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Abstract

Fluorescein angiography can provide a map of retinal vascular structure and function,
which is commonly used in ophthalmology diagnosis, however, this imaging modality may
pose risks of harm to the patients. To help physicians reduce the potential risks of diag-
nosis, an image translation method is adopted. In this work, we proposed a conditional
generative adversarial network (GAN)-based method to directly learn the mapping relation-
ship between structure fundus images and fundus fluorescence angiography (FFA) images.
Moreover, local saliency maps, which define each pixel’s importance, are used to define a
novel saliency loss in the GAN cost function. This facilitates more accurate learning of
small-vessel and fluorescein leakage features. The proposed method was validated on our
dataset and the publicly available Isfahan MISP dataset with the metrics of peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM). The experimental results indicate
that the proposed method can accurately generate both retinal vascular and fluorescein
leakage structures, which has great practical significance for clinical diagnosis and analysis.
Keywords: Fundus Fluorescence Angiography Image, Structure Fundus Image, Image
Translation, Generative Adversarial Network, Local Saliency Map.

1. Introduction

Data from the World Health Organization shows that more than 2.2 billion people have a vi-
sion impairment or blindness so far (Organization et al., 2019). And an imaging technique
that can accurately reflect the microscopic fundus lesions is important for the diagnosis,
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treatment, and prevention of ophthalmic diseases. Fluorescein angiography (FA) can re-
flect the damaged state of the retinal barrier in the eyes of living human, especially in the
early stage of diseases, and dynamically capture the physiological and pathological condi-
tions from the large vessels of the retina to the capillaries, which is regarded as the “gold
standard” of retinal disease diagnosis (O’'TOOLE, 2007). Despite the diagnostic benefits,
physicians are increasingly reluctant to use angiography imaging technology because of its
potential serious adverse effects (Yannuzzi et al., 1986; Musa et al., 2006; Schiffers et al.,
2018). Although fundus structure imaging and fundus fluorescein angiography (FFA) are
significantly different in imaging mode and image appearance, they both have many com-
mon features, such as vessels or granular structures. Therefore, using image generation
method to generate the corresponding FFA image from the fundus structure image can
help physicians to diagnose with smaller potential risks in patients and relatively reduce
the need for actual angiographic imaging.

FFA image generation can be defined as an image-to-image translation problem; that is
translating the fundus image from the structure domain to FA domain. The idea of image-
to-image translation can go back to Hertzmann’s “Image Analogies” work (Hertzmann
et al., 2001), who employ a non-parametric texture model (Efros and Leung, 1999) on
a single input-output training image pair. In recent years, deep learning and generative
adversarial networks (GANs) have become popular approaches for image synthesis and
translation, and has been utilized for various medical imaging modalities (Nie et al., 2017;
Jin et al., 2019; Wolterink et al., 2017; Lee et al., 2019; Kida et al., 2019). According to
the characteristics of datasets, algorithms that tackle the image synthesis and translation
problem can be mainly divided into paired or unpaired methods. Unpaired methods are
mainly used to solve the problem that paired images are difficult to obtain. Since the
images that are taken from same patients at same anatomical locations are not easy to
acquire, the unpaired methods are widely used in medical image synthesis and translation
tasks, including synthesizing CT images from MR images (Nie et al., 2017; Jin et al., 2019;
Wolterink et al., 2017), planning CT image from Cone-beam CT image (Costa et al., 2017),
etc. In terms of retina image synthesis, Schiffers et al. (Schiffers et al., 2018) proposed a
method based on CycleGAN (Zhu et al., 2017) to generate FFA images from retinal fundus
images. In paper (Li et al., 2019), the authors also proposed an unsupervised FFA image
synthesis method via disentangled representation learning based on unpaired data. Both of
the above methods demonstrate that the unpaired methods can achieve the translation from
fundus image domain to FFA image domain, however, the FFA image generated by this kind
of method cannot be directly used in disease diagnosis. For medical image generation tasks,
it is crucial to precisely generate the position and morphology of lesions. The unpaired
methods only learn the global features from one domain to another domain, and cannot
generate accurate pathological structures. The drawbacks of the unpaired methods applied
to FFA image synthesis task has also been illustrated in the experimental comparison in
(Hervella et al., 2019).

Paired image translation methods can directly learn the mapping relationship from input
to output images, which could have better performance in learning the detailed information
of images. This kind of method also has been applied to FFA image synthesis. Hervella et
al. (Hervella et al., 2018) constructed a Unet architecture with fundus image as input and
FFA images as output to learn a direct mapping between two domains. However, without
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the help of adversarial learning, their model can only learn a pixel-to-pixel mapping, which
results in an unsatisfied performance. Moreover, due to the scarcity of paired data, the
model would easily become overfitting, which deteriorates the generalization ability of the
model. In work (Hervella et al., 2019), the authors utilized a generator composed of an
encoder, 9 residual blocks, and a decoder to synthesize FFA image based on the paired data.
Although this method has better performance than the Unet and unpaired methods, there
is also considerable room for improving in the reconstruction of the pathological structures.
Furthermore, their model was trained and tested on totally 118 retinography-angiography
pairs, such a small amount of data may affect the credibility and generalization ability of
the model to some extent.

As noted above, the existing FFA image generation methods mainly have the following
two problems. (1) None of the existing methods can accurately generate the pathological
structures, which seriously affects the practical clinic application of these methods. (2) The
quantity and variety of the training and testing data are insufficient, which may be the
main cause of the unsatisfied results and the poor generalization ability. In addition, due
to the limitations of data, researchers cannot select data according to the characteristics of
fundus angiography and clinical demands, which unable to ensure the medical significance
of their findings. To solve the first problem, we proposed an FFA image generation method
based on conditional GAN that has some novelties in the design of the loss function. In this
approach, the loss function was formulated as a combination of the global loss and local loss,
where the local loss is based on the local saliency map of the label FFA image. Using this
local loss can ensure the accurate generation of the pathological structures in the synthesis
FFA image. Moreover, the discriminator was designed based on the idea of PatchGAN (Li
and Wand, 2016; Isola et al., 2017) model, which penalizes the image structure at the scale
of patches instead of the whole images, and can help reconstruct image details and improve
the training efficiency. For the second problem, the data we used for training and testing
were all collected from the hospital; and according to the characteristic that FFA is the only
method to detect leakage, we choose the generation of FFA images with fluorescein leakage
as the focus of this study. There are three common types of leakage that can be observed
in fluorescein leakage: optic disc, large focal, and punctate focal leakage (Figure 1(b)-(c)).
These kinds of leakage have two main characteristics. One of the characteristics is that
the leakage of early angiography usually does not appear or is not obvious, but its size and
brightness will increase in the late stage. The other one is that the lesion with leakage cannot
be observed on the fundus structure image in the early stage of the disease, and can only be
determined by using FFA. Therefore, based on the characteristics of FFA and fluorescein
leakage, the main study in this paper is to generate the corresponding late FFA images
from the fundus structure images, so as to achieve the auxiliary diagnosis of the diseases
with such fluorescein leakages. The rest of this paper is organized as follows: in section
2, the datasets and the proposed method are discussed. The quantitative and qualitative
comparison of the results are described in section 3. In section 4, we summarize our work
and discuss the experimental results.
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(d)

Figure 1: Illustration of the types of FFA image focused on this study. (a) Normal FFA
image. FFA image with (b) optic disc leakage; (c) large focal leakage; (d) punctate
focal leakage.

2. Method

2.1. Datasets

The dataset used in this study were taken with a Spectralis HRA (Heidelberg Engineering,
Heidelberg, Germany) between March 2011 and September 2019 at the Third People’s
Hosptital of Changzhou (Jiangsu, China), which is called “HRA dataset” here. The image
types in our “HRA dataset” including normal FFA images and the FFA images with optic
disc, large focal, and punctate focal leakage, as shown in Figure 1. Since the late angiography
images are more helpful for disease diagnosis, we select the FFA images captured between
5 and 6 min as the label FFA images. This dataset initially contained 1,450 retinography-
angiography image pairs from 1,450 eyes of 802 patients (326 female, 476 male, ranging in
age from 7 to 86 years), and 1 picture per eye. The field of views of these images including
30°, 45°, 60°, and the resolution of each image is 768 x 768 pixels.

The proposed method is a paired method which needs paired images as the dataset.
However, the collected retinography-angiography image pairs always unaligned, then the
datasets preprocessing is needed. The main steps of datasets preprocessing as follows.
Multimodal registration: The registration of the retinography-angiography pairs is
needed for building a pixel-wise correspondence. The multimodal registration is performed
using the method proposed in (Wang et al., 2015). For some low-quality images, this method
may not work; thus, we manually delete the image pairs that are aligned inaccurately.
Obtain aligned image pairs: The aligned retinography-angiography images were ob-
tained by extracting 512x512 patches from the aligned part in the image pairs. Eye fun-
dus photographies in our dataset displayed in two forms, one is displayed as a square
image(Figure 3), and the other one displays the retina in a circular region of interest (ROI)
(Figure 1). For the former, the aligned images pairs can be obtained by extracting the
corresponding patches from the aligned part in both structure and FFA images. For the
latter, the extracted patches in the aligned part may contain the irregular black areas, this
will affect the learning of the image displayed forms and even the generation of important
information. To ensure the generalization ability of the model in different displayed forms,
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we first designed a mask with a circle whose diameter is the width of the image patch, and
the pixel values are 1 in or on the circle and that are 0 out of the circle, Then, the extracted
image patches were multiplied with the mask, we can finally obtain the aligned image pairs
with circular ROI.

Through the registration operation, our aligned “HRA dataset” finally contained 1,230
successfully aligned retinography-angiography image pairs from 1,230 eyes of 727 patients
(297 female, 430 male, ranging in age from 7 to 86 years), of which normal vessels, optic
disc leakage, large focal leakage, and punctate focal leakage image pairs are 302, 151, 448,
and 329, respectively. Then, 20% of the image pairs were randomly selected from each of
the data types as the testing set, the remaining 80% were used as the training set. Finally,
after the aligned patch extracting operation, we totally have 10,636 image patches with
512 x 512 pixels used for training, and 2,699 image patches used for testing.

2.2. Local saliency map calculating

Local saliency map of the FFA image is regard as the restricted condition to ensure the
accurate generation of fluorescein leakage structures. Most of the commonly used methods
(Zhao et al., 2017, 2015) to generate saliency map of FFA image are pixel-based methods,
which are time-consuming and thus do not meet the requirements of our work. In this
section, we proposed a simple, effective, and fast method for FFA saliency map generation.

An observed fundus image I can be modeled as the combination of background image
I, and the foreground image Iy, where I, is the idea image of a retinal fundus free of any
vascular structure, optic disc, or visible lesion; and I is the vascular structure, optic disc,
or visible lesion which are the most attentive parts in the image generation and detection
tasks. Since the vascular structure, optic disc, and fluorescein leakage in FFA image are
all highlighted, extracting the foreground of the FFA image can help us obtain its saliency
map.

Median filtering
Kernel size (51 X51)

Background [

Saliency map I 4 Color saliency map

Gaussian filtering
Kernel size (7 X7)

Blurred image
Ifittered

Figure 2: Calculating process of FFA saliency map.

The calculating process of FFA saliency map is illustarted in Figure 2. Firstly, to
estimate the background of FFA image, a median filtering with a mask of size 51 x 51 is
performed, which is large with respect to the maximal vessel diameter (about 15 pixels),
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but small with respect to the optic disc (about 120 pixels). Secondly, a Gaussian filtering
with a mask of size 7 x 7 is used for the denoising of the input image. Finally, the saliency
map can be obtained by subtracting the filtered image and the background image, and can
be expressed as:

Isq = a(Ifiltered - I{;)a (1)
where Iy, is the saliency map; Ifjtereq is the original FFA image filtered by a Gaussian
filter; I; is the estimated background image; a is a parameter factor which determine the
contrast of image.

The calculated saliency maps and corresponding FFA images are presented in Figure 3,
the warmer color indicates the more saliency regions, and the cooler color shows the less
saliency regions, and the appearance of the vessels, optic disc, and leakage are highlighted
compared to the original image.

Figure 3: Examples of generated saliency maps of FFA images. (a) Original FFA image;
(b) Corresponding saliency map.

2.3. Conditional adversarial network for FFA generation

In this section, we introduce our conditional GAN architecture for translating the structure
fundus images to FFA images. As illustrated in Figure 4, the proposed network is mainly
composed of two important parts (generator G and discriminator D). The generator (left
part of Figure 4) based on a series of residual blocks, and its primary mission is to generate
a FFA image from an input structure fundus image. The discriminator (right part of
Figure 4) serves to distinguish the synthetic FFA image from the corresponding real FFA
image, which can also be viewed as a guide for the training of generator.
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Figure 4: Proposed model architecture. Our model is composed of a Resnet-based generator
and a PatchGAN-based discriminator. (conv: convolutional layer; ReLU: rectified
linear unit; Tanh: TanHyperbolic function; LReLU: leaky rectified linear unit;
FC: fully connected layer)

The main purpose of the proposed method is to learn a mapping relationship from an
input structure fundus image Is and a random noise vector n to generate a synthesis FFA
image Ir by solve the following min-max problem:

ménmngIS,Ipr(IS,IF) [lOgD(I57 IF)] + EISNp(IS),an(n) [lOg(l - D(LS'v G(I57 n)))] (2)

The architecture of the proposed generator and discriminator networks are shown in
Figure 4. As illustrated in the left part of Figure 4, the core of the proposed generator
is a series of residual blocks, each composed of two convolutional layers with kernel size
3 x 3, and each convolutional layer is followed by a rectified linear unit (ReLU) activation
function. The proposed discriminator is inspired by the idea behind PatchGAN, which has
shown good performance in image details learning in many image generation tasks (Isola
et al., 2017; Kupyn et al., 2018; Li et al., 2020). As shown in the right part of Figure 4,
the proposed discriminator network is composed of five convolutional layers with kernel
size 4 x 4, and the first four convolutional layers are followed by a leaky ReLU (LReLU)
activation function. The last convolutional layer is used for mapping to a one-mapping
output, followed by a sigmoid function. Using this network as a discriminator can help
generating image details and improving the training efficiency.

2.4. Loss Function

To ensure that the generated FFA image resembles the label image and accurately generate
the fluorescein leakage, we formulate the loss function as a combination of global and local
loss, where global loss is a combination of adversarial, pixel-space, and feature-space loss,
whose main function is to ensure the reconstruction of the whole information of the image;
and local loss is based on the local saliency loss, that is used to make the network concentrate
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more on the vascular and leakage structures reconstruction. The proposed loss function is
defined as follows:

L= LGlobal + LLocal = (LGAN + aLpiacel + ﬁLperceptual) =+ VLsalv (3)

where «, (8, and v are the experimentally determined hyperparameters that control the
effect of pixel-space, feature-space, and local saliency loss. Pursuing the balance among
pixel-space, feature-space, and local saliency loss is not a trivial task. Given over-weight to
feature-space loss will result in the loss of image intensity information after reconstruction
(Kupyn et al., 2018), and give a low-weight to local saliency loss will make the network
cannot pay enough attention to local information; thus, feature-space loss should have a
lower weight than pixel-space loss, and local saliency loss should have a relatively high
weight. After the massive experiments, we found that o = 100, 8 = 0.001, and v =1 are
the suitable parameters to achieve better performance.

Adversarial loss: The generative loss over all training samples is defined as follows:

N
Lgan = Y —logDp,(Gag(Is)). (4)

n=1

Pixel-space loss: Similarly to pix2pix model (Isola et al., 2017), we also adopt an L1 loss
to encourage the generated synthesis FFA image Gy, (Ig) from a structure fundus map Ig
to be close to the label FFA image Ir. The L1 loss is calculated as follows:

1 W H
Lpizel = W;;KIF)M/ - (GGG(IS))I,Z/‘- (5)

Feature-space loss: Perceptual loss is used as the feature-space loss to help reconstruct
textural information. Perceptual loss is based on the difference of generated and label image
CNN feature maps, which can help generate the images with high perceptual quality. It
can be given by:

1 Wi, Hij

Lperceptual = Wiz Z(¢i,j(IF)z,y - ¢i,j(G9G (IS))x,y)Qa (6)

iiHij = o

where ¢; ; is the feature map obtained by the jth convolution before the ith maxpooling
layer within the VGG19 network, pretrained on ImageNet (Simonyan and Zisserman, 2014),
and W; ; and H; ; are the dimensions of ¢.

Local Saliency loss: To ensure the generated FFA image with accurate fluorescein leakage
structures, we proposed a novel saliency loss which measures the difference between the local
saliency maps of Gy, (Is) and Ir by comparing their local landmarks. It can be expressed
as:

1 i, 1i,j
Lsazii E 150, o — (Go.. (Ig))3%)2 7
l ”ri,jHZ.7j$:1 y:1(< F ) Y (( 9G( S))x,y) ) ( )

where I3 and (Gg,(Is))** denote the local saliency maps of Ir and Gy, (Is).
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3. Experimental results

To demonstrate the effectiveness of the proposed method in FFA image synthesis, we con-
ducted a series of experiments on both our HRA dataset and the publicly available Isfahan
MISP dataset (Hajeb Mohammad Alipour et al., 2012). Compared with other state-of-the-
art methods also show the superiority of the proposed method.

All experiments were carried out in an Ubuntu 16.04 + python 3.6 environment. We
trained the proposed model for 200 epochs using the Adam optimizer with momentum
parameters 51 = 0.5, B2 = 0.999. The initial learning rate was set to 0.0002 for both
generator and discriminator. After the first 100 epochs, the learning rate was linearly
decayed to zero over the next 100 epochs. The proposed model was trained with a batch
size equal to 1, which showed empirically better result on validation. It takes about 70
hours on two GeForce GTX 1080Ti GPUs to train our HRA dataset, and nearly 3 hours to
train the Isfahan MISP dataset.

3.1. Evaluation metrics for aligned image patches

The testing results were evaluated with the criteria of peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM). These two metrics are commonly used for quantitatively
evaluating image reconstruction quality, and are defined as follows:

MSE — ziijxvn v ®

2552
W)’ 9)
(2ptapry + 1)(20ay + c2)
(12 + p2 4 c1) (02 4+ 02 + c2)’

PSNR = 10xIg(

SSIM(x,y) = (10)
where N is the size of image; ™ and y™ are the nth pixels of original image = and processed
image y; p, and p, are the averages of x and y; 0326 and O‘Z are the variance of x and y; and
Oy is the covariance of z and y.

3.2. Results comparison on HRA dataset

To demonstrate the effectiveness of the proposed method, we compared the results of the
proposed method with those of two state-of-the-art methods. One of the methods is Cycle-
GAN (Zhu et al., 2017), which is one of the most popular unsupervised image translation
methods, and has been applied to FFA image synthesis task in (Schiffers et al., 2018). The
other one is pix2pix (Isola et al., 2017) method which is widely used in medical image trans-
lation tasks. For fair comparison, these two models were both trained and tested on HRA
dataset. Since the introduction of PatchGAN and local saliency loss makes our network
has good performance on the detailed information and the vascular and leakage structure
generation, we also compared the final results of the proposed method with the network
trained without local saliency loss or PatchGAN. The configuration of regular discriminator
mainly refers to the setting of the discriminator with receptive field size of 256 x 256 in the
“pix2pix” work (Isola et al., 2017).
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Figure 5 illustrates the synthesis results of four types of FFA images taken from the test
set. Each column of Figure 5 shows from the left to right the input structure fundus image,
the real FFA image, and the image generated by CycleGAN, pix2pix, the network without
local saliency loss, the network with regular discriminator, and the proposed method. And
the first to the fourth row of Figure 5 is the synthesis result examples of normal FFA image
and the image with optic disc leakage, large focal leakage, and punctate focal leakage,
respectively. For better comparison, we zoom in on the local regions with yellow boxes.

As shown in Figure 5(cl1)-(c4), the images generated by CycleGAN can roughly reflect
the characteristics of the FFA image; however, this method only externally renders the
structure fundus image according to the extracted FFA features to make it look like an
FFA image; but cannot accurately generate the leakage or even some retinal vessel struc-
tures. As described in Figure 5(d1)-(d4), pix2pix method can generate images with more
detailed information; however, the images generated by pix2pix could contain some pseudo
information, such as small vessels (Figure 5(d1)) and leakages (red circle in Figure 5(d3))
that should not exist. Furthermore, this method also cannot accurately learn the location or
structure information of leakages (Figure 5(d3) and (d4)). As illustrated in Figure 5(el)-(e4)
and (f1)-(f4), the FFA images generated by the resnet-generator with pixel and perceptual
loss have better performance and detailed information, but also contain some pseudo ves-
sels (green circle in Figure 5(el) and e(2)) and cannot generate accurate leakages. And the
images generated by the regular discriminator also have the problem that cannot generate
leakages accurately but generate some pseudo structures. As shown in Figure 5(gl)-(g4),
the images generated by the proposed method have more accurate detailed information,
and can accurately generate the small vessels. Although the proposed method performs
not very well in the leakage details generation (Figure 5(g3) and (g4)), it can accurately
generate the location and rough structure of leakages, which also indicates the superiority
of the proposed method.

For quantitative comparison, the synthetic FA images translated by CycleGAN, pix2pix,
the proposed network without local saliency loss, the network without PatchGAN, and the
proposed method were all evaluated with the metrics of PSNR and SSIM. As seen in Table 1,
the proposed method significantly outperforms the other four methods. The average PSNR
of the proposed method is 4.83 dB, 1.30 dB, 0.66dB, and 1.37dB higher than that of the
CycleGAN, pix2pix, the proposed network trained without local saliency loss, and the
network without PatchGAN, respectively; and the average SSIM is 0.2706, 0.0830, 0.0768,
and 0.1023 higher, respectively.

Table 1: Performance comparison with different methods tested on HRA dataset

Metrics CycleGAN pix2pix without Ly, without the proposed
PatchGAN method

PSNR(dB) 15.15 18.68 19.32 18.61 19.98

SSIM 0.5949 0.7825  0.7887 0.7632 0.8655

10
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Figure 5: Synthesis results of four types of FFA images. (al)-(a4) Structure fundus images;
(b1)-(b4) Real FFA images; Generated FFA images from (c1)-(c4) the CycleGAN
method; (d1)-(d4) the pix2pix method; (el)-(e4) the proposed network without
local saliency loss; (f1)-(f4) the proposed network without PatchGAN (with reg-
ular discriminator); and (gl)-(g4) the proposed method.

11



FunDUS FLUORESCENCE ANGIOGRAPHY IMAGES GENERATION

3.3. Results comparison on Isfahan MISP dataset

To further evaluate the effectiveness and universality of the proposed method, the pro-
posed method was also trained and tested on the Isfahan MISP dataset, and was compared
quantitatively and qualitatively with the four methods mentioned in section 3.2.

The publicly available Isfahan MISP dataset contains 59 retinography-angiography pairs
divided in healthy and pathological cases. The images have a resolution of 720 x 576 pixels,
and the image pairs in this dataset were also preprocessed by using the dataset preprocessed
method proposed in section 2.1 and extracted as the patches with 360 x 288 pixels.

Abnormal
FFA

Figure 6: Synthesis results of normal and abnormal FFA images. (al) and (a2) Structure
fundus images; (b1l) and (b2) Real FFA images; Generated FFA images from (c1)
and (c2) the CycleGAN method; (d1) and (d2) the pix2pix method; (el) and
(e4) the proposed network without local saliency loss; (f1) and (f4) the proposed
network without PatchGAN (with regular discriminator); and (gl) and (g2) the
proposed method.

Figure 6 shows the examples of normal and abnormal images synthesis results; and the
local regions are also zoomed in on with yellow boxes for better comparison. As illustrated
in Figure 6(al)-(gl), compared with the other four methods (Figure 6(c1)-(f1)), the pro-
posed method (Figure 6(gl)) performs well in small vessels generation, and can generate
more similar vascular structures to the real FFA image. As shown in Figure 6(a2)-(g2),the
proposed method (Figure 6(g2)) also have better performance in leakages generation when
compared with the other four cases (Figure 6(c2)-(f2)). This demonstrates the effectiveness
of the proposed method in FFA image generation.

The tested results on Isfahan MISP dataset were also quantitatively compared with
the metrics of PSNR and SSIM. As shown in Table 2, the proposed method surpassed
the CycleGAN, pix2pix, the proposed network trained without local saliency map, and
the proposed network trained without PatchGAN 5.51dB, 1.73dB, 0.17dB, and 1.42dB in
PSNR, respectively; and 0.2469, 0.0830, 0.0600, and 0.0797 in SSIM, respectively. This
implies that the proposed method has better performance on the FFA image generation
task.

12
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Table 2: Performance comparison with different methods tested on Isfahan MISP dataset

Metrics CycleGAN pix2pix without Ly, without the proposed
PatchGAN method

PSNR(dB) 19.65 23.43 24.99 23.74 25.16

SSIM 0.5799 0.7438  0.7668 0.7471 0.8268

4. Discussion and Conclusion

Fluorescein angiography (FA) is a type of imaging commonly used in ophthalmology clinics
that provides a map of retinal vascular structure and function by highlighted blockage of,
and leakage from, retinal vessels. However, the potential adverse effects of FA imaging
limit its usage to some extent. With the development of image synthesis and translation
methods, some researchers also provide an idea that whether we can synthesize an FFA
image from a fundus image to help reduce the potential diagnosis risks; and many works
(Costa et al., 2017; Schiffers et al., 2018; Li et al., 2019; Hervella et al., 2019) about that
have been presented. However, the presented methods all have two problems, one is that
these methods cannot accurately generate the pathological structures, the other one is that
the quantity and variety of the training and testing data are insufficient, which may effect
the generalization ability of the model and lack of medical significance. In this paper, we
proposed a conditional GAN-based FFA image generation method with a novel saliency loss
function to ensure the accurate generation of the pathological structures in the synthesis
FFA image.

According to the characteristics of FFA and fluorescein leakage, we choose the generation
of FFA images with three common types of fluorescein leakage (large focal, puncate focal,
and optic disc leakage) as well as normal FFA images as the focus of this study. As shown
in Figure 5 and Figure 6, the proposed method has a good overall performance on the
generation of normal FFA image and the image with leakages, but it performs unsatisfied
on the leakage details generation. Therefore, improving the performance of leakage details
generation will be the main task in our future work.

In this study, we use the PSNR and SSIM to evaluate the quality of the generated
FFA image and the similarity between the generated and real FFA image. This evaluation
method can illustrate the potential value of the FFA synthetic methods in medical applica-
tions, but it cannot effectively show that the generated FFA image is reliable and valuable
enough for physicians. Unfortunately, we do not yet have a better and more acceptable
approach to verify the reliability and medical value of the synthetic FFA images. But to
find suitable and reliable measurement methods is the problem we have been thinking about
and studying, maybe it will be solved in future work.

In addition, in this work, we split the training and testing sets at the image level not
the participant level. Although this split operation may make a single person have images
in both the training and testing sets, the pathological feature of the two eyes of the same
person is not same. Therefore, splitting the dataset at the image level cannot affect the
generalization ability and credibility of the proposed model.
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To conclude, the proposed method has better performance in the generation of retinal
vascular and fluorescein leakage structures when compared with other methods, which has
great practical significance for clinical diagnosis and analysis.
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