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ABSTRACT

Language-guided segmentation breaks through the scope limitations of traditional
semantic segmentation, enabling models to segment any target region in an image
based on user instructions. Existing methods are typically two-stage frameworks:
they first employ multimodal large language models (MLLMs) to understand the
textual instruction and generate visual prompts from the image, and then use foun-
dational segmentation models such as SAM to produce high-quality masks. How-
ever, due to the limited spatial grounding capability of the base models, they usu-
ally require training on large-scale datasets to achieve improved segmentation ac-
curacy. In this paper, we propose Seg-Agent, a completely training-free language-
guided segmentation method. By constructing an explicit reasoning chain: gen-
eration, selection, and refinement, Seg-Agent achieves performance comparable
to training-based approaches. Additionally, to evaluate the generalization ability
of Seg-Agent, we collect a diverse dataset covering various language-guided seg-
mentation scenarios, named Various-LangSeg. Extensive experiments demon-
strate the effectiveness of our proposed method. The code and dataset will be
made publicly available.

1 INTRODUCTION

The rapid development of multimodal large language models (MLLMs) (Liu et al., 2023b; Achiam
et al., 2023; Bai et al., 2025) and foundational segmentation models (Cheng et al., 2021; 2022; Kir-
illov et al., 2023; Ravi et al., 2024) has driven significant progress in language-guided segmentation
(Ren et al., 2024a; Lai et al., 2024). Unlike traditional segmentation methods (Xie et al., 2021;
Zheng et al., 2021; Liu et al., 2023a; Hao et al., 2025), which are limited to predefined categories
and scenarios, language-guided segmentation models can segment any target region of interest based
on textual instruction. This makes it an open and domain-unrestricted segmentation approach. As
shown in Figure 1, we categorize common segmentation tasks into three types: explicit semantic seg-
mentation (ESS), generic object segmentation (GOS), and reasoning-guided segmentation (RGS).
Traditional segmentation models can typically handle only a limited subset of these scenarios. How-
ever, with the powerful understanding capabilities of MLLMs and the flexible configuration of text
prompts, language-guided segmentation models are capable of addressing all three categories.

Most existing language-guided segmentation models follow a two-stage approach (Lai et al., 2024;
Ren et al., 2024b; Chen et al., 2024; Liu et al., 2025). First, they use MLLMs to understand the
instruction and perceive the image, generating visual prompts (typically in the form of bounding
boxes or points). Then, a foundational segmentation model such as SAM is employed to produce
high-quality segmentation masks based on these visual prompts. However, due to limitations such
as the MLLM’s relatively weak spatial perception and grounding capabilities, the visual prompts it
generates directly are often of low quality (Lai et al., 2024; Yang et al., 2023). As a result, these
models typically require training on large-scale datasets to improve performance.

However, these training-based methods have several notable limitations. First, it requires collecting
large datasets for training. Due to the diversity of segmentation scenarios, it is difficult to fully cover
all possible cases in the training data, which limits the model’s generalization ability and leads to
poor performance in out-of-distribution (OOD) scenarios. Second, training models requires sub-
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USER:<Img> “cat” Seg-Agent USER:<Img> “dog”

USER:<Img>“camouflaged object” Seg-Agent USER:<Img>“salient object”

USER:<Img>“the first lady of US” Seg-Agent USER:<Img>“carbohydrate-rich food”

(a) Explicit Semantic Segmentation

(b) Generic Object Segmentation

(c) Reasoning-Guided Segmentation

Figure 1: Given an image and a textual target, Seg-Agent can handle segmentation tasks across
various scenarios: (a) Explicit Semantic Segmentation: segmenting objects with clearly defined
semantics (e.g., “cat”, “dog”). (b) Generic Object Segmentation: segmenting conceptually defined
objects without specific categories (e.g., “camouflaged object”, “salient object”). (c) Reasoning-
Guided Segmentation: segmenting targets based on prompts that require commonsense or factual
reasoning (e.g., “the first lady of US”, “carbohydrate-rich food”).

stantial computational resources, especially for MLLMs. And as newer, more powerful base models
become available, training-based methods cannot be directly integrated with them. Therefore, in this
paper, we propose Seg-Agent, a completely training-free language-guided segmentation framework.
As shown in Figure 2, existing methods are all training-based, either fully trained or partially trained,
which inevitably introduces the aforementioned inherent limitations. In fact, regardless of whether
training is involved, the core objective is to improve the quality of the generated visual prompts
and the final segmentation mask. Instead of enhancing model capabilities through training, we di-
rectly construct an explicit reasoning chain to guide the model. Specifically, we propose a three-step
reasoning process: generation, selection, and refinement, through which the MLLM progressively
improves the generated visual prompts, ultimately leading to better segmentation masks.

Furthermore, considering the limited scene diversity in existing language-guided segmentation
datasets (Lai et al., 2024; Kazemzadeh et al., 2014; Mao et al., 2016) and to better validate the
generalization capability of segmentation models, we collect a multi-scenario evaluation dataset
called Various-LangSeg. Specifically, Various-LangSeg includes the three types of tasks illustrated
in Figure 1: explicit semantic segmentation, generic object segmentation, and reasoning-guided seg-
mentation, which collectively cover the majority of common language-guided segmentation scenar-
ios. We evaluate the performance of Seg-Agent and several related language-guided segmentation
models (Lai et al., 2024; Chen et al., 2024; Liu et al., 2025) on Various-LangSeg.

We summarize our contributions as follows:

• We propose Seg-Agent, a completely training-free framework for language-guided seg-
mentation. By constructing an explicit reasoning chain for guidance, Seg-Agent achieves
performance comparable to training-based methods.

• We have collected a comprehensive evaluation dataset named Various-LangSeg, which cov-
ers nearly all common scenarios of language-guided segmentation and effectively assesses
models’ generalization ability.

• Extensive experiments demonstrate the effectiveness of our proposed method and provide
a low-cost, simple, and effective design paradigm for the community.
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2 RELATED WORK

Multimodal Large Language Models. In recent years, MLLMs have achieved revolutionary
progress in vision-language tasks. Models such as GPT-4 (Achiam et al., 2023) and Qwen-VL2.5
(Bai et al., 2025) have demonstrated outstanding capabilities in understanding multimodal content,
giving them a natural advantage in tasks requiring joint image-text reasoning, thus driving the de-
velopment of numerous downstream tasks (Rawles et al., 2024; Cheng et al., 2024). MLLMs have
shown remarkable performance in visual question answering (Agrawal et al., 2016), image caption-
ing (Ghandi et al., 2023), and multimodal reasoning (Zhang et al., 2024b). However, they typically
lack fine-grained spatial perception and grounding abilities (Wu et al., 2024; Lai et al., 2024), which
poses challenges for dense prediction tasks such as segmentation. Previous approaches mostly en-
hance grounding capabilities by training on task-specific datasets (Zhang et al., 2024a; Ren et al.,
2024b). In contrast, our work leverages off-the-shelf, native MLLMs to generate visual prompts, but
circumvents their limitations in spatial understanding through an explicit reasoning chain.
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Figure 2: Comparison between the proposed Seg-
Agent and existing methods. (a) Full training:
both the MLLM and SAM are trained simulta-
neously, with representative methods including
LISA (Lai et al., 2024) and Sa2VA (Yuan et al.,
2025). (b) Partial training: only the MLLM is
trained while SAM is kept fixed, with representa-
tive methods including SAM4MLLM (Chen et al.,
2024) and Seg-Zero (Liu et al., 2025). (c) Our
method is entirely training-free.

Foundational Segmentation Models. Foun-
dational segmentation models such as Mask-
Former (Cheng et al., 2021; 2022) and SAM
(Kirillov et al., 2023; Ravi et al., 2024) are
general-purpose models trained on large-scale
data for universal segmentation. In particular,
SAM introduces a promptable interface that en-
ables segmentation with sparse visual cues like
points or bounding boxes. These models offer
strong generalization ability and high-quality
mask prediction across various domains. In our
framework, we use SAM2 as the backend seg-
mentation module and focus on improving its
performance by enhancing the quality of the vi-
sual prompts generated by MLLMs.

Language-Guided Segmentation. Early
methods typically employ a text encoder (De-
vlin et al., 2018; Radford et al., 2021) to ex-
tract textual features for guiding the segmenta-
tion model (Ren et al., 2024a; Liu et al., 2023c;
Yang et al., 2022). With the advancement of
MLLMs and foundational segmentation mod-
els, most existing approaches have evolved into the two-stage framework described earlier, although
they differ in subtle aspects. PixelLLM (Ren et al., 2024b) and OMG-LLaVA (Zhang et al., 2024a)
use their own lightweight decoders to generate masks. However, such decoders generally underper-
form compared to SAM, which is pretrained on massive-scale data. As a result, current mainstream
methods directly integrate SAM as the segmentation backbone. LISA (Lai et al., 2024), Sa2VA
(Yuan et al., 2025) and GSVA (Xia et al., 2024) do not generate explicit visual prompts, instead,
they introduce a special <SEG> token to compress textual information, requiring fine-tuning of
SAM so that it can interpret this novel type of prompt. In contrast, SAM4MLLM (Chen et al.,
2024) and Seg-Zero (Liu et al., 2025) adopt a more intuitive strategy: they keep SAM frozen and
instead post-train MLLMs to generate more accurate bounding boxes or points prompts—formats
that SAM can directly understand, thereby achieving improved performance. These two works are
the closest to our Seg-Agent, except that we enhance the quality of generated visual prompts through
a manually designed, explicit reasoning chain without any training.

3 VARIOUS-LANGSEG: A COMPREHENSIVE EVALUATION BENCHMARK

Motivation Existing language-guided segmentation datasets primarily focus on referring segmen-
tation (Kazemzadeh et al., 2014; Mao et al., 2016) and reasoning segmentation (Lai et al., 2024).
However, these datasets cover a limited spectrum of task types, which hinders the thorough eval-
uation of general-purpose models. To address this gap, we introduce Various-LangSeg, a unified
and diverse benchmark designed to evaluate language-guided segmentation methods across a broad
range of scenarios.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Task Categorization As shown in Figure 1, we categorize language-guided segmentation tasks into
three representative scenarios: Explicit Semantic Segmentation, Generic Object Segmentation, and
Reasoning-Guided Segmentation. These three scenarios jointly span most common language-guided
segmentation tasks, enabling comprehensive evaluation of model generalization.

Dataset Construction Given an input image and a textual instruction, the goal is to generate the
corresponding binary mask. Since our method does not require any training, Various-LangSeg is
designed solely for evaluation purposes.

To construct the dataset, we proceed as follows:

1. Image Collection: We sample images and corresponding masks from existing public datasets (Lv
et al., 2021; Li et al., 2014; Vicente et al., 2016; Dong et al., 2013; Lin et al., 2015).

2. Instruction Annotation: For each image-mask pair (ximg, ymask), we manually annotate a textual
instruction xtxt to form the complete triplet (ximg, xtxt, ymask).

Note that although the images and their corresponding masks are sourced from other datasets, we
must manually analyze the relationship between each image and its corresponding mask, assign
accurate textual instructions, and carefully select high-quality image-mask pairs. This process is not
merely a simple sampling and assembly to form a new dataset.

For each scenario:

• Explicit Semantic Segmentation: 20 common object categories (e.g., cat, dog, bird) with
7 images per category, totaling 140 samples.

• Generic Object Segmentation: 4 binary segmentation tasks: salient object detection
(SOD) (Borji et al., 2015), camouflaged object detection (COD) (Fan et al., 2020), shadow
detection (SD) (Vicente et al., 2016), and image tampering detection (ITD) (Dong et al.,
2013). Each task includes 16 samples. Textual input directly uses the task name (e.g.,
“salient object”).

• Reasoning-Guided Segmentation: 40 samples are annotated using complex descriptions
requiring implicit reasoning. These are inspired by ReasonSeg (Lai et al., 2024), such as
“carbohydrate-rich food”, where identification requires reasoning and domain knowledge.

In total, Various-LangSeg contains 244 evaluation samples, with 140, 64, and 40 samples in three
scenarios respectively. Its scale is comparable to that of the validation set of the ReasonSeg dataset
(Lai et al., 2024). We visually present the statistics of Various-LangSeg in Figure 5 in the Appendix.

Evaluation Metrics We follow established works (Lai et al., 2024; Liu et al., 2025) and adopt two
standard metrics: gIoU (global IoU): the average IoU over all samples. cIoU (cumulative IoU): the
ratio of the total intersection area to the total union area across the entire dataset.

4 METHOD

We propose Seg-Agent, a training-free framework for language-guided segmentation. Our method
is a two-stage approach that first uses MLLMs to generate visual prompts and then employs a base
segmentation model to produce the final mask. However, unlike previous methods that directly
generate visual prompts (Chen et al., 2024; Liu et al., 2025) in a single step, we construct an explicit
reasoning chain to guide the MLLM’s prompt generation process, comprising generation, selection,
and refinement, mimicking an iterative procedure of progressively localizing and finetuning the
target boundaries. In contrast to traditional end-to-end approaches that rely on learned features, Seg-
Agent explicitly constructs and updates visual prompts, guiding the segmentation model through
interpretable, step-by-step interactions. The overall pipeline is illustrated in Figure 3.

4.1 PROBLEM FORMULATION

Let Ximg ∈ RH×W×3 be an input image and Xtxt ∈ T be a natural language instruction describing
the target object (e.g., “the man in red”). The goal is to predict a binary mask Ymask ∈ {0, 1}H×W

that segments the described object.

4
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Figure 3: Illustration of Seg-Agent. By constructing an explicit reasoning chain: generation, selec-
tion, and refinement, the MLLM is able to improve the quality of generated visual prompts, thereby
enabling SAM to produce more accurate target segmentation masks. SoM here indicates Set-of-
Mark prompt (Yang et al., 2023).

4.2 OVERVIEW OF SEG-AGENT PIPELINE

Seg-Agent consists of four modules:

1. Generation Module: Proposes diverse bounding boxes using image augmentations.
2. Selection Module: Selects the most appropriate box via visual comparison.
3. Refinement Module: Fine-tunes the selected box to better align with the object boundaries.
4. Segmentation: Applies a pretrained segmenter such as SAM to produce the final mask.

4.3 THE FORWARD PASS OF SEG-AGENT

Generation Module To ensure robustness across views and scales, we apply a set of augmentations
A = {ai}Ni=1 to the input image (including flipping, scaling, etc):

X(i) = ai(Ximg), i = 1, . . . , N. (1)

Each augmented image X(i) is paired with Xtxt and sent to an MLLM with a task-specific prompt
(denoted as <generation prompt>, see Appendix) to localize the object:

B(i) = MLLMgen(X
(i),Xtxt,<generation prompt>). (2)

This yields a set of bounding box proposals (coordinate format: [x1, y1, x2, y2]):

Bgen =
{
B(i)

}N

i=1
. (3)

Selection Module To consolidate candidate boxes back into the original image frame, we invert the
augmentations:

B̃(i) = a−1
i (B(i)). (4)

We perform Non-Maximum Suppression (NMS) to filter redundant boxes:

Bsel = NMS
({

B̃(i)
}
, θIoU

)
. (5)

Using a visualization strategy such as Set-of-Mark (SoM) (Yang et al., 2023), we render the candi-
date boxes onto the original image. This method has been shown to enhance the spatial perception
and grounding capability of MLLMs (Yang et al., 2023; Rawles et al., 2024), and also allows for
intuitive visualization of the spatial relationship between the bounding box and the target object,
as illustrated in Figure 3. The MLLM receives the SoM-marked image, textual instruction, and a
comparison prompt (denoted as <selection prompt>, see Appendix) to choose the most relevant
box:

Bsel = MLLMsel(SoM(Ximg,Bsel),Xtxt,Bsel,<selection prompt>). (6)
Refinement Module The selected box Bsel may still require fine-tuning for optimal spatial cover-
age. We invoke a final reasoning step using another refinement prompt (denoted as <refinement
prompt>, see Appendix) to refine it:

Brefined = MLLMrefine(SoM(Ximg,Bsel),Xtxt,Bsel,<refinement prompt>). (7)

5
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Through this reasoning process, the MLLM is able to carefully examine the alignment between the
current bounding box and the target object, and fine-tune it based on semantic and visual context, for
example, by expanding, shrinking, translating, or adjusting its boundaries to achieve more precise
coverage of the target region.

The final output Brefined is a well-refined bounding box that serves as a high-quality visual prompt
for the subsequent segmentation task. This module significantly improves the accuracy of boundary
localization and is a key step toward achieving high-precision segmentation.

Segmentation Module The refined bounding box is then used as the visual prompt input to a seg-
mentation model such as SAM:

Ymask = SAM(Ximg,Brefined). (8)

SAM uses the bounding box as a spatial prompt to precisely identify and segment the described tar-
get region in the image, producing a high-quality, pixel-level binary mask Ymask, where 1 indicates
the target region and 0 indicates the background.

This step completes the final transformation from a language instruction to an accurate segmenta-
tion, serving as the last stage of the entire Seg-Agent framework. Thanks to the progressive refine-
ment of visual prompts in the previous three stages, SAM receives more accurate guidance, thereby
significantly improving the final segmentation accuracy.

4.4 WHY SEG-AGENT MATTERS

Seg-Agent decomposes language-guided segmentation into interpretable sub-tasks, enabling robust
performance across diverse conditions without any task-specific training. By explicitly engaging in
step-wise reasoning, Seg-Agent avoids common failure modes of end-to-end systems and provides
traceable decision-making, all while fully leveraging the generalization power of MLLMs.

Unlike previous works relying on parameter updates, Seg-Agent operates in a zero-shot and training-
free setting, relying solely on step-wise reasoning within MLLMs. This has several advantages:

• Generalization: Augmentation-enriched proposals increase robustness across unseen dis-
tributions. We perform no post-training on MLLMs, thus avoiding any potential negative
impacts on their performance.

• Interpretability: Each reasoning step is explicit and traceable, enabling transparent de-
bugging and user intervention.

• Modularity: Seg-Agent can be instantly adapted to newer and stronger MLLMs or seg-
mentation models without retraining.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING
Table 1: Referring segmentation results. Methods marked
with “*” are traditional approaches, while the other methods
are based on MLLMs. We compare cIoU in this table. Best
results are in bold.

Method RefCOCO RefCOCO+ RefCOCOg
testA testA test

training-based methods
CRIS* 73.2 68.1 60.4
LAVT* 75.8 68.4 62.1
ReLA* 76.5 71.0 66.0
LISA-7B 76.5 67.4 68.5
PixelLM-7B 76.5 71.7 70.5
PerceptionGPT-7B 78.6 73.9 71.7
Seg-Zero-3B 79.3 73.7 71.5
Seg-Zero-7B 80.3 76.2 72.6

training-free methods
Qwen2.5-VL-3B + SAM2-L 75.9 71.5 70.1
Qwen2.5-VL-7B + SAM2-L 77.8 73.5 71.2
Seg-Agent-3B (Ours) 79.0 73.2 71.4
Seg-Agent-7B (Ours) 79.9 76.0 72.2

Implementation Details. We em-
ploy QwenVL-2.5 (Bai et al., 2025)
as the base MLLM for generating
visual prompt, the generation mod-
ule, selection module, and refine-
ment module are all built upon it,
which can be deployed locally or
accessed via API services. Addi-
tionally, we use SAM2-Large (Ravi
et al., 2024) to generate segmenta-
tion masks. Seg-Agent operates in a
training-free manner, and the entire
inference process can be completed
on a single NVIDIA RTX 4090 GPU
with 24 GB of memory. For the NMS
step, we set the IoU threshold to 0.8.
During inference, the prompt for Seg-
Agent is pre-defined (see Appendix),

6
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requiring only the input of the target object. For other methods, we set the text input according to
the templates provided in their works.

Datasets. Since our method does not require training, we only select benchmark datasets to eval-
uate model performance. Following prior related work (Lai et al., 2024; Chen et al., 2024; Liu
et al., 2025), we adopt three datasets for the referring segmentation task: refCOCO, refCOCO+
(Kazemzadeh et al., 2014), and refCOCOg (Mao et al., 2016). These datasets involve simple textual
descriptions such as “the man wearing white clothes”, belonging to the explicit semantic segmenta-
tion scenario. We also include the ReasonSeg (Lai et al., 2024) dataset for the reasoning segmen-
tation task, which falls under the reasoning-guided segmentation scenario and contains referring
expressions that require reasoning, such as “the food with the most Vitamin C”. Finally, we intro-
duce the Various-LangSeg dataset proposed in this paper, which covers three common scenarios in
language-guided segmentation and effectively evaluates the model’s generalization and versatility.

Table 2: Reasoning segmentation results. “-” in-
dicates the results are not available.

Method
ReasonSeg

Val Test
gIoU cIoU gIoU cIoU

training-based methods
X-Decoder* 22.6 17.9 21.7 16.3
SEEM* 25.5 21.2 24.3 18.7
ReLA* 22.4 19.9 21.3 22.0
OVSeg* 28.5 18.6 26.1 20.8
Grounded-SAM* 26.0 14.5 21.3 16.4
LISA-7B-LLaVA1.5 53.6 52.3 48.7 48.8
LISA-13B-LLaVA1.5 57.7 60.3 53.8 50.8
SAM4MLLM 46.7 48.1 - -
Seg-Zero-3B 58.2 53.1 56.1 48.6
Seg-Zero-7B 62.6 62.0 57.5 52.0

training-free methods
Qwen2.5VL-3B+SAM2-L 53.6 44.0 47.9 37.8
Qwen2.5VL-7B+SAM2-L 57.6 48.3 50.1 41.2
Seg-Agent-3B (Ours) 57.8 56.1 55.5 49.8
Seg-Agent-7B (Ours) 61.7 61.2 57.6 51.8

Baseline Methods. We compare Seg-Agent
with two groups of methods: (1) Training-
based methods, including traditional methods
that do not use MLLMs such as grounded-
sam (Ren et al., 2024a), ReLA (Liu et al.,
2023a) etc., and MLLM-based methods such
as LISA (Lai et al., 2024), SAM4MLLM (Chen
et al., 2024), etc.; (2) Training-free methods, we
mainly adopt the Qwen2.5-VL + SAM2 (Bai
et al., 2025; Ravi et al., 2024) baseline method
introduced in Seg-Zero (Liu et al., 2025), with
related settings and prompts kept consistent
with that paper, i.e., letting MLLMs directly
output bounding box coordinates in a single-
step method to prompt SAM, rather than having
an explicit thinking process like Seg-Agent.

Evaluation Metrics. We follow prior work
(Lai et al., 2024; Liu et al., 2025) in adopting
two evaluation metrics: gIoU and cIoU, which
have been described before. Since cIoU tends
to be heavily biased toward large objects and
exhibits high variability, gIoU is generally preferred as the primary metric.

Table 3: Results on Various-LangSeg. We report the performance across three scenarios and the
overall performance.

Method
Various-LangSeg

Explicit Semantic Generic Object Reasoning-Guided Overall
gIoU cIoU gIoU cIoU gIoU cIoU gIoU cIoU

training-based methods
ReLA* 76.8 77.7 20.1 22.1 25.2 21.2 53.4 53.8
OVSeg* 77.1 76.0 23.2 23.0 25.0 22.1 54.4 53.2
LISA-7B 81.9 83.1 32.4 30.8 46.8 36.7 63.2 64.2
LISA-13B 82.8 83.9 35.3 40.3 54.4 47.9 65.8 67.9
PixelLLM-7B 81.5 83.5 31.2 31.5 45.2 40.1 62.3 62.7
SAM4MLLM 82.1 83.5 32.0 31.8 45.2 37.1 62.9 62.3
Seg-Zero-7B 81.8 81.0 41.4 43.5 74.5 67.1 70.0 68.9

training-free methods
Qwen2.5-VL-3B + SAM2-L 80.1 77.4 33.3 33.7 61.0 49.5 64.7 61.3
Qwen2.5-VL-7B + SAM2-L 80.8 79.7 39.5 38.3 70.1 58.9 68.2 65.4
Seg-Agent-3B (Ours) 82.3 81.5 40.8 31.5 66.1 62.6 68.8 60.9
Seg-Agent-7B (Ours) 83.0 83.7 41.0 42.1 75.2 66.7 70.6 68.5

5.2 COMPARISON WITH OTHER METHODS

In this subsection, we conduct a comparative analysis of the performance between Seg-Agent and
several most relevant methods. We compare CRIS (Wang et al., 2022), LAVT (Yang et al., 2022),
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the first lady of US

image & query LISA Seg-Zero Qwenvl+SAM2 Seg-Agent GT

Figure 4: Visual comparison between the proposed Seg-Agent and existing related methods. We
show three common scenarios of language-guided segmentation here.
OVSeg (Liang et al., 2023), X-Decoder (Zou et al., 2022), SEEM (Zou et al., 2023), ReLA (Liu
et al., 2023a), LISA (Lai et al., 2024), PixelLLM (Ren et al., 2024b), PerceptionGPT (Pi et al.,
2024), SAM4MLLM (Chen et al., 2024) and Seg-Zero (Liu et al., 2025).

Referring Segmentation. As shown in Table 1, we evaluate Seg-Agent and other related methods
on the test sets of refCOCO, refCOCO+, and refCOCOg. As mentioned earlier, the target objects
in these datasets are described using simple and direct text descriptions, which falls under the ex-
plicit semantic segmentation scenario. Due to the relatively simple nature of this task, all methods
achieve good performance, and there is little difference between traditional methods and MLLM-
based methods. Notably, the training-free baseline method Qwen2.5VL+SAM2-L also achieves
favorable results, while Seg-Agent provides a certain improvement over this baseline and achieves
performance comparable to the SOTA training-based method Seg-Zero.

Reasoning Segmentation. As shown in Table 2, we evaluate Seg-Agent and other related methods
on the validation and test sets of ReasonSeg (Lai et al., 2024). As previously mentioned, the target
objects in this dataset are described using reasoning-based textual expressions, categorized into long
queries and short queries, falling under the reasoning-guided segmentation scenario. Compared to
explicit semantic segmentation, this task requires reasoning to first identify the target object, making
it significantly more challenging. As can be seen from the table, traditional methods that do not em-
ploy MLLMs perform poorly in this scenario, as their text encoders are typically better at extracting
textual features but lack reasoning capabilities. In contrast, MLLM-based methods achieve substan-
tial performance improvements. Moreover, the training-free baseline method Qwen2.5VL+SAM2-
L also achieves favorable performance, while Seg-Zero achieves significant gains over this baseline
through GRPO (Shao et al., 2024) training. Similarly, our Seg-Agent achieves notable improvement
over the same baseline and attains performance comparable to the SOTA training-based method
Seg-Zero, surpassing earlier approaches such as LISA.

Various-LangSeg. As shown in Table 3, we evaluate Seg-Agent and related methods on Various-
LangSeg. It can be observed that traditional methods perform poorly on this dataset, achieving
acceptable results only in the explicit semantic segmentation scenario, and even then, they are out-
performed by MLLM-based approaches. Their performance is also weak in the general object seg-
mentation scenario and particularly poor in the reasoning-guided segmentation scenario. In contrast,
MLLM-based methods are applicable across all three scenarios. However, due to the lack of train-
ing on relevant data and the absence of an explicit reasoning process, early methods such as LISA
perform relatively poorly on the general object segmentation task, underperforming compared to
their results on the other two tasks. Seg-Zero achieves the best performance among training-based
methods, especially in the reasoning-guided scenario, benefiting from task-specific training. For
training-free methods, Seg-Agent consistently improves upon the Qwen2.5-VL+SAM2-L baseline
in all three scenarios. Notably, Seg-Agent-7B achieves the best overall performance among training-
free methods, and even outperforms many training-based approaches, highlighting its strong gener-
alization and reasoning ability without task-specific training.

Visual Comparison. Figure 4 presents a visual comparison of Seg-Agent with several of the most
relevant methods, including LISA, Seg-Zero, and Qwen2.5-VL-7B+SAM2-L. In the first row (ex-
plicit semantic segmentation scenario), the target object is a sunflower, other methods either over-
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segment or under-segment the object, while only Seg-Agent produces an accurate and precise seg-
mentation. In the second row (general object segmentation scenario), other methods fail to fully
capture the main structure or produce overly coarse boundaries, whereas Seg-Agent successfully
preserves the overall structure without edge blurring. In the final row (reasoning-guided segmenta-
tion scenario), only Seg-Agent correctly identifies the first lady of US (second from the right), while
all other methods select incorrect objects. These visual results demonstrate the strong generaliza-
tion capability and segmentation accuracy of Seg-Agent. We present more visualization results in
Figure 6 in the Appendix.

5.3 ABLATION STUDY

Table 4: Ablation study on each module. GM,
SM and RM denote generation module, selection
module and refinement module, respectively. We
compare gIoU here.

GM SM RM Various-LangSeg
ESS GOS RGS Overall

✗ ✗ ✗ 80.8 39.5 70.1 68.2
✓ ✓ ✗ 81.2 39.8 72.0 68.8
✓ ✗ ✓ 81.5 40.0 71.8 69.0
✓ ✓ ✓ 83.0 41.0 75.2 70.6

Effectiveness of Each Module. As shown in
Table 4, the performance when combining GM
with SM or RM is better than that of the base-
line method. Only when all three modules are
used together does the performance reach its
maximum, demonstrating the effectiveness of
the explicitly constructed reasoning chain in
our approach. As can be observed, compared
to the baseline method, the combination of dif-
ferent modules yields the largest performance
gain in the reasoning-guided segmentation sce-
nario, likely because this task inherently requires a reasoning process. In contrast, explicit semantic
segmentation is relatively simple, and the baseline method already achieves strong performance,
resulting in only marginal improvements. From the metrics, the generic object segmentation sce-
nario appears to be the most challenging; thus, a noticeable performance improvement is achieved
only when all three modules are used together. Notably, the configuration used here is consistently
Qwen2.5-VL-7B + SAM2-L. In the first row, none of the three modules are employed, correspond-
ing to the baseline method mentioned earlier with no improvements applied. When GM and RM are
used together, only one candidate box needs to be generated.

Table 5: Ablation study on base models. a, b, and
c represent different combinations of MLLMs and
base segmentation models, directly using a single-
step reasoning approach. Seg-Agent (x) denotes
using the configuration described in x to replace
the corresponding part of Seg-Agent. We compare
gIoU in this table.

Setting Various-LangSeg
ESS GOS RGS Overall

a: InternVL3-8B + SAM2-L 79.2 35.3 67.1 65.7
b: Qwen2.5-VL-7B + SAM-L 80.1 37.5 69.9 67.3
c: Qwen2.5-VL-7B + SAM2-L 80.8 39.5 70.1 68.2
Seg-Agent (a) 79.8 36.3 67.5 66.4
Seg-Agent (b) 81.1 39.5 71.2 68.6
Seg-Agent (c) 83.0 41.0 75.2 70.6

Generalization across Base Models. We con-
duct this experiment to demonstrate that Seg-
Agent can be directly adapted to different base
models. As shown in Table 5, under the same
configuration, Seg-Agent, which employs an
explicit reasoning chain, achieves performance
improvements compared to direct inference.
Moreover, it can be observed that Seg-Agent is
compatible with different MLLMs (Bai et al.,
2025; Zhu et al., 2025) and segmentation mod-
els (Kirillov et al., 2023; Ravi et al., 2024), and
the stronger the base model, the better Seg-
Agent performs. This highlights the advan-
tage of our proposed training-free approach: as
newer and more powerful base models emerge,
Seg-Agent can directly integrate with them to achieve improved segmentation performance, which
is a significant advantage over training-based methods.

6 CONCLUSION

In this paper, we propose Seg-Agent, a completely training-free language-guided segmentation
model. By constructing explicit reasoning chains of generation, selection, and refinement to guide
the model in generating more accurate visual prompts, Seg-Agent achieves segmentation perfor-
mance comparable to training-based methods. Additionally, we construct the Various-LangSeg
dataset containing multiple scenarios, which can comprehensively evaluate the generalization ca-
pability of language-guided segmentation models. Extensive experiments demonstrate the effective-
ness of our approach. We hope that our simple yet effective method can provide rich inspiration to
the community.
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conducted that could raise privacy or security concerns. We are committed to maintaining trans-
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REPRODUCIBILITY STATEMENT

To facilitate the reproduction of the Seg-Agent proposed in this paper, we provide implementation
details in Section B and an initial version of the code in the supplementary materials. Additionally,
we include the JSON files describing the Various-LangSeg dataset in the supplementary materials,
and we will publicly release the full code and dataset in the near future.
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A THE USE OF LARGE LANGUAGE MODELS

LLMs were used only during the writing phase, including for polishing the text and providing sug-
gestions to improve the paper’s figures.

B MORE DETAILS ABOUT SEG-AGENT

In this section, we present some implementation details of Seg-Agent. We also provide a basic
version of the code in the supplementary materials, and the complete code will be released shortly.

B.1 GENERATION MODULE

In our experiments, we observed that the object identified in a single inference pass can be entirely
incorrect. Inspired by object segmentation approaches that generate multiple candidate boxes, we
found that if multiple candidate boxes are produced, it becomes easier for the LLM to select the
one that correctly localizes the target object. To this end, we adopted a multi-view input strategy
to encourage the generation of multiple candidate boxes. Specifically, we employed common im-
age augmentation techniques from computer vision, including flipping (horizontal and vertical) and
scaling (zooming in by 2× or zooming out to 0.5×). In each case, we primarily selected two such
augmented views along with the original image, resulting in three candidate boxes.

The <generation prompt> we used is as follows:

def build_generation_prompt(query):
template = """Locate "{query}", report the bboxes
coordinates in JSON format."""
return template.format(query=query)

Here, the query refers to the textual description of the target object we wish to segment. The output
coordinates are in the format [x1, y1, x2, y2], representing the pixel coordinates of the top-left and
bottom-right corners of the bounding box, e.g., [100, 100, 200, 200].

B.2 SELECTION MODULE

The Set-of-Marks (SoM) (Yang et al., 2023) used here has been shown to effectively enhance
MLLMs’ perception of specific objects in images and is widely employed in tasks such as screen-
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shot grounding (Rawles et al., 2024). The approach involves overlaying visual bounding boxes on
the original image according to the box coordinates, explicitly illustrating the spatial relationship
between the target object and the generated box to help the MLLM evaluate the quality of candidate
boxes. Different candidate boxes are distinguished by distinct colors, and the MLLM is provided
with corresponding prompts to guide its selection.

The <selection prompt> we used is as follows:

def build_select_prompt(query, coords):
prompt = f’Please analyze the image provided
below and determine which of the bounding boxes
better captures the "{query}".\n’

prompt += """
Your task is to:
1. Identify which bounding box more
accurately includes the entire target object.
2. Provide a brief explanation for your choice.

Note: The format of the bounding box is
[x_min, y_min, x_max, y_max], representing the
top-left and bottom-right coordinates.

The coordinates for each bounding box are as follows:
"""

d = 0
colors = [’red’, ’green’, ’blue’, ’yellow’]

for a in coords:
prompt += f’- **Bbox {d+1} ({colors[d]})**: {a}\n’
d += 1

prompt += """
Return your answer in the following format:

Best Box: <Box Number>
Reasoning: <Explanation>"""

return prompt

Here, “coords” refers to the list of candidate bounding boxes.

B.3 REFINEMENT MODULE

This step mimics the human annotation process, where candidate bounding boxes are further refined
to better enclose the target object.

The <refinement prompt> we used is as follows:

def build_optimize_prompt(query, current_box):
prompt = f"""Please analyze the image provided below
and evaluate whether the current bounding box
accurately captures the "{query}".\n"""
prompt += f"The current bounding box
coordinates are: {current_box},
where:\n"
prompt += "- ‘x_min‘ = {:.2f}
(left edge)\n".format(current_box[0])
prompt += "- ‘y_min‘ = {:.2f}
(top edge)\n".format(current_box[1])
prompt += "- ‘x_max‘ = {:.2f}
(right edge)\n".format(current_box[2])
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prompt += "- ‘y_max‘ = {:.2f}
(bottom edge)\n".format(current_box[3])

prompt += """

Your task is to:
1. Assess whether the current bounding
box adequately includes the entire target object.
2. If the current box does not perfectly
capture the target object or leaves unnecessary
margins, suggest an optimized bounding box
with improved coordinates.

Note: The current bounding box may
not be accurate. Please carefully
analyze the image and improve the
coordinates if necessary.

Return your response in the following format:

Current Box: [x_min, y_min, x_max, y_max]
Optimized Box:
[x_min_optimized, y_min_optimized,
x_max_optimized, y_max_optimized]
Reasoning: <Explanation of why the optimization was made>
"""

return prompt

B.4 SEGMENTATION MODULE

We primarily use SAM2-L (Ravi et al., 2024) to generate binary masks, which only requires an input
image and corresponding visual prompts. In our case, the visual prompts are the pixel coordinates
of bounding boxes ([x1, y1, x2, y2]) output by the MLLM in the previous step.

C MORE INFORMATION ABOUT VARIOUS-LANGSEG

We provide an overview JSON file of Various-LangSeg in the supplementary materials, which con-
tains detailed information about the entire dataset. Due to file size limitations, we did not upload the
images themselves; we will release the full dataset and evaluation code upon paper acceptance.

All images were selected from external publicly available datasets, including NC4K (Lv et al., 2021),
PASCAL-S (Li et al., 2014), SBU (Vicente et al., 2016), CASIA (Dong et al., 2013), and COCO (Lin
et al., 2015), from which we collected both images and their corresponding masks, and manually
constructed the textual prompts. Specifically, the explicit semantic segmentation scenario includes
20 subcategories, such as cat, dog, and other objects with clear semantic meanings, with 7 samples
per category, resulting in a total of 140 samples. This task is relatively simple. The reasoning-guided
segmentation scenario contains 40 samples, for which we designed textual prompts requiring rea-
soning based on the spatial and contextual relationships between the masks and the original images.
This task has moderate difficulty. Finally, the generic object segmentation scenario includes four
popular binary segmentation tasks: camouflaged object detection (COD) (Fan et al., 2020), salient
object detection (SOD) (Borji et al., 2015), shadow detection (SD) (Vicente et al., 2016), and im-
age tampering detection (ITD) (Dong et al., 2013). Each subtask contains 16 samples, totaling 64
samples. This task is relatively difficult. The entire dataset comprises 244 samples in total.

Since all segmentation tasks can essentially be guided by language, Various-LangSeg certainly
cannot cover all possible scenarios. However, compared to existing datasets (Lai et al., 2024;
Kazemzadeh et al., 2014; Mao et al., 2016), Various-LangSeg is more comprehensive and better
suited for evaluating the generalization ability of language-guided segmentation models. We also
plan to extend it in the future.
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Our main effort involved selecting high-quality images and their corresponding masks from existing
datasets and manually crafting appropriate textual descriptions based on a careful understanding of
the correspondence between each image and its mask. Regarding the dataset scale, since our goal
was to establish an evaluation benchmark rather than a large-scale training set, the size of our dataset
is relatively modest—comparable to the validation set of ReasonSeg (Lai et al., 2024). We plan to
further expand this dataset in the future by incorporating additional segmentation scenarios.

Figure 5 shows the detailed statistics of the Various-LangSeg dataset.

Figure 5: Overview of the Various-LangSeg dataset, comprising 244 evaluation samples across three
segmentation scenarios. (Top) High-level distribution: Explicit Semantic Segmentation (140 sam-
ples), Generic Object Segmentation (64 samples), and Reasoning-Guided Segmentation (40 sam-
ples). (Bottom) Detailed breakdown: 20 explicit object categories (7 samples each), 4 generic tasks:
salient object, camouflaged object, shadow, and tampered object detection (16 samples each), and
the reasoning-guided category (40 samples).

D MORE VISUALIZATION RESULTS

We provide more visualization results in Figure 6. As can be seen, Seg-Agent is capable of handling
inputs in various forms. It supports multilingual inputs, with a primary demonstration of Chinese,
English, and their mixed usage. Furthermore, we present a variety of image types, including images
from web news, datasets, screenshots, cartoons, photographs taken by cameras, and AI-generated
images. The examples also cover the three types of language prompts introduced in the main text:
explicit semantic segmentation, generic object segmentation, and reasoning-guided segmentation.

These high-quality segmentation results demonstrate the strong generalization capability and broad
applicability of Seg-Agent. We have also released preliminary inference code in the supplementary
materials, and welcome readers to try it out.
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original image query & mask query & mask query & mask

Trump Biden 女人的帽子

计时工具 something for writing glassses

salient object apple stem 椅子

shadow 网球拍 hat

metal pipe A字形物体 camouflaged object

灰太狼 美羊羊 toy ball

mirror fridge light shield

something can fly bouncy object shoes

Figure 6: More visualization results of Seg-Agent. Seg-Agent can handle language inputs in various
forms, including both Chinese and English. It is also capable of processing different types of images,
such as real-world photos, captured photographs, cartoon images, and AI-generated images. These
images demonstrate Seg-Agent’s strong generalization ability and its broad range of application
scenarios. Please zoom in for a better view.

E INFERENCE PROCESS

The inference process of Seg-Agent is fully transparent and can be observed in real time. As shown
in Figure 7, we present a visualization of the complete reasoning pipeline. Given an input image and
a target text prompt “shadow”, the generation module first produces multiple candidate bounding
boxes through image augmentation and prompt-guided generation, which are then visualized on the
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GM SM RM SAM

Figure 7: The inference process of Seg-Agent. The current target object is “shadow”. GM, SM
and RM indicate generation module, selection module and refinement module, respectively. Please
zoom in for a better view.

original image in the form of Set-of-Mark (SoM) (Yang et al., 2023). Next, the selection module
chooses the most appropriate box based on the SoM-formatted image and a selection prompt. Fi-
nally, the refinement module further improves the selected box using a refinement prompt and the
SoM input. The final high-quality segmentation mask is then generated by the segmentation model
using the refined bounding box as a visual prompt. The entire process is fully open and transparent.
By carefully designing this reasoning pipeline, Seg-Agent effectively enhances the quality of the
generated masks.

Compared to directly generating visual prompts in a single step using MLLMs, we improve the
quality of visual prompts through a manually designed reasoning chain. In contrast, training-based
approaches (Lai et al., 2024; Liu et al., 2025) enhance output quality by training the model to adjust
its weights. While the methodologies differ, the underlying goal is essentially the same: to produce
more accurate and reliable visual prompts.

F ANALYSIS AND DISCUSSION

The experimental results across multiple benchmarks demonstrate the effectiveness, generalizabil-
ity, and flexibility of Seg-Agent. Compared with both training-based and training-free baselines,
Seg-Agent consistently achieves competitive or superior performance, particularly in more complex
scenarios such as reasoning-guided segmentation and mixed-scene generalization (e.g., Various-
LangSeg). This validates the strength of our explicit multi-stage reasoning design, which encourages
step-by-step visual grounding rather than relying on a single forward pass.

Several key observations emerge from the experiments:

• Progressive reasoning improves localization. Our ablation studies confirm that adding
selection and refinement steps leads to significant improvements over single-step genera-
tion. This highlights the importance of decomposing the task into interpretable subtasks,
especially for ambiguous or complex queries.

• Seg-Agent is robust across tasks and data distributions. The model performs well not
only on traditional referring segmentation datasets but also on reasoning-intensive and
multi-domain scenarios. This suggests that our prompt-based design allows the MLLM
to adapt flexibly without task-specific training.

• Zero-shot and modular design is practically valuable. Unlike many training-based
methods, Seg-Agent requires no fine-tuning and can easily integrate with newer MLLMs
or segmentation models. This makes it a highly deployable and maintainable system in
real-world applications.

G LIMITATIONS AND FUTURE WORK

Despite these advantages, Seg-Agent still has several limitations. First, its multi-stage reasoning
process requires multiple calls to MLLMs, involving three steps: generation, selection, and refine-
ment, which may result in higher latency compared to single-step methods. Second, the model’s
performance heavily depends on the quality of prompt engineering and the inherent capabilities of
the MLLM itself; even with a well-designed reasoning pipeline, suboptimal results may arise if the
underlying MLLM lacks sufficient reasoning or perception ability. Furthermore, the model is prone
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to failure in challenging cases, such as when the target object is small or visually ambiguous, when
multiple objects are present, or when the language description is vague or indirect. Of course, these
issues are common challenges faced by all language-guided segmentation models. Finally, since we
do not fine-tune or modify the segmentation model, performance bottlenecks in the segmentation
model itself can lead to failures. For example, as shown in Figure 7, the bounding box fully encloses
the shadow, yet the segmentation model fails to fully capture it.

In future work, we plan to explore more efficient prompting strategies to reduce computation while
retaining accuracy, and investigate adaptive reasoning depth based on the complexity of the in-
put query. Incorporating visual feedback loops or confidence-based control could further enhance
robustness. Finally, expanding Seg-Agent to support multi-turn interaction or conversational seg-
mentation is a promising direction for broader applicability.

19


	Introduction
	Related Work
	Various-LangSeg: A Comprehensive Evaluation Benchmark
	Method
	Problem Formulation
	Overview of Seg-Agent Pipeline
	The Forward Pass of Seg-Agent
	Why Seg-Agent Matters

	Experiments
	Experimental Setting
	Comparison With Other Methods
	Ablation Study

	Conclusion
	The Use of Large Language Models
	More Details about Seg-Agent
	Generation Module
	Selection Module
	Refinement Module
	Segmentation Module

	More Information about Various-LangSeg
	More Visualization Results
	Inference Process
	Analysis and Discussion
	Limitations and Future Work

