without explicit disaggregation of prefill and decode stages.

D.4 PERFORMANCE COMPARISON OF DISAGGREGATION AND UNIFIED

To validate the effectiveness of our strategy, we conduct multiple benchmark tests on LLaMA2-
13B by removing 25% of the parameters. The comparison method, PD Unified, employs the same
parameter removal combination strategy for both prefill and decode stages, without considering
the distinct sensitivity of each stage to pruning. As shown in Table 11, the results show that our
PD disaggregation compression strategy achieves better performance than PD Unified, which also
indicates that our method also performs well under the PD Unified configuration.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Evaluation of Combined Pruning and 8-bit AWQ Quantization on Qwen2.5-32B.

Method PIQA Winog HellaSwag ARC-E ARC-C
Dense 81.88 75.3 64.91 80.51 53.41
FLAP 77.56 61.08 55.23 70.36 42.37
Ours 78.45 72.85 57 75.8 46.67

Ours+Quant 78.21 71.98 56.88 75.21 46.1

Table 10: Evaluation of pruning performance in the PD Unified scenario with LLaMA2-13B.

Method MMLU CMMLU ARC-E ARC-C HSwag MathQA WNLI RTE AVG
Dense 52.10 34.73 79.42 48.38 60.07 32.09 66.20 69.31 55.29

LLM-Pruner 50.11 33.57 61.16 37.67 47.37 24.41 43.24 59.19 44.59
FLAP 49.89 33.91 60.90 37.65 47.54 24.78 43.26 59.19 44.64

Shortened 26.71 25.50 26.26 22.61 25.76 18.89 43.66 52.71 30.26
ShortGPT 50.13 33.97 61.32 37.88 47.71 24.82 43.66 59.57 44.88

SLEB 23.76 25.41 67.85 33.87 48.76 25.46 45.07 58.84 41.13
Ours (Unified) 51.05 33.99 64.02 37.88 48.83 26.06 53.12 63.54 47.31

Table 11: Performance comparison between PD Unified and PD Disaggregation on LLaMA2-13B.

Strategy MMLU CMMLU ARC-E ARC-C HSwag MathQA WNLI RTE AVG
Unified 51.05 33.99 64.02 37.88 48.83 26.06 53.12 63.54 47.31

Disaggregation 51.52 35.37 69.78 40.02 53.11 28.44 53.52 64.26 49.50

E ABLATION STUDY

We conduct comprehensive ablation studies to evaluate the individual contributions of the two key
components of our framework: the iterative block removal strategy and the attention score based
filtering mechanism for KV Cache pruning. The experimental results, as illustrated in Figure 2,
demonstrate that both components significantly enhance model performance across a diverse range
of benchmarks. We conduct experiments on LLaMA3.1-8B, involving the pruning of 9.38% blocks
and the application of KV Cache across 22 layers. The other hyperparameter settings used in these
experiments are in the implementation details above. Block pruning performance, as shown in
Figure 2a, is significantly enhanced by the iterative optimization mechanism, which consistently
outperforms its non iterative counterpart. This advantage stems from the iterative strategy’s ability to
more effectively navigate the search space, ultimately identifying superior block combinations that
yield notable improvements in accuracy. The attention score based filtering mechanism in KV Cache
pruning, illustrated in Figure 2b, delivers substantial performance gains. It selectively excludes
layers with low attention scores, preserving cache integrity in semantically critical regions while
efficiently pruning less relevant layers.

F HYPERPARAMETER IMPACT ANALYSIS

We evaluate the impact of key hyperparameters in our iterative block removal strategy, including
the initial temperature T , temperature decay coefficient α, and minimum temperature Tmin. We
prune 9.38% blocks on LLaMA3.1-8B. As shown in Table 12, increasing T and α from the first
configuration to the second configuration improves the average accuracy from 63.49 to 63.56. This
indicates that a slower cooling schedule helps more effectively explore the solution space and avoid
converging to suboptimal local minima. Importantly, further increasing the parameter values in
the third configuration does not change the performance across all benchmarks, suggesting that the
pruning process has converged. This convergence implies that the algorithm has identified a near
optimal block removal combination, beyond which additional iterations or a larger search space will
not yield further gains. Overall, all three configurations are able to find a high quality solution space.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Performance Comparison Across Different Benchmark Tasks

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

P
er

fo
rm

an
ce

 S
co

re

Benchmark Task

45.39 47.18

ARC-C

71.27 72.53

Winogrande

42.25

60.56

WNLI

63.54

71.12

RTE

41.07

73.21

CB

w/o Iter

w/ Iter

(a) Block Pruning

Performance Comparison Across Different Benchmark Tasks

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

P
er

fo
rm

an
ce

 S
co

re

Benchmark Task

45.82 46.76

ARC-C

66.06
68.35

Winogrande

49.3 50.7

WNLI

63.9
66.06

RTE

62.5 64.29

CB

w/o Filter

w/ Filter

(b) KV Cache Pruning

Figure 2: Ablation study on the effectiveness of key components: (a) Accuracy comparison with
and without the iterative block removal strategy. (b) Accuracy comparison with and without the
attention score based filtering mechanism in KV Cache pruning.

Table 12: Performance comparison across three key hyperparameter settings on the LLaMA3.1-8B.
Under all these different parameter configurations, the model maintains a high level of performance.

T α Tmin ARC-E ARC-C PIQA Winog BoolQ MathQA WNLI SST-2 RTE CB MMLU CMMLU HSwag AVG
5 0.70 0.10 76.77 47.53 79.11 73.09 80.24 33.84 59.15 63.53 67.51 75.00 62.79 49.97 56.78 63.49

10 0.80 0.10 78.11 47.53 78.62 71.82 79.08 36.31 61.97 57.45 72.56 73.21 63.43 49.91 56.33 63.56
15 0.85 0.05 78.11 47.53 78.62 71.82 79.08 36.31 61.97 57.45 72.56 73.21 63.43 49.91 56.33 63.56

Additionally, we further assess the threshold parameter dT for constructing the distillation set. We
prune 9.38% blocks of the LLaMA3.1-8B model. As shown in Table 13, the experimental results
indicate that different threshold parameters can all achieve relatively optimal outcomes, consistently
demonstrating good performance. Additionally, we systematically evaluate the impact of two key
hyperparameters in our KV Cache pruning strategy: the retention ratio p, which denotes the propor-
tion of tokens preserved from the beginning and the end, and the filtering threshold γ. We prune the
KV Cache across 22 layers on LLaMA3.1-8B. As shown in Table 14, the experimental results indi-
cate that various settings of the retention rate p can achieve satisfactory performance. The threshold
γ determines the intensity of layer filtering. An excessively high threshold (γ → 1) overly restricts
the pruning candidates, thereby losing potential opportunities for efficiency improvement. Con-
versely, an overly lenient threshold (γ → 0) introduces noise from low scoring attention heads. Our
scoring metric prioritizes layers with high attention strength and low variance. Regardless of the
specific parameter settings, our method consistently demonstrates strong performance across a wide
range of configurations.

Table 13: Evaluation of the influence of the block distillation threshold dT on the LLaMA3.1-8B.

dT ARC-E ARC-C PIQA Winog BoolQ MathQA WNLI SST-2 RTE CB MMLU CMMLU HSwag AVG
0.97 77.44 47.18 78.40 72.53 76.82 36.82 60.56 59.75 71.12 73.21 58.74 48.39 55.38 62.80
0.96 78.11 47.53 78.62 71.82 79.08 36.31 61.97 57.45 72.56 73.21 63.43 49.91 56.33 63.56
0.95 77.65 47.18 78.40 73.40 79.57 36.21 64.79 69.72 73.29 76.79 60.76 43.37 57.22 64.49
0.94 76.77 47.53 79.11 73.09 80.24 33.84 59.15 63.53 67.51 75.00 62.79 49.97 56.78 63.49

G PERFORMANCE COMPARISON WITH OTHER KV CACHE PRUNING
METHODS

To validate the effectiveness of our approach, we conduct comprehensive performance comparisons
against a Dense baseline as well as several recent KV Cache pruning methods, including LazyLLM,
MInference and FlexPrefill. Since SlimInfer is not publicly available, it is excluded from our ex-
periments. We evaluate LLaMA3.1-8B across a diverse suite of datasets, including HPQA, 2Wiki,
TQA, MuSiQue and SAMSum. This enables a thorough assessment of our method’s generality and
robustness across different problem domains. To ensure a fair comparison, we maintain a consis-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 14: Assessment of the influence of token retention ratio p and attention score filtering threshold
γ in the KV Cache pruning strategy on the LLaMA3.1-8B model across diverse benchmarks.

p γ ARC-E ARC-C PIQA Winog BoolQ MathQA WNLI SST-2 RTE CB MMLU CMMLU HSwag AVG
0.10 0.40 79.88 47.61 79.60 68.19 80.49 33.00 50.70 72.59 66.79 64.29 56.94 44.47 58.15 61.75
0.10 0.50 79.25 48.04 79.27 69.85 80.55 31.16 47.89 74.77 68.23 66.07 55.78 42.85 58.02 61.67
0.20 0.50 79.88 47.61 79.60 68.19 80.49 33.00 50.70 72.59 66.79 64.29 56.94 44.47 58.15 61.75
0.20 0.60 78.99 48.04 78.89 70.09 81.04 31.36 54.93 70.76 70.76 64.29 57.54 44.94 58.07 62.28
0.30 0.80 78.75 46.76 79.16 68.35 78.59 30.65 50.70 74.77 66.06 64.29 54.09 40.36 57.35 60.76

(a) Block Pruning (b) KV Cache Pruning

Figure 3: Sensitivity analysis of model accuracy under varying pruning ratios in LLaMA3.1-8B.

tent token pruning ratio of 0.5 across all methods, and all hyperparameters are set according to the
configurations reported in the original works. As shown in Table 15, our method consistently out-
performs other approaches, demonstrating its effectiveness in preserving inference quality. These
results underscore the potential of our method as a practical and efficient solution for LLM deploy-
ment.

Table 15: Performance comparison with other KV Cache pruning methods.

Method HPQA 2WiKi TQA MuSiQue SAMSum AVG
Dense 55.50 44.28 91.65 30.78 43.92 53.23

LazyLLM 54.52 43.42 91.00 28.86 43.64 52.29
MInference 52.00 44.10 91.18 25.72 43.73 51.35
FlexPrefill 54.56 43.43 89.81 30.07 43.18 52.21

Ours 55.08 44.16 91.27 30.25 43.81 52.91

H SENSITIVITY ANALYSIS OF VARYING PRUNING RATIOS

Figure 3 illustrates the impact of different pruning ratios on LLaMA3.1-8B performance, covering
both block pruning and KV Cache pruning scenarios. As the pruning ratio increases, the accuracy of
most tasks remains relatively stable despite a general downward trend, indicating the strong robust-
ness of our method. Block pruning accuracy remains stable even when the number of pruned blocks
increases, especially on tasks such as PIQA, Winogrande and RTE. This phenomenon validates the
effectiveness of our redundancy aware iterative block pruning strategy, which selectively removes
non-critical blocks while preserving the model’s core functional capabilities. Our results for KV
Cache pruning demonstrate even stronger robustness. As shown in Figure 3b, most tasks maintain
high accuracy even after pruning. In practical scenarios, the pruning ratio can be adjusted to balance
the trade-offs according to specific requirements. This gradual decline in performance highlights
the graceful degradation characteristic of this method, underscoring its practical value in memory
constrained inference scenarios.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

I ANALYSIS OF USING COSINE SIMILARITY

Besides cosine similarity, dot product and Euclidean distance are also commonly used, but they are
sensitive to vector magnitude. Previous work (Chen et al., 2024) has shown that in Transformers,
hidden states tend to expand with depth, leading deeper layers to exhibit higher dot-product similar-
ity, while shallower layers maintain smaller Euclidean distances. To avoid this bias, we use cosine
similarity, which is insensitive to magnitude. In addition, we measure the L2 norms of the hidden
states at each layer of Qwen2.5-7B. As shown in Table 16, the norm magnitude exhibits a clear
upward trend with increasing depth, which highlights the inherent bias of other similarity metrics
that are sensitive to vector magnitude. Furthermore, we evaluate the performance of Qwen2.5-7B
and OPT-13B under 15% parameter pruning with different similarity metrics. As shown in Table
17, cosine similarity consistently outperforms the other metrics.

Table 16: The norms of the hidden states output at each layer of Qwen2.5-7B. The first row repre-
sents the layer IDs, and the second row represents the corresponding norms.

Layer 0 1 2 3 4 5 · · · 21 22 23 24 25 26 27

Norm 14 19 25 116 141 146 · · · 264 300 350 408 470 474 620

Table 17: Performance comparison on Qwen2.5-7B using different similarity metrics.

Metric PIQA Winog HSwag
Euclidean distance 75.70 52.20 50.51

Dot product 75.87 55.88 47.62
Cosine similarity 77.04 56.99 51.19

J MORE ANALYSIS

J.1 ROBUSTNESS ON DIFFERENT CALIBRATION SETS

To evaluate the stability of our proposed block pruning strategy, we systematically analyze the con-
sistency of results across different calibration sets and sizes. Our analysis distinguishes between
two types of removal operations: direct block pruning and block distillation. Direct block pruning
refers to the removal of blocks, while block distillation involves merging blocks instead of removing
them. As shown in Table 18, the experimental results demonstrate significant stability in the selec-
tion of removed blocks across all experimental conditions. This consistency strongly indicates that
our pruning decisions are driven by the inherent architectural redundancy within the model itself,
exhibiting robustness across different datasets.

Table 18: Results comparison across different calibration sets. Under the LLaMA3.1-8B model,
we report the selected block indices for removal across different calibration datasets and various
sizes under two pruning configurations: removing 15.63% blocks and removing 9.38% blocks. The
indices within square brackets denote the distilled blocks.

Calibration Set Size 15.63% Blocks Removal 9.38% Blocks Removal

PIQA
256

24, 25, 26, [22, 23], [27, 28] 25, 26, [27, 28]512
1024

WikiText-2
256

24, 25, 26, [22, 23], [27, 28] 25, 26, [27, 28]512
1024

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 19: Robustness of KV Cache pruning across
datasets measured by the Jaccard coefficient.

Dataset Jaccard Coefficient
TQA (reference) 1.0

PIQA 1.0
WikiText-2 1.0

Furthermore, we validate the robustness of our
KV Cache pruning method across different
datasets. Specifically, we use the KV Cache
pruning layers tested on TQA as a reference
and compare them with the results obtained on
PIQA and WikiText-2. We measure the similar-
ity between the results using the Jaccard coef-
ficient, which quantifies the similarity between
two sets as the size of their intersection divided
by the size of their union. A higher coefficient
indicates greater similarity, while a lower value indicates less similarity. As shown in Table 19,
the Jaccard coefficient across datasets is 1, demonstrating that our method is robust with respect to
dataset variations.

J.2 CALIBRATION LATENCY (PRUNING AND DISTILLATION SETS CONSTRUCTION & KV
CACHE PRUNING)

Table 20: Time for constructing pruning and distilla-
tion sets, and KV cache pruning during the calibration
process (in seconds) on LLaMA series.

Model Method Construction KV Cache

LLaMA3.1-8B LazyLLM - 26.18
Ours 4.23 4.51

LLaMA2-13B LazyLLM - 53.16
Ours 9.43 9.76

To further demonstrate the efficiency ad-
vantages of our method, we provide a
detailed latency analysis of the calibra-
tion process. This process mainly in-
volves the construction of the initial prun-
ing set and distillation set, together with
the KV Cache pruning applied to the se-
lected layers. We carry out experiments on
both LLaMA3.1-8B and LLaMA2-13B,
with pruning ratios of 15.63% and 24.4%,
respectively. We further evaluate our
method by comparing its pruning latency
against the KV Cache pruning approach
LazyLLM. As summarized in Table 20, we report the time required for pruning and distillation
sets construction, as well as the latency introduced by KV Cache pruning. The results indicate that
these operations can be completed within a very short time, resulting in only negligible overhead
and imposing virtually no additional burden.

K ANALYSIS OF ITERATIVE BLOCK REMOVAL SOLUTIONS

To validate the effectiveness of our iterative block removal method, we compare its solutions with
the global optimum obtained via exhaustive search. It is important to note that exhaustive search
requires evaluating all possible block combinations, which is practically intractable. To make this
comparison feasible, we select all elements from the distillation set and the top five elements from
the pruning set, and treat the optimal solution among all their combinations as the global optimum.
Even so, solving it still demands substantial computational time. We apply our method to prune
13.6% of the parameters in LLaMA3.1-8B and evaluate it across various benchmarks. As shown in
Table 21, our approach achieves results consistent with the global optimum. This demonstrates that
our iterative method efficiently finds superior pruning solutions.

Table 21: Performance of iterative block removal compared to the global optimum on LLaMA3.1-
8B.

Method MMLU CMMLU ARC-E ARC-C PIQA Winog HSwag BoolQ MathQA
global optimum 60.82 46.66 73.15 43.86 76.99 73.56 53.80 69.85 34.28

Ours 60.82 46.66 73.15 43.86 76.99 73.56 53.80 69.85 34.28

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

L COMPARISON WITH WORK OF SIMILAR NAMES

We compare our approach with another method (Muralidharan et al., 2024) that bears a similar name,
as both involve concepts such as iteration and distillation. In their work, iteration refers to repeatedly
performing pruning to gradually reduce the model size, whereas in our approach, iteration is used to
search for the optimal pruning configuration, and the two notions are not directly related. Similarly,
their distillation is applied after pruning to the entire model in order to restore performance, while
our distillation occurs during the pruning process itself, serving as a mechanism for block removal.

M MORE DETAILS ON PREFILL AND DECODE REMOVAL SCHEMES

Our approach first determines the optimal removal strategy and then derives separate removal
schemes for the prefill and decode stages. Specifically, the prefill scheme is designed as a sub-
set of the decode scheme, ensuring that every retained block in the decode node can directly reuse
the corresponding KV Cache from the prefill node. In contrast, if separate removal schemes are
determined for the prefill and decode stages at the initial stage, without any subset relationship, it is
likely that some blocks retained in the decode node would have no corresponding KV Cache in the
prefill node, hindering cache reuse and reducing system efficiency.

N CASE STUDY

To qualitatively assess the impact of pruning on generation quality, we compared the outputs of
the original model and the pruned model for several representative prompts, as shown in Table
22. We prune 9.38% blocks on LLaMA3.1-8B. Despite a substantial reduction in model size, the
pruned model consistently generates coherent, information-rich, and well-structured responses, re-
taining the core semantics of the original output. These examples confirm that our pruning strategy
maintains strong generation capabilities and factual consistency even under significant structural
compression.

O LIMITATIONS AND FUTURE WORK

In this work, we primarily focus on the fundamental model of PD disaggregation. However, we do
not fully consider some of the more complex management aspects of pruning in PD disaggregation,
such as memory management. Under the PD disaggregation framework, dynamically constructing
pruned subgraphs introduces considerable memory management overhead. To address this chal-
lenge, we plan to propose pruning-aware memory management strategies. One approach involves
statically preallocating memory blocks for frequently observed subgraph patterns, such as common
structural pruning configurations to avoid repetitive allocation overhead. We also apply tensor life-
time analysis to enable memory reuse across subgraphs. Furthermore, we can separate structural
masks (such as sparsity metadata) from computation tensors to reduce memory pressure. Moreover,
we can explore MoE pruning within the PD disaggregation framework by removing infrequently
used expert subgraphs during the prefill phase and dynamically reusing the pruned subgraphs based
on context in the decode phase. Additionally, leveraging tensor lifetime analysis enables memory
reuse across MoE subgraphs, further improving efficiency.

P THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) are employed in this work exclusively for the purpose of polishing
the written presentation, such as improving grammar, clarity and readability. The research ideas,
technical framework, theoretical analyses, experimental design and conclusions are fully conceived
and carried out by the authors. The role of the LLM is limited to enhancing the fluency and style of
the manuscript without influencing the originality, novelty or scientific content of the work.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 22: Qualitative examples comparing outputs from the original and the pruned versions of
the LLaMA3.1-8B models configured as described above. Each example illustrates the model’s
response to the same input prompt, with the underlined text indicating the user’s question.

Original Model Pruned Model

Explain what artificial intelligence is. Artificial
intelligence (AI) is the simulation of human
intelligence processes by machines, especially
computer systems. These processes include learn-
ing (the acquisition of information and rules for
using the information), reasoning (using the rules
to reach approximate or definite conclusions), and
self-correction. Particular applications of AI ...

Explain what artificial intelligence is. Artificial
intelligence, or AI, is a field of computer science
that deals with the creation of machines that can
perform tasks that normally require human intelli-
gence. This includes things such as understanding
natural language, recognizing objects in images,
and making decisions based on complex data.
While AI has been around for decades, recent ...

Provide some tips for learning a new language. 1.
Set realistic goals: Start by setting realistic goals
for yourself, such as learning a few basic phrases
or mastering a specific skill. 2. Practice regu-
larly: Consistency is key when it comes to learn-
ing a new language. 3. Find a language partner:
Finding a language partner can be a great way to
practice and improve your language skills. 4. Use
technology...

Provide some tips for learning a new language.
Here are some tips for learning a new language:
1. Start by learning the basics of the language,
such as the alphabet, common words and phrases,
and basic grammar rules. 2. Find a language
learning app or program that suits your learning
style and goals. 3. Practice speaking and listening
to the language as much as possible. 4. Practice
...

Explain how a car engine works. A car engine is a
machine that converts the chemical energy stored
in gasoline into mechanical energy that can be
used to move the car. The engine consists of sev-
eral parts that work together to produce this en-
ergy. The first part of the engine is the combus-
tion chamber. This is where the gasoline is mixed
with air and ignited to create an explosion. The
explosion pushes down on a piston, which is con-
nected to a crankshaft. The crankshaft is what
turns wheels ...

Explain how a car engine works. A car engine
works by converting chemical energy stored in
fuel into mechanical energy that drives the car.
The process of converting chemical energy into
mechanical energy is known as combustion. In a
car engine, combustion occurs in the combustion
chamber, which is located in the center of the en-
gine. The combustion chamber is connected to the
intake manifold, which is where the fuel and air
mixture enters the engine. The intake manifold ...

23

	Introduction
	Method
	Implementation of Stage-Aware Strategy for Optimal Block Removal
	Strategic Design of Sets for Pruning and Distillation
	Iterative Optimization toward Optimal Block Removal
	Heterogeneous Strategies Across Prefill and Decode Nodes

	Selective KV Cache Pruning for Reduced Bandwidth Consumption

	Experiments
	Experimental Setup
	Main Results
	Efficiency Analysis

	Related Work
	Conclusion
	Detailed Derivation of the Theoretical Formula
	Frobenius Norm of A via Softmax Lipschitz Continuity
	Experimental Setup
	Experiments on Strong Scalability and Robust Generality
	Larger Model, More Datasets and Additional Metric
	Orthogonal to Quantization
	Performance Comparison in the Non-PD Disaggregation Setting
	Performance Comparison of Disaggregation and Unified

	Ablation study
	Hyperparameter Impact Analysis
	Performance Comparison with Other KV Cache Pruning Methods
	Sensitivity Analysis of Varying Pruning Ratios
	Analysis of Using Cosine Similarity
	More Analysis
	Robustness on Different Calibration Sets
	Calibration Latency (Pruning and Distillation Sets Construction & KV Cache Pruning)

	Analysis of Iterative Block Removal Solutions
	Comparison with Work of Similar Names
	More Details on Prefill and Decode Removal Schemes
	Case Study
	Limitations and Future Work
	The Use of Large Language Models (LLMs)

