
VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

Jianing Qi 1 Hao Tang 1 2 Zhigang Zhu 1 3

Abstract

Recent test time compute approaches with verifier
models have significantly enhanced the reasoning
capabilities of Large Language Models (LLMs).
While this kind of generator-verifier approach
closely resembles the actor-critic framework in
reinforcement learning (RL), current verifiers typ-
ically rely on supervised fine-tuning rather than
temporal-difference methods. We propose Ver-
ifierQ, a novel approach that integrates Offline
Q-learning into LLM verifier models to address
three well-known challenges of LLMs: utterance-
level Markov Decision Processes (MDPs), large
action spaces, and overestimation bias. VerifierQ
introduces a modified bounded Bellman update to
keep Q-values in [0, 1], incorporates Implicit Q-
learning (IQL) for efficient approximation of the
maxQ over large action space, and introduces an
adjustable two-expectile Conservative Q-learning
(CQL). Our method is among the first attempts
to integrate offline Q-learning to LLM verifiers,
and adjustable conservatism can tighten Q-values
around the true maxQ more flexibly than IQL
alone. Experimental results on mathematical rea-
soning tasks demonstrate VerifierQ’s superior per-
formance compared to supervised fine-tuning ap-
proaches.

1. Introduction
Despite Large Language Models (LLMs) ability in gener-
ating coherent text, LLMs face significant challenges in
sustained, multi-step logical reasoning (Lightman et al.,
2024). Overcoming these challenges is critical for enabling

1Department of Computer Science, CUNY Graduate Center,
New York, NY, USA 2Department of Computer Science,
Borough of Manhattan Community College,
New York, NY, USA 3Department of Computer Science,
The City College of New York, New York, NY, USA. Correspon-
dence to: Jianing Qi <jqi@gradcenter.cuny.edu>.

The second AI for MATH Workshop at the 42nd International
Conference on Machine Learning, Vancouver, Canada. Copyright
2025 by the author(s).

the next level of agent capabilities. A promising direction is
the concept of test-time compute, which adds a verifier to
evaluate and select the best answers from a set of generated
solutions (Snell et al., 2024; Cobbe et al., 2021). It typically
employs two main components: a generator and a verifier
(Lightman et al., 2024; Uesato et al., 2022; Cobbe et al.,
2021). The generator produces potential solutions, while the
verifier evaluates their correctness. This setup is analogous
to the actor-critic framework in Reinforcement Learning
(RL) (Konda & Tsitsiklis, 1999). However, unlike RL crit-
ics that use temporal-difference (TD) updates for long-term
credit assignments, current verifiers in multi-step reasoning
are often trained using supervised fine-tuning (SFT) akin to
Behavioral Cloning. This limitation might hinder the veri-
fier’s ability to guide the generator toward better long-term
outcomes, particularly in complex reasoning tasks without
enough data(Kumar et al., 2022).

In contrast, the RL critic in actor-critic methods applies
temporal-difference learning to capture long-term credit as-
signment. Motivated by this gap between SFT and RL in
verifier, we propose VerifierQ: the first approach to apply
offline reinforcement learning (via IQL and CQL) specifi-
cally to the verifier model. A key challenge is that verifier
actions exist at the utterance level, creating an extremely
large action space. Prior works on offline RL in LLM focus
on token-level generation or omit CQL at utterance level
(Snell et al., 2023; Zhou et al., 2024), but we combine IQL
and CQL in a fully utterance level setting for the verifier.
Through careful design, VerifierQ addresses both this large
action space and the overestimation problems that naturally
arise in offline Q-learning.

Previous works focused on improving generators using
methods like Monte Carlo Tree Search (MCTS) (Chen et al.,
2024; Wang et al., 2024b;a; Zhang et al., 2024a). How-
ever, less attention has been given to applying RL to ver-
ifiers, and most works still use SFT approaches for veri-
fier. In VerifierQ, we adapt classic offline Q-learning tech-
niques—particularly Implicit Q-learning (IQL) and Conser-
vative Q-learning (CQL)—to enable long-horizon reasoning,
prevent overestimation, and handle large-scale utterance-
level actions within LLMs. Our contributions are:

• Parallel Utterances-Level MDP: We formulate a flex-
ible MDP for the verifier to operate on the full solution

1

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

A robe takes 2 bolts of blue fiber and
half that much white fiber. How many

bolts in total does it take?

It takes
2/2=<<2/2=1>>1 bolt

of white fiber

So the total amount of
fabric is 2+1=<<2+1=3>>3

bolts of fabric

+

+

Reward

2. Answer is 2

Problem

Action

Reward

Action Reward

Action

A robe takes 2 bolts of blue fiber and
half that much white fiber. How many

bolts in total does it take?

Problem

It takes
2/2=<<2/2=1>>1 bolt

of white fiber

Action

Action

A robe takes 2 bolts of blue fiber and
half that much white fiber. How many

bolts in total does it take?

Problem

It takes
2/2=<<2/2=1>>1 bolt

of white fiber

So the total amount of
fabric is 2+1=<<2+1=3>>3

bolts of fabric

Action

LLM
Generator

Verifier

State

Figure 1: Illustration of State, Action (green), and Reward (orange) in a Math Problem. + denotes correct (1) and − denotes
incorrect (0). A state generator produces an action (i.e., the next solution step). For example, a2 is generated from [P, a1],
and a3 is generated from [P, a1, a2]. The verifier assesses the current state and action and outputs a correctness probability.

steps rather than individual step. This design enables
us to compute Q-values for multiple steps in a single
forward pass.

• Two-Expectile Offline Q-Learning: We introduce
a novel combination of IQL and CQL, enabling ad-
justable optimism that can go beyond the approximate
maxQ typical of standard IQL.

• Empirical Validation: We evaluate VerifierQ on
GSM8K and MATH with a 1B-parameter model,
demonstrating consistent gains over strong verifier
baselines and showcasing the practical viability of in-
tegrating RL principles into LLM verifiers.

2. Background
In reinforcement learning (RL), tasks are often modeled as
Markov Decision Processes (MDPs). A MDP consists of
states s ∈ S, actions a ∈ A, a reward function r(s, a), a
transition function P (s′|s, a) from state s to state s′ with
action a, and a discount factor γ. The goal is to find an
optimal policy π∗ that maximizes the expected cumulative
reward: π∗ = argmaxπ E [

∑∞
t=0 γ

trt]

Q-learning estimates the optimal state action value Q by
iteratively updating expected cumulative rewards, while the
V function is similar to Q but just estimates from states
without need of actions. Q-learning is a model-free RL
algorithm commonly used to solve MDPs by minimizing
the temporal difference (TD) error:

LTD(θ) = E
[(
r + γmax

a′
Q(s′, a′; θ)−Q(s, a; θ)

)2
]
.

(1)

We can formulate the reasoning process as an utterance-
level MDP. Given a problem statement p, the generator
produces a solution based on the problem and previous
action steps, where [p, a1, ..., ai−1] is the state and ai is an

action. Each action is a complete sentence as shown in
Figure 1. This differs from token-level approaches where
actions would be individual tokens from the vocabulary,
which can be a word or a subword. The state at step i is the
dialogue history that consists of the problem statement and
all previous complete utterances generated up to that point:
si = [p, a1, a2, . . . , ai]. Rewards are given at each step,
with a reward of 1 for a correct step and 0 for an incorrect
one. We can see the illustrated example in Figure 1, where
+ indicates “correct” and − indicates “incorrect”.

In classical RL, the critic model is trained to estimate the
Q value (Konda & Tsitsiklis, 1999). In LLM, the verifier
model is trained to estimate the Q value (Snell et al., 2024).
Given a problem statement, the generator produces a se-
quence of steps as actions. The verifier’s inputs are the prob-
lem and solution steps, and it outputs correctness scores. We
find equivalence between actor-critic and generator-verifier
framework.

3. Related Work
RL for Verifiers: Multi-step reasoning in LLMs often fol-
lows a generator-verifier framework, in which the generator
proposes intermediate steps and the verifier checks their
correctness (Lightman et al., 2024; Uesato et al., 2022;
Cobbe et al., 2021). Process Reward Modeling (PRM)
assigns rewards at each step rather than only at the final
output—outperforming Object Reward Modeling (ORM)
on math tasks (Lightman et al., 2024), but it requires signifi-
cant manual labels. It is similar to imitation learning in RL.
Recent efforts reduce this labeling cost using Monte Carlo
Tree Search (MCTS) rollouts (Chen et al., 2024; Wang et al.,
2024b;a), though the resulting step-level data can be noisy
(many incorrect steps).

In principle, offline RL methods such as Q-learning could
stitch together these suboptimal partial solutions more ef-

2

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

fectively than supervised (imitation learning) in a fixed
dataset(Kumar et al., 2022). However, current verifiers
typically rely on supervised fine-tuning (SFT) rather than
offline RL, and this imitation approach might not be opti-
mal compared to the offline RL. Our work is the first to
implement offline RL with temporal difference updates in a
verifier model, bridging the gap between standard RL critics
and LLM verifiers.

Utterance Level Actions: A key challenge in language-
based RL is deciding whether to treat each token as an action
or to treat entire utterances (sentences) as single actions. Ex-
isting work in offline RL uses token-level approaches (e.g.,
Snell et al., 2023). It has a comparatively smaller action
space (equal to the vocabulary size) but can be cumbersome
for longer reasoning tasks, and utterance-level methods can
better perform on longer reasoning steps but introduce a far
larger action space (Zhou et al., 2024; Wang et al., 2024a).
Prior works using utterance level offline RL generally esti-
mate one utterance-level Q-value per forward pass (Snell
et al., 2023; Zhou et al., 2024). Our approach builds on these
ideas by computing multiple utterance-level Q-values in a
single forward pass, substantially improving computational
efficiency.

Large Action Space: Because each utterance may contain
multiple tokens, the space of possible actions explodes expo-
nentially. In principle, accurately estimating the maximum
Q-value requires sampling many candidate utterances for
each partial solution (Chen et al., 2024; Wang et al., 2024a).
Some prior approaches use an actor (e.g., MCTS) to sample
from this space while holding earlier steps fixed. By con-
trast, our method sidesteps the need for explicit sampling of
next-step utterances for each partial solution instead relies
on binary labels (correct vs. incorrect) for each step from
Wang et al. (2024b). Our method handles large action space
through regression aspect of IQL implicitly.

Overestimation in Offline RL: Overestimation is a known
pitfall of Q-learning, particularly in offline settings where
the dataset may be limited or unrepresentative (Kumar et al.,
2020). This challenge is magnified in language tasks, where
arbitrary text sequences can lie outside the training distri-
bution (Verma et al., 2022; Zhou et al., 2024). Conserva-
tive Q-learning (CQL) and Implicit Q-learning (IQL) help
mitigate overestimation by penalizing Q-values for out-of-
distribution actions. While token-level LLM work has used
IQL (Snell et al., 2023), utterance-level CQL remains largely
unexplored: Snell et al. and Zhou et al. both omit the CQL
term when extending to utterance-level. In contrast, our
work combines CQL and IQL for full utterance-level veri-
fiers, thereby addressing overestimation without reverting
to token-level granularity.

4. Verifier with Q-Learning (VerifierQ)
We now present VerifierQ, an approach that combines Of-
fline Q-learning methods—specifically IQL and CQL—to
train a verifier in Large Language Models (LLMs). Figure 2
provides an overview of our architecture. The overarching
goal is to enable the verifier to efficiently handle utterance-
level MDPs and large action spaces, while mitigating over-
estimation in offline settings.

Modified Bellman Update for Utterance-Level MDPs:
To adapt Q-learning for utterance-level reasoning, we first
represent correctness as two special tokens: + (correct) and
− (incorrect). Each step ai in the solution is followed by a
“tag” token that triggers a Q-value estimate. By predicting
the probability of + (vs. -), we interpret the output as a
Q-value in [0,1], consistent with per-step rewards in [0, 1].

To address the bounded nature of outputs (0 to 1) compared
to traditional Q-values, we modify the Q-learning algorithm
to operate within these constraints. We propose using the 1

2
of the traditional Bellman update target as the target value
instead of Equation 1:

Q∗(s, a) =
1

2
(r(s, a) + γmax

a′
Q∗(s′, a′)) (2)

where Q∗(s, a) is the optimal Q-value for state s and action
a, r(s, a) is the immediate reward, γ is the discount factor,
and maxa′ Q

∗(s′, a′) is the maximum Q-value for the next
state s′ taking action a′. More details are provided in the
supplementary material (Theorem A.1 of Appendix A.1).

Here we need to ensure that Q∗ is bounded. Since
r,Q ∈ [0, 1], we have 0 ≤ r + γmaxQ ≤ 2 for
γ ∈ [0, 1]. Thus we can bound 0 ≤ Q∗(s, a) = 1

2 (r(s, a) +
γmaxa′ Q

∗(s′, a′)) ≤ 1. Therefore Q∗(s, a) ∈ [0, 1], and
it aligns naturally with the model’s probabilistic outputs.

In practice, we insert the tag token at the end of each step
[p, a1, tag, a2, tag, . . . , an, tag] and estimate multiple Q-
values in a single forward pass (Fig 2, left). This parallel
computation significantly improves efficiency for multi-step
verification.

Handling Large Action Spaces via IQL: A classical chal-
lenge in utterance-level MDPs is the enormous action space
(V n, where V is the vocabulary size and n the token length).
Implicit Q-learning (IQL) (Kostrikov et al., 2022) addresses
this by regressing onto actions seen in the offline dataset,
thus avoiding explicit enumeration or sampling of all pos-
sible utterances. We follow Snell et al. (2023) for the IQL
framework to our setting, using the expectile of the Q-value
to approximate the value function V . Formally, we use
expectile regression:

LV (ψ) = E(s,a)∼D [Lτ2 (Qθ(s, a)− Vψ(s))] (3)

where Lτ2(u) = |τ−1(u < 0)|u2, τ ∈ (0, 1) is the quantile

3

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

Bellman Target

Q function

A robe takes... It takes 2/2... So the total... Answer is 2Step
Tag

Step
Tag

Step
Tag

Q1

0.7

Q2

0.6

Q3

0.2

R1

1

R2

1

R3

0

R1

1

Q2

0.6
+ γ ( ​ ​ ​ ​ ​)Q1

0.7

1
2

Bellman Backup

V function

Q1

0.7

Q2

0.6

Q3

0.2

A) Q Loss:

A robe takes... It takes 2/2... So the total... Answer is 2Step
Tag

Step
Tag

Step
Tag

Q function

Q1

0.7

Q2

0.6

Q3

0.2

V function

Q1

0.7

Q2

0.6

Q3

0.2

Polyak-​averaged Q function

Q1

0.7

Q2

0.6

Q3

0.2

V function

Q1

0.7

Q2

0.6

Q3

0.2

B) CQL Loss:

 Function Function

 Function

Soft
Update

CQL

Polyak-​averaged Q
function

Q function

Part A Here

Part B Here

C) Overall Components

Figure 2: Illustration of the VerifierQ architecture and modified Bellman update. Left: Bellman update, where Qθ is updated
via the TD target with V . Middle: CQL Loss component. The main goal is to have the lower bound Vψ as the target policy
distribution while the upper bound as the data distribution. Right: Relationships among Qθ, Qθ̂, and Vψ. Qθ updates
through the Bellman equation as shown in (A), Vψ is updated through CQL as shown in (B), and Qθ̂ is updated via soft
update. The key intuition here is to leverage IQL’s regression to overcome the large action space problem while CQL keeps
estimation in check.

level, D is the offline dataset, Qθ is the learned Q-function,
and Vψ is the approximated value function.

Intuitively, IQL approximates maxaQ(s, a) without explic-
itly computing it over O(V n) actions. This is especially
valuable for LLM verifiers, where an utterance can easily
contain dozens of tokens, resulting in a combinatorial explo-
sion. By focusing on regression against the offline data, IQL
remains efficient even for large language action spaces. As
τ approaches 1, we have limτ→1 Vψ(s) = maxaQ

∗
θ(s, a)

Kostrikov et al. (2022), ensuring that our IQL-based ap-
proach can asymptotically recover the optimal value func-
tion, even with large action spaces, given sufficient coverage
in the offline dataset.

Our approach leverages regression aspect to solve the large
action space problem. By expectile regressing the reward
over utterances, we can avoid explicitly sampling the ac-
tion or iterate through all the combinations of tokens. The
approximation of minimum through τ value is shown in
Theorem A.2 of Appendix A.1 .

Mitigating Overestimation via a Two-Expectile CQL For-
mulation.

Although IQL handles large action spaces by avoiding ex-
plicit maximization, offline Q-learning remains prone to
overestimation, particularly when the dataset is sparse or
underrepresented. In essence, IQL alone can approximate
the maximum Q-value well within the data distribution but
lacks a mechanism to explicitly penalize out-of-distribution
actions.

To remedy this, we introduce a Conservative Q-learning
(CQL) penalty (Kumar et al., 2020) on top of IQL, yielding
a novel two-expectile objective. Specifically, we enforce
a conservative bound on actions not well-supported by the

dataset:

argmin
Q

α(Es∼D,a∼µ [Q(s, a)]− Es∼D,a∼π̂β
[Q(s, a)])

(4)
Here µ is the target policy distribution and π̂β is the data
distribution. This objective effectively pushes down overes-
timated Q-values. Unlike token-level approaches that skip
CQL for large utterances (Snell et al., 2023; Zhou et al.,
2024), we combine CQL and IQL for utterance-level verifi-
cation, thus controlling overestimation while still approxi-
mating maxQ implicitly.

Moreover, to allow adjustable optimism, we add separate
expectile levels τ1, τ2 in the CQL term:

LCQL(ψ) = α(Es∼D,a∼µ
[
Lτ12

(
Qθ̂(s, a)− Vψ(s)

)]
− Es∼D,a∼π̂β

[Lτ22 (Qθ(s, a)− Vψ(s))])
(5)

Here, τ1 ≈ 0 and τ2 ≈ 1 let us independently modulate con-
servatism for out-of-distribution actions while maintaining
optimism on in-distribution actions. Intuitively, the “lower
expectile” side gently pushes down Qθ̂ for high-risk (i.e.,
underexplored) actions, whereas the “upper expectile” side
ensures that plausible actions from the dataset remain suf-
ficiently valued. For more details on the explanations, see
Appendix A.5.

This design goes beyond standard single-expectile CQL or
IQL alone. By merging their strengths, our two-expectile
approach can tune the degree of optimism vs. conservatism,
even with massive utterance-level action spaces. It makes
our formulation the first that unifies both IQL-based max-Q
approximation and adjustable conservative penalties for an
LLM verifier.

Overall Objective: Bringing it all together, VerifierQ mini-
mizes a sum of TD Loss and a CQL Term.

1. TD Loss Like previous works Snell et al. (2023), we

4

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

use a separate value function Vψ(s′) to approximate the Q-
value maxa′ Q

∗(s′, a′). With our adaptation to the Bellman
Update (Equation 1), the TD error is:

LQ(θ) = E

[(
1

2
(r(s, a) + γVψ(s

′))−Qθ(s, a)
)2

]
(6)

2. CQL Term We add a CQL term to achieve an adjustable
conservatism with Equation 5.

The comprehensive objective function of VerifierQ is thus
the sum of the Bellman error (Equation 6) and the CQL term
(Equation 5):

L(θ, ψ) = LQ(θ) + LCQL(ψ) (7)

To enhance training stability, we employ a Polyak-averaged
version of Qθ̂ (Polyak & Juditsky, 1992). The hyperparam-
eter α is set to 1 in our experiments, balancing the influence
of the CQL term. The overall objective is shown in the
Figure 2.

This formulation allows VerifierQ to benefit from the con-
servative nature of CQL while maintaining an optimistic
outlook, crucial for effective Q-value estimation in large
action spaces characteristic of language models. The ex-
pectile regression provides flexibility to adjust τ1, τ2 values
as preferred. By integrating these components, VerifierQ
addresses the challenges of overestimation and large action
spaces in utterance-level MDPs, providing a robust frame-
work for multi-step reasoning tasks.

5. Experiments and Results
We evaluate VerifierQ on two standard mathematical reason-
ing benchmarks, GSM8K and MATH (Cobbe et al., 2021;
Hendrycks et al., 2021). These datasets are among the most
commonly used for multi-step math reasoning in recent
work (Lightman et al., 2024; Wang et al., 2024b;a; Snell
et al., 2024; Yu et al., 2024; Chen et al., 2024).

5.1. Experimental Setup

We compare VerifierQ with a well-established verifier base-
line method Process Reward Model (PRM) method Light-
man et al. (2024), and we use the same dataset as Wang et al.
(2024b); Snell et al. (2024) for training. We do not include
Object Reward Model (ORM) since Wang et al. (2024b);
Snell et al. (2024); Lightman et al. (2024) already validated
PRM’s effectiveness over ORM. Due to computational con-
straints, we use the TinyLlama-1.1B model (Zhang et al.,
2024b).

Dataset: We generate a test time compute set using a gener-
ator trained on MetaMath (Yu et al., 2024). The generator
is finetuned on MetaMath for 2 epochs with a learning rate

of 2e-5. We then use LoRA finetuning for 1 epoch to adjust
the format of answer style so it can be easier to extract the
answers (Hu et al., 2022). For each question in the full
GSM8K test set and a 500-question subset of MATH (fol-
lowing Lightman et al. (2024)), we generate 256 answers.
The verifier is trained on the MathShepherd dataset Wang
et al. (2024b), which uses MCTS-generated data with binary
rewards (1 for correct, 0 for incorrect).

Model Architecture: Our verifier model consists of a Q-
network and a separate value network to prevent single
sample overestimation. We employ soft updates to stabilize
training with rate 0.01.

Training: We initialize our verifier model with MetaMath
pretraining model, then train with PRM on MathShepherd
for 1 epoch, followed by VerifierQ training. Here are key
hyperparameters. Learning rate: 2e-5 for all training phases.
Batch size: 64 (crucial for Q-learning stability). Q-learning
parameters: γ = 0.99, α = 1 for the CQL term. For PRM,
we continued training on MathShepherd from 1 epoch to
2 epochs. Majority Voting uses the raw output from the
generator.

Evaluation Metrics: We evaluate the verifier against PRM
and Majority Voting using accuracy. Following Snell et al.
(2024); Lightman et al. (2024), we use minimum evaluation
metrics.

5.2. Results

We evaluate VerifierQ against PRM (for one epoch and two
epochs) and Majority Voting on both GSM8K and MATH
datasets using minimum evaluation. For VerifierQ, we use
τ1 = 0.3 for GSM8K and τ1 = 0.5 for MATH. Figure3
compares VerifierQ, PRM, PRM (2nd epoch), and Major-
ity Voting on GSM8K and MATH as the number of solu-
tions per problem grows. VerifierQ consistently outperforms
PRM.

We notice PRM 2nd epoch perform worse than PRM 1st
epoch. We hypothesized that the model might overfit the
dataset. Hence for PRM we will use first epoch PRM base-
line in subsequent comparisons. On GSM8K, VerifierQ’s
performance improves with an increase in the number of so-
lutions per problem, aligning with trends observed in previ-
ous studies (Snell et al., 2024; Lightman et al., 2024; Wang
et al., 2024b). While the absolute improvement margins
may appear modest, a Wilcoxon signed-rank test demon-
strates that VerifierQ’s improvements over PRM are statis-
tically significant (GSM8K:W = 1500.0, p < 1.6410−35

MATH:W = 156.5, p < 4.7010−43). This extremely low
p-value indicates that the performance differences are highly
unlikely to occur by chance, suggesting that VerifierQ pro-
vides consistent improvements over baseline methods. This
aligns with our theoretical expectations of improvements in

5

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

Figure 3: Comparison of different methods on GSM8K (left) and MATH (right) using minimum evaluation. Rolling average
over 20 steps. For VerifierQ we use τ1 = 0.3 (left) and τ1 = 0.5 (right). VerifierQ (Yellow) outperforms PRM (Blue) on
both datasets.

verifier accuracy. We also want to point out that VerifierQ’s
advantage emerges as it better leverages multiple solutions
for value estimation. Previous work showed that PRM’s
accuracy increases more noticeably as the number of can-
didate solutions grows compared to majority voteLightman
et al. (2024); Wang et al. (2024b); Snell et al. (2024). We
observe that VerifierQ’s accuracy increases even higher than
PRM as the number of solutions grows in GSM8K.

We note that for MATH, all methods underperform com-
pared to Majority Vote. We hypothesize that it is due to
the large shift of the language modeling objective to value
estimation objective. The small model size (1.1B) is the
cause of discrepancy. Previous works use 7B size model
as the minimum baseline, sometimes 70B. Due to prac-
tical reasons, we do not have the resources to train the
model larger than 1B. Larger models are more sample ef-
ficient than smaller models Kaplan et al. (2020), and in
our tasks, it means larger LLM shall learn better and have
better performance given the same dataset size. However,
VerifierQ still outperform all other methods among learned
verifiers. We observe VerifierQ consistently outperform to
PRM method. Furthermore, VerifierQ method also has a
better performance compared to other Q learning methods,
and we will discuss it in ablation study in Section 6.3.

In Figure 3, VerifierQ achieves the higher accuracy both on
GSM8K and on MATH with different τ1 values compared
to PRM (see Figure 4 in Section 6), and it also outperforms
other variations (see Figure 5 in Section 6).

Overall, these results confirm that offline RL can provide a
systematic advantage over purely supervised verifiers, even
at smaller model scales. While the absolute improvements
may appear modest, the statistical significance underscores
VerifierQ’s robustness. We further analyze the impact of

various components and hyperparameters in the ablation
studies (Sections6–6.3).

6. Ablation Study
Our ablation study addresses the challenges of large ac-
tion spaces, computational efficiency, and the impact of
key components in VerifierQ. We investigate the computa-
tional efficiency of our parallel utterance-level design versus
other architectures, the impact of CQL hyperparameters (es-
pecially τ1) on performance and overestimation, and the
impact of IQL CQL components on the performance.

6.1. Multi-Utterances-level Architecture for
Computational Efficiency

A key advantage of VerifierQ’s parallel sentence-level archi-
tecture is that it estimates all Q-values for an entire sequence
in a single forward pass. Previous “utterance-level” meth-
ods often follow a BERT-style approach, which use [CLS]
token to estimate the Q value of one utterance Zhou et al.
(2024). This approach require separate forward passes for
each step’s Q-value estimation, resulting in O(n3m2) com-
plexity for n steps with m tokens each. n is the number of
reasoning steps, and m is the average tokens per step, and
in Mathshepherd dataset n ≈ 6,m ≈ 20. In contrast, Ver-
ifierQ’s tag-token insertion strategy requires only a single
forward pass, reducing complexity to O(n2m2).

Concretely, if there are n reasoning steps and each step
has m tokens, we avoid repeated re-encoding of shared to-
kens for each Q-value. Instead, our approach gathers all
needed Q-estimates in one pass, resulting in substantial
speedups—particularly for longer sequences. Appendix C.1
provides formal proofs and additional comparisons (includ-
ing sequential decoder baselines).

6

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

Figure 4: Impact of different τ1 values on VerifierQ perfor-
mance. Left: GSM8K dataset. Right: MATH dataset. The
colors transition gradually from yellow to red, with the τ1
value ranging from 0.1 to 0.9. Higher τ1 values correspond
to redder colors.

6.2. Impact of Adjustable CQL Term on Overestimation

Another focal point is how Conservative Q-Learning (CQL)
hyperparameters govern the trade-off between optimism
(higher Q-values) and conservatism (avoiding overestima-
tion). We focus primarily on τ1, which controls the lower
expectile bound, while fixing τ2 at 0.9, a choice guided by
theoretical considerations of the CQL objective. In essence,
τ2 ensures that out-of-distribution Q-values are pushed down
toward the data distribution, whereas τ1 influences how ag-
gressive or lenient that push is.

Figure 4 illustrates the impact of different τ1 values on
VerifierQ’s performance. We examine different levels of
optimism by varying τ1 (0.1, 0.3, 0.5, 0.7, 0.9). As shown in
Figure 4, τ1 = 0.3 generally yields better results, suggesting
it approximates the maximum Q-value more effectively than
other τ1 values. MATH dataset shows higher sensitivity to
τ1 values, with τ1 = 0.5 performing the best. It suggest that
a more conservative Q-value estimate is beneficial for the
more complex MATH tasks, and it makes intuitive sense
since it needs to be more careful for more complex tasks.
The difference in optimal τ1 values between datasets sug-
gests that dataset-specific tuning may be necessary. It also
suggests that more complex tasks (MATH) benefit from
more conservative estimation.

In summary, while CQL helps mitigate overestimation in
offline RL, its precise benefits depend on choosing the right
τ1, τ2. For simpler tasks, a lower τ1 may suffice, whereas
more difficult reasoning tasks benefit from a more conserva-
tive setting.

6.3. Component-wise Analysis on Performance

To understand how each element of VerifierQ contributes
to final performance, we perform an ablation by systemati-

Figure 5: Comparison of different components. PRM is
blue. VerifierQ (Base) is green. VerifierQ (+IQL) is purple.
VerifierQ (Full) is yellow. Left: GSM8K dataset. Right:
MATH dataset.

cally removing key components from the full approach. We
compare the variants below to PRM, and summarize results
in Table1 and Figure5. VerifierQ Variants:

• VerifierQ (Base): A straightforward Q-learning model
without any IQL or CQL modifications. This is es-
sentially SARSA-style, using our bounded Bellman
update (Eq.2) but no additional mechanism for han-
dling large action spaces or overestimation.

• VerifierQ (+IQL): Adds Implicit Q-learning (IQL) on
top of the Base variant to approximate maxQ. It is
an Implicit Q-learning (IQL) with τ = 0.9 similar to
(Snell et al., 2023). This helps manage large utterance-
level action spaces but does not address overestimation
with CQL. The objective can be referenced with Equa-
tion 6 with an additional Lτ2

(
Qθ̂(s, a)− Vψ(s)

)
term.

• VerifierQ (Full): Combines both IQL and CQL com-
ponents. This tackles the exponential action space (via
IQL) and overestimation bias (via CQL). The complete
loss from Equation7.

Base Performance: VerifierQ (Base) performs on par with
PRM for GSM8K but fares worse for MATH. This suggests
naive Q-learning, absent specialized solutions for large ac-

Table 1: Final Accuracy (%) of different methods over 256
answers. Higher is better. VerifierQ(Full) with τ1 = 0.3
(GSM8K) and τ1 = 0.5 (MATH)

METHOD GSM8K MATH

PRM 57.32 13.8
VERIFIERQ(BASE) 57.39 13.2
VERIFIERQ(+IQL) 57.39 14.0
VERIFIERQ(FULL) 57.70 14.4

7

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

tion spaces or overestimation, provides only minimal bene-
fits—confirming our hypothesis that a direct application of
classic Q-learning is inadequate.

Impact of IQL: VerifierQ (+IQL) significantly improves
over the Base variant on GSM8K, highlighting the impor-
tance of addressing large action spaces. However, on MATH,
its accuracy remains comparable to PRM, indicating that
overestimation can still degrade performance in more chal-
lenging tasks.

Full VerifierQ: VerifierQ (Full) shows notable and consis-
tent improvements on both GSM8K and MATH datasets.
VerifierQ outperforms other methods after 25 in GSM8K
and all the time in MATH. By integrating CQL, the model
more effectively controls overestimation, while IQL ad-
dresses the large action space. The adjustable τ -parameters
(τ1, τ2) allow dataset-specific tuning of conservatism, help-
ing the verifier remain sufficiently optimistic where sup-
ported by data.

These findings highlight how each additional component
in VerifierQ resolves a specific challenge (i.e., large ac-
tion spaces or overestimation), culminating in consistent
improvements in multi-step math reasoning. For further
qualitative insight, we provide a case study in AppendixC.2,
illustrating how VerifierQ more accurately identifies correct
solution paths than simpler baselines.

7. Discussion, Ethics, and Limitations
VerifierQ introduces a novel way to integrate offline rein-
forcement learning into verifier models for large language
models (LLMs). By drawing parallels with the actor-critic
paradigm, it opens avenues for more sophisticated multi-
step reasoning and planning strategies—echoing successes
from broader AI systems like AlphaGo, which combine
learning and search in complex decision spaces.

Ethical Considerations: As VerifierQ (and similar ap-
proaches) become more advanced, ethical challenges arise
around transparency. As decision-making grows in complex-
ity, ensuring human interpretability of the model’s internal
Q-value judgments (e.g., how it balances partial correctness,
or why it penalizes certain solution paths) becomes essen-
tial. Current experiment relies on automatic labeled data.
As many cases in RL, the model sometimes might make de-
cisions that we cannot comprehend but are effective. As the
model’s decision-making process becomes more complex,
ensuring transparency and maintaining a human understand-
ing what values represent becomes increasingly challenging
but vastly important.

Limitations:

• Model Scale: All experiments use the TinyLlama
(1.1B) model due to computational constraints. Larger

LLMs (e.g., 7B or 70B parameters) might yield
stronger results but require substantially more re-
sources.

• Hyperparameter Sensitivity: We observe that τ1 tuning
in CQL heavily influences performance, and a single
setting does not necessarily generalize across tasks
(e.g., GSM8K vs. MATH). More extensive hyperpa-
rameter sweeps could further stabilize or improve re-
sults, but were limited by computational budgets.

• Resource Usage: Compared to straightforward super-
vised fine-tuning (SFT), VerifierQ maintains three net-
works (Qθ, Vψ, Qθ̂) for offline RL, increasing VRAM
usage by roughly 2.25×. We need to train two models
and perform soft updates on one for VerifierQ, while
PRM just need to train one model. This overhead could
be a barrier to broader adoption, emphasizing the need
for memory-efficient architectures.

Overall, VerifierQ broadens the design space for LLM ver-
ifiers by harnessing the potential of offline RL. Continued
research and engineering advances are needed to refine mem-
ory usage, tune hyperparameters effectively, and ensure eth-
ical, transparent deployment in real-world reasoning tasks.

8. Conclusion
We introduced VerifierQ, an offline Q-learning framework
that equips Large Language Model (LLM) verifiers with
temporal-difference (TD) capabilities. By recasting multi-
step reasoning as an utterance-level MDP, VerifierQ avoids
many of the standard pitfalls in naive Q-learning (intractable
action spaces and overestimation) through a two-expectile
design combining IQL and CQL. Concretely:

• Parallel, Utterance-Level Architecture: A single
forward pass estimates Q-values across all reasoning
steps, enabling efficient handling of massive discrete
spaces without exhaustive sampling.

• Adjustable Conservatism: Our novel integration of
IQL (to approximate maxQ) with CQL (to penalize
out-of-distribution actions) lets us balance optimism
and caution.

• Empirical Validation: Experimental results on
GSM8K and MATH reveal that VerifierQ outperforms
purely supervised verifiers (e.g., PRM), especially as
the number of generated solutions increases.

By infusing TD learning into the verifier’s update rule, Veri-
fierQ offers a bridge between classic RL critics and LLM-
based verification. In doing so, it opens the door to fully

8

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

actor–critic solutions for natural language tasks, where gen-
erators propose candidate solutions and verifiers adaptively
refine them using offline data. As the broader field of RL for
language continues to mature, we believe VerifierQ provides
a flexible foundation for robust multi-step reasoning on the
verifier side.

Acknowledgments
The work is supported by the National Science Foundation
(NSF) through Awards #2131186 (CISE-MSI), #1827505
(PFI), and the Google CyberNYC Initiative. The work is
also supported by a College-wide Research Vision (CRV)
Fund from the CCNY Provost’s Office, and the ODNI In-
telligence Community Center for Academic Excellence (IC
CAE) at Rutgers University (#HHM402-19-1-0003 and
#HHM402-18-1-0007).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. Reinforcement learning critics can
be challenging to interpret, potentially obscuring the rea-
sons for verification decisions. Ensuring transparency and
explainability remains crucial.

References
Chen, G., Liao, M., Li, C., and Fan, K. Alphamath almost

zero: Process supervision without process. In The Thirty-
eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024. URL https://openreview.
net/forum?id=VaXnxQ3UKo.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems, 2021.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 2),
2021. URL https://openreview.net/forum?
id=7Bywt2mQsCe.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-rank adap-
tation of large language models. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=nZeVKeeFYf9.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J.,

and Amodei, D. Scaling laws for neural language mod-
els, 2020. URL https://arxiv.org/abs/2001.
08361.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algo-
rithms. In Neural Information Processing Systems,
1999. URL https://api.semanticscholar.
org/CorpusID:207779694.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforcement
learning with implicit q-learning. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=68n2s9ZJWF8.

Kumar, A., Zhou, A., Tucker, G., and Levine, S.
Conservative q-learning for offline reinforcement
learning. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 33, pp. 1179–1191. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
0d2b2061826a5df3221116a5085a6052-Paper.
pdf.

Kumar, A., Hong, J., Singh, A., and Levine, S. Should i run
offline reinforcement learning or behavioral cloning? In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=AP1MKT37rJ.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=v8L0pN6EOi.

Polyak, B. T. and Juditsky, A. B. Acceleration of
stochastic approximation by averaging. SIAM Jour-
nal on Control and Optimization, 30(4):838–855, 1992.
doi: 10.1137/0330046. URL https://doi.org/10.
1137/0330046.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters, 2024. URL https://arxiv.
org/abs/2408.03314.

Snell, C. V., Kostrikov, I., Su, Y., Yang, S., and Levine,
S. Offline RL for natural language generation with
implicit language q learning. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=aBH_DydEvoH.

9

https://openreview.net/forum?id=VaXnxQ3UKo
https://openreview.net/forum?id=VaXnxQ3UKo
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://api.semanticscholar.org/CorpusID:207779694
https://api.semanticscholar.org/CorpusID:207779694
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://openreview.net/forum?id=AP1MKT37rJ
https://openreview.net/forum?id=AP1MKT37rJ
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.1137/0330046
https://doi.org/10.1137/0330046
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://openreview.net/forum?id=aBH_DydEvoH
https://openreview.net/forum?id=aBH_DydEvoH

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process- and outcome-
based feedback, 2022.

Verma, S., Fu, J., Yang, M., and Levine, S. Chai: A chatbot
ai for task-oriented dialogue with offline reinforcement
learning, 2022. URL https://arxiv.org/abs/
2204.08426.

Wang, C., Deng, Y., Lyu, Z., Zeng, L., He, J., Yan, S.,
and An, B. Q*: Improving multi-step reasoning for
llms with deliberative planning, 2024a. URL https:
//arxiv.org/abs/2406.14283.

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y.,
Chen, D., Wu, Y., and Sui, Z. Math-shepherd: Ver-
ify and reinforce LLMs step-by-step without human an-
notations. In Ku, L.-W., Martins, A., and Srikumar,
V. (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, Bangkok, Thailand,
August 2024b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.510. URL https:
//aclanthology.org/2024.acl-long.510.

Yu, L., Jiang, W., Shi, H., YU, J., Liu, Z., Zhang, Y.,
Kwok, J., Li, Z., Weller, A., and Liu, W. Metamath:
Bootstrap your own mathematical questions for large
language models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=N8N0hgNDRt.

Zhang, D., Huang, X., Zhou, D., Li, Y., and Ouyang, W.
Accessing gpt-4 level mathematical olympiad solutions
via monte carlo tree self-refine with llama-3 8b, 2024a.
URL https://arxiv.org/abs/2406.07394.

Zhang, P., Zeng, G., Wang, T., and Lu, W. Tinyllama:
An open-source small language model, 2024b. URL
https://arxiv.org/abs/2401.02385.

Zhou, Y., Zanette, A., Pan, J., Levine, S., and Kumar,
A. ArCHer: Training language model agents via hi-
erarchical multi-turn RL. In Forty-first International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=b6rA0kAHT1.

10

https://arxiv.org/abs/2204.08426
https://arxiv.org/abs/2204.08426
https://arxiv.org/abs/2406.14283
https://arxiv.org/abs/2406.14283
https://aclanthology.org/2024.acl-long.510
https://aclanthology.org/2024.acl-long.510
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2401.02385
https://openreview.net/forum?id=b6rA0kAHT1
https://openreview.net/forum?id=b6rA0kAHT1

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

A. Reproducibility Statement
To ensure reproducibility of our results, we provide the following details:

Implementation Details: The complete implementation details are available in Appendix B.1.

Hardware Requirements:

• VerifierQ experiments: Conducted on a single NVIDIA A100 GPU with 40GB memory.

• Other models (Q Learning and PRM): Can be trained on an NVIDIA RTX 4090 GPU.

Training Time:

• VerifierQ: Approximately 10 hours for 1 epoch.

• PRM: Approximately 4 hours for 1 epoch.

Datasets: We use the following publicly available datasets:

• MetaMath: https://huggingface.co/datasets/meta-math/MetaMathQA

• GSM8K: https://huggingface.co/datasets/openai/gsm8k

• MathShepherd: https://huggingface.co/datasets/peiyi9979/Math-Shepherd

• MATH (test subset): We use the same dataset as Lightman et al. (2024), available at https://github.com/
openai/prm800k

Model: All experiments were conducted using the TinyLlama-1.1B model.

Hyperparameters: Key hyperparameters include:

• Learning rate: 2e-5 (constant for all training phases)

• Batch size: 64

• Discount factor (γ): 0.99

• CQL coefficient (α): 1

• Soft update coefficient (αsoft): 0.01

• IQL coefficients:

– For GSM8K: τ1 = 0.3, τ2 = 0.9

– For MATH: τ1 = 0.5, τ2 = 0.9

Training Process: The model is initialized with MetaMath pretraining, followed by 1 epoch of PRM training before
VerifierQ training begins.

For any additional details or clarifications needed to reproduce our results, please refer to the code and documentation that
will be made available upon acceptance.

11

https://huggingface.co/datasets/meta-math/MetaMathQA
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/peiyi9979/Math-Shepherd
https://github.com/openai/prm800k
https://github.com/openai/prm800k

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

A.1. Architecture Details

To apply Offline Q-learning to LLMs at the utterance level, we propose a flexible architecture that integrates with language
modeling tasks. Following Wang et al. (2024b) and Lightman et al. (2024), we utilize two tokens + and − to represent
correct and incorrect states, with a tag token indicating estimation. The probability of the correct token can be interpreted as
Q-values ranging from 0 to 1, aligning with the reward structure in the MCTS-generated dataset from Wang et al. (2024b).
We compute the Q-value for each step as:

Q(s, a) = p(+) = softmax(logit+) = sigmoid(logit+ − logit−) (8)

It is flexible to choose either softmax or sigmoid function to compute the Q-value. We use the sigmoid function in our
experiments for more effficiency. The Q-value is computed for each step in the solution sequence, estimating a numerical
value in the range of (0, 1).

This formulation offers several advantages:

1. It allows flexible integration for Q-value estimation of utterances of arbitrary length since we can insert the step tag
anywhere in the sequence.

2. It enables parallel estimation of multiple Q-values for multiple steps in a single forward pass, significantly reducing
computation time.

3. This approach seamlessly integrates with existing language modeling tasks.

A.2. Convergence of Modified Bellman Update

We first prove that our modified Bellman update converges to a fixed point.

Theorem A.1 (Convergence of Modified Bellman Update). Let Q∗ be the optimal Q-function. The modified Bellman update

Q∗(s, a) =
1

2
(r(s, a) + γmax

a′
Q∗(s′, a′)) (9)

converges to a unique fixed point.

Proof. Let T be the operator defined by our modified Bellman equation:

T Q(s, a) =
1

2
(r(s, a) + γmax

a′
Q(s′, a′)) (10)

We need to show that T is a contraction mapping in the sup-norm ∥ · ∥∞. For any two Q-functions Q1 and Q2:

∥T Q1 − T Q2∥∞ = sup
s,a
|T Q1(s, a)− T Q2(s, a)| (11)

= sup
s,a

∣∣∣∣12γ (max
a′

Q1(s
′, a′)−max

a′
Q2(s

′, a′)
)∣∣∣∣ (12)

≤ 1

2
γ sup
s,a

∣∣∣max
a′

Q1(s
′, a′)−max

a′
Q2(s

′, a′)
∣∣∣ (13)

≤ 1

2
γ sup
s′,a′
|Q1(s

′, a′)−Q2(s
′, a′)| (14)

=
1

2
γ∥Q1 −Q2∥∞ (15)

Since 0 < γ < 1, it follows that 0 < 1
2γ < 1. Therefore, T is a contraction mapping with contraction factor L = 1

2γ.
By the Banach fixed-point theorem, T has a unique fixed point, and the Q-learning algorithm will converge to this fixed
point.

12

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

A.3. Optimality of IQL in Large Action Spaces

Next, we prove that IQL can effectively approximate the maximum and minimum Q-value in large action spaces.

Theorem A.2 (IQL Optimality). We can directly get the following result from the proof in (Kostrikov et al., 2022). As the
quantile level τ approaches 1, the IQL value function Vψ converges to the maximum Q-value:

lim
τ→1

Vψ(s) = max
a∈A,πβ(a|s)>0

Q∗(s, a) (16)

Additionally, as τ → 0, the IQL value function Vψ converges to the minimum Q-value:

lim
τ→0

Vτ (s) = min
a∈A

Q∗(s, a) (17)

Proof Sketch. Following Lemma 1 of Kostrikov et al. (2022) we can show a modified Lemma:

Lemma A.3. Let X be a real-valued random variable with bounded support and infimum x∗. Since X is bounded below and
mτ approaches the lower bound as τ → 0, we have:

lim
τ→0

mτ = inf{x : FX(x) > 0} = x∗ (18)

For all τ1 and τ2 such that 0 < τ1 < τ2 < 1, we can get mτ1 ≤ mτ2 . Therefore, as τ → 0, the limit of mτ converges to the
infimum of the random variable X.

In addition, using Lemma 2 of Kostrikov et al. (2022), we can show that the IQL value function Vψ converges to the
minimum Q-value as τ → 0:

Lemma A.4. For all s, τ1 and τ2 such that 0 < τ1 < τ2 < 1, we have Vτ1(s) ≤ Vτ2(s).

Since Q∗(s, a) is bounded below, the minimum Q-value exists and is finite. Therefore, as τ → 0, the IQL value function Vψ
converges to the minimum Q-value:

lim
τ→0

Vτ (s) = inf
a∈supp(πβ)

Q∗(s, a) (19)

So we have:
lim
τ→0

Vτ (s) = min
a∈A,πβ(a|s)>0

Q∗(s, a) (20)

A.4. Adjustable Conservative Q-values with Modified CQL

Finally, we present a proposition about our modified CQL approach and its potential to lead to adjustable conservatism.

Proposition A.5 (Modified CQL Bounds). The modified CQL objective with expectile levels τ1 (close to 0) and τ2 (close to
1) aims to provide both lower and upper bounds on the true Q-function Q∗(s, a):

max
a∼π̂β

Qθ(s, a) ≲ Q∗(s, a) ≲ min
a∼µ

Qθ̂(s, a) (21)

where ≲ denotes “approximately less than or equal to”.

Remark A.6 (Supporting Arguments and Intuitions). The original CQL objective is:

argmin
Q

α(Es∼D,a∼µ [Q(s, a)]− Es∼D,a∼π̂β
[Q(s, a)]) (22)

Where µ is the target policy distribution and π̂β is the data distribution. Intuitively, this term finds the maximum Q-value
under the target policy distribution Es∼D,a∼µ [Q(s, a)] and minimizes it since it is usually overestimated. To get a tighter
bound, it pushes the Q-value up under the data distribution Es∼D,a∼π̂β

[Q(s, a)].

13

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

For large action spaces, CQL typically uses importance sampling to estimate Es∼D,a∼µ[Q(s, a)] with log
∑
a exp(Q(s, a))

at every state (Kumar et al., 2020). However, unlike token-level approaches, we leverage IQL to approximate Q-values in
the large action space. This mitigates the requirement to sample a set number of actions for each state and allows for more
efficient Q-value estimation for longer sequences.

We propose a novel formulation that directly approximates both the lower bound Q-function and the upper bound of the
data distribution using IQL with different τ values for each term in CQL objective. The goal remains the same: finding the
overestimated Q-value under the target policy to minimize it and tighten the bound with the data distribution. However we
want to give control on the level of the tightening of the bound.

Our modified CQL objective is:

LCQL(ψ) = α(Es∼D,a∼µ[Lτ12 (Qθ̂(s, a)− Vψ(s))]
− Es∼D,a∼π̂β

[Lτ22 (Qθ(s, a)− Vψ(s))])
(23)

The first term, with τ1 close to 0, approximates the lower bound of Qθ̂. It acts as an upper bound on the target policy which
is typically overestimated. This suggests:

Vψ(s) ≲ min
a∼µ

Qθ̂(s, a) (24)

The second term, with τ2 close to 1, approximates an upper bound on Qθ. It acts as a lower bound on the data distribution,
indicating:

Vψ(s) ≳ max
a∼π̂β

Qθ(s, a) (25)

This approach allows for a more optimistic Q-value estimation within the CQL framework. The lower bound of the
target policy µ pushes the Q-value down less aggressively, while the upper bound of the data distribution π̂β elevates the
Q-value more, resulting in a more optimistic Q-value under the CQL term. This approach maintains the benefits of CQL’s
conservatism while allowing for adaptable optimism through the adjustment of τ1 and τ2.

The modified CQL objective aims to minimize the difference between the lower bound of the overestimated Q-values (Qθ̂)
and the upper bound of the true Q-values (Qθ). Minimizing this difference may lead to a more accurate estimation of
Q∗(s, a). We can express this as:

LCQL(ψ) ≈ min
a∼µ

Qθ̂(s, a)− max
a∼π̂β

Qθ(s, a) (26)

As this difference approaches zero, it suggests that the the lower bound of the overestimation of Q-values is being reduced to
the extent supported by the data, and we should have maxa∼π̂β

Qθ(s, a) ≲ mina∼µQθ̂(s, a). Adjusting τ1 we could have
Qθ̂(s, a) approximately close to the optimal maximum.

This formulation allows us to balance conservatism with optimism in Q-value estimation. The lower bound of the Q-value is
pushed down less aggressively, while the upper bound is elevated more, resulting in Q-values that approach the maximum
Q-value under the data distribution more closely. We can adjust τ1 and τ2 to fine-tune this balance, allowing for more
adaptable Q-values under the CQL term.

It is important to note that this difference can potentially become negative. A negative value would imply that the estimated
lower bound of Qθ̂ is smaller than the estimated upper bound of Qθ for some state-action pairs. While this might seem
counterintuitive given the general overestimation tendency of Qθ̂, it can occur due to the approximations introduced by the
Lτ2 loss functions or other factors in the learning process. This suggests that the value function might be correctly valuing the
in-distribution actions more highly, which is desirable, although it might introduce some pessimism in the value estimates.

This intuition provides insight into why our modified CQL approach might lead to a bit more optimistic Q-values. However,
a rigorous mathematical proof would require further development and analysis.

Figure 6 illustrates the intuition. In the original CQL term, an overestimated Q-value would be pushed down to the data
distribution. In our formulation, the lower bound of the Q-value is pushed down less aggressively, and the upper bound is
elevated more, resulting in a more optimistic Q-value that approaches the maximum Q-value under the data distribution
more closely. The advantage of this approach is that τ value can be adjusted to balance conservatism with optimism.

14

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

Figure 6: Illustration of our approach. Left two graphs: Orange line represents the overestimated Q-value Qθ̂. The blue line
indicates the data distribution Qθ. Minimizing the overestimation term brings the orange line down to the mean of data
distribution. Right two graphs: The green line shows the lower expectile of the overestimated Q-value and the purple line
shows the upper expectile of the data Q-value. Minimizing those two can make the orange line approach the maximum
Q-value under the data distribution.

B. Appendix
B.1. Algorithm and Implementation Details

Algorithm 1 VerifierQ

Input: Dataset D, Q-network Qθ, target Polyak-averaged Q-network Qθ̂ with αsoft, value network Vψ , IQL coefficients
τ1 and τ2, CQL coefficient α
Initialize Q-network Qθ, target Q-network Qθ̂, value network Vψ
Initialize target Q-network parameters θ̂ ← θ
for each training step do

Sample batch of state-action pairs S = (s1, s2, s3) ∼ D and rewards R = (r1, r2, r3) ∼ D
TD Target.
Compute target Q-values in parallel: y = 1

2 (r + γVψ(S
′)) {Equation 2}

TD Loss: LQ(θ) = 1
2 (Qθ(S)− y)

2 {Equation 6}
CQL Term.
Compute CQL µ with IQL: Lµ = Lτ12 (Qθ̂(S)− Vψ(S)) {Equation 3}
Compute CQL π̂β with IQL: Lπ̂ = Lτ22 (Qθ(S)− Vψ(S)) {Equation 3}
CQL Loss: LCQL(ψ) = α(Lµ − Lπ̂) {Equation 5}
Update networks
Update Q-network: θ ← θ −∇θLQ(θ)
Update value network: ψ ← ψ −∇ψLCQL(ψ)
Update target Q-network: θ̂ ← (1− αsoft)θ̂ + αsoftθ

end for

As described in Section 2, the state at step i is the concatenation of the problem statement and all tokens generated up to that
point: si = [p, a1, a2, . . . , ai]. As illustrated in Figure 1, s1 consists of p and a1, s2 consists of p, a1, and a2, and so on.
The reward ri is 1 if the token ai is correct and 0 otherwise. This approach leverages the decoder architecture’s ability to
generate the next token based on the previous tokens.

For the hyperparameters, we use the following settings:

• Discount factor: γ = 0.99

• CQL coefficient: α = 1

• Soft update coefficient: αsoft = 0.01

• Batch size: 64

• Optimizer: AdamW with a constant learning rate of 2e− 5 for all training phases

• IQL coefficients:

15

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

– For GSM8K: τ1 = 0.3, τ2 = 0.9

– For MATH: τ1 = 0.5, τ2 = 0.9

We initialize the model with MetaMath pretraining and train it with PRM for 1 epoch before starting VerifierQ training. All
experiments are conducted using the TinyLlama-1.1B model.

16

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

C. Appendix
C.1. Computational Efficiency Analysis

VerifierQ’s architecture offers significant computational advantages over both BERT-style encoder and traditional sequential
decoder approaches.

For a solution sequence with n steps, where each step contains m tokens on average, let C(m) denote the computational
cost of a forward pass through m tokens. The self attention in transformer in general has Big-O of O(L2d+ Ld2) where as
L is the sequence Length and d is depth. Since we have depth to be the same and varies of sequence length, we can view it
in our case as O(L2). The traditional sequential approach computes:

Qseq(si, ai) = fθ(concat(si, ai)) (27)

where fθ represents the model’s forward pass.

For example, consider a three-step solution:

Problem: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?

Step 1: It takes 2/2 =<< 2/2 = 1 >> 1 bolt of white fiber < tag > +

Step 2: So the total amount of fabric is 2 + 1 =<< 2 + 1 = 3 >> 3 bolts of fabric < tag > +

Step 3: The Answer is: 3 < tag > +

BERT-style Encoder Approach: For encoder architectures like BERT, Q-values are typically estimated through a [CLS]
token. As shown in Zhou et al. (2024), they are using RoBERTa based model to estimate the utterance level with ”[CLS]”
token:

Qencoder(si, ai) = fθ([CLS] + concat(si, ai)) (28)

where the [CLS] token representation is used for value estimation.

As an example would estimate like this:

• Pass 1: Q(s1, a1) = fθ([CLS] + [p, a1])

• Pass 2: Q(s2, a2) = fθ([CLS] + [p, a1, a2])

• Pass 3: Q(s3, a3) = fθ([CLS] + [p, a1, a2, a3])

This requires separate encoding for each step since we can have only one [CLS] each time. Since we have n steps, each step
contains m tokens on average, and C(m) = O(L2), we can have following:

Costencoder =

n∑
i=1

C(im) =

n∑
i=1

(im)2 = m2
n∑
i=1

i2 = m2n(n+ 1)(2n+ 1)

6
= O(m2n3) (29)

Sequential Decoder Approach: Traditional decoder architectures estimate Q-values at sequence endpoints by predicting
the last embedding:

Qseq(si, ai) = fθ(concat(si, ai)) (30)

An example would be like this:

Sequential Decoder:

• Pass 1: Q(s1, a1) = fθ([p, a1])

• Pass 2: Q(s2, a2) = fθ([p, a1, a2])

• Pass 3: Q(s3, a3) = fθ([p, a1, a2, a3])

17

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

Where as the Q value estimation is from the linear head of the last token embeddings.

Similarly requiring n separate computations:

Costseq =

n∑
i=1

C(im) =

n∑
i=1

(im)2 = O(m2n3) (31)

VerifierQ’s Parallel Approach: Following Wang et al. (2024b), VerifierQ uses decoder architecture with strategically
placed tag tokens enabling parallel estimation.

[Qparallel(s1, a1), ..., Qparallel(sn, an)] = fθ(concat(s1, tag, a1, ..., sn, tag, an)) (32)

As an example it would be like following: VerifierQ:

[Q(s1, a1), Q(s2, a2), Q(s3, a3)] = fθ([p, a1, tag, a2, tag, a3, tag]) (33)

It would require only a single forward pass:

Costparallel = C(nm) = O(n2m2) (34)

This parallelization provides several advantages:

• Reduced complexity: From O(n3m2) to O(n2m2)

• Parallel computation: Simultaneous Q-value estimation for all steps

• Decoder architecture benefits: Natural alignment with autoregressive generation

To quantify these benefits, consider our preliminary experiments using the MathShepherd dataset (Wang et al., 2024b),
where solutions average 6.2 steps per problem. The sequential approach requires:

• Two forward passes per step (current Q and next Q) for Q-learning

• Total passes per problem = 6.2 steps× 2 passes = 12.4

In contrast, VerifierQ computes all Q-values in a single forward pass. This theoretical reduction from approximately 12
passes to 1 aligns with our preliminary observations of approximately 10× reduction in training time. This efficiency gain
would become even more pronounced for longer solution sequences where n is large, demonstrating the scalability of our
approach.

18

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

C.2. Qualitative Overestimation Analysis

We conduct a qualitative study on overestimation between PRM and VerifierQ by replacing important tokens in the solution
sequence with incorrect ones. Figure 7 reveals that PRM generally assigns higher Q-values to incorrect tokens, while
VerifierQ assigns lower values.

This analysis compares three configurations: 1. PRM (baseline) 2. VerifierQ without CQL (ablation) 3.VerifierQ (full
model). We want to see how well the correct value is differentiated from other incorrect values, so we use ∆ = Correct−
mean(Incorrect) to measure the difference between the correct answer and the mean of the incorrect answers. Then we
want to see how much this value compared to mean to see whether it is a large differentiation or not, and we use Percentage
as ∆/mean

Our analysis reveals several key patterns:

• PRM: Assigns relatively high Q-values (mean: 0.24) with average discrimination between correct and incorrect tokens
(∆ = 0.03). Percentage is 11.9%.

• VerifierQ without CQL: Shows higher overall Q-values (mean: 0.39) but slightly better discrimination (∆ = 0.05).
Percentage 12.6%.

• VerifierQ with CQL: Demonstrates: 1. Lower overall Q-values (mean: 0.20) 2. Stronger discrimination between
correct and incorrect tokens (∆ = 0.06) 3. More aggressive penalization of incorrect tokens (Percentage: 30.6%)

The CQL term’s impact is twofold:

1. General Conservative Estimation: Reduces overall Q-values to mitigate general overestimation. We can see the
without CQL term the Q learning has overestimated significantly, and CQL term brought down overestimation. However
adding CQL the correct value is about the same as PRM but incorrect ones are lower. It penalizes the incorrect tokens
more.

2. Enhanced Discrimination: Increases the gap between correct and incorrect token estimates. The Percentage gap of
correct tokens has almost doubled compared to the PRM and VerifierQ without CQL.

This analysis suggests that while CQL does lead to generally lower Q-values, its primary benefit is the enhanced ability to
distinguish between correct and incorrect solutions. The increased gap between correct and incorrect Q-values (Percentage

Janet\u2019s ducks lay 16 eggs per day. She eats 3 for breakfast every morning and bakes muffins for
her friends every day with 4. She sells the remainder at the farmers' market daily for $2 per fresh duck
egg. How much in dollars does she make every day at the farmers' market?

Step 1: Janet's ducks lay {number} eggs per day.

Step 2: She eats 3 for breakfast every morning, so she has 16 - 3 = 13 eggs left.

{numbe﻿r} range from 0 to
19. The correct one is 16

Estimate the value

Problem and Steps

Figure 7: Overestimation case study: PRM (left) vs VerifierQ without CQL (middle) vs VerifierQ (right). Orange indicates
correct value, blue indicates incorrect value.

19

VerifierQ: Enhancing LLM Test Time Compute with Q-Learning-based Verifiers

= 30.6% compared to 11.9% and 12.6%) demonstrates that CQL improves the model’s discriminative capability while
maintaining reasonable estimates for valid solutions.

20

