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Abstract

Federated learning (FL) emerges as an effective collaborative learning framework
to coordinate data and computation resources from massive and distributed clients
in training. Such collaboration results in non-trivial intellectual property (IP)
represented by the model parameters that should be protected and shared by the
whole party rather than an individual user. Meanwhile, the distributed nature of
FL endorses a malicious client the convenience to compromise IP through illegal
model leakage to unauthorized third parties. To block such IP leakage, it is essential
to make the IP identifiable in the shared model and locate the anonymous infringer
who first leaks it. The collective challenges call for accountable federated learning,
which requires verifiable ownership of the model and is capable of revealing the
infringer’s identity upon leakage. In this paper, we propose Decodable Unique
Watermarking (DUW) for complying with the requirements of accountable FL.
Specifically, before a global model is sent to a client in an FL round, DUW encodes
a client-unique key into the model by leveraging a backdoor-based watermark
injection. To identify the infringer of a leaked model, DUW examines the model
and checks if the triggers can be decoded as the corresponding keys. Extensive
empirical results show that DUW is highly effective and robust, achieving over
99% watermark success rate for Digits, CIFAR-10, and CIFAR-100 datasets under
heterogeneous FL settings, and identifying the IP infringer with 100% accuracy
even after common watermark removal attempts.

1 Introduction

Federated learning (FL) [15] has been widely explored as a distributed learning paradigm to enable
remote clients to collaboratively learn a central model without sharing their raw data, effectively
leveraging the massive and diverse data available in clients for learning and protecting the data
confidentiality. The learning process of FL models typically requires the coordination of significant
computing resources from a multitude of clients to curate the valuable information in the client’s
data, and the FL models usually have improved performance than isolated learning and thus high
commercial value. Recently, the risk of leaking such high-value models has drawn the attention of
the public. One notable example is the leakage of the foundation model from Meta [1] by users who
gained the restricted distribution of models. The leakage through restricted distribution could be
even more severe in FL which allows all participating clients to gain access to the valued model. For
each iterative communication round, a central server consolidates models from various client devices,
forming a global or central model. This model is then disseminated back to the clients for the next
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Figure 1: The proposed Decodable Unique Watermarking (DUW) for watermark injection and
verification. During watermark injection, the server first uses a unique key assigned to each client
and an OoD dataset as the input for the pre-trained encoder to generate trigger sets. When the server
implant the watermark based on the objective function J 0(✓k) (Eq. (7)), a decoder is utilized to
replace the classifier head in the FL model. During verification, the suspect model is tested on all the
verification datasets of all the clients, and the client that leaked the model is identified by the one that
achieves the highest WSR (Eq. (4)) in verification datasets.
update, and therefore the malicious clients have full access to the global models. As such, effectively
protecting the global models in FL is a grand challenge.

Watermarking techniques [2, 4, 7, 8, 34, 36] are recently introduced to verify the IP ownership of
models. Among them, backdoor-based watermarking shows strong applicability because of its model-
agnostic nature, which repurposes the backdoor attacks of deep models and uses special-purposed
data (trigger set) to insert hidden patterns in the model to produce undesired outputs given inputs with
triggers [36, 19, 11, 21]. A typical backdoor-based watermarking operates as follows: The model
owner first generates a trigger set consisting of samples paired with pre-defined target labels. The
owner then embeds the watermark into the model by fine-tuning the model with the trigger set and
the original training samples. To establish the ownership of the model, one evaluates the accuracy
of the suspect model using the trigger set. The mechanism safeguards the assumption that only
the watermarked model would perform exceptionally well on the unique trigger set. If the model’s
accuracy on the trigger set surpasses a significant threshold, the model likely belongs to the owner.

Conventional backdoor-based watermarking, however, does not apply to FL settings because of
the required access to the training data to maintain model utility. To address the challenge, Tekgul
et al. [33] proposed WAFFLE, which utilized only random noise and class-consistent patterns to
embed a backdoor-based watermark into the FL model. However, since WAFFLE injected a unified
watermark for all the clients, it cannot solve another critical question: Who is the IP infringer among
the FL clients? Based on WAFFLE, Shao et al. [30] introduced a two-step method FedTracker to
verify the ownership of the model with the central watermark from WAFFLE, and track the malicious
clients in FL by embedding unique local fingerprints into local models. However, the local fingerprint
in [30] is a parameter-based method, which is not applicable for many practical scenarios, where many
re-sale models are reluctant to expose their parameters, and the two-step verification is redundant.
Therefore, how to spend the least effort on changing the model while verifying and tracking the IP
infringers using the same watermark in FL remains to be a challenging and open problem.

The aforementioned challenges call for a holistic solution towards accountable federated learning,
which is characterized by the following essential requirements: R1) Accurate IP tracking: Each client
has a unique ID to trace back. IP tracking should be confident to identify one and only one client.
R2) Confident verification: The ownership verification should be confident. R3) Model utility: The
watermark injected should have minimal impact on standard FL accuracy. R4) Robustness: The
watermark should be robust and resilient against various watermark removal attacks. In this paper,
we propose a practical watermarking framework for FL called Decodable Unique Watermarking
(DUW) to comply with these requirements. Specifically, we first generate unique trigger sets for each
client by using a pre-trained encoder [24] to embed client-wise unique keys to one randomly chosen
out-of-distribution (OoD) dataset. During each communication round, the server watermarks the
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aggregated global model using the client-wise trigger sets before dispatching the model. A decoder
replaces the classifier head in the FL model during injection so that we can decode the model output to
the client-wise keys. We propose a regularized watermark injection optimization process to preserve
the model’s utility. During verification, the suspect model is tested on the trigger sets of all the clients,
and the client that achieves the highest watermark success rate (WSR) is considered to be the IP
infringer. The framework of method is shown in Fig. 1.

The contributions of our work can be summarized in four folds:

• We make the FL model leakage from anonymity to accountability by injecting DUW. DUW
enables ownership verification and leakage tracing at the same time without access to model
parameters during verification.

• DUW is model-agnostic and can be incorporated into a wide spectrum of DNN types.
• With utility preserved, both the ownership verification and IP tracking of our DUW are not

only accurate but also confident without collisions.
• Our DUW is robust against existing watermarking removal attacks, including fine-tuning,

pruning, model extraction, and parameter perturbation.

2 Related Work and Background

Federated learning. Federated learning (FL) is a distributed learning framework that enables massive
and remote clients to collaboratively train a high-quality central model [16]. FedAvg [26] is one of
the representative methods for FL, which averages local models during aggregation. This work is
based on the FedAvg setting. Suppose we have K clients, and our FL model M used for standard
training consists of two components, including a feature extractor f : X ! Z governed by ✓f , and
a classifier h : Z ! Y governed by ✓h, where Z is the latent feature space. The collective model
parameter is ✓ = (✓h, ✓f ). The objective for a client’s local training is:

Jk(✓) :=
1

|Dk|
X

(x,y)2Dk

`(h(f(x; ✓f ); ✓h), y), (1)

where Dk is the local dataset for client k, and l is the cross-entropy loss. The overall objective
function of FL is thus given by:

min
✓

1

K

XK

k=1
Jk(✓). (2)

DNN watermarking. Existing DNN watermarking can be categorized into two main streams:
parameter-based watermarking and backdoor-based watermarking.

Parameter-based watermarking approaches [7, 34, 18, 27] embed a bit string as the watermark into
the parameter space of the model. The ownership of the model can be verified by comparing the
watermark extracted from the parameter space of the suspect model and the owner model. Shao et
al. [30] proposed a parameter-based watermarking method for FL called FedTracker. It inserts a
unique parameter-based watermark into the models of each client to verify the ownership. However,
all parameter-based watermarking requires an inspection of the parameters of the suspect models,
which is not applicable enough for many re-sale models.

Backdoor-based watermarking [36, 19, 11, 21] does not require access to model parameters during
verification. The watermark is embedded into the model by fine-tuning the model with a trigger set
DT and clean training samples D. Pre-defined target label t is assigned to the trigger set DT . The
objective for the backdoor-based watermarking is formulated as:

J(✓) :=
1

|D|
X

(x,y)2D
`(h(f(x; ✓f ); ✓h), y) +

1

|DT |
X

(x,t)2DT

`(h(f(x; ✓f ); ✓h), t), (3)

Upon verification, we verify the suspect model Ms on the trigger set DT . If the accuracy of the
trigger set is larger than a certain threshold �, the ownership of the model can be established. We
formally define the ownership verification of the backdoor-based model as follows:
Definition 2.1 (Ownership verification). We define watermark success rate (WSR) as the accuracy
on the trigger set DT :

WSR = Acc(Ms,DT ). (4)
If WSR > �, the ownership of the model is established.
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WAFFLE [33] is the first backdoor-based watermarking for FL, which utilized only random noise
and class-consistent patterns to embed a backdoor-based watermark into the FL model. However,
WAFFLE can only verify the ownership of the model, yet it cannot track the specific IP infringers
among the clients.

3 Method

Watermarking has shown to be a feasible solution for IP verification, and the major goal of this work
is to seek a powerful extension for traceable IP verification for accountable FL that can accurately
identify the infringers among a scalable number of clients. A straightforward solution is injecting
different watermarks for different clients. However, increasing the number of watermarks could lower
the model’s utility as measured by the standard accuracy due to increased forged knowledge [32] (R3).
Meanwhile, maintaining multiple watermarks could be less robust to watermark removal because
of the inconsistency between injections (R4). Accurate IP tracking (R1) is one unique requirement
we seek as compared with traditional watermarking in central training. The greatest challenge in
satisfying R1 is addressing the watermark collisions between different clients. A watermark collision
is when the watermarking mechanism produces similar watermark responses on different individuals
in FL systems. Formally:
Definition 3.1 (Watermark collision). During verification in Definition 2.1, we test the suspect model
Ms on all the verification datasets DT = {DT1 , . . . ,DTk

, . . . ,DTK
} of all the clients to identify

the malicious client, and WSR for the k-th verification datasets is defined as WSRk. If we have
multiple clients k satisfying WSRk = Acc(Ms,DTk

) > �, the ownership of suspect model Ms can
be claimed for more than one client, then the watermark collisions happen between clients.

In this section, we introduce the Decodable Unique Watermark (DUW) framework that can
simultaneously address the four requirements of accountable FL summarized in Section 1:
R1 (accurate IP tracking), R2 (confident verification), R3 (model utility), R4 (robustness).

3.1 Decodable Unique Watermarking

In DUW, all the watermarking is conducted on the server side and therefore no computational
overhead is introduced to clients. Before broadcasting the global model to each local client, the server
will inject a unique watermark for each client. The watermark is unknown to clients but known to
the server (see Fig. 1 server watermark injection). Our unique decodable watermarks consist of the
following two steps for encoding and decoding the client-unique keys.

Step 1: Client-unique trigger encoding. Due to the data confidentiality of FL, the server has no
access to any data from any of the clients. Therefore for watermark injection, the server needs to
collect or synthesize some OoD data for trigger set generation.

To accurately track the malicious client, we have to distinguish between watermarks for different
clients. High similarity between trigger sets of different clients is likely to cause watermark collisions
among the clients, which makes it difficult to identify which client leaked the model.

To solve this problem, inspired by [24], we propose to use a pre-trained encoder E : X ! X
governed by ✓E to generate unique trigger sets for each client. This backdoor-based method provides a
successful injection of watermarks with close to 100% WSR, which ensures the confident verification
(R2). We design a unique key corresponding to each client ID as a one-hot binary string to differentiate
clients. For instance, for the k-th client, the k-th entry of the key string sk is 1, and the other entries
are 0. We set the length of the key as d, where d � K. For each client, the key can then be embedded
into the sample-wise triggers of the OoD samples by feeding the unique key and OoD data to the
pre-trained encoder. The output of the encoder makes up the trigger sets. The trigger set for the k-th
client is defined in Eq. (5).

DTk
= {(x0, tk)|x0 ⇠ Ex2DOoD

(x, sk; ✓E)}, (5)
where DOoD is a randomly chosen OoD dataset, and tk is the target label for client k. To this end,
different trigger sets for different clients will differ by their unique keys, and watermark collision can
be alleviated (R1). Note that our trigger sets will be the same as verification datasets.

Step 2: Decoding triggers to client keys. The main intuition is that the same target label of the
trigger sets may still lead to watermark collisions even if the keys are different, which is also found
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Algorithm 1 Injection of Decodable Unique Watermarking (DUW)

1: Input: Clients datasets{Dk}Kk=1, OoD dataset DOoD, secret key {sk}Kk=1, pre-trained encoder E,
pre-defined decoder D, global parameters ✓g , local parameters {✓k}Kk=1, learning rate ↵,�, local
training steps T , watermark injection steps Tw.

2: Step 1: Client-unique trigger encoding.
3: for k = 1,. . . ,K do
4: Generate trigger set for client k: DTk

= {(x0, sk)|x0 ⇠ Ex2DOoD
(x, sk; ✓E)}

5: end for
6: Step 2: Decoding triggers to client keys.
7: repeat
8: Server selects active clients A uniformly at random
9: for all client k 2 A do

10: Server initializes watermarked model for client k as: ✓k  ✓g .
11: for t = 1, . . . , Tw do
12: Server replaces model classifier h with decoder D.
13: Server injects watermark to model, and update ✓f

k
as:

✓f
k
 ✓f

k
� �r

✓
f

k

J 0(✓f
k
). . Optimize Eq. (7)

14: end for
15: Server broadcasts ✓k to the corresponding client k.
16: for t = 1, . . . , T do
17: Client local training: ✓k  ✓k � ↵r✓k

Jk(✓k). . Optimize Eq. (1)
18: end for
19: Client k sends ✓k back to the server.
20: end for
21: Server updates ✓g  1

|A|
P

k2A ✓k.
22: until training stop

in our experiment section. Thus, we propose to project the output dimension of the original model
M to a higher dimension, larger than the client number K, to allow each client to have a unique
target label. To achieve this goal, we first set the target label tk in Eq. (5) to be the same as the input
key sk corresponding to each client, and then use a decoder D : Z ! Y parameterized by ✓D to
replace the classifier h in the FL training model M . The decoder D only has one linear layer, whose
input dimension is the same as the input dimension of h, and its output dimension is the length of the
key. To avoid watermark collision between clients induced by the target label, we make the decoder
weights orthogonal with each other during the random initialization so that the watermark injection
tasks for each client can be independent (R1). The weights of the decoder are frozen once initialized
to preserve the independence of different tasks for different clients during watermark injection. We
formulate the injection optimization for client k as:

min
✓
f

k

J(✓f
k
) :=

1

|DTk
|
X

(x0,sk)2DTk

`(D(f(x0; ✓f
k
); ✓D), sk), (6)

where ` is the cross-entropy loss. Note that the classifier h will be plugged back into model M before
the server broadcast the watermarked model to each client. Compared with traditional backdoor-based
watermarking Eq. (3), no training samples from clients are needed for the watermark injection, which
ensures the data confidentiality of FL.

Robustness. Our framework also brings in robustness against fine-tuning-based watermark removal
(R4). The main intuition is that replacing classifier h with decoder D also differs the watermark
injection task space from the original classification task space. Since the malicious clients have no
access to the decoder and can only conduct attacks on model M , the attacks have more impact on the
classification task instead of our watermark injection task, which makes our decodable watermark to
be more resilient against watermark removal attacks.

3.2 Injection Optimization with Preserved Utility

While increasing the size of the key pool, watermark injection in the OoD region may lead to a
significant drop in the standard FL accuracy (R3) because of the overload of irrelevant knowledge.
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An ideal solution is to bundle the injection with training in-distribution (ID) data, which however is
impractical for a data-free server. Meanwhile, lacking ID data to maintain the standard task accuracy,
the distinct information between the increasing watermark sets and the task sets could cause the
fade-out of the task knowledge. We attribute such knowledge vanishing to the divergence in the
parameter space between the watermarked and the original models. Thus, we propose to augment the
injection objective Eq. (6) with a l2 regularization on the parameters:

min
✓k

J 0(✓f
k
) := J(✓f

k
) +

�

2
k✓f

k
� ✓f

g
k2, (7)

where ✓f
g

is the original parameter of the global model. The regularization term of Eq. (7) is used to
restrict the distance between the watermarked model and the non-watermarked one so that the utility
of the model can be better preserved (R3). To this end, the overall watermark injection algorithm is
summarized in Algorithm 1.

3.3 Verification

During verification, we not only verify whether the suspect model Ms = (fs, hs) is a copy of our
model M , but also track who is the leaker among all the clients. Before verifying, we first use
our decoder D to replace the classifier hs in the suspect model Ms, then the suspect model can be
restructured as Ms = (fs, D). According to Definition 3.1, we test the suspect model Ms on all the
verification datasets DT = {DT1 , . . . ,DTk

, . . . ,DTK
} of all the clients to track the malicious clients,

and report WSRk on the k-th verification datasets correspondingly. The client whose verification
dataset achieves the highest WSR leaked the model (see Fig. 1 server verification). The tracking
mechanism can be defined as follows:

Track(Ms,DT ) = argmax
k

WSRk.

Suppose the malicious client is km, which is the ground truth of the suspect model. If WSRkm
is larger

than a threshold �, and WSRk for other verification datasets is smaller than �, then the ownership of
the model can be verified, and no watermark collision happens. If Track(Ms,DT ) = km, then the
malicious client is identified correctly.

4 Experiments

In this section, we empirically show how our proposed DUW can fulfill the requirements (R1-R4) for
tracking infringers as described in Section 1.

Datasets. To simulate class non-iid FL setting, we use two image datasets CIFAR-10, CIFAR-
100 [17], which contain 32 ⇥ 32 images with 10 and 100 classes, respectively. CIFAR-10 data
is uniformly split into 100 clients, and 3 random classes are assigned to each client. CIFAR-100
data is split into 100 clients with Dirichlet distribution. For CIFAR-10 and CIFAR-100, the OoD
dataset we used for OoD injection is a subset of ImageNet-DS [5] with randomly chosen 500 samples
downsampled to the same image size as CIFAR-10 and CIFAR-100. To simulate the feature non-iid FL
setting, a multi-domain FL benchmark, Digits [22, 13], is adopted. The dataset is composed of 28⇥28
images for recognizing 10 digit classes, which task was widely used in the community [3, 26]. The
Digits dataset includes five different domains: MNIST [20], SVHN [28], USPS [14], SynthDigits [9],
and MNIST-M [9]. We leave out USPS as the OoD dataset for watermark injection (a subset of 500
samples is chosen), and use the rest of the four domains for the standard FL training. Each domain of
digits is split into 10 different clients, thus, 40 clients will participate in the FL training.

Training setup. A preactivated ResNet (PreResNet18) [12] is used for CIFAR-10, a preactivated
ResNet (PreResNet50) [12] is used for CIFAR-100, and a CNN defined in [23] is used for Digits. For
all three datasets, we leave out 10% of the training set as the validation dataset to select the best FL
model. The total training round is 300 for CIFAR-10 and CIFAR-100, and is 150 for Digits.

Watermark injection. The early training stage of FL is not worth protecting since the standard
accuracy is very low, we start watermark injection at round 20 for CIFAR-10 and Digits, and at round
40 for CIFAR-100. The standard accuracy before our watermark injection is 0.8520, 0.4023, and
0.2941 for Digits, CIFAR-10, and CIFAR-100, respectively.
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Dataset Acc �Acc WSR WSR_Gap TAcc
Digits 0.8855 0.0234 0.9909 0.9895 1.0000

CIFAR-10 0.5583 0.0003 1.0000 0.9998 1.0000
CIFAR-100 0.5745 0.0063 1.0000 0.9998 1.0000

Table 1: Benchmark results.
Dataset Acc �Acc WSR �WSR TAcc
Digits 0.9712 -0.0258 0.9924 0.0030 1.0000

CIFAR-10 0.7933 0.1521 1.0000 0.0000 1.0000
CIFAR-100 0.4580 0.0290 0.9930 0.0070 1.0000
Table 2: DUW is robust against fine-tuning.

Dataset Acc �Acc WSR �WSR TAcc
Digits 0.8811 0.0643 0.9780 0.0174 1.0000

CIFAR-10 0.5176 0.0010 0.6638 0.3362 1.0000
CIFAR-100 0.4190 0.0680 0.8828 0.1172 1.0000

Table 3: DUW is robust against model extraction.

Evaluation metrics. For watermark verification, we use watermark success rate (WSR) which is the
accuracy of the trigger set for evaluation. To measure whether we track the malicious client (leaker)
correctly, we define tracking accuracy (TAcc) as the rate of the clients we track correctly. To further
evaluate the ability of our method for distinguishing between different watermarks for different
clients, we also report the difference between the highest WSR and second best WSR as WSR_Gap
to show the significance of verification and IP tracking. With a significant WSR_Gap, no watermark
collision will happen. To evaluate the utility of the model, we report the standard FL accuracy (Acc)
for each client’s individual test sets, whose classes match their training sets. We also report the
accuracy degradation (�Acc) of the watermarked model compared with the non-watermarked one.
Note that, to simulate the scenario where malicious clients leak their local model after local training,
we test the average WSR, TAcc and WSR_Gap for the local model of each client instead of the global
model. Acc and �Acc are evaluated on the best FL model selected using the validation datasets.

4.1 IP Tracking Benchmark

We evaluate our method using the IP tracking benchmark with various metrics as shown in Table 1.
Our ownership verification is confident with all WSRs over 99% (R2). The model utility is also
preserved with accuracy degradation 2.34%, 0.03%, and 0.63%, respectively for Digits, CIFAR-10
and CIFAR-100 (R3). TAcc for all benchmark datasets is 100% which indicates accurate IP tracking
(R1). All WSR_Gap is over 98%, which means the WSRs for all other benign client’s verification
datasets are close to 0%. In this way, the malicious client can be tracked accurately with high
confidence, no collisions will occur within our tracking mechanism (R1).

4.2 Robustness

Malicious clients can conduct watermark removal attacks before leaking the FL model to make it
harder for us to verify the model copyright, and track the IP infringers accurately. In this section, we
show the robustness of the watermarks under various watermark removal attacks (R4). Specifically,
we evaluate our method against 1) fine-tuning [2]: Fine-tune the model using their own local data; 2)
pruning [25]: prune the model parameters which have the smallest absolute value according to a
certain pruning rate, and then fine-tune the model on their local data; 3) model extraction attack:
first query the victim model for the label of an auxiliary dataset, and then re-train the victim model
on the annotated dataset. We take knockoff [29] as an example of the model extraction attack; 4)
parameter perturbations: add random noise to local model parameters [10].

10 of the clients are selected as the malicious clients, and the metrics in this section are average
values for 10 malicious clients. All the watermark removal attacks are conducted for 50 epochs with
a learning rate 10�5. All the attacks are conducted for the local model of the last round.

Robustness against fine-tuning attack. We report the robustness of our proposed DUW against
fine-tuning in Table 2. �Acc and �WSR in this table indicate the accuracy and WSR drop compared
with accuracy and WSR before the attack. According to the results, after 50 epochs of fine-tuning, the
attacker can only decrease the WSR by less than 1%, and the TAcc is even not affected. Fine-tuning
with their limited local training samples can also cause a standard accuracy degradation. Therefore,
fine-tuning can neither remove our watermark nor affect our IP tracking, even if sacrifices their
standard accuracy.

Robustness against pruning attack. We investigate whether pruning can remove our proposed
DUW in Fig. 2 by varying the pruning rate from 0 to 0.5. With the increase in the pruning ratio, both
TAcc and WSR will not be affected. For CIFAR-10, Acc for the standard classification task will
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(a) Digits. (b) CIFAR-10. (c) CIFAR-100.

Figure 2: DUW is robust against pruning.

(a) Digits. (b) CIFAR-10. (c) CIFAR-100.

Figure 3: DUW is robust against parameter perturbation.

drop 5%. Pruning is not an effective attack on our watermark, and it will even cause an accuracy
degradation for the classification task.

Robustness against model extraction attack. To verify the robustness of our proposed DUW against
model extraction attack, we take knockoff [29] as an example, and STL10 [6] cropped to the same
size as the training data is used as the auxiliary dataset for this attack. According to the results for
three benchmark datasets in Table 3, after knockoff attack, WSR for all three datasets is still over
65%, and our tracking mechanism is still not affected with TAcc remains to be 100%. Therefore, our
DUW is resilient to model extraction attacks.

Robustness against parameter perturbations attack. Malicious clients can also add random
noise to model parameters to remove watermarks, since Garg et al. [10] found that backdoor-
based watermarks are usually not resilient to parameter perturbations. Adding random noise to the
local model parameters can also increase the chance of blurring the difference between different
watermarked models. We enable each malicious client to blend Gaussian noise to the parameters
of their local model, and set the parameter of the local model as ✓i = ✓i + ✓i ⇤ ↵noise, where
↵noise = {10�5, 10�4, 10�3, 10�2, 10�1}. We investigate whether parameter perturbation will
remove the watermark and affect our tracking mechanism in Fig. 3. According to the results, when
↵noise is smaller than 10�2, WSR, Acc, and TAcc will not be affected. When ↵noise = 10�2, Acc will
drop more than 10%, TAcc remains unchanged, and WSR is still over 90%. When ↵noise = 10�1,
Acc will drop to a random guess, thus, although the watermark has been removed, the model has no
utility. Therefore, parameter perturbation is not an effective attack for removing our watermark and
affecting our tracking mechanism.

4.3 Qualitative Study

Effects of decoder. To investigate the effects of the decoder on avoiding watermark collision, we
compare the results of w/ and w/o decoder. When the decoder is removed, the task dimension of
the watermark injection will be the same as the FL classification, thus, we also have to change the
original target label (the original target label is the same as the input key) of the trigger set to the FL
classification task dimension. To achieve this goal, we set the target label of w/o decoder case as
(client_ID % class_number). For instance, client 0, 10, 20 will have target label 0, and client 1, 11,
21 will have target label 1. We report the results of w/ and w/o decoder on CIFAR-10 after 1 round
of watermark injection at round 20 in Table 4. According to the results, when we have 100 clients
in total, w/o decoder can only achieve a TAcc of 6%, while w/ decoder can increase TAcc to 100%.
We also find that clients with the same target label are more likely to conflict with each other, which
makes those clients difficult to be identified, even if their trigger sets are different. Utilizing a decoder
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(a) Validation accuracy. (b) WSR.

Figure 4: Validation accuracy and WSR for dif-
ferent values of � for 4 communication rounds.

(a) Validation accuracy. (b) WSR.

Figure 5: Validation accuracy and WSR for dif-
ferent OoD datasets by communication rounds.

Method Acc �Acc WSR TAcc
w/ decoder 0.3287 0.0736 0.8778 1.0000
w/o decoder 0.3235 0.0788 0.8099 0.0600

Table 4: Effects of decoder: the decoder can
improve TAcc to avoid watermark collision.
�Acc in this table is the accuracy degradation
compared with the previous round.

Dataset Acc �Acc WSR WSR_Gap TAcc
USPS 0.8855 0.0234 0.9909 0.9895 1.0000

GTSRB 0.8716 0.0373 0.9972 0.9962 1.0000
Random noise 0.9007 0.0082 0.8422 0.8143 1.0000

Jigsaw 0.9013 0.0076 0.8789 0.8601 1.0000
Table 5: Effects of different OoD datasets: a
trade-off exists between Acc and WSR, given
different selections of OoD datasets.

to increase the target label space to a dimension larger than the client number allows all the clients to
have their own target label. In this way, watermark collision can be avoided. Besides, WSR of w/
decoder is also higher than w/o decoder after 1 round of injection. One possible reason is that we
differ the watermark injection task from the original classification task using the decoder, thus, in this
case, the watermark will be more easily to be injected compared with directly injected to the original
FL classification task.

Effects of l2 regularization. To show the effects of l2 regularization in Eq. (7), we report the
validation accuracy and WSR for 4 rounds of watermark injection on Digits with different values
of the hyperparameter � in Fig. 4. Validation accuracy is the standard FL accuracy evaluated on a
validation dataset for every round. We see that with the increase of �, higher validation accuracy can
be achieved, but correspondingly, WSR drops from over 90% to only 35.65%. Larger � increases the
impact of l2 norm, which decreases the model difference between the watermarked model and the
non-watermarked one, so the validation accuracy will increase. At the same time, the updates during
watermark injection also have much more restriction due to l2 regularization, so the WSR drops to
a low value. Accordingly, we select � = 0.1 for all our experiments, since � = 0.1 can increase
validation accuracy by 6.88% compared with � = 0, while maintaining WSR over 90%.

Effects of different OoD datasets for watermark injection. We investigate the effects of different
OoD datasets including USPS [14], GTSRB [31], random noise, and Jigsaw for watermark injection
when the standard training data is Digits. All OoD images are cropped to the same size as the training
images. A jigsaw image is generated from a small 4⇥ 4 random image, and then uses reflect padding
mode from PyTorch to padding to the same size as the training images. The effect of these different
OoD datasets is shown in Table 5 and Fig. 5. We see that all OoD datasets can achieve 100% TAcc,
suggesting the selection of OoD dataset will not affect the tracking of the malicious client. There is a
trade-off between the standard accuracy (Acc) and WSR: higher WSR always leads to lower Acc.
Random noise and jigsaw achieve high Acc, with accuracy degradation within 1%. These two noise
OoD also have a faster recovery of the standard accuracy after the accuracy drop at the watermark
injection round as shown in Fig. 5. However, the WSR of random noise and Jigsaw are lower than
90%. For two real OoD datasets USPS and GTSRB, the WSR quickly reaches over 99% after 1
communication round. However, their accuracy degradation is larger than 2%.

5 Conclusion

In this paper, we target at accountable FL, and propose Decodable Unique Watermarking (DUW),
that can verify the FL model’s ownership and track the IP infringers in the FL system at the same
time. Specifically, the server will embed a client-unique key into each client’s local model before
broadcasting. The IP infringer can be tracked according to the decoded keys from the suspect model.
Extensive experimental results show the effectiveness of our method in accurate IP tracking, confident
verification, model utility preserving, and robustness against various watermark removal attacks.
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[16] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated
learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492,
2016.

[17] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[18] M. Kuribayashi, T. Tanaka, S. Suzuki, T. Yasui, and N. Funabiki. White-box watermarking
scheme for fully-connected layers in fine-tuning model. In Proceedings of the 2021 ACM
Workshop on Information Hiding and Multimedia Security, pages 165–170, 2021.

[19] E. Le Merrer, P. Perez, and G. Trédan. Adversarial frontier stitching for remote neural network
watermarking. Neural Computing and Applications, 32:9233–9244, 2020.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[21] F. Li, L. Yang, S. Wang, and A. W.-C. Liew. Leveraging multi-task learning for umambiguous
and flexible deep neural network watermarking. In SafeAI@ AAAI, 2022.

[22] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization
in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450, 2020.

[23] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou. Fedbn: Federated learning on non-iid
features via local batch normalization. arXiv preprint arXiv:2102.07623, 2021.

[24] Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu. Invisible backdoor attack with sample-specific
triggers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
16463–16472, 2021.

[25] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of network pruning.
arXiv preprint arXiv:1810.05270, 2018.

[26] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages
1273–1282. PMLR, 2017.

[27] D. Mehta, N. Mondol, F. Farahmandi, and M. Tehranipoor. Aime: watermarking ai models
by leveraging errors. In 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 304–309. IEEE, 2022.

[28] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural
images with unsupervised feature learning. 2011.

[29] T. Orekondy, B. Schiele, and M. Fritz. Knockoff nets: Stealing functionality of black-box
models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 4954–4963, 2019.

[30] S. Shao, W. Yang, H. Gu, J. Lou, Z. Qin, L. Fan, Q. Yang, and K. Ren. Fedtracker: Fur-
nishing ownership verification and traceability for federated learning model. arXiv preprint
arXiv:2211.07160, 2022.

[31] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Benchmarking machine
learning algorithms for traffic sign recognition. Neural networks, 32:323–332, 2012.

[32] R. Tang, M. Du, N. Liu, F. Yang, and X. Hu. An embarrassingly simple approach for trojan
attack in deep neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 218–228, 2020.

[33] B. G. Tekgul, Y. Xia, S. Marchal, and N. Asokan. Waffle: Watermarking in federated learning.
In 2021 40th International Symposium on Reliable Distributed Systems (SRDS), pages 310–320.
IEEE, 2021.

[34] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh. Embedding watermarks into deep neural
networks. In Proceedings of the 2017 ACM on international conference on multimedia retrieval,
pages 269–277, 2017.

11



[35] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao. Neural cleanse:
Identifying and mitigating backdoor attacks in neural networks. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 707–723. IEEE, 2019.

[36] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and I. Molloy. Protecting
intellectual property of deep neural networks with watermarking. In Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, pages 159–172, 2018.

12


	Introduction
	Related Work and Background
	Method
	Decodable Unique Watermarking
	Injection Optimization with Preserved Utility
	Verification

	Experiments
	IP Tracking Benchmark
	Robustness
	Qualitative Study

	Conclusion
	Discussions
	Supplementary experiments
	Extended qualitative study
	Extended robustness study


