
Published in Transactions on Machine Learning Research (02/2024)

Automated Design of Metaheuristic Algorithms: A Survey

Qi Zhao1 zhaoq@sustech.edu.cn

Qiqi Duan2 11749325@mail.sustech.edu.cn

Bai Yan1 yanb@sustech.edu.cn

Shi Cheng 3 cheng@snnu.edu.cn

Yuhui Shi1,† shiyh@sustech.edu.cn
1 Southern University of Science and Technology, China
2 Harbin Institute of Technology, China
3 Shaanxi Normal University, China

Reviewed on OpenReview: https: // openreview. net/ forum? id= qhtHsvF5zj

Abstract

Metaheuristics have gained great success in academia and practice because their search
logic can be applied to any problem with an available solution representation, solution
quality evaluation, and notion of locality. Manually designing metaheuristic algorithms
for solving a target problem is criticized for being laborious, error-prone, and requiring
intensive specialized knowledge. This gives rise to increasing interest in automated design
of metaheuristic algorithms. With computing power to fully explore potential design choices,
the automated design could reach and even surpass human-level design and could make high-
performance algorithms accessible to a much wider range of researchers and practitioners.
This paper presents a broad picture of automated design of metaheuristic algorithms, by
conducting a survey on the common grounds and representative techniques in terms of
design space, design strategies, performance evaluation strategies, and target problems in
this field.

1 Introduction

Metaheuristic algorithms are stochastic search methods that integrate local improvement with high-level
strategies of escaping from local optima (Glover and Kochenberger, 2006). Representatives include genetic
algorithm (GA) (Holland, 1973), simulated annealing (SA) (Kirkpatrick et al., 1983), tabu search (Glover,
1989), particle swarm optimization (PSO) (Kennedy and Eberhart, 1995), ant colony optimization (ACO)
(Dorigo et al., 1996), and memetic algorithms (Moscato, 1999), etc. In contrast to analytical methods
and problem-specific heuristics, metaheuristics can conduct search on any problem with available solution
representation, solution quality evaluation, and a certain notion of locality, in which locality denotes the
ability to generate neighboring solutions via a heuristically-informed function of one or more incumbent
solutions (Swan et al., 2022). Such capability has enabled metaheuristics to gain broad success across
various fields.

Usually, human experts are requested to manually tailor algorithms to a target problem to obtain good
enough solutions. Although many manually tailored algorithms have been reported to perform remarkably
on various problems, manual tailoring suffers from apparent limitations. First, the manual tailoring process
could be laborious, which may cost the expert days or weeks conceiving, building up, and verifying the
algorithms. Second, manual tailoring could be error-prone due to the high complexity of the target problem

†Corresponding author.

1

https://openreview.net/forum?id=qhtHsvF5zj

Published in Transactions on Machine Learning Research (02/2024)

and the high degree of freedom in tailoring the algorithm. Third, the manual process is untraceable regarding
what motivates certain design decisions, losing insights and principles for future reuse (Swan et al., 2022).
Lastly, manual tailoring is unavailable in scenarios with an absence of human experts.

The automated design is a promising alternative to manual tailoring to address the limitations. It leverages
today’s increasing computing resources to create metaheuristic algorithms to fit for solving a target problem.
Herein, the computer (partly) replaces human experts to conceive, build up, and verify design choices. Human
experts can be involved but are not necessary during the process. Therefore, the automated design could
make high-performance algorithms accessible to a much broader range of researchers and practitioners. This
is significant in response to the lack of time and labor resources. Furthermore, by leveraging computing
power to fully explore potential design choices, the automated design could be expected to reach or even
surpass human-level design. In the long run, it could be a critical tool in the pursuit of autonomous and
general artificial intelligence.

Related work: By automatically tailoring algorithm components, structures, and hyperparameter values,
the automated design could find either instantiations/variants of existing algorithms or unseen algorithms
with novel structures and component compositions (Stützle and López-Ibáñez, 2019; Qu et al., 2020). In
principle, the automated design can be conducted either offline by a target distribution of problem instances
or online by the search trajectory (Swan et al., 2022). Most automated design works follow the offline
manner, which is significant for scenarios where one can afford a priori computational resources (for design)
to subsequently solve many problem instances drawn from the target domain. We distinguish the relationship
of automated design to related topics, i.e., automated algorithm selection (Kerschke et al., 2019), automated
algorithm configuration (Huang et al., 2020; Schede et al., 2022), adaptive operator selection and hyper-
heuristics (Burke et al., 2013; Pillay and Qu, 2018), to avoid conceptual confusion:

• Automated algorithm selection (Kerschke et al., 2019) chooses algorithms from a portfolio for solving
a specific problem or problem instance. It alleviates the limitations of manual algorithm design by the
selection mechanism that allocates suitable algorithms to different problems or problem instances.
The output of the selection is one of the existing algorithms, instead of a customized algorithm for
the target problem. From this perspective, automated algorithm selection is an independent topic
with respect to automated design.

• Automated algorithm configuration appears in two kinds of literature. The first kind is offline
tuning or online controlling hyperparameters of an existing algorithm (Eiben et al., 1999; Huang
et al., 2020). The output is an instantiation of the existing algorithm. The second kind involves both
offline hyperparameter tuning and algorithm component composition via representing components
as categorical parameters (Blot et al., 2017; Aydın et al., 2017; Blot et al., 2019; Sae-Dan et al.,
2020; Tari et al., 2020a). Despite subjecting to given algorithm templates, the second kind performs
the same as a part of automated design, i.e., component composition and parameter configuration.
Thus, the second kind of automated algorithm configuration falls into automated design.

• Adaptive operator selection and hyperheuristics use high-level automated methods to select or gen-
erate low-level heuristics/metaheuristics (Burke et al., 2019). The high-level methods are usually
heuristics/metaheuristics, e.g., genetic programming (GP) (Koza, 1994), as well as machine learning
and data mining (e.g., exploratory landscape analysis) methods; the primary goal of hyperheuristics
is raising the low-level heuristics’ generality (Swan et al., 2017; Burke et al., 2019; Pillay and Qu,
2021). In comparison, methods for automated design include not only GP, but also those from other
fields, e.g., from the hyperparameter optimization of automated machine learning (Hutter et al.,
2019); goals of automated design include but are not limited to generality (Ye et al., 2022a). In
this regard, the hyperheuristics that generate metaheuristic algorithms can be seen as a part of
automated design of metaheuristic algorithms.

Many efforts have been devoted to the automated design of metaheuristic algorithms in recent years. There
have been several surveys (Kerschke et al., 2019; Huang et al., 2020; Stützle and López-Ibáñez, 2019; Schede
et al., 2022) relating to some of the efforts, but a comprehensive compilation is lacking. The surveys in
Kerschke et al. (2019); Huang et al. (2020); Schede et al. (2022) are for automated algorithm selection or

2

Published in Transactions on Machine Learning Research (02/2024)

configuration, the scopes of which differ from or only cover a part of automated design according to the
above concept discrimination. The work in Stützle and López-Ibáñez (2019) is for automated design and
focuses on the methods of design. However, apart from the methods, different types of design space, ways of
algorithm representations, paradigms for searching design choices, and metrics for evaluating the designed
algorithms are also essential for conducting automated design. A systematic survey of these essentials is
necessary but still lacking.

Contributions: This paper presents a broad picture of automated design of metaheuristic algorithms, by
conducting a survey on the common grounds and representative techniques in this field. In the survey, we first
provide a taxonomy of automated design of metaheuristic algorithms by formalizing the design process into
four modules, i.e., design space, design strategies, performance evaluation strategies, and target problems.
Unlike related surveys organized from the perspectives of methods for algorithm configuration/design, our
taxonomy involves important elements of automated design that have not been involved in related surveys,
such as types of design space, algorithm representations, and applications. Moreover, our taxonomy provides
a comprehensive understanding of the four main modules of the automated design process, which would allow
interested readers to easily overview existing studies on the modules of interest and make comparisons. Then,
we overview the common grounds and representative techniques with regard to the four modules, respectively.
We further discuss the strengths, weaknesses, challenges, and usability of these techniques, which would give
researchers a comprehensive understanding of the techniques and provide practitioners with guidance on
choosing techniques for different algorithm design scenarios. Finally, we list some research trends in the
field, which would promote the development of automated design techniques for serving and facilitating
metaheuristic algorithms for complicated problem-solving.

The rest of the paper is structured as: Section 2 introduces preliminaries of this survey; Sections 3, 4, 5, and
6 review and discuss the research progress on the four main modules of automated design of metaheuristic
algorithms, i.e., design space, design strategies, performance evaluation strategies, and target problems,
respectively; Section 7 points out future research directions; finally, Section 8 concludes the paper.

2 Preliminaries

2.1 Formulation of Metaheuristic Algorithm Design

Given a target problem, through algorithm design, we would like to find an algorithm (or algorithms) to fit
for solving the problem:

arg max
A∈S

EI
[
EP [P (A|i)]

]
, i ∈ I, P ∈ P, (1)

where A is the algorithm to be designed; S is the design space, from where A can be instantiated; i is an
instance from the target problem domain I; P : S × I → R is a metric that scores the performance of A
by a run of A on i. Because metaheuristic algorithms conduct stochastic search, we need to estimate the
expected performance over P, i.e., multiple runs of A result in multiple P ∈ P.

In reality, the distribution of problem instances in I is usually unknown; and one cannot exhaust all the
instances during the design process. The common practice of settling this is to consider a finite set of
instances from I. Consequently, Eq. (1) is reformulated as

arg max
A∈S

EIt

[
EP [P (A|i)]

]
, i ∈ It ⊆ I, ∀t ∈ {1, 2, · · · , T}, P ∈ P, (2)

where It is the finite set of problem instances that are targeted at time (i.e., iteration1) t of the design
process. The instances can either be fixed (i.e., I1 = I2 = · · · = IT) or dynamically changed during the
design process. The output of solving Eq. (2) is an algorithm (or algorithms) with the best performance on
the instances. To avoid the designed algorithms overfitting, the design process should be followed by a test
on the designed algorithms’ generalization to instances from I\{I1, I2, · · · , IT }.

1Since Equation 2 is black-box, it is often solved in an iterative manner.

3

Published in Transactions on Machine Learning Research (02/2024)

Design Strategy
Performance
Evaluation

Strategy

Targeted
Problem Design Space

Designed
algorithm

Performance
of the designed

algorithm

Figure 1: Abstractive process of automated design of metaheuristic algorithms.

2.2 Automated Design of Metaheuristic Algorithms

We abstract the general process of automated design of metaheuristic algorithms into four modules, as
shown in Fig. 1. First, the design space collects candidate design choices (e.g., computational primitives,
algorithmic operators, and hyperparameters), which regulates what algorithms can be designed in principle.
Second, the design strategy provides a principle way to design algorithms by selecting and assembling design
choices from the design space. Third, the performance evaluation strategy defines how to measure the
performance of the designed algorithms. The measured performance guides the design strategy to search for
desired algorithms. Finally, because the design aims to find algorithms to fit for solving a target problem, the
target problem acts as external data to support the performance evaluation. The four modules constitute
this survey’s taxonomy of related research efforts.

2.3 Survey Scope

As stated in Section 1, the automated design, in principle, can be conducted either offline with a target
distribution of problem instances or online with the search trajectory. Most automated design works follow
the offline manner. In contrast, the online manner is often referred to in hyperheuristic or adaptive operator
selection literature (related surveys can be found in Burke et al. (2013) and Pillay and Qu (2018)). The
scope of this survey is the research efforts on offline automated design.

3 Design Space

The design space defines what metaheuristic algorithms can be found in principle. From the perspective of
the elements within the design space, the current design space may be classified into two categories, namely,
the design space with computational primitives and the design space with existing algorithmic operators.
We first overview the research progress on the design space with computational primitives and discuss its
strengths, weaknesses, and challenges in subsection 3.1. We then overview the design space with existing
algorithmic operators, with a discussion on its strengths, weaknesses, and challenges in subsection 3.2.
Finally, we analyze the usability of the two categories and their corresponding algorithm representations at
the end of the section.

3.1 Design Space with Computational Primitives

Computational primitives define the elementary actions for computation. They include: arithmetic prim-
itives, e.g., +, −, ∗, /; trigonometric primitives, e.g., sin(), cos(); probabilistic and statistic primitives,
e.g., max(), mean(); operating instructions, e.g., swap, duplicate; etc. The design space consisting of these
primitives enables designing metaheuristic algorithms by choosing primitives from the space, combining the
chosen primitives as algorithmic operators, and composing the operators as an algorithm. The ways of
representing algorithms over this design space include tree representation and linear array representation in
the literature.

Tree representation with computational primitives: The binary GP-style tree (Koza, 1994) is the
dominant representation for algorithms designed over computational primitives (Poli et al., 2005a;b; Burke
et al., 2010; Vázquez-Rodríguez and Ochoa, 2011; Richter and Tauritz, 2018; Richter et al., 2019). As shown

4

Published in Transactions on Machine Learning Research (02/2024)

+

* *

w x1 x2-

1 w

Figure 2: Example of a metaheuristic operator represented by a binary GP-style tree. This example repre-
sents the whole arithmetic crossover operator (Eiben et al., 2003), where x1 and x2 are the input variables
(i.e., two parent solutions), w is a weight parameter, and +, ∗, − are primitives. The operator performs
w ∗ x1 + (1 − w) ∗ x2 in mathematical form.

in Fig. 2, terminals of the tree are the inputs, including variables, parameters, and constants; non-terminals
are the computational primitives. The operation specified by the computational primitive performs by using
the values obtained from its child nodes; this process repeats until the root node is reached.

The tree was usually employed to represent a single algorithmic operator instead of an entire algorithm (Poli
et al., 2005a;b; Burke et al., 2010; Vázquez-Rodríguez and Ochoa, 2011; Richter and Tauritz, 2018; Richter
et al., 2019), because representing an entire algorithm leads to a large tree and could be infeasible to find an
appropriate tree over the large search space (Woodward and Bai, 2009). An algorithm template is required
to insert the operator represented by the tree to an algorithm. The template determines the algorithm
structure, i.e., the execution order and logic of the involved operators. For example, in Poli et al. (2005a)
and Poli et al. (2005b), the particle update operator was represented by a tree and designed; then, the
designed operator was inserted into the PSO template (i.e., a recursive process of particle velocity update,
particle location update, and best particle update) (Kennedy and Eberhart, 1995). Other examples include
representing the mating selection operator of GA (Richter and Tauritz, 2018) and the individual selection
operator for mean-update in CMA-ES (Richter et al., 2019).

Due to GP tree’s expressiveness in representing programs over the primitives, the tree representation has
been widely incorporated into the design space with computational primitives. An open challenge of using the
tree representation is avoiding underfitting and overfitting. Current GP-based automated design literature
presets the tree’s size or structure (Richter et al., 2019; Nguyen et al., 2022), which can be seen as a means
of regularization that mitigates over-fitting. More strategies, e.g., model (i.e., tree) selection that determines
the optimal amount of model complexity (Hastie et al., 2009), are worth investigating in the automated
design field to cope with the challenge. The GP generalization survey in Agapitos et al. (2019) provides a
comprehensive analysis of these strategies. Another challenge is that the tree has been limited to represent
a single algorithmic operator. The indirect encoding (Eiben and Smith, 2015; Stanley et al., 2019) may
alleviate this challenge. Its generative and developmental nature allows learning and reusing building blocks
of the tree, which could help improve the search efficiency and scale up the complexity of the algorithm being
represented (Eiben and Smith, 2015).

Linear array representation with computational primitives: It uses a linear array of computational
primitives to represent a metaheuristic operator (Goldman and Tauritz, 2011; Woodward and Swan, 2012).
An example is shown in Figure 3. The primitives execute sequentially along with the array; primitives are
associated with indexes and parameters to determine which input variable(s) the primitive should execute
on. Similar to the tree representation, the linear array was utilized to represent a single algorithmic operator
instead of an entire algorithm (Goldman and Tauritz, 2011; Woodward and Swan, 2012) because of the weak
expressiveness of the linear array. Related works include representing the crossover (Goldman and Tauritz,
2011) and mutation (Woodward and Swan, 2012) operators of GAs.

A way of augmenting the expressiveness is using the Push language (Spector, 2001) to map the linear array
of primitives to an executable algorithm (Lones, 2019; Kamrath et al., 2020; Lones, 2021). Push is a Turing-
complete, stack-based typed language used in GP (Spector, 2001). With Push, the primitives are typed, and
each primitive executes upon its corresponding type stack (Lones, 2021), rather than executing sequentially
along with the array. This stack-based typed system enables the linear array to be more expressive and

5

Published in Transactions on Machine Learning Research (02/2024)

[swap(3, 5), merge(1, r, 0.7)]

Figure 3: Example of a metaheuristic operator represented by a linear array of computational primitives.
The example is derived from Goldman and Tauritz (2011). It represents a crossover operator consisting of
a swap and merge primitives. The indexes and parameters associated with the primitives are in brackets.
This operator produces offspring by first swapping the 3rd element of parent 1 and the 5th element of parent
2, then merging the 1st element of parent 1 (by a weight of 0.7) with a random element of parent 2.

ensures the represented algorithm to be syntactically valid (Lones, 2021). The linear array representation
with Push was used to represent individual-based local search (Lones, 2019; Kamrath et al., 2020) and
population-based (Lones, 2021) algorithms.

Overall, using the design space with computational primitives indicates that the design is from scratch with
little human bias. Although unbiasedness makes the design space more difficult to search than biased ones,
it provides the design space generalization to different target problems. Furthermore, this kind of design
space has the potential to produce innovative algorithms that go beyond human experience and surpass
the performance of existing algorithms. This potential is appealing and could attract more researchers and
practitioners to study, analyze, interpret, and apply automated design techniques with the advancement of
representations and methods for manipulating the representations.

3.2 Design Space with Algorithmic Operators

Operators, e.g., the single-point crossover (Eiben et al., 2003), tournament selection (Eiben et al., 2003),
greedy randomized construction (Feo and Resende, 1995), and tabu list mechanism (Glover, 1986), are the
functional components of an algorithm. They have been used as building blocks to constitute the design
space. This design space enables designing metaheuristic algorithms via choosing operators from the space,
composing the chosen operators as an algorithm, and configuring endogenous hyperparameters. The ways
of representing algorithms over this design space include linear array representation, graph representation,
and tree representation in the literature.

Linear array representation with algorithmic operators: The linear array representation is the com-
mon option in the literature with design space with algorithmic operators. It uses categorical identifiers to
index operators and numerals to refer to (conditional) hyperparameter values; an algorithm is subsequently
represented by a linear array of the identifiers and numerals (Oltean, 2005; Dioşan and Oltean, 2009; Khud-
aBukhsh et al., 2009; Lopez-Ibanez and Stutzle, 2012; van Rijn et al., 2016). The array is normally with a
fixed length for easy manipulation. The common practice of executing the array of operators is predefining
an algorithm template that maps the linear array to an executable algorithm. For example, in Blot et al.
(2019), a local search template was constructed by four components, i.e., selection, exploration, perturba-
tion, and archive; the template organizes the linear array of operators and parameters into a local search
algorithm. in Villalón et al. (2022), the PSO template (Shi and Eberhart, 1998) was adopted to map the
linear array to a variant of PSO.

Oltean (2005) and Dioşan and Oltean (2009) provided an alternative to the predefined template, in which
each operator was associated with a sequence number; the operators executed according to the sequence.
This results in unfolded algorithms with serial executions of operators. The Backus Naur Form grammar
(Ryan et al., 1998) was introduced as another alternative to the template (Mascia et al., 2013). It has been
widely employed (Tavares and Pereira, 2012; Mascia et al., 2014; Pagnozzi and Stützle, 2019; Miranda and
Prudêncio, 2020). As shown in Fig. 4, the grammar is formalized as a tuple (N, T, S, P), where N is the
non-terminals (operators); T is the terminals (the algorithm’s inputs, e.g., parameters); S ∈ N is called
axiom; P is production rules that manage the operators’ execution. This grammar ensures the syntactic
validity of the represented algorithm by appropriately setting the production rules (Ryan et al., 1998).

Graph representation with algorithmic operators: In contrast to the linear array representation that
limits the designed algorithms’ structure within the predefined template or production rules, the graph is
a well-defined format describing arbitrary orderings of a process, resulting in flexible algorithm structures.

6

Published in Transactions on Machine Learning Research (02/2024)

N = initialization, crossover, mutation, selection

T = number cross, prob reset

S = <algorithm>

P = the following production rules:

<initialization>::= uniform random | Latin hypercube sample.

<crossover>::= one-point | 𝑛-point(number cross 𝑛).
<mutation>::= reset(prob reset).

<selection>::= tournament | roulette wheel | greedy.

number_cross::= 1 | 2 | 3.

prob_reset::= 0.1 | 0.2 | 0.3.

<algorithm>::= <initialization><selection><crossover><mutation><selection> |

<initialization><selection><mutation><selection>.

<algorithm>::= <uniform random initialization><tournament mating selection><one-point

crossover><reset(prob reset=0.2)><greedy selection>

(a) Grammar.

N = initialization, crossover, mutation, selection

T = number cross, prob reset

S = <algorithm>

P = the following production rules:

<initialization>::= uniform random | Latin hypercube sample.

<crossover>::= one-point | 𝑛-point(number cross 𝑛).
<mutation>::= reset(prob reset).

<selection>::= tournament | roulette wheel | greedy.

number_cross::= 1 | 2 | 3.

prob_reset::= 0.1 | 0.2 | 0.3.

<algorithm>::= <initialization><selection><crossover><mutation><selection> |

<initialization><selection><mutation><selection>.

<algorithm>::= <uniform random initialization><tournament mating selection><one-point

crossover><reset(prob reset=0.2)><greedy selection>

(b) An algorithm instantiated according to the grammar.

Figure 4: Example of grammar for designing genetic algorithms. In (a), the production
rule <initialization> means that the initialization operator can be either uniform random or
Latin hypercube sample; the meaning of other rules is in the same fashion. According to the <algorithm>
rule, two elitism GA structures can be represented: one searches by crossover and mutation; the other
searches by mutation only. An algorithm instantiated by the rules is shown in (b).

(0) tournament
mating selection

Input
tournament

mating
selection

Output

1 2 3 4

0 1 2 3

4

(1) reset
mutation

(2) greedy
selection

(1) one-point
crossover

reset
mutation

greedy
selection

one-point
crossover

5

Figure 5: Example of a metaheuristic algorithm represented by a directed acyclic graph. The example is
derived from Ryser-Welch et al. (2016). Nodes indexed with 1, 2, 3, 4 represent algorithmic operators. “(0)"
for node 1 means that node 1 connects from node 0; the meaning for other nodes is in the same fashion. The
exemplified algorithm consists of one input, one output, and three operators 1, 2, 3. Operator 4 is inactivated
because it is not on the path from the input to the output.

Nodes of the graph refer to operators from the design space; directed edges manage the operators’ execution
flow. Specifically, the directed acyclic graph from Cartesian GP (Miller, 2011) was employed in Kantschik
et al. (1999); Shirakawa and Nagao (2009); Ryser-Welch et al. (2016), in which each node is connected from
a previous node or the input in a feed-forward manner; the nodes on the path from the input to the output
are activated and constitute the represented algorithm. An example is depicted in Fig. 5.

A more flexible directed cyclic graph representation was proposed in Tisdale et al. (2021), in which nodes
were allowed to be connected from multiple previous nodes, and edges were associated with weights and
orders to determine i) the computational resources allocated to nodes, ii) the inputs and outputs of nodes,
and iii) the starting point of the represented algorithm. These features allow the graph to express various
(µ/p + λ) and (µ/p, λ) EA structures. The graph representation in Tisdale et al. (2021) is well-developed to
express EA structures but lacks generalization to describe other types of metaheuristics. For this, Zhao et al.
(2022; 2023a) proposed a new graph representation, in which i) the directed edges enable sequence structures
of operator compositions; ii) each node is open to connecting forward to multiple nodes, allowing branch
structures; and iii) cycles realize loop structures. These principles enable the graph to represent different

7

Published in Transactions on Machine Learning Research (02/2024)

types of metaheuristic algorithms, e.g., algorithms with unfolded tandem operators, algorithms with inner
loops of local search, and algorithms with multiple pathways.

Tree representation with algorithmic operators: The binary GP-style tree (Koza, 1994) was also
considered to represent an algorithm over operators (Smorodkina and Tauritz, 2007; Rivers and Tauritz,
2013). Terminals of the tree are the algorithm’s inputs. Non-terminals of the tree are the algorithm’s
operators and (conditional) hyperparameters from the design space. This representation is similar to the
tree representation with computational primitives in Fig. 2. The difference is that the non-terminals change
from computational primitives to operators.

Overall, the design space with existing algorithmic operators is more compact than that with computational
primitives. Furthermore, using this design space allows the design inheriting from prior expert knowledge and
experimentation. The compact and knowledge-induced space makes the design over the space possibly easier
and accessible with fewer computing resources than that over the space with computational primitives. The
weakness is that the space may bias the designed algorithms in favor of human-made ones, thereby reducing
the flexibility and innovation potential; besides, users may need to select and collect operators to form the
space by themselves, which is a new burden.

3.3 Usability

The usability of different kinds of design space and representations varies in different algorithm design scenar-
ios. The design space with computational primitives generally requires a large amount of computing resources
to fully explore. This design space would be desired for metaheuristic researchers because of its innovation
potential. The design space is not the first choice for practitioners and researchers from other communities
because it is not easy for these users to interpret the algorithms derived from computational primitives.
The tree representation is preferred when using this design space due to the tree’s strong expressiveness and
maturity along with the advancement of GP.

The design space with existing algorithmic operators can be dense, which makes the space accessible to
scenarios with limited computing resources. Furthermore, the space can be formed with good design choices
from prior algorithms and the user’s domain expertise. Therefore, this space is recommended if such prior
algorithms or expertise are available. If the target problem is not complicated and does not require a
complex algorithm, the linear array representation may be considered since it is easy to be implemented and
manipulated; otherwise, the graph representation is advised because of its strong expressiveness. In addition,
the graph representation is easy to understand, which is important for users outside the metaheuristic
community.

Both the design space with computational primitives and that with algorithmic operators are mixed and
conditional, no matter what representation is used. That is, the space is a mix of discrete primitives/opera-
tors and continuous hyperparameter values2; the chosen operator conditions what hyperparameters will be
involved. The mixed and conditional nature requires specific design strategies (detail in Section 4) to handle.
Model-free heuristic methods may be required for directly manipulating the mixed and conditional space;
otherwise, the space should be projected to another space with a single type of entities (e.g., discretizing
continuous hyperparameter values) and align the representations with different conditional hyperparameters
to a unified prototype, in order to leverage model-based and learning-based methods for manipulation.

4 Design Strategies

The design strategy is a principled way to generate metaheuristic algorithms over the design space. Based on
whether there is statistical inference that guides the design process, current design strategies may be classified
into two categories, i.e., model-free strategies and model-based strategies. We first overview the model-free
design strategies and discuss their strengths, weaknesses, and challenges in subsection 4.2. We then overview
the model-based design strategies with a discussion on its strengths, weaknesses, and challenges in subsection
4.1. Finally, we analyze the usability of the two categories at the end of the section.

2Some hyperparameters may be discrete.

8

Published in Transactions on Machine Learning Research (02/2024)

4.1 Model-Free Strategies

Model-free strategies search for desired algorithms in a trial-and-error fashion. They mainly include local
search and evolutionary search in the literature.

Local search: It mainly refers to the iterative local search (Lourenço et al., 2003) utilized in the ParamILS
pipeline (Blot et al., 2019; Tari et al., 2020a; KhudaBukhsh et al., 2009). It is usually incorporated with the
design space with algorithmic operators. The key steps are local improvement and global perturbation, in
which the former changes one dimension of the algorithm representation; the latter reinitializes the current
algorithm once reaching a local optima (Hutter et al., 2009). The local search is often conducted over a
dense design space with good choices from prior expert knowledge and experimentation. Therefore, the
design strategy itself is often deemphasized.

Evolutionary search: Evolutionary search (Eiben et al., 2003) is a more popular design strategy and is
widely used in the GP-based algorithm design literature. The algorithm representation determines what
specified evolutionary operations can be used. For the tree representation, the sub-tree crossover and muta-
tion are common options (Poli et al., 2005a;b; Richter and Tauritz, 2018; Richter et al., 2019; Smorodkina
and Tauritz, 2007; Rivers and Tauritz, 2013). That is, for a pair of tree representations, a node is randomly
selected from each tree, respectively, and then, the sub-trees starting at the selected nodes are exchanged
(crossover); each sub-tree starting at a randomly selected node is reinitialized (mutation) (Eiben et al.,
2003). For the linear array representation, various standard evolutionary crossover and mutation are avail-
able (Goldman and Tauritz, 2011; Woodward and Swan, 2012; Oltean, 2005; Dioşan and Oltean, 2009; van
Rijn et al., 2016; Ryan et al., 1998; Ye et al., 2022a). Evolutionary search is also employed as a meta-learner
within the context of meta-learning, such as learning the update rules of evolutionary strategies (ES) (Lange
et al., 2023). In particular, Lange et al. (2023) parameterized the update rule of ES by a neural work
with the self-attention mechanism to fulfill the invariance in the ordering of ES solutions; the parameters
were optimized by evolutionary search, resulting in new ES capable of generalizing to unseen optimization
problems.

Evolutionary search is an adaptive system (Holland, 1962) that provides higher-level adaptation across
different target problem instances than local search. The adaption is realized by evolving a population of
algorithms fitting across the problem instances. The adaption can be further boosted by evolving from easy
to difficult instances (if the difficulty is accountable), in which the knowledge found from easy instances can
be anchors to enhance the adaption to difficult instances.

An open challenge behind evolutionary design strategies, as well as local search ones, is the lack of principles
for handling the conditional design space, i.e., the chosen algorithmic operator conditions what hyperpa-
rameters should be involved. The conditional design space essentially makes the algorithm design task to
be bi-level. The upper-level searches for the optimal operator composition, and the nested lower-level tunes
the hyperparameters within the operators chosen at the upper level. Principle strategies for managing the
bi-level search deserve more investigation.

4.2 Model-Based Strategies

Model-based strategies use stochastic or statistical models to guide the algorithm design process. They
include estimation of distribution, Bayesian optimization, reinforcement learning, and the emerging large
language models in the literature.

Estimation of distribution: The “estimation of distribution” was the design strategy in irace (López-
Ibáñez et al., 2016) 3 It is usually incorporated with the design space with algorithmic operators and the
linear array algorithm representation. Its main idea is to build and sample an explicit probabilistic model of
the distribution of optimal algorithms over the design space. Specifically, each entity (an algorithmic operator
or hyperparameter) of the linear array algorithm representation is assumed to follow a particular distribution;
the multinomial distribution and normal distribution are assumed for categorical operators/hyperparameters
and numerical hyperparameters, respectively. The probabilistic model of the distribution is formed in an

3Note that irace did not claim its design strategy as estimation of distribution (López-Ibáñez et al., 2016). We abstract the
strategy as an “estimation of distribution” for ease of description.

9

Published in Transactions on Machine Learning Research (02/2024)

Sample algorithms

Train surrogate to predict
algorithms’ performance

Update surrogate with
the new algorithm

Sample new algorithm via
maximizing acquisition

function

Figure 6: Workflow of Bayesian optimization for algorithm design.

iterative fashion; each iteration consists of three steps: 1) sampling candidate algorithms according to
the particular distribution; 2) selecting promising algorithms among the candidate algorithms by means of
racing (Maron and Moore, 1997) (detailed in Section 5.3); and 3) updating the distribution by the promising
algorithms to approach the optimal distribution. The distribution at the initial iteration can be formed by
randomly sampled algorithms or user-specified ones.

The “estimation of distribution” is widely used in the literature (Lopez-Ibanez and Stutzle, 2012; Franzin
and Stützle, 2019; Bezerra et al., 2014; 2016; Pagnozzi and Stützle, 2019; Diaz and López-Ibáñez, 2021;
Brum et al., 2022) because its fast convergence and the popularity of irace (López-Ibáñez et al., 2016).
In its default setting, each entity of the linear array algorithm representation was assumed to follow an
independent univariate distribution for ease of manipulation (López-Ibáñez et al., 2016). This indicates
the orthogonality among the entities, which is usually not the case and may make the design premature.
Learning the covariance of distribution and leveraging other advanced methods, e.g., smoothing the update
of the distribution (Wierstra et al., 2014), may mitigate the premature issue.

Bayesian optimization: Bayesian optimization is popular in hyperparameter optimization in the auto-
mated machine learning field (Hutter et al., 2011; 2019; Lindauer et al., 2022), which has been introduced
in metaheuristic algorithm design (Tang et al., 2021; Ye et al., 2022a). It is used to search the design
space with algorithmic operators and manipulate the linear array algorithm representations. Its core idea is
learning a surrogate that models the mapping from algorithms to their performance on the target problem.
The sampled algorithm for training the surrogate is obtained by maximizing the acquisition function. The
random forest can be adopted as the surrogate because algorithms should be represented as a mix of numeral
parameters and categorical operators/parameters, and random forest supports the mixed training data. The
expected improvement (Jones et al., 1998) was utilized as the acquisition function (Hutter et al., 2011) due
to its closed-form solution assuming that the designed algorithm’s performance follows a normal distribution.
The workflow is depicted in Fig. 6.

Bayesian optimization obeys a similar iteration process (i.e., algorithm sampling and model update) with
estimation of distribution but with two unique features. First, Bayesian optimization leverages a low-
complexity surrogate model to predict the algorithm’s performance, which saves computational effort at the
cost of potential prediction error. Second, the acquisition function balances the exploration and exploitation
in sampling over the design space. The balance is realized by preferring a new sample (algorithm) with high
predicted performance (exploitation) and uncertainty (exploration).

Bayesian optimization is acknowledged to perform well on low-dimensional problems. There would be room
for improving its scalability to high-dimensional design scenarios. The choice of surrogate models is another
open issue. Metaheuristic algorithm design is black-box, in which the landscape of algorithm performance
prediction varies when facing different target problems. Apart from the random forest, it is worth having
more surrogate choices, e.g., neural networks, to improve the surrogate’s accuracy and cope with different
design scenarios (regarding target problem types, data richness, computing resources, etc.). Besides, the
models can only manipulate fixed-length linear array representations of algorithms. The fixed-length array
limits the designed algorithm’s structures, subsequently weakening the innovation that can be discovered
and leading the model-based strategies only to approach a sub-region of the design space.

10

Published in Transactions on Machine Learning Research (02/2024)

Agent’s action

Reward & State

Environment

Sample algorithms based
on the policy

Evaluate algorithms’
performance Update the policy

Figure 7: Workflow of reinforcement learning for algorithm design.

Reinforcement learning: The Markov decision process was introduced to design metaheuristic algorithms
in Adriaensen and Nowé (2016); Meng and Qu (2021). It is executed over the design space with algorithmic
operators. The state refers to the operators from the design space (Meng and Qu, 2021) or the algorithms
constituted by the operators from the design space (Adriaensen and Nowé, 2016). The transition probability
between each pair of states is learned according to the constituted algorithms’ performance on the target
problem instances. Operators or algorithms with better performance have higher transaction probabilities
and are more likely to be chosen. The Markov decision process reveals the intrinsic relationships between
each pair of design choices and their contributions to the overall performance (Adriaensen and Nowé, 2016).

Tabular reinforcement learning was employed in Buzdalova et al. (2014); Meng and Qu (2021), in which a
tabulation records the reward and penalty of each design choice. Modern reinforcement learning approaches,
e.g., deep Q-network (Mnih et al., 2015) and proximal policy optimization (Schulman et al., 2017), were
introduced recently (Schuchardt et al., 2019; Sharma et al., 2019; Yi et al., 2023b;a). The action space is
the design space with algorithmic operators. The state refers to the information from evaluating the current
algorithm on certain problem instances, including features of the instances (e.g., the number and capacity of
vehicles when targeting vehicle routing problems (Yi et al., 2023b)), features of the algorithm’s solutions to
the instances (e.g., solutions’ fitness improvement over initial solutions (Yi et al., 2023b)), etc. In particular,
the action of Sharma et al. (2019); Sun et al. (2021); Yi et al. (2023b;a) is modifying a certain operator of
the current algorithm, resulting in an algorithm with adaptively changed operators during problem-solving.
Instead of using a fully connected policy network that only considers the current problem-solving state, Sun
et al. (2021) proposed to adopt a recurrent neural network to capture the time-dependent relations from
the information till the current state. While the policy is typically learned from scratch, Shala et al. (2020)
proposed to use existing ES as a teacher and learn the policy of CMA-ES’s step-size adaptation upon the
teacher by the guided policy search (Levine and Abbeel, 2014), which accelerated the policy learning process.
The general framework of reinforcement learning for metaheuristic algorithm design is given in Fig. 7.

Although reinforcement learning is less used than local and evolutionary design strategies, it is promising
in automated algorithm design due to three appealing features. The first is the fine-grained design. Re-
inforcement learning can learn to design at each time step rather than at each episode (i.e., iteration in
the context of iterative local or evolutionary search-based design strategies). This enables building up an
algorithm operator-by-operator or primitive-by-primitive, which could be expected to be more efficient than
building the whole algorithm at once. The second is the value function. The value function realizes long-
term planning of the design with consideration of not only the current state but also future state during a
problem-solving. The third is the neural network policy model that restores the design knowledge within the
neurons, which enables future reuse to unseen problem instances or transfer to related problems by transfer
learning (Taylor and Stone, 2009; Zhu et al., 2023) or continual learning (Khetarpal et al., 2022) techniques.

One concern is that the algorithms derived from the policy are often in linear array representations. Current
studies limit the algorithms to the sequential execution of the array. It is worth studying encoding-decoding
mapping between the representation manipulated by the agent’s action and the executable algorithm to bring
innovations in algorithm structures. Another concern is that the reward cannot be calculated in scenarios
with fine-grained design from scratch unless all actions have been collected to form a complete algorithm.
This arises the sparse reward challenge.

11

Published in Transactions on Machine Learning Research (02/2024)

Large language models: Language is a complex, intricate system of human expressions (Zhao et al.,
2023b). By pre-training Transformer models (Vaswani et al., 2017) over large-scale corpora, large language
models (LLMs) are equipped with human knowledge memorization and compositionality capabilities. These
capabilities enable LLMs to approximate or even surpass human decisions at an unprecedented level of
performance (Zhao et al., 2023b; Mialon et al., 2023). Some works have proposed leveraging LLMs as
design strategies to design metaheuristic algorithms. They leverage LLMs through in-context learning, i.e.,
providing LLMs with a textual prompt and several algorithm demonstrations, LLMs generate algorithms by
completing the word sequence of the input text, without training or gradient update (Zhao et al., 2023b).
In detail, Romera-Paredes et al. (2024) proposed FunSearch. Given an algorithm template (e.g., a greedy
algorithm), FunSearch prompts a pre-trained LLM (Codey (cod, 2023)) to generate a population of programs
(code snippets) of the key component (e.g., the priority function of the greedy algorithm); the programs
are then evaluated, and feasible ones are sent to a database; the best k programs in the database are
selected as new demonstrations in the prompt for the next round of program generation. The above process
iterates to find better programs. Precisely, the prompt consists of a description of the target problem, the
k demonstrations, and the algorithm template with the key component being empty. Such a prompt aims
to let the LLM spot patterns across the best programs and complement the key component in the template
based on the patterns. Besides, FunSearch employed an island model that evolves multiple subpopulations
of programs, which encourages the discovery of diversified programs. FunSearch discovered new algorithms
that improve upon current ones on the cap set and online bin packing problems. This effectiveness is believed
to be attributed to the LLM that acts as a source of diverse programs with occasionally interesting ideas
rather than using much context about the target problem (Romera-Paredes et al., 2024).

Concurrently, Liu et al. (2024) proposed using the algorithm evolution using large language model (AEL) to
design the guided local search algorithm (Voudouris and Tsang, 1999). It adopted an LLM to perform the
roles of initialization, crossover, and mutation of an evolutionary process for evolving algorithms. The prompt
describes the algorithm design task, parent algorithms, prompt-specific hints, expected output, and other
hints. The prompt-specific hints instruct the LLM to perform different roles. Experiments on the traveling
salesman problem (TSP) showed that with GPT-3.5-turbo, AEL could evolve elite algorithms in two days
with minimal human effort and no model training. Ye et al. (2024) proposed language hyperheuristics
(LHHs) that leverage LLMs as high-level automated methods to generate low-level heuristics. In particular,
the reflective evolution was presented, in which a generator LLM is for generating heuristics and a reflector
LLM is for reflecting hints from the heuristics to guide the next round of generation.

Overall, LLMs bootstrap from rich human knowledge, which could be promising engines for designing algo-
rithms concerning designing from scratch. With LLMs’ compositionality over the prior knowledge, an explicit
design space is no longer necessary, enabling to discover innovative algorithms. The above works (Romera-
Paredes et al., 2024; Liu et al., 2024; Ye et al., 2024) demonstrate such promise. Meanwhile, these works
incorporate LLMs with the population-based evolutionary framework. The framework empowers LLMs with
diversity and global search capacities (Wu et al., 2024; Chao et al., 2024) and helps mitigate LLMs’ halluci-
nation incurred by the lack of fact-checking. A challenge is that a non-trivial prompt engineering is required
to reliably extract the knowledge from LLMs. Besides being the core engine of designing algorithms, LLMs
could significantly improve human-machine (algorithm design systems) interaction. By building powerful
interactive text-based interfaces with LLMs, many complicated decisions affecting the algorithm design pro-
cess would be simplified. This would also increase the interpretability of the algorithm design process by
elaborating on the algorithm design report in textual and graphical forms (Tornede et al., 2023).

4.3 Usability

In principle, any search method might be employed to search over the design space to produce algorithms. As
algorithm design is black-box, there is not yet a consensus and dominant strategy for designing algorithms.
The usability of the design strategies depends on the target problem-solving scenarios. If the design space
is formed with a few existing algorithmic operators and there is a predefined algorithm template (e.g.,
designing a variable neighborhood search algorithm from several neighborhood search operators), the local
search, estimation of distribution, and Bayesian optimization could be recommended. Among them, using
Bayesian optimization as the design strategy is particularly preferred when targeting expensive problems

12

Published in Transactions on Machine Learning Research (02/2024)

Table 1: Summary of design strategies.
Design Strategies Key features

Model-Free Local Search1,2

Evolutionary Search1,2,3

1 With little assumption on the algorithm being designed.
2 Flexible to be integrated with various algorithm representations.
3 Exploration over the design space and adaption across problem instances.

Model-Based

Estimation of Distribution 4,5,6

Bayesian Optimization 4,5,6,7

Reinforcement Learning8,9

Large Language Models10,11

4 Statistical inference provides interpretation.
5 Designed algorithms are subject to predefined structure.
6 Simplified statistics may lead to fast but premature convergence.
7 Surrogate saves computational effort incurred by algorithm evaluation.
8 Reveal intrinsic relationships and contributions of design choices.
9 Fine-grained design, long-term planning, and online design.
10 Bootstrap from human knowledge, an explicit design space is unnecessary.
11 User-friendly human-machine interaction.

in which the computational cost is dominated by function evaluations, since the low-complexity surrogate
model can save function evaluations.

When manipulating the design space with computational primitives, evolutionary search, e.g., GP, would
be the first choice. Due to the ability to maintain a population of diverse algorithms, evolutionary search
is also suitable for scenarios with demands for algorithm portfolios. Reinforcement learning is appealing for
scenarios with a large amount of problems from the same or similar domains, in which the policy model
enables the reuse and transfer of the knowledge of prior algorithm design to new problems. It is also
appealing for online scenarios. That is, learning the design policy offline and then deploying the policy
online to generate algorithms during open-ended problem-solving. A summary of the design strategies is
given in Table 1.

5 Performance Evaluation Strategies

The performance evaluation strategy defines how to measure the performance of the designed algorithms. To
conduct performance evaluation, one should first choose a performance metric, then evaluate the performance
according to the metric and identify desired algorithms by performance comparison. In particular, reducing
the time cost of performance evaluation is vital because performance evaluation normally occupies most of
the computational cost of the design process. Hence, we first summarize the performance metrics employed
in the literature and discuss their usability in subsection 5.1. Then, we review the performance evaluation
and comparison strategies in subsection 5.2. Finally, we report the strategies for reducing the time cost of
performance evaluation and discuss their strengths and weakness in subsection 5.3.

5.1 Performance Metrics

The metrics include the algorithm’s solution quality, running time, anytime performance, and jointly con-
sidering multiple metrics in the literature.

Solution quality: A commonly used performance metric is the algorithm’s solution quality within a fixed
computational budget. The solution quality is usually a summarizing value based on the objective function
value and constraint satisfaction on the target problem. The black-box optimization benchmarking study in
Hansen et al. (2022) constructed solution quality metrics for different types of problems, e.g., single-/multi-
objective, constrained, and noisy problems.

Running time: It measures the algorithm’s running time until the algorithm reaches a performance thresh-
old. The threshold can be the solution quality or a particular solution. The metric is formulated as (Ye
et al., 2022a):

P (A|i) = r(A, i, ϵ), (3)

where r(A, i, ϵ) is the running time of algorithm A on target problem instance i till reaching the threshold
ϵ. The running time often refers to the number of function evaluations. The wall clock time and CPU

13

Published in Transactions on Machine Learning Research (02/2024)

time may also be considered but may bring about unreproducible results due to the difference in hardware,
programming language, and coding style.

Anytime performance: It measures the algorithm’s ability to return high-quality solutions within any
computational budget. The common practice to measure the anytime performance is calculating the area
under the curve (AUC) of the empirical cumulative distribution function of running time. Given a set of
running time points {τu|u ∈ U} and a set of solution quality thresholds {ϵv|v ∈ V }, the AUC is calculated
as (Ye et al., 2022a):

P (A|i) =
∑

u∈U

∑
v∈V ⟨s(A, i, τu) ≥ ϵv⟩

|U | ∗ |V |
, (4)

where s(A, i, τu) is algorithm A’s solution quality on target problem instance i within τu running time; ⟨·⟩
returns 1 if s(A, i, τu) ≥ ϵv, and return 0 otherwise; |U | and |V | return the numbers of elements in sets U
and V , respectively. A larger AUC value indicates a better algorithm performance.

An alternative way to measure the anytime performance is by the hypervolume indicator (López-Ibánez and
Stützle, 2014). That is, the solution quality and running time can be seen as two conflicting objectives,
i.e., better solution quality often demands longer running time. Thus, the elements of an algorithm’s per-
formance profile (solution quality versus running time) can be seen as a set of Pareto non-dominate points
regarding the two objectives. Therefore, the hypervolume value (Zitzler and Thiele, 1999) of the Pareto non-
dominate points with respect to a reference point measures the anytime performance. Higher hypervolume
values indicate better anytime performance. This method does not require setting a priori solution quality
thresholds.

Multiple-metric: Simultaneously considering multiple performance metrics is of interest in certain scenar-
ios. in Blot et al. (2016), the solution quality and memory usage were jointly considered for scenarios with
memory limitations. In Blot et al. (2017); Tari et al. (2020b); Bezerra et al. (2020), the solution convergence
and solution diversity were considered for designing multi-objective algorithms, i.e., multi-objective design
of multi-objective algorithms; they used the hypervolume (Zitzler and Thiele, 1999) to measure the algo-
rithm’s solution convergence and used the ∆ spread to measure the solution diversity (Deb et al., 2002). By
considering multiple performance metrics, the designed algorithm would be more generalized to the target
problem-solving scenario than only pursuing a single metric.

Usability of the metrics: The solution quality has been employed in most literature. The reason is possibe
because presetting the computational budget is easy when targeting the widely-used numerical benchmark
problems (where much prior experimentation can be referenced for presetting the budget). The running
time and AUC provide a performance guarantee that the designed algorithm could reach the predefined
performance threshold within the time budget. The guarantee is significant to practical scenarios. Therefore,
the running time and AUC are recommended if the threshold can be defined according to domain expertise
or preliminary experimentation. Function evaluations should be the first choice for quantifying the time
budget if function evaluations dominate the computational cost. The reason is that it is fair and can provide
reproducible results regardless of hardware, programming language, and coding style (Hooker, 1995). The
anytime performance is more informative than running time since it comprehensively reveals the performance
across the algorithm execution (Hansen et al., 2022). It is preferred in scenarios with demands for anytime
behavior, e.g., the designed algorithm deployed in scenarios with variable computational budgets.

5.2 Performance Evaluation and Comparison

Due to the stochastic nature, different runs (with different seeds) of a metaheuristic algorithm on the same
target problem instance result in inconsistent performance. During the algorithm design process, simply
evaluating and comparing candidate algorithms by the performance of a single run is not meaningful. Current
strategies of performance evaluation and comparison during the algorithm design process are as follows.

Conducting descriptive statistics on the performance: It is straightforward to use descriptive statis-
tics, e.g., mean or median, to evaluate and compare candidate algorithms (Ye et al., 2022a; Junior et al.,
2020; Vermetten et al., 2022), but they contain issues. When targeting multiple problem instances, the mean
requires the performance values on different instances within the same scale, which is hard to achieve. The

14

Published in Transactions on Machine Learning Research (02/2024)

median is robust to outliers but will ignore the majority of the data, e.g., an algorithm may get unqualified
performance in 49% of the evaluations, but the median would not capture this.

Conducting statistical hypothesis test on the performance: Hypothesis test provides more statistical
evidence of to what extent an algorithm performs significantly better than others. The Friedman test and
t-test have been employed in the literature (López-Ibáñez et al., 2016). The t-test assumes samples (i.e.,
performance metric values) following a normal distribution, while the Friedman test is nonparametric and
may be more preferred. In particular, the p-value correction in multiple comparisons (i.e., simultaneously
comparing more than two algorithms) was suggested to be abandoned in López-Ibáñez et al. (2016), consid-
ering that p-value correction makes the test conservative, subsequently lowering the discrimination among
algorithms.

5.3 Reducing Time Cost of Performance Evaluation

The repetitive performance evaluation leads the algorithm design process to be computationally expensive. A
number of strategies have been introduced to reduce the time cost of performance evaluation. They reduce
the time cost by either reducing the number of performance evaluations or estimating the performance
without a full evaluation.

5.3.1 Reducing the Number of Performance Evaluations

This strategy refers to evaluating on a few target problem instances instead of on all instances. Intensification
(Hutter et al., 2009; Blot et al., 2016) is a method following this strategy. It evaluates the candidate
algorithms’ performance instance by instance. The evaluation terminates, and the candidate algorithm is
discarded if the algorithm’s performance is worse than the incumbent4 on the current instance. Otherwise,
the evaluation continues till it has been evaluated in all instances.

Racing (Maron and Moore, 1997) is also a method that evaluates the performance instance by instance
(López-Ibáñez et al., 2016). The difference of racing from intensification (Hutter et al., 2009; Blot et al.,
2016) is that there is no incumbent, but all candidate algorithms are evaluated together. In detail, the
candidate algorithms’ performance is evaluated in the same instances; the candidates whose performance is
statistically worse than at least another candidate are discarded. The evaluation continues with the survival
candidates on the remaining instances until the number of survivors reaches the minimum, the computational
budget is exhausted, or all instances have been evaluated.

Another strategy for saving performance evaluations is only evaluating desired algorithms instead of all can-
didate algorithms. The dual population of gender-based GA (Ansótegui et al., 2009) follows this strategy. It
maintains multiple algorithms during the design process. The algorithms are separated into a competitive and
non-competitive population. The competitive population is evaluated on the target problem instances and
works on guiding the design towards finding promising algorithms. The non-competitive population works
on introducing diversity without evaluation. The two populations interact through genetic recombination.

5.3.2 Estimating the Performance without a Full Evaluation

One such strategy is using a low-complexity surrogate model to estimate the performance instead of exact
evaluation (run the algorithm on the target problem). The random forest acted as a surrogate in Bartz-
Beielstein et al. (2005); Hutter et al. (2011); Wang et al. (2017); Lindauer et al. (2022). Its input is vectorized
representations of the candidate algorithms; the output is the estimated performance values. Thus, it is an
end-to-end performance estimation method and is convenient for use.

Another strategy for estimating performance is early stopping the performance evaluation before the compu-
tational budget is exhausted. Capping (Hutter et al., 2009; De Souza et al., 2022) is a method following this
strategy. There are two capping versions in the literature. The first version was proposed in Hutter et al.
(2009) for scenarios with running time as the performance metric. It uses the best algorithm’s 5 running

4Incumbent is the best algorithm found so far in the design process. Its performance in all instances has been evaluated.
5The best algorithm can be either the best one found at the current iteration of the design process (trajectory-preserving

capping) or the best one found so far of the design process (aggressive capping) (Hutter et al., 2009).

15

Published in Transactions on Machine Learning Research (02/2024)

Table 2: Summary of strategies for reducing time cost of algorithm evaluation.
Methods Main ideas

Reducing
the number of

evaluations

Intensification Do not evaluate on the next problem instance if performance is worse than
the incumbent.

Racing Do not evaluate on the next problem instance if performance is statistically
worse than at least another algorithm.

Dual population Only evaluate desired algorithms.

Estimating
without a full

evaluation

Surrogate Use low complexity surrogate to approximate performance.
Hutter et al. (2009)’s Capping Stop evaluating on the current problem instance once running time meets

budget.
De Souza et al. (2022)’s Capping Stop evaluating on the current problem instance once performance profile

exceeds bound.

time as a bound. An algorithm’s performance evaluation stops once its running time reaches the bound.
Reaching the bound indicates that the algorithm fails to perform better than the best algorithm until the
time bound, which means that the algorithm can be discarded.

The second version of capping was proposed in De Souza et al. (2022) and is for scenarios with anytime
performance metrics. It also uses a bound to limit the performance evaluation. But the bound is a step
function curve that describes previously evaluated algorithms’ aggregated performance profile across multiple
running time points. For a new algorithm, its performance evaluation stops once its performance profile
exceeds the bound at some running time points.

5.3.3 Usability

Intensification (Hutter et al., 2009; Blot et al., 2016) and racing (López-Ibáñez et al., 2016) evaluate per-
formance instance by instance. They are available if there are a relatively large number of instances to
discriminate algorithms. While intensification and racing can be compatible with any performance metrics,
capping (Hutter et al., 2009; De Souza et al., 2022) is specified to scenarios with running time and anytime
performance metrics.

Using a surrogate to partially replace performance evaluations is promising due to its end-to-end nature.
However, common surrogates (e.g., random forest) require a fixed-length vectorized representation of the
algorithm as input. Subsequently, a predefined algorithm template is needed to avoid unnecessarily lengthy
vectors. The template limits the designed algorithms to have the same structure. In this regard, it is worth
developing algorithm embedding methods to transform algorithms with various structures into compact
representations with the same form. Furthermore, currently employed surrogates are regression models
estimating algorithms’ performance values, which are not always reasonable. For example, suppose there are
two algorithms {A1, A2} with ground truth performance values {0.9, 0.91}, where 0.9 and 0.91 stand for A1
and A2’s performance, respectively; and there are two estimations {0.89, 0.92} and {0.91, 0.9}. {0.91, 0.9}
has a smaller mean square error loss than {0.89, 0.92} but results in a wrong performance rank. Considering
such cases, surrogates that can directly estimate algorithms’ performance rank are advised. A summary of
the strategies is given in Table 2.

6 Target Problems

This section reviews the problems that have been targeted in the literature. Related software is also reported.

6.1 Numerical Benchmark Problems

Many works, especially the early ones, employ numerical benchmarks as target problems. Most of them con-
sidered continuous optimization problems. The CEC 2005 real-valued parameter optimization benchmarks
(Suganthan et al., 2005) were widely used (Poli et al., 2005a;b; Shirakawa and Nagao, 2009; Miranda and
Prudêncio, 2015; Lones, 2019; Bogdanova et al., 2019; Kamrath et al., 2020; Miranda and Prudêncio, 2020;
Cruz-Duarte et al., 2020; Lones, 2021; Tian et al., 2023). The CEC 2014 real-valued parameter optimization
benchmarks (Liang et al., 2013), the black-box optimization benchmark suite (Hansen et al., 2009), and the

16

Published in Transactions on Machine Learning Research (02/2024)

comparing continuous optimizers platform used for the GECCO Workshops on Real-Parameter Black-Box
Optimization Benchmarking were adopted in Aydın et al. (2017); Villalón et al. (2022); van Rijn et al. (2016);
Tisdale et al. (2021), and (Ansótegui et al., 2015; Richter et al., 2019), respectively.

The DTLZ (Deb et al., 2005) and WFG (Huband et al., 2006) test suites acted as target problems in the
automated design of multi-objective metaheuristic algorithms (Bezerra et al., 2016; 2020; de Lima and Pozo,
2017). Binary optimization benchmarks were also considered. The NK-Landscape benchmarks (Kauffman
et al., 1993) were utilized in Goldman and Tauritz (2011); Richter and Tauritz (2018) because the fitness
landscape properties can be easily controlled by the N and K parameters. The D-Trap suite (Deb and
Goldberg, 1993) was employed in Smorodkina and Tauritz (2007); Goldman and Tauritz (2011); Richter and
Tauritz (2018); Rivers and Tauritz (2013).

A common experimental observation of these works is that automated design techniques are able to recur
existing algorithms and produce new algorithms that perform better than the existing ones. Due to the
expressiveness of various problem landscape features, numerical benchmarks are also important for verifying
new automated design techniques and empirically analyzing the techniques, e.g., analyzing the efficiency of
different performance metrics (Ye et al., 2022a). A common concern on the numerical benchmarks is that it
needs to be clarified to what extent these artificial problems reflect the practice. In this regard, benchmark
problems derived from the real world could be considered to stimulate the practicality of automated design
techniques.

6.2 Practical Problems

Automated design of metaheuristic algorithms has been applied to some practical problem domains, although
most of the problems come from experimental simulations. Job shop scheduling (JSS) is a representative
practical problem considered in the literature. In Mascia et al. (2013; 2014); Vázquez-Rodríguez and Ochoa
(2011); Pagnozzi and Stützle (2019); Bezerra et al. (2014); Franzin and Stützle (2019); Alfaro-Fernández
et al. (2020); Sae-Dan et al. (2020); Brum et al. (2022), metaheuristic solvers were automatically designed
for JSS with different objectives, e.g., makespan, flowtime, and total tardiness. The bi-objective JSS that si-
multaneously minimizes makespan and flowtime, the dynamic bi-objective JSS, and the resource-constrained
JSS were further considered in Blot et al. (2017; 2019); Nguyen et al. (2014; 2022), respectively.

In Sae-Dan et al. (2020); Tavares and Pereira (2012); Ryser-Welch et al. (2016); Lopez-Ibanez and Stutzle
(2012), the automated design was conducted within the ACO template for the TSP. The vehicle routing and
nurse rostering problems were adopted as case studies in Qu et al. (2020); Meng and Qu (2021). The propo-
sitional satisfiability (SAT) problem with instances from various distributions was targeted in Smorodkina
and Tauritz (2007); KhudaBukhsh et al. (2009). The quadratic assignment, bin packing, and imbalanced
data classification were considered in Franzin and Stützle (2019); Sae-Dan et al. (2020); Mascia et al. (2014),
and (Tari et al., 2020b;a), respectively. The automated design techniques were applied to problems with
real-world data in Zhao et al. (2022), in which solvers were automatically designed for the raw material stack-
ing and rack placement problems from the warehouse management department of a biomedical electronics
company and were reported to be satisfactory.

The aforementioned works show great potential for automated metaheuristic algorithm design for practical
problems. For example, for the JSS problem, new stochastic local search algorithms were designed by the
EMILI framework and demonstrated to be superior to the state-of-the-art iterative greedy and local search
algorithms when pursuing the makespan, flowtime, and total tardiness objectives (Pagnozzi and Stützle,
2019; Alfaro-Fernández et al., 2020). Multipass heuristics were evolved by GP and outperformed the popu-
lar heuristics FIFD, WSPT, WEDD, etc. (Thiruvady et al., 2013; Pinedo, 2012) in resource constraint job
scheduling (Nguyen et al., 2022). For the TSP, new metaheuristic solvers were discovered by Cartesian GP
from small-scale TSP instances and reported to generalize well to much larger instances (Ryser-Welch et al.,
2016). For the SAT problem, stochastic local search algorithms were derived from SATenstein and signifi-
cantly outperformed previous state-of-the-art algorithms on various benchmark distributions (KhudaBukhsh
et al., 2009).

17

Published in Transactions on Machine Learning Research (02/2024)

6.3 Software

Generally, one can choose a design space, design strategy, and performance evaluation strategy from these
reviewed in Sections 3, 4, and 5, respectively, to build a concrete pipeline for automated design, following
the workflow in Fig. 1. The established pipelines with open-source code that have been or can be introduced
in designing metaheuristic algorithms are reported below.

irace: irace (López-Ibáñez et al., 2016) is an iterative version of the racing method (Maron and Moore,
1997). irace for metaheuristic algorithm design uses (i) the design space with existing algorithmic operators
and the linear array representation, (ii) “estimation of distribution” as the design strategy, and (iii) racing
as the performance evaluation strategy. irace has been applied to design metaheuristic algorithms with
given templates (e.g., with templates of ACO (Lopez-Ibanez and Stutzle, 2012), artificial bee colony (Aydın
et al., 2017), SA (Franzin and Stützle, 2019), PSO (Villalón et al., 2022)) and design general metaheuristics
(Bezerra et al., 2014; 2016; Pagnozzi and Stützle, 2019; Alfaro-Fernández et al., 2020; Bezerra et al., 2020;
Sae-Dan et al., 2020; Diaz and López-Ibáñez, 2021; Brum et al., 2022). The R implementation of irace is
available on its website6. A C++ interface of irace is given in the Paradiseo software (Dreo et al., 2021;
Aziz-Alaoui et al., 2021) and is available on Github7.

ParamILS: ParamILS (Hutter et al., 2009), as its name indicated, uses the iterative local search (Lourenço
et al., 2003) for parameter configuration. It was employed in algorithm design by representing algorith-
mic operators as categorical parameters (Blot et al., 2019; Tari et al., 2020a; KhudaBukhsh et al., 2009).
Apart from using existing algorithmic operators as design space and iterative local search as design strat-
egy, ParamILS proposes capping as the performance evaluation strategy. A multi-objective ParamILS was
developed in Blot et al. (2016) to jointly consider multiple performance metrics. The Ruby implementation
of ParamILS is available on its website8.

SMAC: SMAC (Hutter et al., 2011; Lindauer et al., 2022) was originated to hyperparameter optimization in
automated machine learning and was then employed to configure metaheuristic algorithms (Tang et al., 2021).
Its difference from ParamILS is that it uses Bayesian optimization as the design strategy. The intensification
and capping can be the performance evaluation strategy alternatively. The Python implementation of SMAC
is available on Github9.

Sparkle: Sparkle is a recently released Python platform for selecting and configuring algorithms (van der
Blom et al., 2022). Its current version uses SMAC as the configurator and could be extended to algorithm
design. The platform provides easy use for non-experts and supports benchmarking and ablation analysis.
The source code is available on its website10.

7 Research Trends

The development of automated metaheuristic algorithm design continues along a number of research threads.
Some of the research trends are discussed in this section.

7.1 Design Space

Constructing design space with less user effort: The design space is critical since it determines what
algorithms can be found in principle. Till now, the design space still requires users to manually construct.
Guidelines or strategies for constructing the design space are important. One way to provide such guidelines
or strategies may be benchmarking, i.e., collecting general design choices for different types of problems, i.e.,
continuous, discrete, and permutation, and offering maintainable and extendable platforms for users to use
and analyze the design choices on particular problems. Another way is automatically constructing the design
space. This way is emerging in the neural architecture search field (Radosavovic et al., 2020), in which the

6https://iridia.ulb.ac.be/irace
7https://github.com/jdreo/paradiseo
8https://www.cs.ubc.ca/labs/algorithms/Projects/ParamILS
9https://github.com/automl/SMAC3

10https://bitbucket.org/sparkle-ai/sparkle/src/main/

18

Published in Transactions on Machine Learning Research (02/2024)

design space was evolved according to the performance of neural networks sampled from it (Ci et al., 2021)
or co-evolved along with the architecture search process (Chen et al., 2021). These works pave a way for
design space construction.

Novel representations: The GP parse tree and linear array are dominant algorithm representations for
design space with computational primitives and design space with algorithmic operators, respectively. For
the GP tree, it has been limited to represent a single algorithmic operator. The idea of indirect encoding
(Eiben and Smith, 2015; Stanley et al., 2019) may break the limitation. Its generative and developmental
nature allows learning and reusing building blocks of the tree, which could improve the search efficiency and
scale up the complexity of the algorithm being represented (Eiben and Smith, 2015). For the linear array, it
requires a given algorithm template, limiting the novelty in algorithm structures. The graph representation
(Tisdale et al., 2021) would be promising because of its expressiveness in representing algorithm flows. An
open challenge is that the graph is difficult to be directly manipulated. More studies are desired on the
encoding and decoding of graph representation to make it easily manipulated and compatible with different
design strategies and performance evaluation strategies.

7.2 Design Strategies

Designing diversified algorithms in parallel and distributed manners: Designing multiple algo-
rithms in parallel facilitates exploration over the design space (Miikkulainen and Forrest, 2021; Ye et al.,
2022b). This arises an issue of how to measure the diversity (similarity) of the algorithms. Ideally, the
similarity between algorithms is determined by not only the distance between their representations but also
their similarity in terms of algorithmic structures and exhibited behaviors (Xu et al., 2016; Nikfarjam et al.,
2022; Xiang et al., 2022). Quantifying algorithms’ similarities and subsequently identifying unexplored design
space deserves more attention. Moreover, the advances of distributed computing platforms (e.g., Hennessy
and Patterson (2011; 2019)) provide opportunities for scaling automated design in hosting more challenging
and expensive problems, which also deserves attention.

Learning-based design strategies: Learning-based design strategies, e.g., reinforcement learning, offer
appealing features, including fine-grained design, long-term planning of the design with the value function,
and knowledge reuse with the policy model. These features promise reinforcement learning to generate
algorithms to fit-for-purpose in online and open-ended problem-solving scenarios with changing problem
characteristics, user requirements, and operating environments (Hart, 2017; Weyns et al., 2021). It is de-
sirable to have more studies on developing advanced policies and value functions for learning-based design
strategies.

7.3 Performance Evaluation Strategies

Novel performance comparison methods: While null hypothesis statistical tests have been the common
way of performance comparison during the algorithm design process, recent alternatives have shown great
potential in complex scenarios. For example, the Bayesian analysis of Rojas-Delgado et al. (2022) provided an
inference of algorithm ranking and quantification of the uncertainty involved in the ranking. Quantifying the
uncertainty is important, considering the stochastic nature of metaheuristic algorithms. The study in Yan
et al. (2023) proposed cumulative distribution functions with an algorithm-independent binary filter condition
to address the “cycle ranking” paradox, i.e., inconsistent ranking of algorithms in multiple comparisons.
These techniques are worth integrating within the algorithm design process for a more reliable performance
comparison.

Surrogate-based performance estimators: The automated design would be time costly when targeting
expensive problems. The cost can be saved by evaluating on a part of instances or early stopping the
evaluation. The former requires adequate instances to discriminate the performance of different algorithms,
while the latter is available when using running time or anytime performance metrics. An alternative is to
build a low-complexity surrogate model to estimate the performance. This surrogate estimator is end-to-end,
which can be integrated with any performance metrics and is independent of the characteristics of the target
problem. There are some challenges to building an accurate surrogate. For example, how to embed the
algorithms with various structures to the input of the surrogate, how to estimate algorithms’ performance

19

Published in Transactions on Machine Learning Research (02/2024)

rank rather than performance metric values, and how different surrogate models are workable for different
design scenarios (regarding sample richness, computing resources, etc.).

7.4 Experimental and Theoretical Analysis, Practical Applications

Although many works have reported remarkable efficiency of automated design, it is unclear what design
space, design strategy, and performance evaluation strategy contribute to that efficiency. Further experi-
mental and theoretical analysis is required to reveal the impact of different kinds of design space and design
strategies on different problems. Besides, a majority of existing works apply automated metaheuristic al-
gorithm design to numerical benchmarks and classical simulated problems, e.g., JSS, TSP, and SAT. It is
important to go beyond these numerical and simulated problems and contribute more to real-world problem-
solving, e.g., incorporating problem-specific elements with the design process, enabling the designed algo-
rithms to handle constraints and to decouple large-scale problem space. Benchmarking, platforms, and user
interfaces are also appreciated to promote practical applications.

7.5 Intersection with Related Research Fields

Automated design of metaheuristic algorithms is closely related to automated machine learning and meta-
learning (Hutter et al., 2019). Advances from the related fields would fertilize the development of the
automated design of metaheuristic algorithms, such as multi-fidelity performance evaluation to speed up the
design process, model learning to generate surrogates from previous experience and learn policies for reinforce-
ment learning-based design strategies. On the other hand, the automated design of metaheuristic algorithms
presents key techniques for automated machine learning and meta-learning. For example, metaheuristic
algorithms could be high-level methods for conducting automated machine learning and meta-learning; the
GP tree-based representation with computational primitives paves a potential way for automatically pro-
gramming machine learning algorithms. The interaction and integration of these fields may be a promising
thread for boosting innovations.

8 Conclusion

This paper surveyed the automated design of metaheuristic algorithms. In the survey, we have abstracted
the concept and proposed a taxonomy of automated design of metaheuristic algorithms by formalizing the
design process into four parts, i.e., design space, design strategies, performance evaluation strategies, and
target problems. We have then reviewed the advances regarding the four parts, respectively. The strengths,
weakness, challenges, and usability of these works have been discussed. Finally, some of the research trends
have been pointed out. Hopefully, this survey can provide a comprehensive and meticulous understanding of
the automated design of metaheuristic algorithms, inspire interest in leveraging automated design techniques
to make high-performance algorithms accessible to a broader range of researchers and practitioners, and boost
automated design innovations to fuel the pursuit of autonomous and general artificial intelligence.

References
2023. Code models overview. https://cloud.google.com/vertex-ai/docs/generative-ai/code/

code-models-overview

Steven Adriaensen and Ann Nowé. 2016. Towards a white box approach to automated algorithm design. In
International Joint Conferences on Artificial Intelligence. IJCAI, New York, NY, USA, 554–560.

Alexandros Agapitos, Roisin Loughran, Miguel Nicolau, Simon Lucas, Michael O’Neill, and Anthony
Brabazon. 2019. A survey of statistical machine learning elements in genetic programming. IEEE Trans-
actions on Evolutionary Computation 23, 6 (Dec. 2019), 1029–1048.

Pedro Alfaro-Fernández, Rubén Ruiz, Federico Pagnozzi, and Thomas Stützle. 2020. Automatic algorithm
design for hybrid flowshop scheduling problems. European Journal of Operational Research 282, 3 (May
2020), 835–845.

20

https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-models-overview
https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-models-overview

Published in Transactions on Machine Learning Research (02/2024)

Carlos Ansótegui, Yuri Malitsky, Horst Samulowitz, Meinolf Sellmann, and Kevin Tierney. 2015. Model-based
genetic algorithms for algorithm configuration. In International Joint Conference on Artificial Intelligence.
IJCAI, Buenos Aires, Argentina, 733–739.

Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. 2009. A gender-based genetic algorithm for the au-
tomatic configuration of algorithms. In International Conference on Principles and Practice of Constraint
Programming. Springer, Lisbon, Portugal, 142–157.

Doğan Aydın, Gürcan Yavuz, and Thomas Stützle. 2017. ABC-X: A generalized, automatically configurable
artificial bee colony framework. Swarm Intelligence 11, 1 (Feb. 2017), 1–38.

Amine Aziz-Alaoui, Carola Doerr, and Johann Dreo. 2021. Towards large scale automated algorithm de-
sign by integrating modular benchmarking frameworks. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion. Lille, France, 1365–1374.

Thomas Bartz-Beielstein, Christian WG Lasarczyk, and Mike Preuß. 2005. Sequential parameter optimiza-
tion. In IEEE Congress on Evolutionary Computation, Vol. 1. IEEE, Edinburgh, UK, 773–780.

Leonardo CT Bezerra, Manuel López-Ibánez, and Thomas Stützle. 2014. Automatic design of evolutionary
algorithms for multi-objective combinatorial optimization. In International Conference on Parallel Problem
Solving from Nature. Springer, Ljubljana, Slovenia, 508–517.

Leonardo CT Bezerra, Manuel López-Ibánez, and Thomas Stützle. 2016. Automatic component-wise design
of multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 20, 3 (Jun.
2016), 403–417.

Leonardo CT Bezerra, Manuel López-Ibáñez, and Thomas Stützle. 2020. Automatically designing state-of-
the-art multi-and many-objective evolutionary algorithms. Evolutionary Computation 28, 2 (Jun. 2020),
195–226.

Aymeric Blot, Holger H Hoos, Laetitia Jourdan, Marie-Éléonore Kessaci-Marmion, and Heike Trautmann.
2016. MO-ParamILS: A multi-objective automatic algorithm configuration framework. In International
Conference on Learning and Intelligent Optimization. Springer, Ischia, Italy, 32–47.

Aymeric Blot, Marie-Éléonore Kessaci, Laetitia Jourdan, and Holger H Hoos. 2019. Automatic configuration
of multi-objective local search algorithms for permutation problems. Evolutionary Computation 27, 1
(Mar. 2019), 147–171.

Aymeric Blot, Alexis Pernet, Laetitia Jourdan, Marie-Éléonore Kessaci-Marmion, and Holger H Hoos. 2017.
Automatically configuring multi-objective local search using multi-objective optimisation. In International
Conference on Evolutionary Multi-Criterion Optimization. Springer, Münster, Germany, 61–76.

Anna Bogdanova, Jair Pereira Junior, and Claus Aranha. 2019. Franken-swarm: Grammatical evolution for
the automatic generation of swarm-like meta-heuristics. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion. Prague, Czech Republic, 411–412.

Artur Brum, Rubén Ruiz, and Marcus Ritt. 2022. Automatic generation of iterated greedy algorithms for
the non-permutation flow shop scheduling problem with total completion time minimization. Computers
& Industrial Engineering 163 (Jan. 2022), 107843.

Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan, and
Rong Qu. 2013. Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research
Society 64, 12 (July 2013), 1695–1724.

Edmund K Burke, Matthew Hyde, Graham Kendall, and John Woodward. 2010. A genetic programming
hyper-heuristic approach for evolving 2-D strip packing heuristics. IEEE Transactions on Evolutionary
Computation 14, 6 (Dec. 2010), 942–958.

21

Published in Transactions on Machine Learning Research (02/2024)

Edmund K Burke, Matthew R Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan, and John R Wood-
ward. 2019. A classification of hyper-heuristic approaches: Revisited. In Handbook of Metaheuristics.
Springer, 453–477.

Arina Buzdalova, Vladislav Kononov, and Maxim Buzdalov. 2014. Selecting evolutionary operators using
reinforcement learning: Initial explorations. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion. Vancouver, Canada, 1033–1036.

Wang Chao, Jiaxuan Zhao, Licheng Jiao, Lingling Li, Fang Liu, and Shuyuan Yang. 2024. A match
made in consistency heaven: when large language models meet evolutionary algorithms. arXiv preprint
arXiv:2401.10510 (2024).

Minghao Chen, Kan Wu, Bolin Ni, Houwen Peng, Bei Liu, Jianlong Fu, Hongyang Chao, and Haibin Ling.
2021. Searching the search space of vision transformer. In Advances in Neural Information Processing
Systems, Vol. 34. Virtual, 8714–8726.

Yuanzheng Ci, Chen Lin, Ming Sun, Boyu Chen, Hongwen Zhang, and Wanli Ouyang. 2021. Evolving
search space for neural architecture search. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. Montreal, Canada, 6659–6669.

Jorge M Cruz-Duarte, Ivan Amaya, José Carlos Ortiz-Bayliss, Santiago Enrique Conant-Pablos, and Hugo
Terashima-Marín. 2020. A primary study on hyper-heuristics to customise metaheuristics for continuous
optimisation. In IEEE Congress on Evolutionary Computation. IEEE, Glasgow, UK.

Ricardo Henrique Remes de Lima and Aurora Trinidad Ramirez Pozo. 2017. A study on auto-configuration of
multi-objective particle swarm optimization algorithm. In IEEE Congress on Evolutionary Computation.
IEEE, Donostia, Spain, 718–725.

Marcelo De Souza, Marcus Ritt, and Manuel López-Ibáñez. 2022. Capping methods for the automatic
configuration of optimization algorithms. Computers & Operations Research 139 (Mar. 2022), 105615.

Kalyanmoy Deb and David E Goldberg. 1993. Analyzing deception in trap functions. In Foundations of
Genetic Algorithms. Vol. 2. Elsevier, 93–108.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 2 (Apr. 2002),
182–197.

Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. 2005. Scalable test problems for
evolutionary multiobjective optimization. In Evolutionary Multiobjective Optimization. Springer, New
York, NY, USA, 105–145.

Juan Esteban Diaz and Manuel López-Ibáñez. 2021. Incorporating decision-maker’s preferences into the
automatic configuration of bi-objective optimisation algorithms. European Journal of Operational Research
289, 3 (Mar. 2021), 1209–1222.

Laura Dioşan and Mihai Oltean. 2009. Evolutionary design of evolutionary algorithms. Genetic Programming
and Evolvable Machines 10, 3 (Mar. 2009), 263–306.

Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. 1996. Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 26, 1
(Feb. 1996), 29–41.

Johann Dreo, Arnaud Liefooghe, Sébastien Verel, Marc Schoenauer, Juan J Merelo, Alexandre Quemy, Ben-
jamin Bouvier, and Jan Gmys. 2021. Paradiseo: from a modular framework for evolutionary computation
to the automated design of metaheuristics: 22 years of Paradiseo. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion. Lille, France, 1522–1530.

Ágoston E Eiben, Robert Hinterding, and Zbigniew Michalewicz. 1999. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation 3, 2 (July 1999), 124–141.

22

Published in Transactions on Machine Learning Research (02/2024)

Agoston E Eiben and Jim Smith. 2015. From evolutionary computation to the evolution of things. Nature
521, 7553 (May 2015), 476–482.

Agoston E Eiben, James E Smith, et al. 2003. Introduction to evolutionary computing. Vol. 53. Springer,
New York, NY, USA.

Thomas A Feo and Mauricio GC Resende. 1995. Greedy randomized adaptive search procedures. Journal
of Global Optimization 6, 2 (Mar. 1995), 109–133.

Alberto Franzin and Thomas Stützle. 2019. Revisiting simulated annealing: A component-based analysis.
Computers & Operations Research 104 (Apr. 2019), 191–206.

Fred Glover. 1986. Future paths for integer programming and links to artificial intelligence. Computers &
Operations Research 13, 5 (1986), 533–549.

Fred Glover. 1989. Tabu search—part I. ORSA Journal on Computing 1, 3 (Aug. 1989), 190–206.

Fred W Glover and Gary A Kochenberger. 2006. Handbook of metaheuristics. Vol. 57. Springer Science &
Business Media.

Brian W Goldman and Daniel R Tauritz. 2011. Self-configuring crossover. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion. Dublin, Ireland, 575–582.

Nikolaus Hansen, Anne Auger, Dimo Brockhoff, and Tea Tušar. 2022. Anytime performance assessment in
blackbox optimization benchmarking. IEEE Transactions on Evolutionary Computation 26, 6 (Dec. 2022),
1293–1305.

Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. 2009. Real-parameter black-box optimization
benchmarking 2009: Noiseless function definitions. Technical Report. INRIA.

Emma Hart. 2017. Towards lifelong learning in optimisation algorithms. In Proceedings of the International
Joint Conference on Computational Intelligence. Madeira, Portugal, 7–9.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. 2009. The elements of
statistical learning: data mining, inference, and prediction. Vol. 2. Springer.

John L Hennessy and David A Patterson. 2011. Computer architecture: a quantitative approach. Elsevier.

John L Hennessy and David A Patterson. 2019. A new golden age for computer architecture. Commun.
ACM 62, 2 (Jan. 2019), 48–60.

John H Holland. 1962. Outline for a logical theory of adaptive systems. J. ACM 9, 3 (1962), 297–314.

John H Holland. 1973. Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 2, 2 (Jun.
1973), 88–105.

John N Hooker. 1995. Testing heuristics: We have it all wrong. Journal of Heuristics 1, 1 (Sept. 1995),
33–42.

C. Huang, Y. Li, and X. Yao. 2020. A survey of automatic parameter tuning methods for metaheuristics.
IEEE Transactions on Evolutionary Computation 24, 2 (Apr. 2020), 201–216.

Simon Huband, Philip Hingston, Luigi Barone, and Lyndon While. 2006. A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation 10, 5
(Oct. 2006), 477–506.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-based optimization for
general algorithm configuration. In International Conference on Learning and Intelligent Optimization.
Springer, Rome, Italy, 507–523.

Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. 2009. ParamILS: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36 (Oct. 2009), 267–306.

23

Published in Transactions on Machine Learning Research (02/2024)

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated machine learning: Methods, systems,
challenges. Springer Nature, New York, NY, USA.

Donald R Jones, Matthias Schonlau, and William J Welch. 1998. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization 13, 4 (Dec. 1998), 455–492.

Jair Pereira Junior, Claus Aranha, and Tetsuya Sakurai. 2020. A training difficulty schedule for effective
search of meta-heuristic design. In IEEE Congress on Evolutionary Computation. IEEE, Glasgow, UK,
1–8.

Nathaniel R Kamrath, Aaron Scott Pope, and Daniel R Tauritz. 2020. The automated design of local
optimizers for memetic algorithms employing supportive coevolution. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion. Cancún, Mexico, 1889–1897.

Wolfgang Kantschik, Peter Dittrich, Markus Brameier, and Wolfgang Banzhaf. 1999. Meta-evolution in
graph GP. In European Conference on Genetic Programming. Springer, Göteborg, Sweden, 15–28.

Stuart A Kauffman et al. 1993. The origins of order: Self-organization and selection in evolution. Oxford
University Press, Oxford, UK.

James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In Proceedings of ICNN’95-
International Conference on Neural Networks. IEEE, Perth, WA, Australia, 1942–1948.

P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann. 2019. Automated algorithm selection: Survey
and perspectives. Evolutionary Computation 21, 1 (Mar. 2019), 1–47.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. 2022. Towards continual reinforcement
learning: A review and perspectives. Journal of Artificial Intelligence Research 75 (Dec. 2022), 1401–1476.

Ashiqur R KhudaBukhsh, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. 2009. SATenstein: Automati-
cally building local search SAT solvers from components. In International Joint Conference on Artificial
Intelligence. Pasadena, CA, USA, 517–524.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. 1983. Optimization by simulated annealing.
Science 220, 4598 (May 1983), 671–680.

John R Koza. 1994. Genetic programming as a means for programming computers by natural selection.
Statistics and Computing 4, 2 (Jun. 1994), 87–112.

Robert Tjarko Lange, Tom Schaul, Yutian Chen, Tom Zahavy, Valentin Dalibard, Chris Lu, Satinder Singh,
and Sebastian Flennerhag. 2023. Discovering evolution strategies via meta-black-box optimization. In
International Conference on Learning Representations. Kigali, Rwanda.

Sergey Levine and Pieter Abbeel. 2014. Learning neural network policies with guided policy search under
unknown dynamics. In Advances in Neural Information Processing Systems, Vol. 27. Montreal, Canada.

Jing J Liang, Bo Y Qu, and Ponnuthurai N Suganthan. 2013. Problem definitions and evaluation criteria for
the CEC 2014 special session and competition on single objective real-parameter numerical optimization.
Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report,
Nanyang Technological University, Singapore 635 (2013), 490.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Ben-
jamins, Tim Ruhkopf, René Sass, and Frank Hutter. 2022. SMAC3: A versatile Bayesian optimization
package for hyperparameter optimization. Journal of Machine Learning Research 23, 54 (Feb. 2022), 1–9.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang.
2024. An example of evolutionary computation+ large language model beating human: Design of efficient
guided local search. arXiv preprint arXiv:2401.02051 (2024).

24

Published in Transactions on Machine Learning Research (02/2024)

Michael A Lones. 2019. Instruction-level design of local optimisers using push GP. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion. Prague, Czech Republic, 1487–1494.

Michael A Lones. 2021. Evolving continuous optimisers from scratch. Genetic Programming and Evolvable
Machines 22, 4 (Oct. 2021), 395–428.

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and Thomas Stützle.
2016. The irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives 3 (Sept. 2016), 43–58.

Manuel Lopez-Ibanez and Thomas Stutzle. 2012. The automatic design of multiobjective ant colony opti-
mization algorithms. IEEE Transactions on Evolutionary Computation 16, 6 (Dec. 2012), 861–875.

Manuel López-Ibánez and Thomas Stützle. 2014. Automatically improving the anytime behaviour of opti-
misation algorithms. European Journal of Operational Research 235, 3 (June 2014), 569–582.

Helena R Lourenço, Olivier C Martin, and Thomas Stützle. 2003. Iterated local search. In Handbook of
Metaheuristics. Springer, New York, NY, USA, 320–353.

Oden Maron and Andrew W Moore. 1997. The racing algorithm: Model selection for lazy learners. Artificial
Intelligence Review 11, 1 (Feb. 1997), 193–225.

Franco Mascia, Manuel López-Ibánez, Jérémie Dubois-Lacoste, and Thomas Stützle. 2013. From grammars
to parameters: Automatic iterated greedy design for the permutation flow-shop problem with weighted
tardiness. In International Conference on Learning and Intelligent Optimization. Springer, Catania, Italy,
321–334.

Franco Mascia, Manuel López-Ibáñez, Jérémie Dubois-Lacoste, and Thomas Stützle. 2014. Grammar-based
generation of stochastic local search heuristics through automatic algorithm configuration tools. Computers
& Operations Research 51 (Nov. 2014), 190–199.

Weiyao Meng and Rong Qu. 2021. Automated design of search algorithms: Learning on algorithmic compo-
nents. Expert Systems with Applications 185 (Dec. 2021), 115493.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann LeCun, and
Thomas Scialom. 2023. Augmented language models: a survey. Transactions on Machine Learning Re-
search (June 2023).

Risto Miikkulainen and Stephanie Forrest. 2021. A biological perspective on evolutionary computation.
Nature Machine Intelligence 3, 1 (Jan. 2021), 9–15.

Julian F Miller. 2011. Cartesian genetic programming. In Cartesian Genetic Programming. Springer, New
York, NY, USA, 17–34.

Péricles Barbosa Miranda and Ricardo Bastos Prudêncio. 2015. GEFPSO: A framework for PSO optimization
based on grammatical evolution. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion. Madrid, Spain, 1087–1094.

Péricles BC Miranda and Ricardo BC Prudêncio. 2020. A novel context-free grammar for the generation of
pso algorithms. Natural Computing 19, 3 (Mar. 2020), 495–513.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level control
through deep reinforcement learning. Nature 518, 7540 (Feb. 2015), 529–533.

Pablo Moscato. 1999. Memetic algorithms: A short introduction. In New Ideas in Optimization. McGraw-
Hill, 219–234.

25

Published in Transactions on Machine Learning Research (02/2024)

Su Nguyen, Dhananjay Thiruvady, Mengjie Zhang, and Damminda Alahakoon. 2022. Automated design of
multipass heuristics for resource-constrained job scheduling with self-competitive genetic programming.
IEEE Transactions on Cybernetics 52, 9 (Sept. 2022), 8603–8616.

Su Nguyen, Mengjie Zhang, Mark Johnston, and Kay Chen Tan. 2014. Automatic design of scheduling
policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming.
IEEE Transactions on Evolutionary Computation 18, 2 (Apr. 2014), 193–208.

Adel Nikfarjam, Aneta Neumann, and Frank Neumann. 2022. Evolutionary diversity optimisation for the
traveling thief problem. In Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion. Boston, MA, USA, 749–756.

Mihai Oltean. 2005. Evolving evolutionary algorithms using linear genetic programming. Evolutionary
Computation 13, 3 (Sept. 2005), 387–410.

Federico Pagnozzi and Thomas Stützle. 2019. Automatic design of hybrid stochastic local search algorithms
for permutation flowshop problems. European Journal of Operational Research 276, 2 (Jul. 2019), 409–421.

Nelishia Pillay and Rong Qu. 2018. Hyper-heuristics: Theory and applications. Springer, New York, NY,
USA.

Nelishia Pillay and Rong Qu. 2021. Assessing hyper-heuristic performance. Journal of the Operational
Research Society 72, 11 (Aug. 2021), 2503–2516.

Michael L Pinedo. 2012. Scheduling. Vol. 29. Springer.

Riccardo Poli, Cecilia Di Chio, and William B Langdon. 2005a. Exploring extended particle swarms: A
genetic programming approach. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion. Washington DC, USA, 169–176.

Riccardo Poli, William B Langdon, and Owen Holland. 2005b. Extending particle swarm optimisation via
genetic programming. In European Conference on Genetic Programming. Springer, Lausanne, Switzerland,
291–300.

R. Qu, G. Kendall, and N. Pillay. 2020. The general combinatorial optimization problem: Towards automated
algorithm design. IEEE Computational Intelligence Magazine 15, 2 (May 2020), 14–23.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. 2020. Designing
network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Seattle, WA, USA, 10428–10436.

Samuel N Richter, Michael G Schoen, and Daniel R Tauritz. 2019. Evolving mean-update selection methods
for CMA-ES. In Proceedings of the Genetic and Evolutionary Computation Conference Companion. Prague,
Czech Republic, 1513–1517.

Samuel N Richter and Daniel R Tauritz. 2018. The automated design of probabilistic selection methods
for evolutionary algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion. Kyoto, Japan, 1545–1552.

Rebecca Rivers and Daniel R Tauritz. 2013. Evolving black-box search algorithms employing genetic pro-
gramming. In Proceedings of the Genetic and Evolutionary Computation Conference Companion. Amster-
dam, The Netherlands, 1497–1504.

Jairo Rojas-Delgado, Josu Ceberio, Borja Calvo, and Jose A Lozano. 2022. Bayesian Performance Analysis
for Algorithm Ranking Comparison. IEEE Transactions on Evolutionary Computation 26, 1281–1292
(Dec. 2022), 48–60.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M Pawan Ku-
mar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang, Omar Fawzi, et al. 2024.
Mathematical discoveries from program search with large language models. Nature 625 (2024), 468–475.

26

Published in Transactions on Machine Learning Research (02/2024)

Conor Ryan, John James Collins, and Michael O Neill. 1998. Grammatical evolution: Evolving programs for
an arbitrary language. In European Conference on Genetic Programming. Springer, Paris, France, 83–96.

Patricia Ryser-Welch, Julian F Miller, Jerry Swan, and Martin A Trefzer. 2016. Iterative Cartesian ge-
netic programming: Creating general algorithms for solving travelling salesman problems. In European
Conference on Genetic Programming. Springer, Porto, Portugal, 294–310.

Weerapan Sae-Dan, Marie-Eléonore Kessaci, Nadarajen Veerapen, and Laetitia Jourdan. 2020. Time-
dependent automatic parameter configuration of a local search algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion. Cancún, Mexico, 1898–1905.

Elias Schede, Jasmin Brandt, Alexander Tornede, Marcel Wever, Viktor Bengs, Eyke Hüllermeier, and
Kevin Tierney. 2022. A survey of methods for automated algorithm configuration. Journal of Artificial
Intelligence Research 75 (Oct. 2022), 425–487.

Jan Schuchardt, Vladimir Golkov, and Daniel Cremers. 2019. Learning to evolve. arXiv preprint
arXiv:1905.03389 (2019).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

Gresa Shala, André Biedenkapp, Noor Awad, Steven Adriaensen, Marius Lindauer, and Frank Hutter. 2020.
Learning step-size adaptation in CMA-ES. In International Conference on Parallel Problem Solving from
Nature. Springer, Leiden, The Netherlands, 691–706.

Mudita Sharma, Alexandros Komninos, Manuel López-Ibáñez, and Dimitar Kazakov. 2019. Deep rein-
forcement learning based parameter control in differential evolution. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion. Prague, Czech Republic, 709–717.

Yuhui Shi and Russell Eberhart. 1998. A modified particle swarm optimizer. In IEEE International Confer-
ence on Evolutionary Computation. IEEE, Anchorage, AK, USA, 69–73.

Shinichi Shirakawa and Tomoharu Nagao. 2009. Evolution of search algorithms using graph structured
program evolution. In European Conference on Genetic Programming. Springer, T́’ubingen, Germany,
109–120.

Ekaterina Smorodkina and Daniel Tauritz. 2007. Toward automating EA configuration: The parent selection
stage. In IEEE Congress on Evolutionary Computation. IEEE, Singapore, 63–70.

Lee Spector. 2001. Autoconstructive evolution: Push, pushGP, and pushpop. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion. San Francisco, CA, USA.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. 2019. Designing neural networks
through neuroevolution. Nature Machine Intelligence 1, 1 (Jan. 2019), 24–35.

Thomas Stützle and Manuel López-Ibáñez. 2019. Automated design of metaheuristic algorithms. In Handbook
of Metaheuristics. Springer, New York, NY, USA, 541–579.

Ponnuthurai N Suganthan, Nikolaus Hansen, Jing J Liang, Kalyanmoy Deb, Ying-Ping Chen, Anne Auger,
and Santosh Tiwari. 2005. Problem definitions and evaluation criteria for the CEC 2005 special session
on real-parameter optimization. KanGAL Report 2005005 (2005).

Jianyong Sun, Xin Liu, Thomas Bäck, and Zongben Xu. 2021. Learning adaptive differential evolution algo-
rithm from optimization experiences by policy gradient. IEEE Transactions on Evolutionary Computation
25, 4 (Aug. 2021), 666–680.

Jerry Swan, Steven Adriaensen, Alexander EI Brownlee, Kevin Hammond, Colin G Johnson, Ahmed Kheiri,
Faustyna Krawiec, Juan Julián Merelo, Leandro L Minku, Ender Özcan, et al. 2022. Metaheuristics “in
the large”. European Journal of Operational Research 297, 2 (Mar. 2022), 393–406.

27

Published in Transactions on Machine Learning Research (02/2024)

Jerry Swan, Patrick De Causmaecker, Simon Martin, and Ender Özcan. 2017. A re-characterization of
hyper-heuristics. In Recent Developments of Metaheuristics. Springer, 75–89.

Ke Tang, Shengcai Liu, Peng Yang, and Xin Yao. 2021. Few-shots parallel algorithm portfolio construction
via co-evolution. IEEE Transactions on Evolutionary Computation 25, 3 (Jun. 2021), 595–607.

Sara Tari, Holger Hoos, Julie Jacques, Marie-Eléonore Kessaci, and Laetitia Jourdan. 2020a. Automatic
configuration of a multi-objective local search for imbalanced classification. In International Conference
on Parallel Problem Solving from Nature. Springer, Leiden, The Netherlands, 65–77.

Sara Tari, Nicolas Szczepanski, Lucien Mousin, Julie Jacques, Marie-Eléonore Kessaci, and Laetitia Jourdan.
2020b. Multi-objective automatic algorithm configuration for the classification problem of imbalanced data.
In IEEE Congress on Evolutionary Computation. IEEE, Glasgow, UK, 1–8.

Jorge Tavares and Francisco B Pereira. 2012. Automatic design of ant algorithms with grammatical evolution.
In European Conference on Genetic Programming. Málaga, Spain, 206–217.

Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research 10, 7 (July 2009), 1633–1685.

Dhananjay Thiruvady, Gaurav Singh, Andreas T Ernst, and Bernd Meyer. 2013. Constraint-based ACO for
a shared resource constrained scheduling problem. International Journal of Production Economics 141, 1
(Jan. 2013), 230–242.

Ye Tian, Xingyi Zhang, Cheng He, Kay Chen Tan, and Yaochu Jin. 2023. Principled design of translation,
scale, and rotation invariant variation operators for metaheuristics. Chinese Journal of Electronics 32, 1
(Jan. 2023), 111–129.

Braden Tisdale, Deacon Seals, Aaron Scott Pope, and Daniel R Tauritz. 2021. Directing evolution: The
automated design of evolutionary pathways using directed graphs. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion. Lille, France, 732–740.

Alexander Tornede, Difan Deng, Theresa Eimer, Joseph Giovanelli, Aditya Mohan, Tim Ruhkopf, Sarah
Segel, Daphne Theodorakopoulos, Tanja Tornede, Henning Wachsmuth, et al. 2023. AutoML in the
Age of Large Language Models: Current Challenges, Future Opportunities and Risks. arXiv preprint
arXiv:2306.08107 (2023).

Koen van der Blom, Holger H Hoos, Chuan Luo, and Jeroen G Rook. 2022. Sparkle: Towards Accessible
Meta-Algorithmics for Improving the State of the Art in Solving Challenging Problems. IEEE Transactions
on Evolutionary Computation 26, 6 (Dec. 2022), 1351–1364.

Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas Bäck. 2016. Evolving the structure of
evolution strategies. In IEEE Symposium Series on Computational Intelligence. IEEE, Athens, Greece,
1–8.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing
Systems, Vol. 30. Long Beach, CA, USA.

José Antonio Vázquez-Rodríguez and Gabriela Ochoa. 2011. On the automatic discovery of variants of the
NEH procedure for flow shop scheduling using genetic programming. Journal of the Operational Research
Society 62, 2 (Aug. 2011), 381–396.

Diederick Vermetten, Hao Wang, Manuel López-Ibañez, Carola Doerr, and Thomas Bäck. 2022. Analyz-
ing the impact of undersampling on the benchmarking and configuration of evolutionary algorithms. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion. 867–875.

CL Camacho Villalón, Marco Dorigo, and Thomas Stützle. 2022. PSO-X: A component-based framework
for the automatic design of particle swarm optimization algorithms. IEEE Transactions on Evolutionary
Computation 26, 2 (Jun. 2022), 402–416.

28

Published in Transactions on Machine Learning Research (02/2024)

Christos Voudouris and Edward Tsang. 1999. Guided local search and its application to the traveling
salesman problem. European journal of operational research 113, 2 (Mar. 1999), 469–499.

Hao Wang, Bas van Stein, Michael Emmerich, and Thomas Back. 2017. A new acquisition function for
Bayesian optimization based on the moment-generating function. In IEEE International Conference on
Systems, Man, and Cybernetics. IEEE, Banff, Canada, 507–512.

Danny Weyns, Thomas Bäck, Renè Vidal, Xin Yao, and Ahmed Nabil Belbachir. 2021. Lifelong computing.
arXiv preprint arXiv:2108.08802 (2021).

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber. 2014.
Natural evolution strategies. The Journal of Machine Learning Research 15, 1 (Mar. 2014), 949–980.

John R Woodward and Ruibin Bai. 2009. Why evolution is not a good paradigm for program induction: A
critique of genetic programming. In Proceedings of the ACM/SIGEVO Summit on Genetic and Evolution-
ary Computation. Shanghai, China, 593–600.

John R Woodward and Jerry Swan. 2012. The automatic generation of mutation operators for genetic algo-
rithms. In Proceedings of the Genetic and Evolutionary Computation Conference Companion. Philadelphia,
PA, USA, 67–74.

Xingyu Wu, Sheng-hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. 2024. Evolutionary computation in
the era of large language model: Survey and roadmap. arXiv preprint arXiv:2401.10034 (2024).

Yi Xiang, Han Huang, Yuren Zhou, Sizhe Li, Chuan Luo, Qingwei Lin, Miqing Li, and Xiaowei Yang.
2022. Search-based diverse sampling from real-world software product lines. In IEEE/ACM International
Conference on Software Engineering. Pittsburgh, PA, USA, 1945–1957.

Lin Xu, Ashiqur R KhudaBukhsh, Holger H Hoos, and Kevin Leyton-Brown. 2016. Quantifying the simi-
larity of algorithm configurations. In International Conference on Learning and Intelligent Optimization.
Springer, Ischia, Italy, 203–217.

Yuan Yan, Qunfeng Liu, and Yun Li. 2023. Paradox-free analysis for comparing the performance of opti-
mization algorithms. IEEE Transactions on Evolutionary Computation 27, 5 (Oct. 2023), 1275–1287.

Furong Ye, Carola Doerr, Hao Wang, and Thomas Bäck. 2022a. Automated configuration of genetic algo-
rithms by tuning for anytime performance. IEEE Transactions on Evolutionary Computation 26, 6 (Dec.
2022), 1526–1538.

Furong Ye, Diederick L Vermetten, Carola Doerr, and Thomas Bäck. 2022b. Non-elitist selection among
survivor configurations can improve the performance of irace. arXiv preprint arXiv:2203.09227 (2022).

Haoran Ye, Jiarui Wang, Zhiguang Cao, and Guojie Song. 2024. ReEvo: Large language models as hyper-
heuristics with reflective evolution. arXiv preprint arXiv:2402.01145 (2024).

Wenjie Yi, Rong Qu, and Licheng Jiao. 2023a. Automated algorithm design using proximal policy optimi-
sation with identified features. Expert Systems with Applications 216 (Apr. 2023), 119461.

Wenjie Yi, Rong Qu, Licheng Jiao, and Ben Niu. 2023b. Automated design of metaheuristics using reinforce-
ment learning within a novel general search framework. IEEE Transactions on Evolutionary Computation
27, 4 (Aug. 2023), 1072–1084.

Qi Zhao, Bai Yan, Xianglong Chen, Taiwei Hu, Shi Cheng, and Yuhui Shi. 2022. AutoOpt: A general frame-
work for automatically designing metaheuristic optimization algorithms with diverse structures. arXiv
preprint arXiv:2204.00998 (2022).

Qi Zhao, Bai Yan, Taiwei Hu, Xianglong Chen, Qiqi Duan, Jian Yang, and Yuhui Shi. 2023a. Au-
toOptLib: Automatically tailoring metaheuristic optimizers via automated algorithm design. arXiv
preprint arXiv:2303.06536 (2023).

29

Published in Transactions on Machine Learning Research (02/2024)

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023b. A survey of large language models. arXiv preprint
arXiv:2303.18223 (2023).

Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. 2023. Transfer learning in deep reinforcement
learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 11 (Nov. 2023),
13344–13362.

Eckart Zitzler and Lothar Thiele. 1999. Multiobjective evolutionary algorithms: A comparative case study
and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3, 4 (Nov. 1999),
257–271.

30

	Introduction
	Preliminaries
	Formulation of Metaheuristic Algorithm Design
	Automated Design of Metaheuristic Algorithms
	Survey Scope

	Design Space
	Design Space with Computational Primitives
	Design Space with Algorithmic Operators
	Usability

	Design Strategies
	Model-Free Strategies
	Model-Based Strategies
	Usability

	Performance Evaluation Strategies
	Performance Metrics
	Performance Evaluation and Comparison
	Reducing Time Cost of Performance Evaluation
	Reducing the Number of Performance Evaluations
	Estimating the Performance without a Full Evaluation
	Usability

	Target Problems
	Numerical Benchmark Problems
	Practical Problems
	Software

	Research Trends
	Design Space
	Design Strategies
	Performance Evaluation Strategies
	Experimental and Theoretical Analysis, Practical Applications
	Intersection with Related Research Fields

	Conclusion

