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ABSTRACT

Limited computation and communication capabilities of clients pose significant
challenges in federated learning (FL) over resource-limited edge nodes. A potential
solution to this problem is to deploy off-the-shelf sparse learning algorithms that
train a binary sparse mask on each client with the expectation of training a consistent
sparse server mask yielding sparse weight tensors. However, as we investigate in
this paper, such naive deployments result in a significant drop in accuracy compared
to FL with dense models, especially for clients with limited resource budgets. In
particular, our investigations reveal a serious lack of consensus among the trained
sparsity masks on clients, which prevents convergence for the server mask and
potentially leads to a substantial drop in model performance. Based on such key
observations, we propose federated lottery aware sparsity hunting (FLASH), a
unified sparse learning framework to make the server win a lottery in terms of
yielding a sparse sub-model, able to maintain classification performance under
highly resource-limited client settings. Moreover, to support FL on different devices
requiring different parameter density, we leverage our findings to present hetero-
FLASH, where clients can have different target sparsity budgets based on their
device resource limits. Experimental evaluations with multiple models on various
datasets (both IID and non-IID) show superiority of our models in closing the
gap with unpruned baseline while yielding up to ∼10.1% improved accuracy with
∼10.26× fewer communication costs, compared to existing alternatives, at similar
hyperparameter settings. Code is released as Supplementary.

1 INTRODUCTION

Federated learning (FL) McMahan et al. (2017) is a popular form of distributed training, which has
gained significant traction due to its ability to allow multiple clients to learn a shared global model
without the requirement to transfer their private data. However, clients’ heterogeneity and resource
limitations pose significant challenges for FL deployment over edge nodes, including mobile phones
and IoT devices. To resolve these issues, various methods have been proposed over the past few
years including efficient learning for heterogeneous collaborative training Lin et al. (2020); Zhu et al.
(2021), distillation He et al. (2020), federated dropout techniques Horvath et al. (2021); Caldas et al.
(2018b), efficient aggregation for faster convergence and reduced communication Reddi et al. (2020);
Li et al. (2020b). However, these methods do not necessarily address the growing concerns of highly
computation and communication limited edge.

Meanwhile, reducing the memory, compute, and latency costs for deep neural networks (DNNs) in
centralized training for their efficient edge deployment has also become an active area of research. In
particular, recently proposed sparse learning (SL) strategies Evci et al. (2020); Kundu et al. (2021b);
Mocanu et al. (2018); Dettmers & Zettlemoyer (2019); Raihan & Aamodt (2020) effectively train
weights and associated binary sparse masks to allow only a fraction of model parameters to be
updated during training, potentially enabling the lucrative reduction in both the training time and
compute cost Qiu et al. (2021); Raihan & Aamodt (2020), while creating a model to meet a target
parameter density denoted as d, and is able to yield accuracy close to that of the unpruned baseline.

However, the challenges and opportunities of sparse learning in FL is yet to be fully un-
veiled. Only very recently, few works Bibikar et al. (2021); Huang et al. (2022) have
tried to leverage sparse learning in FL primarily to show their efficacy in non-IID set-
tings. Nevertheless, these works primarily used sparsity for non-aggressive model compression,
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Figure 1: Comparison of (a) accuracy at different com-
munication budget with, ZeroFL Qiu et al. (2021) and
FedAvg. (w/ d = 1.0) (b) Accuracy vs. parameter den-
sity of each client. Proposed approaches can significantly
outperform the existing alternative Qiu et al. (2021) at
ultra-low target parameter density (d).

limiting the actual benefits of sparse learn-
ing, and required multiple local epochs,
that may further increase the training time
for stragglers making the overall FL pro-
cess inefficient Zhang et al. (2021). More-
over, the server-side pruning used in these
methods may not necessarily adhere to
the layers’ pruning sensitivity1 that often
plays a crucial role in sparse model perfor-
mance Kundu et al. (2021b); Zhang et al.
(2018). Another recent work, ZeroFL
Qiu et al. (2021), has explored deploying
sparse learning in FL settings. However,
Qiu et al. (2021) could not leverage any
advantage of model sparsity in the clients’
communication cost and had to keep significantly more parameters active compared to a target d
to yield good accuracy. Moreover, as shown in Fig. 1(b), for d = 0.05, ZeroFL still suffers from
substantial accuracy drop of ∼14% compared to the baseline.

Our Contributions. Our contribution is fourfold. In view of the above limitations, we first identify
crucial differences between a centralized and the corresponding FL model, in learning the sparse
masks for each layer. In particular, we observe that in FL, the server model fails to yield convergent
sparse masks, primarily due to the lack of consensus among clients’ later layers’ masks. In contrast,
the centralized model show significantly higher convergence trend in learning sparse masks for all
layers. We then experimentally demonstrate the utility of pruning sensitivity and mask convergence
in achieving good accuracy setting the platform to close the performance gap in sparse FL.

We then leverage our findings and present federated lottery aware sparsity hunting (FLASH), a sparse
FL methodology addressing the aforementioned limitations in a unified manner. At the core, FLASH
leverages a two-stage FL, a robust and low-cost layer sensitivity evaluation stage and a FL training
stage. In particular, the disentangling of the layer sensitivity evaluation from sparse weight training
allows us to either choose to train a sparse mask or freeze a sensitivity driven pre-defined mask. This
can further translate to a proportional communication saving.

To deal with the heterogeneity in clients’ compute-budget, we further extend our methodologies to
hetero-FLASH, where individual clients can support different density based on their resources. Here,
to deal with the unique problem of the server selecting different sparse models for clients, we present
server-side gradual mask sub-sampling, that identifies sparse masks via a form of layer sensitivity
re-calibration, starting for models with highest to that with lowest density support.

We conduct experiments on MNIST, FEMNIST, and CIFAR-10 with different models for both IID and
non-IID client data partitioning. Experimental results show that, compared to the existing alternative
Qiu et al. (2021), at iso-hyperparameter settings, FLASH can yield up to ∼8.9% and ∼10.1%, on
IID and non-IID data settings, respectively, with reduced communication of up to ∼10.2×.

2 RELATED WORKS

Model Pruning. Over the past few years, a plethora of research has been done to perform efficient
model compression via pruning, particularly in centralized training Ma et al. (2021); Frankle &
Carbin (2018); Liu et al. (2021); You et al. (2019); He et al. (2018). Pruning essentially identifies
and removes the unimportant parameters to yield compute-efficient inference models. More recently,
sparse learning Evci et al. (2020); Kundu et al. (2021b); Dettmers & Zettlemoyer (2019); Raihan &
Aamodt (2020); Kundu et al. (2020; 2019), a popular form of model pruning, has gained significant
traction as it can yield FLOPs advantage even during training. In particular, it ensures only d% of the
model parameters remain non-zero during the training for a target parameter density d (d < 1.0 and
sparsity is 100− d%), potentially enabling training compute and comm. cost if deployed for FL.

Dynamic network rewiring (DNR). We leverage DNR Kundu et al. (2021b), to sparsely learn the
sparsity mask of each client. In DNR, a model starts with randomly initiated mask following the

1We measure layer importance via the proxy of sensitivity. A layer with higher sensitivity demands higher %
of non-zero weights compared to a less sensitive layer.
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target parameter density d. After an epoch, the client evenly prunes the lowest pr% weights from
each layer based on absolute magnitude, where pr is prune rate. Note, this pr% pruning happens on
top of the sparse model with density d, allowing pr% weights to be regrown. DNR then ranks each
layer based on the normalized contribution of the summed non-zero weight magnitudes. Finally, the
client regrows total pr% weights in a non-uniform way, allowing more regrowth to the layers having
higher rank. This process iteratively repeats over epochs to finally learn the mask.

Federated learning for resource and communication limited edge. To address device heterogeneity,
existing works have explored the idea of heterogeneous training Horvath et al. (2021); Diao et al.
(2020); Yao et al. (2021) allowing different clients to train on different fractions of full-model based
on their compute-budget. On a parallel track, various optimizations are proposed in FL training
framework to accelerate convergence, thus requiring fewer communication rounds Han et al. (2020);
Gorbunov et al. (2021); Zhang et al. (2013); Li et al. (2019); Reddi et al. (2020); Islamov et al. (2021);
Albasyoni et al. (2020).

To address the issue of client resource limitations, a few research have leveraged pruning in FL Li
et al. (2020a); Jiang et al. (2022); Li et al. (2021). In particular, LotteryFL Li et al. (2020a) trained
each client to have their personalized mask with which they are able to perform well only on their
own data. Moreover, the clients often need to send full model costing bandwidth. PruneFL Jiang et al.
(2022) also asks for significant communication costs as it demands participating clients to send all
the gradient values to the server while updating the masks.

Only a few contemporary works Huang et al. (2022); Bibikar et al. (2021); Qiu et al. (2021) tried
to leverage the benefits of sparse learning in federated settings. In particular, Huang et al. (2022)
relied on a randomly initialized sparse mask, and recommended keeping it frozen throughout the
training, yet failed to provide any supporting intuition. FedDST Bibikar et al. (2021), on the other
hand, leveraged the idea of RigL Evci et al. (2020) to perform sparse learning of the clients, relied on
a large number of local epochs to avoid gradient noise, and focused primarily on only highly non-IID
data without targeting ultra-low density d. More importantly, neither of these works investigated the
key differences between centralized and FL sparse learning. With similar philosophy as ours, ZeroFL
Qiu et al. (2021) first identified a key aspect of sparse learning in FL in terms of all clients’ masks
to be within 30% of the total model weights to yield good accuracy at high compression. However,
ZeroFL suffered significantly in exploiting a proportional advantage in communication saving as
even for low parameter density d, all clients had to download the dense model and send back a 3×
denser model. Furthermore, these algorithms sacrifice significant accuracy at ultra-low d.

3 REVISITING SPARSE LEARNING: WHY DOES IT MISS THE MARK IN FL?

Table 1: FL training settings considered in this work.

Dataset Model #Params. Data- Rounds Clients Clients/Round Optimizer Aggregation Local Batch
partioning (T ) (CN ) (cr, cd) type epoch (E) size

MNIST MNISTNet 262K LDA 400 100 10, 10 32
CIFAR-10 ResNet18 11.2M 600 SGD FedAvg 1 32
FEMNIST Same as Caldas et al. (2018a) 6.6M Reddi et al. (2020) 1000 3400 34, 34 McMahan et al. (2017) 16

Note, centralized training has shown significant benefits with sparse learning in FLOPs reduction
during forward operations Evci et al. (2020), and potential training speed-up of up to 3.3× Qiu et al.
(2021) while maintaining close to the baseline accuracy, even at d ≤ 0.1. We now use a sparse
learning, namely Kundu et al. (2021b), in FL settings (refer to Table 1 for details) on CIFAR-10,
where each client separately performs Kundu et al. (2021b) to train a sparse server-side ResNet18 and
meet a fixed parameter density d, starting from a random sparse mask. After sending the updates to
server, it aggregates them using FedAvg. We term this as naive sparse training (NST). Note, due to
lack of knowledge about the pruning sensitivity for each layer, the server fails to sub-sample from the
aggregated weights to meet target non-zero parameter density d. Thus, the down-link communication
cost is higher as generally the aggregated non-zero parameter density is > d.

Observation 1. At high compression d ≤ 0.1, the collaboratively learned FL model significantly
sacrifices performance, while the centralized sparse learning yields close to baseline performance.

As shown in Fig.2(a), naive deployment of sparse learning significantly sacrifices accuracy in FL.
In particular, for d = 0.1, the trained server-side model suffers an accuracy drop of 3.67%. At even
lower d = 0.05, this drop significantly increases to 12.03%, hinting at serious limitations of sparse
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Figure 2: (a-b) Accuracy vs. round plot on deployment of off-the-shelf sparse learning in FL for
different d, (c-d) visualization of the Model’s SM in terms of Jaccard distance while training with
sparse learning for (c) centralized and (d) FL, respectively.

learning in FL. However, an off-the-shelf centralized sparse learning can yield model having close to
the baseline accuracy, even at d = 0.05.

Observation 2. As the training progresses, the sparse masks in centralized training tend to agree
across epochs, showing convergence, while the server mask in FL does lack agreement across rounds.

Definition 1. Sparse mask mismatch. For a model at round t, we define the sparse mask mismatch
(SM) smt as the Jaccard distance that is measured as follows.

smt = 1−
(
∑L

l=1 Mt
l ∩Mt−1

l )

(
∑L

l=1 Mt
l ∪Mt−1

l )
(1)

where Mt
l represents the sparse mask tensor for layer l at the end of round t. Interestingly, as depicted

in Fig. 2(a), the SM for centralized learning tends to zero as the training progresses. In contrast,
with the same model, dataset and d values, in FL, the SM remains > 0.4 indicating a substantial
distinction in the sparse mask learning between centralized and federated learning.

Observation 3. At low target density, in federated sparse learning, throughout the training rounds,
the disagreement on the later layer’s masks remains more severe than the earlier ones.

As the training progresses, in centralized learning, mask for each layer shows significant convergence

Table 2: Performance based on the different
levels of mask disagreement in centralized.

Training Use sens- Masks Layer Test
type itivity change at SM acc%

Pre-defined w/ mask frozen N – – 89.72
Pre-defined w/ mask frozen Y – – 91.66

Y layer 9-16 0.8 88.88
w/o mask frozen Y layer 1-16 0.5 84.62

Y layer 1-16 0.8 82.32

trend as measured by SM for the layer (Fig. 3(a)).
However, Fig. 3(b) shows in FL, the later layers’
masks differ significantly and continue to disagree
over rounds with SM value as high as ∼0.8. This may
be attributed to many possible mask choices due to
the later layers’ significantly fewer non-zero param-
eter allocation, compared to the initial layers, driven
by their respective pruning sensitivities. For exam-
ple, layer 1 requires 90% parameters to be present,
compared to only 5% for layer 14, with the later costing an SM of ∼0.73.

To further investigate the impact of higher SM and layer sensitivity on a model’s accuracy, we
performed five different training in centralized as described in Table 2. In particular, for the training
in row1 we randomly generate sparse masks with uniform density for all the layers. For all other
training, we first randomly create each layer’s mask by following its pruning sensitivity2 and then
decide to keep the layer mask frozen for some or all the layers. For training described in rows 3-5,
we allow a fraction of the mentioned layers’ masks to differ between consecutive epochs such that
they meet the target SM value, creating the situation of non-convergent masks. As Table 2 clearly
shows that large SM for the layers can degrade the accuracy by up to 9.34%, we can safely conclude
that disagreement of masks across epochs can significantly affect the model’s final performance.
Moreover, the model trained via sparse learning with sensitivity-driven pre-defined masks yields
better performance than the one trained with uniform density sparse mask.

4 FLASH: METHODOLOGY

To win a lottery of having a sparse network yielding high accuracy at reduced parameters, we identify
two key characteristics of sparse learning, namely, the pruning sensitivity and mask learnability
towards convergence. To explicitly adhere to these two important aspects, in FLASH, we present a

2For a sparse model it is evaluated as the ratio # of non-zero layer parameters
# layer parameters Ding et al. (2019). We use

another pre-trained model of the same architecture and target d for this evaluation.
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Figure 3: Layer-wise sparse mask mismatch (SM) vs. training epochs (rounds) plot for (a) centralized
and (b) FL, respectively. In FL, the layer layers continue to have higher SM contrary to centralized,
where every layer tend to reduce the SM as the training matures.

two-stage sparse FL method, stage 1: targeting sensitivity analysis to identify good initial sparse
mask for each layer, stage 2: targeting training to learn masks and weights. In particular, to
evaluate layer sensitivity in stage 1, the server randomly selects a small fraction of clients ([Cd]),
each locally sparse learning Kundu et al. (2021b) for few warm-up epochs (Ed) (L4-9 in Algo. 1).
Upon collection of layer-wise sensitivity from the clients, for each layer l, the server estimates average
density3 d̂l as

∑cd
i=1 dl

i

cd
, where dli is the density at layer l in ith client. As these averaged layer-wise

density values may not necessarily yield to the target density d, for a model with K parameters we
follow the following density re-calibration

dlc = d̂l.rf , where rf =
d×K∑L
l=1 d̂

l.kl
(2)

kl is dense model’s parameter size for layer l. For each layer l of the model, the server then creates a
binary sparse mask tensor that is randomly initialized, with a fraction of 1s ∝ dlc (L10). In stage
2, the server begins the training rounds starting with a sparse model initialization following the sparse
mask computed in stage 1 (L11). Particularly, at each round, the clients perform sparse learning
for E epochs (L23-29) with the choice to either train the mask or keep training on the weights with
the mask frozen (L26). The later allows the clients to intermittently share masks saving up-link cost.

However, in FL settings, the masks often show poor convergence (section 3, Obs. 2). To address
this, in stage 2, we present two sparse FL methods depending on the mask learnability being
disabled or enabled (L13). The disabled scenario (mfreez = 1) essentially translates to sparse
learning with pre-defined layer masks at initialization, allowing to only learn the weights and forcing
all the clients to use the same initialized masks. This guarantees no mask divergence issue (smt = 0
for all t). Moreover, as FLASH disentangles the sensitivity evaluation stage from the training, the
pre-defined mask in this scenario benefits from the notion of layer sensitivity. We thus aptly name
this scenario sensitivity-driven pre-defined sparse training (SPDST). Interestingly, earlier research
Bibikar et al. (2021) hinted at poor model performance with pre-defined masks, contrasting ours
where we see significantly improved model performance, implying the importance of stage 1 (as
will be elaborated in section 5).

In the enabled mask learning scenario (mfreez = 0), model masks and weights are jointly learned
during clients’ local learning, thus termed as joint mask weight sparse training (JMWST). However,
as highlighted earlier, clients’ naive sparse mask selection at the beginning of each round costs a
considerable accuracy drop (section 3 Obs. 1). JMWST allows the server to select a sparse model
for the clients at round t + 1. For clients’ target density d, the aggregated server model (L20) at
the end of round t, generally has density dS > d. To enable efficient sampling of sparse model, we
leverage the density re-calibration strategy (Eq. 2) by taking the tth round’s clients’ sensitivity into
consideration. We then perform magnitude pruning to retain the top-dlc fraction of parameters for lth
layer at the server and send the pruned model to clients at round t (L21). Intuitively, such sampling
of non-zero weights by the server reduces chances of wasted updates, and allows the layer masks
to converge faster due to alignment with the layers’ pruning sensitivity. The clients then perform
local sparse learning, yielding another set of sparse models and so on. Note, the aggregation and
sampling is simpler in SPDST, as the server model always remains at density d. In terms of yielding
convergent masks, we indeed observed a lower SM for JMWST by ∼85% compared to that in NST,
evaluated after 300 rounds on CIFAR-10. Algorithm 1 details the FLASH training methods. It is
noteworthy that, the clients are only allowed to update mask after an interval of rint, rounds, which
for JMWST is set to 1 by default, allowing the server to evaluate masks at the end of every round.

Extension to support heterogeneous parameter density. To support different density budgets
for different clients, we now present hetero-FLASH. Let us assume a total of N support densities

3which is same as sensitivity for a layer.
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Algorithm 1: FLASH Training.
Data: Training rounds T , local epochs E, client set [CN ], clients per rounds cr , target density d , sensitivity warm-up epochs Ed,

density warm up client count cd, initial value of freeze masks mfreez = 0, training algorithm A and Aggregation type Agr.
1 Minit ← createRandomMask(d)

2 Θinit ← initMaskedWeight(Minit)
3 serverExecute:
4 # Calculate the layer-wise sensitivity in stage 1
5 Randomly sample cd clients [Cd] ⊂ [CN ]
6 for each client c ∈ [Cd] in parallel do
7 Θc ← clientExecute(Θinit, Ed, 0) # m_freeze = 0
8 Sc ← computeSensitivity(Θc)

9 end
10 # Initialize a sensitivity-driven mask
11 M0 ← initMask([Sc], d)
12 Θ0 ← initMaskedWeight(M0)
13 mfreez ← freezeMask(A)#set to 1, and 0 for SPDST, and JMWST, respectively
14 # Start Stage 2
15 for each round t← 1 to T do
16 Randomly sample cr clients [Cr] ⊂ [CN ]
17 for each client c ∈ [Cr] in parallel do
18 Θt

c ← clientExecute(Θt−1, E,mfreez)
19 end
20 Θt

S ← aggrParamUpdateMask([Θt
c], Agr)

21 Θt ← subsampleServerModel(Θt
S , [Θt

c], d,mfreez)

22 end
23 clientExecute(Θc, E,mfreez) :
24 Θc0 ← Θc

25 for local epoch i← 1 to E do
26 Θci ← doSparseLearning(Θci−1 ,mfreez)

27 mfreez ← checkUpdateMask()
28 end
29 return ΘcE

dset = [d1, .., dM ], where di < di+1. Now, for hetero-SPDST, we perform a sensitivity warm-up, to
create the masks for the clients’ with the highest density dN . For any other density di, we sample a
sparse mask from that with density di+1. Note, while creating the mask from di+1 to di, we follow the
layer-wise density re-calibration approach as mentioned earlier. For hetero-JMWST, at the beginning
of each round, the server performs magnitude pruning to yield N sub models meeting N different
density levels, contrasting to the creation of one model in JMWST. Participating clients of different
densities use the corresponding sub models to start their local sparse training. In hetero-FLASH,
server performs aggregation by following a form of weighted fed averaging (WFA). In particular,
with similar inspiration as Diao et al. (2020), to give equal importance to each parameter update
in such heterogeneous settings, WFA averages the values by their number of non-zero occurrences
among the participating clients.We have provided the algorithm for hetero-FLASH in the Appendix.

5 EXPERIMENTS

Datasets and Models. We evaluated the performance of FLASH on MNISTLeCun & Cortes (2010),
Federated EMNIST (FEMNIST) Caldas et al. (2018a), and CIFAR-10 Krizhevsky et al. (2009)
datasets with the CNN models described in McMahan et al. (2017), Caldas et al. (2018a), and
ResNet18, respectively. Further model details are provided in the Appendix. For data partitioning
of MNIST and CIFAR-10, we use Latent Dirichlet Allocation (LDA)Reddi et al. (2020) with three
different α (α = 1000 for IID and α = 1 and 0.1 for non-IID). For FEMNIST, we employ the same
setting as in Han et al. (2020), which partitions the data based on the writer into 3400 clients, making
it inherently non-IID.

Training Hyperparameters. We use Clients’ starting learning rate (ηinit) as 0.1 that is exponentially
decayed to 0.001 (ηend) at the end of training. Specifically, learning rate for participants at round
t is ηt = ηinit(exp(

t
T log(

ηinit

ηend
))). In all the sparse learning experiments, prune rate is set to

0.254. Summary of the rest of the training hyperparameters can be found in 1. Furthermore, all the
experiments were performed with three different seeds. We report the final results as the averaged
accuracy with corresponding std deviation in the tables.

4Prune rate controls the fraction of non-zero weights participating in the redistribution during sparse learning.
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Table 3: Results with FLASH (SPDST, and JMWST) and its comparison with NST and PDST.

Dataset Data Distribution Density Baseline NST PDST SPDST JMWST(rint = 1) JMWST(rint = 5)
(d) Acc % Acc % Acc % Acc % Acc % Acc %
1.0 98.79± 0.06 – – – – –

IID (α = 1000) 0.1 – 97.57± 0.11 97.09± 0.18 98.21± 0.06 97.95± 0.16 98.09± 0.16
0.05 – 95.19± 0.56 94.8± 1.04 97.46± 0.14 97.24± 0.21 97.37± 0.23
1.0 98.76± 0.06 – – – – –

MNIST non-IID (α = 1.0) 0.1 – 97.36± 0.19 96.82± 0.25 97.96± 0.13 97.72± 0.12 98.11± 0.12
0.05 – 95.75± 0.31 95.34± 0.77 97.3± 0.26 97.38± 0.11 97.59± 0.07
1.0 98.45± 0.17 – – – – –

non-IID (α = 0.1) 0.1 – 96.19± 0.22 94.41± 1.23 97.22± 0.43 96.53± 0.19 96.7± 0.14
0.05 – 91.66± 1.74 91.06± 1.1 95.7± 0.37 95.83± 0.84 95.91± 0.64

1.0 88.56± 0.06 – – – – –
IID (α = 1000) 0.1 – 84.89± 0.26 86.72± 0.09 88± 0.28 87.62± 0.35 87.86± 0.13

0.05 – 77.48± 0.54 84.38± 0.12 86.99± 0.14 86.87± 0.08 87.18± 0.09
1.0 87.13± 0.18 – – – – –

CIFAR-10 non-IID (α = 1.0) 0.1 – 83.46± 0.19 85.07± 0.24 86.42± 0.49 86.45± 0.31 86.36± 0.13
0.05 – 75.1± 0.76 83.33± 0.14 85.64± 0.58 85.34± 0.27 85.9± 0.24
1.0 77.64± 0.49 – – – – –

non-IID (α = 0.1) 0.1 – 71.18± 1.23 74.82± 0.72 76.74± 1.46 74.74± 1.07 75.47± 1.18
0.05 – 61.29± 2.76 72.32± 1.05 75.47± 2.31 73.9± 1.45 75.49± 0.9

1.0 84.68± 0.20 – – – – –
FEMNIST non-IID 0.1 – 76.92± 0.42 76.01± 1.26 82.70± 0.26 83.02± 0.21 83.4± 0.26

0.05 – 61.9± 2.6 63.65± 0.86 81.18± 0.36 82.01± 0.53 82.48± 0.18

Table 4: Comparison of ZeroFL on various performance metrics with existing alternative sparse
federated learning schemes. The italicized values are taken from the original manuscript.

Dataset Data Distribution Method Density Acc% Down-link Up-link
Savings Savings

ZeroFL Qiu et al. (2021) 0.1 82 .71 ± 0 .37 1× 1.6×
IID FLASH-SPDST (ours) 0.1 88 ± 0.28 9.8× 9.8×

ZeroFL Qiu et al. (2021) 0.05 78 .22 ± 0 .35 1× 1.9×
CIFAR-10 FLASH-SPDST (ours) 0.05 86.99 ± 0.14 19.5× 19.5×

ZeroFL Qiu et al. (2021) 0.1 81 .04 ± 0 .28 1× 1.6×
non-IID FLASH-SPDST (ours) 0.1 86.42 ± 0.49 9.8× 9.8×

(α = 1.0) ZeroFL Qiu et al. (2021) 0.05 75 .54 ± 1 .15 1× 1.9×
FLASH-SPDST (ours) 0.05 85.64 ± 0.58 19.5× 19.5×

ZeroFL Qiu et al. (2021) 0.05 77 .16 ± 2 .07 1× 17.7×
FEMNIST non-IID FLASH-SPDST (ours) 0.05 81.18 ± 0.36 14.6× 14.6×

5.1 EXPERIMENTAL RESULTS WITH FLASH

To understand the importance of stage 1 in FLASH methodology, we identify a baseline training
with uniform layer sensitivity driven pre-defined sparse training (PDST) in FL. Table 3 details the per-
formance of FLASH at different levels of d, for various choices of sparse learning methods. In particu-
lar, as we can see in Table 3 column 5 and 6, the performance of both NST and PDST produced models

Figure 4: Test accuracy vs. round for
different approaches on CIFAR-10.

cost heavy accuracy drop at ultra low parameter density
d = 0.05. For example, on CIFAR-10 (α = 0.1), models
from NST and PDST sacrifice an accuracy of 16.35% and
5.32%, respectively. However, at comparatively higher den-
sity (d = 0.1), both can yield models with a lower accuracy
difference from the baseline by around 6.46% and 2.82%.
SPDST, on the other hand, can maintain close to the base-
line accuracy at even ultra-low density for all data partitions.
Interestingly, for majority of the cases, it even outperforms
JMWST yielded models. These results clearly highlight the
efficacy of both sensitivity driven sparse learning (as SPDST
> PDST) and early mask convergence (as SPDST ≈ JMWST)
in FL settings. Importantly, for increased rint in JMWST, we
observe a consistent improvement in accuracy. The inferior accuracy at rint = 1 can be attributed to
the mask divergence caused by frequent noisy gradient dependent update. We thus believe efficient
hyperparameter search including rint is essential for sparse FL model’s improved performance,
particularly for JMWST. Moreover, JMWST requires additional communication of non-zero weight
indices, contrasting SPDST, where clients do not need to send the mask at all, allowing us to yield
proportional communication saving as the model density. Fig. 4 shows the acc. vs. round comparison
among the two proposed methods on different data distributions.

Comparison with ZeroFL. Despite leveraging a form of sparse learning Raihan & Aamodt (2020),
ZeroFL required significantly higher up-link/down-link communication cost compared to the target
density d. This enables FLASH to gain a significant advantage in communication saving over ZeroFL,
particularly for SPDST, as it only asks for the reduced size parameters to be communicated between
the server and clients. In particular, we evaluate the communication saving as the ratio of the dense
model size and corresponding sparse model size with the tensors represented in compressed sparse
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Table 5: Performance of hetero-FLASH on various datasets where each client can have a density
from the set dset ∈ [0.1, 0.15, 0.2].

Dataset Data Distribution Max Client Density Hetero-SPDST Hetero-JMWST Hetero-JMWST
(dset) Acc % (rint = 1) Acc % (rint = 5) Acc %

IID (α = 1000) 98.29 ± 0.05 97.44 ± 0.23 97.83 ± 0.10
MNIST non-IID (α = 1.0) 0.2 98.29 ± 0.09 97.47 ± 0.22 97.80 ± 0.23

non-IID (α = 0.1) 97.63 ± 0.22 96.11 ± 0.75 96.25 ± 0.86

IID (α = 1000) 87.19 ± 0.26 86.37 ± 0.2 87.39 ± 0.15
CIFAR-10 non-IID (α = 1.0) 0.2 86.16 ± 0.04 84.67 ± 0.06 86.19 ± 0.24

non-IID (α = 0.1) 75.23 ± 1.26 71.3 ± 2.75 74.34 ± 0.85

FEMNIST non-IID 0.2 82.58 ± 0.24 82.2 ± 0.42 82.5 ± 0.55

row (CSR) format Tinney & Walker (1967). As depicted in Table 45, FLASH can yield an accuracy
improvement of up to 10.1% at a reduced communication cost of up to 10.26× (computed at up-link
when both send sparse models).

5.2 EXPERIMENTAL RESULTS WITH HETERO-FLASH

Table 5 shows the performance of hetero-FLASH where the clients can have three possible density
budgets as defined by the dset. We assume the maximum capacity clients’ density budget of 0.2.
To train on all the density values, we first create three sets, each having 40%, 30%, and 30% of
total clients, and corresponds to density 0.2, 0.15, and 0.1, respectively. Now, during every round,
we sample 10% from each set with corresponding target density. Similar to the trend in FLASH,
hetero-SPDST outperforms the JMWST counter-parts by up to 3.93% evaluated on the three datasets.
Also, following similar trend as with homogeneous density clients, with increased mask update
interval (rint), the performance of hetero-JMWST gets a significant boost in accuracy of up to 3.04%.

5.3 QUANTITATIVE ANALYSIS

Figure 5: (a) Layer sensitivity evaluated at the end of sensitivity warm-up stage for different client
participation size and their local epochs, (b) Comparison of server side model performance with the
initialized sparse mask based on different sensitivity evaluated from (a).

Dependence of initial sensitivity warm-up of participating clients. To understand the importance
of the clients’ participation in the warm-up, we experimented with six different scenarios. In particular,
we used two different values of participating clients ([10, 20]) each corresponding to three different
local epoch choices ([10, 20, 40]). As shown in Fig. 5(a), the yielded pruning sensitivity follows a
similar trend. Moreover, an SPDST training with mask chosen from any of these sensitivity lists
finally yield FL models with similar performances (Fig. 5(b)), clearly demonstrating the robustness
of our warm-up based sensitivity evaluation stage 1.

Comparison with ERK+ initialization. We now compare our SPDST mask initialization, with
that of parameter density distribution evaluated via ERK+ Huang et al. (2022); Evci et al. (2020).
Notably, contrary to uniform density, ERK+ scheme keeps more weights for the layers having fewer
parameters. Note here, we use SPDST, ERK+, or uniform (PDST) as the initial mask for stage
2, and keep the mask frozen throughout the training of stage 2. As shown in Fig. 6(a-b), the
mask evaluation stage 1 to initialize mask allows SPDST to consistently provide superior results
over the other two. We hypothesize this to the better layer sensitivity evaluation scheme of SPDST,
particularly at the earlier layers, allowing it to retain more information at these layers.

Importance of parameters’ weighted fed averaging at the server. Earlier literature Diao et al.
(2020) suggested a form of weighted fed averaging, for clients with different model sizes. Inspired by
that, we now investigate the necessity of WFA in FLASH. In particular, we performed experiments

5We understand for FEMNIST, ZeroFL reported significantly higher up-link saving, however, to the best of
our understanding it should be similar to their report on other datasets, i.e. ∼1.9×.
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Figure 6: (a)-(b) Performance comparison of sparse models trained with SPDST, uniform (PDST)
and ERK+ initialized layer-wise parameter density; (c-d)Performance comparison of fedavg with
weighted fedavg for (c) different training algorithms and (d) different dataset partitioning (α).
on CIFAR-10 (α = 1.0), both with and without WFA, during server aggregation. As shown in
Fig. 6(c), WFA model performs inferior to the fed averaged model in FLASH. On the contrary,
hetero-FLASH, enjoys consistent superior performance with WFA 6(c-d). The inferior performance of
WFA in FLASH may hint at the fact that if a weight is non-zero only for fewer clients, as compared
to other non-zero weights, giving it equal weight as the others nullifies its lower importance, that
may be necessary to preserve for mask convergence. On the other hand, having WFA in hetero
FLASH is necessary, as a weight’s less frequent non-zero occurrence can be due to fewer number of
high-parameter density clients in a round. Further investigations on the utility and use case of such
weighted averaging is an interesting future research direction.

Time and communication overhead for stage 1. Mask evaluation stage 1 uses one

Figure 7: performance comparison at different up-
link limits for (a) α = 1.0 and (b) α = 0.1.

round with Ed local epochs (for us Ed = 10) per
client. A normal FL stage in our settings trains
the clients for T rounds, 1 epoch per client/round.
Therefore, stage 1 increases the time by a
factor of (Ed

T + 1). Usually, Ed << T , making
the pre-training time overhead negligible.

The communication overhead of stage 1 is
also negligible compared to that in each round
for the stage 2 FL training. Each partici-
pant only needs to send L values for an L-layer
model. So, cd clients will have a total communication overhead of (L × cd × 32) bits, assuming
32-bit number representation.

Computation saving for FLASH. The training FLOPs for a layer l (F l
layer) can be partitioned

into forward operation FLOPs (F l
fwd), backward input (F l

back_in) and weight gradient (F l
back_wt)

compute FLOPs. With the assumption of no-compute cost associated to the zero-valued weights via
zero-gating logic Kundu et al. (2021a), the F l

layer for FLASH with parameter density d (d << 1.0) is

F l
layer = d× [Ful

fwd + Ful
back_in] + sa × Ful

back_wt (3)

where sa is d and 1 for SPDST and JMWST, respectively. Ful
x represents the corresponding FLOPs

associated with an unpruned layer. Thus SPDST provides improved computation benefits along with
the communication savings. Further details on FLOPs computation is provided in the Appendix.

Performance at limited communication budget. Fig. 7(a) and (b) show the performance of FL
models when the clients are communication limited. In particular, we see both PDST and SPDST
can significantly outperform other approaches in yielding a significantly well-trained model at low
comm. budget. This can be attributed to their significantly smaller model sizes, helping them to run
for higher number of rounds than others, on a limited bandwidth scenario.

6 CONCLUSIONS

This paper presented federated lottery aware sparsity hunting methodologies to yield sparse server
models with low parameter density while costing insignificant accuracy drop compared to the un-
pruned counterparts. In particular, we demonstrated two efficient sparse learning solutions specifically
tailored for FL, enabling better computation and communication benefits over existing sparse learning
alternatives. We experimentally demonstrated the superiority of our models in yielding up to ∼10.1%
improved accuracy with ∼10.26× fewer communication costs, compared to the existing alternatives
Qiu et al. (2021), at similar hyperparameter settings. Future research direction of this work includes
the theoretical understanding of our observations, and further empirical demonstrations on newer
class of models including transformers.
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A APPENDIX

A.1 MODEL ARCHITECTURES

Table 6 shows the model architectures used for MNIST and FEMNIST datasets. For CIFAR-10 we
used ResNet18 He et al. (2016) with the first CONV layer kernel size as 3 × 3 instead of original
7× 7.

A.2 HETERO-FLASH ALGORITHM

Algorithm 2 details the training algorithm in hetero-FLASH. Note that and
aggrParamUpdateMask and subSampleServerModel are the two functions that

play key role in supoorting heterogeniety in sparsity ratios for different clients. The details of these
two functions are elaborated in Algortihm 3 and 4, respectively. We plan to open-source our code
upon acceptance of the paper.
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Table 6: Architecture used for MNIST and FEMNIST datasets

MNIST FEMNIST
CONV5× 5(Co = 10) CONV5× 5(Co = 32)

max_pool max_pool
CONV5× 5(Co = 20) CONV5× 5(Co = 64)

max_pool max_pool
FC(5120, 50) FC(3136, 2048)
FC(50, 10) FC(2028, 62)

Algorithm 2: Hetero-FLASH Training.
Data: Training rounds T , local epochs E, client set [[CN1 ], ..., [CNM ]], clients per rounds cr , target density

set dset = [d1, ..., dM ], sensitivity warm-up epochs Ed, density warm up client count cd, initial value
of freeze masks mfreez = 0, training algorithm A and aggregation type Agr.

1 Minit ← createRandomMask()
2 Θinit ← initMaskedWeight(Minit)
3 serverExecute:
4 Randomly sample cd clients [Cd] ⊂ [CNM ]
5 for each client c ∈ [Cd] in parallel do
6 Θc ← clientExecute(Θinit, Ed, 0)
7 Sc ← computeSensitivity(Θc)
8 end
9 M0 ← initMask([Sc], dset)

10 Θ0 ← initMaskedWeight(M0)
11 mfreez ← freezeMask(A)
12 for each round t← 1 to T do
13 Randomly sample cr clients [Cr] ⊂ [CN ]
14 for each client c ∈ [Cr] in parallel do
15 Θt

c ← clientExecute(Θt−1, E,mfreez)
16 end
17 Θt

S ← aggrParamUpdateMask ([Θt
c], Agr)

18 Θt ← subSampleServerModel (Θt
S , [Θ

t
c], dset,mfreez)

19 end
20 clientExecute(Θc, E,mfreez) :
21 Θc0 ← Θc

22 for local epoch i← 1 to E do
23 Θci ← doSparseLearning(Θci−1 ,mcfreez )
24 mfreez ← checkUpdateMask()
25 end
26 return ΘcE

Algorithm 3: aggrParamUpdateMask
Data: Round t, aggregation type Agr [fedAvg, weightedFedAvg], clients updates [Θt] =

[Θc1 , ...,Θcr ], client data size [dsc1 , ..., dscr ]
1 if Agr is fedAvg then
2 Θt

S ← 1
Σ

cr
ci=1dsci

Σcr
ci=1dsci ·Θt

ci

3 else
4 //For hetero-FLASH
5 Wt ← initWeightFactor()
6 for each update Θci ∈ [Θt] do
7 Wt

ci ← dsci × retrieveMask(Θci)

8 Wt ←Wt +Wt
ci

9 end
10 //safeDivide(a,b): gives zero anywhere the b is queal to zero
11 Θt

S ← Σcr
ci=1[safeDivide(Wt

ci ,W
t) ·Θt

ci ]

12 end
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Algorithm 4: subsampleServerModel
Data: Current round id t, client set [Cr], aggregated Weight Θt

S of model with L layers, support density set
dset = [d1, ..., dM ] where di < di+1, model layer-wise parameter count [k] = [k1, ..., kL].

1 if size(dset) is 1 then
2 //JMWST subsampling in FLASH
3 M← initMaskWithZeros()

4 [d̂1, ..., d̂L]← avgLayerWiseDensity([Cr])
5 rf ← d1×K∑L

l=1
d̂l.kl

6 for layer l← 1 to L do
7 idx← getSortedWeightIndeices(Θt

S , l)

8 nz ← int(rf × d̂l × kl) //number of non-zeros
9 Ml[idx[: nz]]← 1

10 end
11 else
12 //For hetero-FLASH
13 for di ∈ dset do
14 Mi ← initMaskWithZeros()
15 end
16 Dt

s ← getCurrentDensity(Θt
S)

17 [d̂1, ..., d̂L]← getLayerWiseDensity(Θt
S)

18 for layer l ← 1 to L do
19 idx← getSortedWeightIndeices(Θt

S , l)
20 for di ∈ dset do
21 rf i ←

di
Dt

s

22 nz ← int(rf i × d̂l × kl)

23 Mi
l[idx[: nz]]← 1

24 end
25 end
26 end

A.3 ADDITIONAL COMPARISONS

We now compare the performance of FLASH with that of yielded via FedSpa Huang et al. (2022),
and FedDST Bibikar et al. (2021). For FedSpa, we implemented their proposed algorithm in our
settings and kept all the hyperparameters same for an apple-to-apple comparison. For FLASH, we
report the best of the accuracy yielded via models trained using SPDST and JMWST. As shown
in Table 7, FLASH generated models can outperform that generated via FedSpa with an improved
accuracy of up to 2.41%. Similar trend is observed when we compare with FedDST and as Table 8,
on MNIST dataset, FLASH can have an accuracy improvement of up to 1.41%.

Table 7: Comparison of FLASH with FedSpa Huang et al. (2022) on CIFAR-10 with ResNet18.

Data Method Density (d) Best Acc. (%) δAcc

distribution
α = 1000 FedSpa 0.05 85.63 –

FLASH 0.05 87.18 +1.55
α = 0.1 FedSpa 0.05 73.08 –

FLASH 0.05 75.49 +2.41

A.4 MORE QUANTITATIVE ANALYSIS

1. Ablation with the mask update interval rounds (rint). As mentioned in the original manuscript,
in the case of JMWST, to save communication energy we often can choose not to update the mask
every round. We thus performed ablation with an increased frequency of mask update interval round
rint from the default value of 1 (similar to Qiu et al. (2021)). Table 9 shows the results with different
rint. In particular, as we can see in the table, less frequent update intervals does not degrade the final
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Table 8: Comparison of FLASH with FedDST Bibikar et al. (2021) on pathologically non-IID MNIST.
For this comparison we used same hyperparameter settings and models as that in Bibikar et al. (2021).

Method Density (d) Communication Best Acc. (%) δAcc

Cost (GiB)
FedDST 0.2 1.0 96.10 –
FLASH 97.51 +1.41
FedDST 0.2 2.0 97.35 –
FLASH 97.69 +0.34

model performance. Moreover, a less frequent update can provide additional savings in terms of
up-link cost for the models as the masks do not change every round.

Table 9: Ablation with different mask update intervals for JMWST for a target density d = 0.1 on
CIFAR-10.

Model Data Mask update interval rounds (rint)
distribution rint = 1 rint = 2 rint = 5 rint = 10

IID (α = 1000) 87.62± 0.35 87.76± 0.07 87.86± 0.13 87.67± 0.09
ResNet18 non-IID (α = 1) 86.45± 0.31 86.26± 0.07 86.36± 0.13 86.68± 0.25

non-IID (α = 0.1) 74.74± 1.07 73.73± 1.18 75.47± 1.08 77.14± 0.22

2. Impact of Number of participating clients per round. Fig. 8 (a), shows that JMWST and
SPDST follow the same pattern at the baseline model (d = 1.0) with FedAvg. In other words, similar
to FedAvg, as the cr increases, the performance enhances. Also, for a specific cr, JMWST and
SPDST perform better than PDST and NST.

3. Impact of Batch-Normalization layer statistics. Fig 8 (b), shows the performance comparison
between batch bormalization (BN) and static batch normalization (static BN, as suggested in Diao
et al. (2020)). In particular in our setting, using BN layer statistics always outperform the static BN.

Figure 8: (a) Performance of the final trained model for different participating clients per round, (b)
Significance of BN and Static BN in final model performance.

4a. Revisiting sparse mask mismatch for NST with VGG16. Fig. 9 shows the comparison of SM
between centralized and FL settings with NST on VGG16, another popular model variant. Similar
to our observed trend with ResNet18, we see a significantly high SM for FL settings with a target
d− 0.05. This strengthens the generality of our observed limitations across different class of DNN
models.

Figure 9: (a)-(b) Sparse mask mismatch (SM) for VGG16 in (a) centralized and (b) FL settings with
NST. (c)-(d) Layer-wise SM vs. training epochs (rounds) for VGG16 in (c) centralized and (d) FL
settings, respectively, with NST.
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4b. Revisiting sparse mask mismatch for FLASH. As demonstrated in Figs 10, the sparse mask
mismatch in the case of JMWST significantly reduces, helping the mask train in a convergent way,
significantly faster than that in NST.

Fig. 11 shows the layer-wise SM, for centralized trained model (Fig. 11a) and FL trained model
with sparsity (Fig. 11b-c). In particular, the SM at later layer can significantly reduce in the case of
JMWST as compared to NST, further demonstrating the convergence ability even at the later layers.

Figure 10: Sparse mask mismatch (SM) for (a) centralized sparse learning, (b) NST, and (c) JMWST
in federated settings.

Figure 11: Layer-wise sparse mask mismatch (SM) vs. training epochs (rounds) plot for (a) centralized
and (b) FL with NST, and (c) FL with JMWST.

4c. Sparse mask mismatch as a function of d. To understand the relation of SM with d, we
performed the baseline sparse training (NST) with ResNet18 on CIFAR-10 for three different target
densities, 0.05, 0.25, 0.5. As shown in Fig. 12, the SM tends to reduce for higher density. In particular,
Fig. 12(d) shows the SM for CONV layer 16 (a later layer), after round 200. The SM reduces by
1.53× for d = 0.5 than that with d = 0.05, strengthening our general observation that SM becomes
prominent as the density gets lower.

Figure 12: (a-c) SM for FL settings for three different d of 0.05, 0.25, and 0.5, respectively. (d)
Comparison of Jaccard distance values for the 16th CONV layer of ResNet18 after round 200 for
different ds.

4d. Sparse mask mismatch as a function of number of clients. To understand the relation of
SM with number of total clients, we performed the baseline sparse training (NST) with ResNet18
on CIFAR-10 for 50 and 200 clients, respectively. As shown in Fig. 13, the SM concern persists,
irrespective of the number of clients. This strengthens the generality of our observations over total
number of clients.

5. Convergence trend of proposed algorithms. Fig. 14 shows the test accuracy vs FL rounds for
NST, PDST, SPDST, and JMWST algorithms on CIFAR-10 dataset with non-IID data distribution
(α = 1). As shown in the plots, for d = 0.05 and d = 0.1, NST has slower convergence with
lower final accuracy. Introducing consensus among the clients for the sparse mask accelerates the
convergence and enhances the final performance.

6. Communication saving and FLOPs evaluations.Employing sparse learning in FL helps par-
ticipating clients reduce both the communication and compute costs (FLOPs) for training. Without

16



Under review as a conference paper at ICLR 2023

Figure 13: (a-b) SM for FL settings for (a) 50 and (b) 200 clients. (c-d) Layer-wise SM vs. training
rounds for (c) 50 and (d) 200 clients.

Figure 14: Performance of proposed algorithms vs. comm. rounds on CIFAR-10 dataset for (a)
d = 0.05 (b) d = 0.1.

the loss of generality, we now evaluate the convolutional layer training FLOPs for FLASH, and
demonstrate the relation of parameter density d with FLOPs and communication saving. Let us
assume a layer l has a weight tensor θl ∈ RCo×Ci×h×w, where h and w are the height and width
of the convolutional kernel, and Co and Ci represent the number of filters and channels per filter,
respectively. It takes an input tensor I ∈ RCi×H×W to produce an output tensor O ∈ RCo×R×S .
Let us also assume d to be the density of non-zero in the weight tensor for all the layers. During
training, FLOPs associated to each weight tensor update can be partitioned in to three component,
namely, forward pass FLOPs (Ffwd), backward input grad FLOPs (Fback_in), and backward weight
grad FLOPs (Fback_wt). The weight sparsity helps both Ffwd and Fback_in to reduce proportionally
as given below.

Ffwd = d× Ci × (h× w)× (R× S)× Co (4)
Fback_in = d× Ci × (h× w)× (H ×W )× Co (5)

Finally, if the zero weights’ gradients flow is computed for the purpose of mask learning, then
Fback_wt can’t leverage the advantage of low parameter density. Thus during mask training of
JMWST, as the gradient needs to be dense, Fback_wt is same as that in dense computation. However,
for SPDST, zero weights remain as zero, allowing us to safely skip the associated gradient computation.
This essentially helps SPDST to extract benefits of sparsity during all the three stages of FLOPs
computation. Following Eq. shows the Fback_wt in FLASH.

Fback_wt = sa × Ci × (h× w)× (H ×W )× Co (6)

where,

sa =

{
1, for JMWST
d, for SPDST

(7)

Figure 15: Test accuracy vs.
mask update interval round.

For similar density, clients in ZeroFL also enjoys similar benefits
in Ffwd and Fback_in. However, Fback_wt can be reduced only via
introduction of activation sparsity, a. It is well surveyed in literature
that having sparse activation density as low as parameter density
may significantly impact model performance. Thus generally, a >
d that allows SPDST to enjoy a FLOPs benefit of a

d for Fback_wt.

These computations can be easily extended to linear layers. Also,
we can safely ignore the FLOPs associated to the BN layers due to
their negligible contribution to the total FLOPs.

7. Discussion on compute benefits at the edge. To extract FLOPs
benefits for irregular pruning in FLASH, we assume that the com-
pute energy for the sparse network can be avoided via the means of clock-gating Yang & Kim (2018)
of the zero-valued weights. Moreover, there has been recent development of sparsity-friendly DNN
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Figure 16: Computation and Communication relation with (a) each other (b, c) with different density
levels for SPDST algorithm.

accelerators Qin et al. (2020) that can efficiently reduce the compute cost by a significant margin.
Such accelerators can leverage the yielded sparse FL models to deploy at compute constrained edges.

8. FLOPs vs. communication cost for different density budget. To reach a target accuracy value,
we now plot the FLOPs to uplink communication cost for different density budget in Fig. 16.

9. Impact of rint. As depicted in Fig. 15, the test accuracy improves with the increase in JMWST
mask update interval rint. In particular, for both α = 0.1 and 1.0, the accuracy with increased rint
can be up to ∼1.6% and ∼0.98%, respectively. Interestingly, the improvement tend to saturate after
certain rint. Thus, we consider important sparse learning hyperparameter search as an interesting
future research direction.

A.5 DISCUSSION ON SUPPORT FOR HARDWARE-FRIENDLY SPARSITY PATTERNS

Irregular sparsity often are not well suited for hardware benefits without any dedicated architecture or
compiler support. Among the various hardware-friendly sparsity patterns recently proposed N : M
sparsity Zhou et al. (2021) has gained significant attention, due its less stricter constraints compared
to other structured sparsity patterns. For SPDST, post stage 1 sparse mask selection can be easily
extended to support the N : M sparsity. In particular, for a layer l, instead of random assignment
of dl × kl non-zero mask locations, we can partition the total non-zero elements in to Gl groups,
where each group will contain dl × kl/Gl non-zero elements. Here Gl is evaluated as kl/M , M
representing the total element size out of which we need to have a certain fraction as non-zero, and kl

represents the total number of weights for that layer. As the masks remain frozen, we are ensured
such pattern is maintained throughout the training for each client to extract the benefit. For JMWST,
we can adapt this principle in the prune and regrow policy that happens during local training of each
client. We have added a section in the appendix detailing on this important discussion.
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