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Abstract
Large language models (LLMs) often neces-001
sitate extensive labeled datasets and training002
compute to achieve impressive performance003
across downstream tasks. This paper ex-004
plores a self-training paradigm, where the005
LLM autonomously curates its own labels006
and selectively trains on unknown data sam-007
ples identified through a reference-free consis-008
tency method. Empirical evaluations demon-009
strate significant improvements in reducing hal-010
lucination in generation across multiple sub-011
jects. Furthermore, the selective training frame-012
work mitigates catastrophic forgetting in out-of-013
distribution benchmarks, addressing a critical014
limitation in training LLMs. Our findings sug-015
gest that such an approach can substantially re-016
duce the dependency on large labeled datasets,017
paving the way for more scalable and cost-018
effective language model training.019

1 Introduction020

Large language models (LLMs) have revolution-021

ized natural language processing (NLP), enabling022

remarkable performance across various down-023

stream tasks (Llama-3, 2024). However, their de-024

velopment is heavily reliant on vast amounts of la-025

beled data and significant computational resources,026

which are not always readily accessible (Cambria027

et al., 2023). Self-learning is an applicable field028

that can tackle such limitations and enables a low-029

resource training environment. However, LLMs030

are known to hallucinate (Huang et al., 2023) due031

to the inherent biases, noise in their pre-training032

dataset, or just lack of data. This makes it challeng-033

ing to apply self-learning to continuously improve034

the knowledge of the model.035

Another key problem in LLM fine-tuning is036

catastrophic forgetting (Luo et al., 2023). This037

phenomenon occurs when the model learns new038

information in one domain but simultaneously suf-039

fers from a degradation of knowledge in previously040

acquired areas. A naïve solution is to exploit larger041

data mixing new and old knowledge, which may 042

not be feasible for domains with limited resources. 043

Alternative approaches, such as continual learn- 044

ing (Ke et al., 2023; Jang et al., 2021) and inference- 045

only correction (Meng et al., 2022a; Hernandez 046

et al., 2023) offer potential solutions. However, 047

these methods face other limitations such as re- 048

duced efficiency in learning new knowledge and 049

scalability towards large domains. 050

To address the aforementioned limitations, this 051

paper explores a self-training paradigm where the 052

LLM autonomously curates its own labels and per- 053

forms selective training on samples filtered using 054

a new knowledge detection. This measure iden- 055

tifies instances that are annotated as "unknown", 056

indicating the model’s low confidence in provid- 057

ing accurate answers (Ferdinan et al., 2024; Liang 058

et al., 2024). This filtering step is specifically used 059

to curate a preference dataset to perform knowl- 060

edge correction via Direct Preference Optimization 061

(DPO) (Rafailov et al., 2024). The rationale behind 062

performing the selection step is twofold. Firstly, 063

this allows for a larger distance between the pre- 064

ferred and dispreferred sample, thereby reducing 065

noise in the training. This helps to prevent degener- 066

ation, a common issue observed when implement- 067

ing DPO (Pal et al., 2024). Secondly, training ex- 068

clusively on samples related to lack of knowledge 069

is resource-efficient and aids in retaining previously 070

learned information. 071

Our results demonstrate that the proposed frame- 072

work enhances factual accuracy in answering ques- 073

tions pertaining to a specified knowledge source. 074

Additionally, training on the selected samples not 075

only preserves but, in some instances, improves per- 076

formance on out-of-distribution benchmarks. Com- 077

parative analyses with baseline approaches, which 078

demand higher computational resources, reveal that 079

our approach outperforms these baselines. 080
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2 Related work081

Self-Training: LLMs have demonstrated the082

capability to annotate datasets without the need for083

human-annotated labels, facilitating a low-resource084

training process for other LLMs. Typically, a085

larger model referred to as the teacher, generates086

the labels, while a smaller model, the student,087

is trained on these labels in a process known088

as context distillation. A range of training and089

inference algorithms can be used, including090

conventional supervised fine-tuning (SFT) (Alpaca,091

2023; Mukherjee et al., 2023; Li et al., 2022; Hsieh092

et al., 2023), in-context learning (Krishna et al.,093

2024) and preference optimization (Tunstall et al.,094

2023; Llama-3, 2024). Self-learning methods095

eliminate the need for the larger LLM, which096

typically requires substantially more computational097

resources and incurs higher API costs. Recent098

studies have shown that this is achievable, given an099

unlabeled dataset with a small set of examples as100

supplementary context (Huang et al., 2022; Tian101

et al., 2023; Wang et al., 2022). (He et al., 2019)102

performs an initial step of supervised fine-tuning103

on a small labeled dataset before using the trained104

generator to annotate the unlabeled set, (Jie et al.,105

2024) similarly for rationalization tasks. (Meng106

et al., 2022b) augments a given labeled dataset107

with additional samples, but is however limited108

to only classification tasks. Our work diverges109

from these approaches where training is only110

conducted exclusively on samples labeled as111

unknown. (Cheng et al., 2024) is similar to our112

work, but only teaches the model to abstain from113

answering unknown questions.114

115

Knowledge Detection: Detecting knowl-116

edge gaps in a model has been a long-standing area117

of research, with the primary goal of assessing the118

truthfulness of a model’s outputs. Early works119

employed questions structured in cloze format to120

detect knowledge prescene (Petroni et al., 2019),121

but this approach is limited to unambiguous and122

short-form questions. Subsequent research, such123

as (Wang et al., 2023; Dong et al., 2024) asserts124

the presence of knowledge through paraphrased125

and perturbated queries. FactScore (Min et al.,126

2023) decomposes a generation into a list of127

atomic facts and generates an average truthfulness128

score relative a knowledge source, allowing129

for finer analysis. (Chern et al., 2023) utilizes130

multiple external tools, such as Google search,131

GitHub, and others to perform fact-checking. 132

SelfCheckGPT (Manakul et al., 2023) introduces a 133

reference-free detection technique that evaluates 134

the likelihood of hallucinations by examining 135

consistency across sampled generations from the 136

model. This is particularly useful in the event that 137

the labels or knowledge source is unavailable. 138

3 Self-training 139

This section introduces the details of our self- 140

training framework, broken down into four sequen- 141

tial steps: Instruction Generation, SFT stage, Pref- 142

erence Labeling and Knowledge Filtering. As a 143

start, we assume access to a knowledge source as 144

the main source of material to perform both training 145

and truthfulness evaluation. The full illustration is 146

shown in Figure 1. A key benefit of our framework 147

is that it does not require significant human efforts 148

besides a few manually crafted instruction-answer 149

examples for in-context generation. 150

3.1 Instruction generation 151

We utilize Wikipedia1 as the foundation of our 152

knowledge source given its widespread acceptance 153

and reliability. Note that this framework is likely 154

to be applicable to any other form of knowledge 155

sources as long as they do not contain any signifi- 156

cant noise or ambiguous information. In order to 157

ensure comprehensive coverage across subjects of 158

notable interest, we sample documents from the 159

following topics: {Geography, Art, Medical, His- 160

tory, Biology, Science, Musician, Actor, Economics, 161

Astronomy}. For each topic, we randomly sam- 162

ple 100 documents to form the training set and 163

10 documents for evaluation purposes. A crucial 164

aspect of our approach is ensuring that the gen- 165

erated instructions are relevant to the documents 166

and prompt for answers that can be found within 167

them. We observe that non-instructed pre-trained 168

language models often fail in this regard, generat- 169

ing irrelevant instructions. Therefore, we employ 170

the instruct-tuned LLM, OpenAI’s GPT-3.5 as the 171

instruction generator, GInstr to construct the in- 172

struction sets. 173

For each document, we generate N questions 174

and remove any duplicate questions within each 175

document. We split the document into chunks of 176

length, L = 512, where each chunk is provided as 177

input to GInstr, along with few-shot examples. We 178

1https://huggingface.co/datasets/wikimedia/
wikipedia
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Figure 1: An overview of the self-training framework, instruction generation (1), SFT stage (2), preference labeling
(3) and knowledge filtering (4). The four steps are implemented in sequence and the final model is assessed for
truthfulness.

find that providing non-overlapping contexts helps179

reduce duplicate instructions, and including few-180

shot instruction generation examples can align the181

generator to produce objective instructions. Subse-182

quently, a de-duplication step is performed across183

the N questions within each document.184

3.2 SFT stage185

We start with a pre-trained LLM: GPLM that is186

to be self-trained. First, it is used to self-annotate187

the instruction-only training set from the first stage,188

given few-shot examples, forming the SFT dataset,189

DSFT = {(xi, ŷi) | i = 1, 2, . . . , N}, xi refers190

to the instruction and ŷi is the self-annotated label.191

Providing a set of examples is a common procedure192

to avoid degenerated responses since GPLM is not193

inherently familiar with the task format (Tian et al.,194

2023; Wang et al., 2022; Huang et al., 2022). The195

primary difference lies with the addition of a sec-196

ond dataset, Reading Comprehension (RC), DRC197

which is similar to DSFT , but includes the docu-198

ment chunk. We employ GPT-3.5 to generate the199

label, by feeding both the instruction and document200

into the input prompt. The purpose of DRC is to201

train the model in generating responses by refer-202

encing the document, which we later show to be203

beneficial towards stability in the training process.204

We use 1
3 of the instruction set to construct DRC , 205

with the remainder 2
3 for DSFT . Both datasets are 206

then combined to perform SFT on GPLM to form 207

the instruct-tuned model GSFT . 208

3.3 Preference Labeling 209

Given the instruct-tuned model GSFT , we proceed 210

to construct the preference dataset to implement 211

DPO. The primary objective at this stage is to gen- 212

erate a dataset that corrects the biases learned dur- 213

ing the SFT stage. These biases arise due to the 214

limitations of self-generating labels, which depend 215

on the knowledge acquired during the pre-training 216

phase. For each instruction, we provide GSFT 217

with two input prompts: one including the doc- 218

ument chunk c and one without. We sample K 219

generations from each format to form the chosen 220

set, Yc = fK(GSFT , x, c), and the rejected set, 221

Yr = fK(GSFT , x). Additionally, we use greedy 222

decoding to generate y∗c = f∗(GSFT , x, c). This 223

forms the base preference dataset, DDPO, which is 224

further filtered, see Sec. 3.4. Here we denote fK as 225

the sampling operation producing K outputs and 226

f∗ as the greedy decoding operation. We assume 227

that when the model is given the document, the 228

response will be more truthful than without it. We 229

demonstrate empirically in subsequent experiments 230
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that this assumption is valid.231

3.4 Knowledge Filtering232

Rather than straightforwardly performing the DPO233

directly on DDPO, we perform an additional filter-234

ing procedure, to minimize the noise in the pref-235

erence dataset. This filtering procedure is imple-236

mented across each sample in DDPO and involves237

two stages: (1) consistency filtering and (2) knowl-238

edge filtering. The idea of consistency filtering is239

to compute a consistency score SL, measuring the240

consistency of the reference response y∗c with the241

K chosen responses Yc, corresponding to each in-242

struction. In contrast, knowledge filtering evaluates243

whether the SFT model GSFT tends to hallucinate244

on a given sample, measured by the knowledge245

score SK , against Yr.246

SL =
1

K

∑
yc∈Yc

SC(y
∗
c , yc) (1)247

248

SK =
1

K

∑
yr∈Yr

SC(y
∗
c , yr) (2)249

To measure the difference between any two re-250

sponses, we use the contradiction score SC com-251

puted by a separate encoder trained on a vast252

amount of natural language inference (NLI) data,253

this is similar to the NLI component in SelfCheck-254

GPT (Manakul et al., 2023). SC represents the255

probability of the contradiction class between a pair256

of responses. We chose SelfCheckGPT because it257

is a reference-free method of detecting hallucina-258

tion signs and is relatively low-cost. In contrast,259

reference-based methods like FactScore (Min et al.,260

2023) require significantly more computation due261

to atomic fact decomposition, making them costly262

for large datasets. Additionally, SelfCheckGPT has263

shown a high correlation with human assessments264

in hallucination detection.265

In the first stage, DDPO from step three un-266

dergoes a consistency filtering to filter out low-267

confidence responses. Intuitively, if the average268

contradiction between the sampled responses and269

the greedy decoded response is high, it indicates270

a higher probability of hallucination in the refer-271

ence response. This approach ensures that the fi-272

nal model does not maximize the probability of273

low-quality answers. It is worth noting that this274

filtering step could be performed during the SFT275

stage; however, we refrain from doing so to avoid276

over-filtering, as a high contradiction score may277

Algorithm 1 Knowledge and Consistency Filtering
Input: DDPO, τL, τK
Output: Filtered dataset, D∗

1: D∗ ← ∅
2: for xi, y

∗
c , Yc, Yr in DDPO do

3: SL = 1
K

∑
yc∈YC

SC(y
∗
c , yc) in ( 1)

4: if SL < τL then
5: SK = 1

K

∑
yr∈YR

SC(y
∗
c , yr) in ( 2)

6: if SK > τK then
7: yw ← y∗c
8: yl ← argmaxyr∈Yr

SC(y
∗
c , yr)

9: D∗ ← D∗ ∪ {xi, yw, yl}
10: end if
11: end if
12: end for
13: return D∗

result from unfamiliarity with the task rather than 278

a lack of knowledge. We fix the threshold, τL to be 279

0.5, filtering out samples, SL > τL. 280

The second stage, knowledge filtering, removes 281

samples where the model is considered knowledge- 282

able. The objective is to prevent over-training, par- 283

ticularly on samples where the model has a higher 284

accuracy tendency. This approach has two bene- 285

fits: first, it ensures a larger discrepancy between 286

the chosen and rejected responses, and second, it 287

mitigates cases of catastrophic forgetting. The first 288

benefit is crucial for reducing noise in the optimiza- 289

tion objective, DPO in Equation 5 which aims to 290

learn the optimal policy by maximizing the margin 291

between the probability of the chosen and rejected 292

candidates. The second benefit prevents overfitting 293

on instances where the model is sufficiently knowl- 294

edgeable and may experience knowledge forgetting 295

in other tasks due to continual training. Similarly, 296

we start with an initial threshold τK = 0.5 and later 297

study the effects of gradually increasing τK . The fi- 298

nal DPO dataset, D∗ is constructed from the dataset 299

filtered for consistency by excluding samples where 300

SK < τK or SL > τL.. The full filtering procedure 301

is demonstrated in Algorithm 1. 302

DPO (Rafailov et al., 2024) is a variant of Re- 303

inforcement Learning (RL), that allows learning 304

an optimal policy without the need to optimize an 305

external reward function. This simplifies the train- 306

ing by fitting the optimal policy πθ from a fixed 307

preference dataset. 308

δc = log
πθ(yw | x)
πref(yw | x)

(3) 309
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δr = log
πθ(yl | x)
πref(yl | x)

(4)310

311
LDPO(πθ;πref) = −E(x,yw,yl)∼D[log σ(β(δc−δr))]

(5)312

β is the regularization operator, while πref is the313

reference policy, initialized from GSFT . yw and314

yl are the chosen and rejected candidates, where315

yw is preferred over yl. The probability distribu-316

tion of this preference, p(yw ≻ yl) follows the317

Bradley-Terry model (Bradley and Terry, 1952),318

where the latent reward function, r∗ is assumed to319

be implicitly represented in the preference dataset.320

p(yw ≻ yl) = σ(r∗(x, yw)− r∗(x, yl)) (6)321

In this work, we always set y∗c as yw while yl is se-322

lected among the K rejected samples Yr in Sec. 3.3.323

We select the sample with the highest contradiction324

score as yl.325

yl = argmax
yr∈Yr

SC(y
∗
c , yr) (7)326

Based on the above formulation, we observe that327

performing consistency filtering encourages δc to328

push the target model in the right direction, while329

knowledge filtering pertains to δc − δr.330

4 Experiments331

Through the following experiments, we would like332

to answer the following research questions:333

RQ1: Are LLMs capable of performing self-334

training to improve truthfulness in re-335

sponses?336

RQ2: How does conducting selective training337

improve truthfulness in LLMs and what338

are the effects of forgetting on out-of-339

distribution tasks?340

RQ3: How sensitive is the knowledge filtering341

threshold, τK with respect to mitigating342

hallucinations?343

4.1 Dataset344

Train: The training dataset used is constructed345

using OpenAI’s GPT-3.5, we generate 8 questions346

per document after chunking, for 100 documents347

from each of the 10 topics. After de-duplication,348

we end up with 5,780 instructions to conduct self-349

training. The instructions are used in constructing350

both the SFT and DPO datasets.351

352

Test: The primary test dataset comprises 353

the held-out questions curated from the target 354

topics discussed in Sec. 3.1, with 10 documents for 355

each of the 10 topics, we refer to this as Wiki-Test. 356

We construct 2 questions from each document, 357

resulting in a total of 200 questions, generated 358

using GPT-4 (Achiam et al., 2023). We manually 359

check the questions to ensure they are aligned with 360

the documents. We also conducted experiments on 361

the Open LLM leaderboard2 consisting of various 362

NLP benchmarks that are likely not to be directly 363

included in the model’s training set. The purpose 364

of these evaluations is to detect signs of forgetting 365

across tasks such as commonsense reasoning and 366

general knowledge understanding when the model 367

is fine-tuned on data of different distributions. 368

4.2 Model 369

We conduct the experiments on pre-trained LLMs 370

of different sizes, i.e., Tinyllama-1.1B (Zhang et al., 371

2024), Llama2-7B and 13B (Touvron et al., 2023), 372

to study the effect of parameter scaling on the abil- 373

ity to conduct effective self-training. We choose 374

DeBERTa-v3-large (He et al., 2021) as the en- 375

coder to compute SC , which is pre-trained on 376

MNLI (Williams et al., 2017). We compare our pro- 377

posed approach of self-training, which performs 378

the two stages of filtering, with both τL and τK 379

set to 0.5 against several baselines. The first base- 380

line, denoted as w/o filtering, does not perform 381

both filtering stages and trains the model on the full 382

DPO dataset instead of D∗. In this case, this refers 383

to only performing steps 7 to 9 in Algorithm 1. 384

The second baseline uses GPT-3.5 to generate the 385

chosen response instead of the model itself, also 386

without any filtering steps. The document is not 387

provided in the prompt to see if the raw knowledge 388

of GPT-3.5 is sufficient as a learning signal, simi- 389

lar to performing context distillation on the target 390

LLM. Lastly, we compare against an inference- 391

type baseline, DOLA (Chuang et al., 2023), which 392

has been shown to be effective in eliciting truthful 393

responses from LLM. 394

4.3 Experiment details 395

We use a learning rate of 2e-5 and 1e-5 during SFT 396

and 1e-6 and 5e-7 for DPO for the 1B and 7/13B 397

variants respectively. We conduct early stopping 398

only during SFT and fix the total training step to be 399

300 for DPO, to standardize the number of training 400

2https://huggingface.co/open-llm-leaderboard
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Figure 2: Win-Tie-Lose on main held-out questions based on Wikipedia documents. Left pertains to TinyLlama-
1.1B, middle to Llama2-7B and right refers to 13B. Scores are evaluated based on pairwise comparison using
GPT-4 as the evaluator and all approaches are compared against the respective SFT model.

steps across datasets of varying sizes. We exploited401

a batch size of 32 and set β to be 0.3. Tempera-402

ture was set to 1.0 for the sampling operation and403

K = 10 responses were sampled. The primary404

test set metric is LLM-Judge (Zheng et al., 2024),405

which uses GPT-4 to conduct pairwise ranking. Re-406

sponses from both models are provided along with407

the document from which the question was con-408

structed, and GPT-4 is prompted to compare the409

responses based on their truthfulness with respect410

to the document. On Open LLM leaderboard, we411

use accuracy as the evaluation metric.412

5 Results413

To compare different approaches with pairwise414

evaluation, we set the SFT-ed model, GSFT as415

the baseline and compare all approaches against416

it. We run the evaluation twice for each instance,417

concluding with a tie if both evaluations disagree,418

similar to (Yuan et al., 2024).419

5.1 Impact of Self-training on Truthfulness420

RQ1 Effects of self-training on truthfulness:421

On Wiki-Test, we can see in Figure 2 that it is422

possible for LLMs to self-train on their own423

outputs, without the need for human-annotated424

data. This capability extends even to models with425

significantly fewer parameters, such as the 1.1B426

parameter model. Notably, no few-shot examples427

are included in the prompt when constructing428

the preference dataset. Context distillation429

underperforms compared to self-training for430

Tinyllama but achieves a higher win rate for the431

7B and 13B models, albeit suffering a higher loss432

rate. We hypothesize that this discrepancy can 433

be partly attributed to inaccuracies in GPT-3.5’s 434

knowledge base, which in turn causes instability 435

in the distillation process. Conversely, when the 436

document is provided as context to the model, 437

it encourages more truthful responses, thereby 438

correcting any errors in its previously learned 439

knowledge. 440

441

RQ2 Benefits of filtering: The results showed that 442

performing selective training on the filtered dataset 443

produced superior results compared to training 444

on the entire dataset, except the 13B model. 445

However, we will show in later experiments that 446

the gap can be reduced by tuning the scoring 447

threshold, τK . Nonetheless, this resonates with 448

our initial belief that having a preference dataset 449

with a larger distance between the preferred and 450

dispreferred labels can lead to more stable training. 451

This is logical, as not all samples in a dataset 452

satisfy the property (yw ≻ yl). Notably, DOLA 453

fails to achieve any significant improvements 454

across all models, besides a marginal increase in 455

performance in the 7 and 13B models. 456

5.2 Catastrophic Forgetting 457

One natural concern regarding fine-tuning is the 458

impact on out-of-distribution benchmarks. More 459

specifically, we want to see if continual training 460

on instances where the model is sufficiently knowl- 461

edgeable, can induce catastrophic forgetting effects. 462

We use GSFT as the baseline and compare the per- 463

formance after DPO with and without filtering on 464

the preference dataset. To do so, we conducted 465
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ARC HellaSwag TruthfulQA Winogrande MMLU Average

1.1B
Ours 29.8 60 36.4 58 26.2 42.1

w/o filtering 27.6 57.4 33 56.4 25.3 39.9
SFT 30.2 59.5 35.5 58.4 26.2 41.9

7B
Ours 40.4 73.5 40.2 68.4 43.8 53.3

w/o filtering 38.4 71.2 37.2 66.1 41.9 50.9
SFT 40.2 72.1 41.4 67.9 43.8 53.1

13B
Ours 44 76.4 36.9 72.2 53.2 56.6

w/o filtering 42.9 74.3 34.9 71 51.1 54.9
SFT 43.8 75.2 37.2 72.5 53.2 56.4

Table 1: Performance of the three models on the Open LLM leaderboard. All tasks are performed 0-shot except
MMLU, using 5-shot. Displayed results are the accuracy metric.

evaluations on two benchmarks, Open LLM leader-466

board, and a dataset consisting of instructions fil-467

tered out from D∗. The first benchmark assesses468

LLMs on commonsense reasoning, general knowl-469

edge, and sentence completion. The second set470

refers to the samples that are labeled as known and471

were thus left out in D∗ after filtering. Ideally, this472

experiment seeks to study if GSFT , after doing SFT473

on its own outputs, will encounter any deterioration474

in its knowledge after doing preference tuning on475

instances where it was deemed to be knowledgable..476

Due to the high cost of evaluating the full dataset,477

we randomly sample 200 instances, similar to the478

primary test set. The known dataset is filtered using479

a value of 0.5 for τK .480

RQ2 Effects of filtering on knowledge reten-481

tion: Based on Table 1, we observe that perform-482

ing knowledge filtering retains the performance of483

the model on out-of-distribution tasks. Perform-484

ing preference tuning on the full dataset conversely485

suffers a performance degradation despite being ex-486

posed to a more diverse dataset. This is particularly487

true for TruthfulQA, which may be less surprising488

given the results in Figure 2. Likewise in Table 3,489

performing knowledge filtering is shown to suffer490

a lower losing rate as compared to without. This491

is surprising since the evaluation is conducted on492

samples where preference tuning was conducted in493

the case of w/o filtering. This finding supports our494

initial belief that over-training on known instances495

can have adverse effects on the model.496

5.3 Varying Filtering Theshold497

In the previous experiments, we fixed the knowl-498

edge filtering threshold τK = 0.5. However, this499

value may not be the most optimal value across500

different models. A more capable model should501

Figure 3: Percentage of losing rate on 200 randomly
sampled instances classified as known. All approaches
are compared against πSFT .

theoretically require a higher threshold to distin- 502

guish between a known and unknown sample. This 503

is because a more capable model is likely to ex- 504

hibit lesser variance between generating a response 505

based on its existing knowledge and when exposed 506

to relevant materials. We repeat the experiments 507

from Sec. 5.1 while varying τK . 508

RQ3 Effects of τK: Figure 4 shows that increas- 509

ing the threshold generally results in higher win 510

rates. We observe a steeper slope in larger mod- 511

els such as the 13B model while the 1.1B models 512

exhibits a less pronounced effect. This yields a sur- 513

prising finding: despite shrinking the dataset as τK 514

increases, the model does not overfit when trained 515

for a higher number of iterations over a smaller set 516

of data. A plausible hypothesis is that increasing 517

τK allows us to identify critical instances where the 518

model would fail with just SFT. By implementing 519

DPO on these samples, the model achieves more 520

pronounced benefits compared to samples where 521

GSFT may already have an acceptable level of 522

knowledge. Another reason could be the noise in 523
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Figure 4: Effects of varying τK on the win rate. Dashed
lines shows the results without performing knowledge
filtering for each model.

identifying unknown instances; the standard value524

used in previous experiments may have caused a525

higher number of false positives. The statistics on526

the size of D∗ is shown in Table 3.527

5.4 Ablation: Preference Labeling without528

Context529

Previously, the preferred response in the prefer-530

ence dataset was constructed by providing the rele-531

vant document as supporting context. However, we532

would like to see if LLMs can generate a training533

set with sufficient distance between the preferred534

and dispreferred response to yield a stable training535

process. In this scenario, to construct DDPO, we536

exclude the document in the input prompt from537

Sec. 3.3 and generate a single set of K responses,538

Y = fK(GSFT , xi). We treat each response as the539

reference response in place of y∗c in Equation 2 and540

compute the averaged contradiction score against541

the other responses in the set. We then select the542

response with the minimal score as the preferred543

response, yw, and the response with the maximum544

score as the dispreferred response, yl, for DPO545

in Equation 5. This approach tunes the model to-546

wards the most consistent response and away from547

the least consistent response.548

Based on Table 2, including the document as549

a reference results in substantial improvement in550

teaching the model to be more truthful. This effect551

is particularly pronounced in larger models, where552

Llama-13B has a higher losing rate than winning553

rate. One explanation is that larger models tend to554

be more calibrated and thus exhibit lesser variance555

between the sampled paths, making it harder to556

optimize for the margin when implementing DPO.557

Providing the document allows for new insights in558

cases when the model may hallucinate when rely-559

Win Lose

1.1B
w document 54 16

w/o document 35.2 22.8

7B
w document 40.4 9.9

w/o document 25.4 22.8

13B
w document 36.9 12

w/o document 27.5 28.5

Table 2: Ablation results comparing between construct-
ing preference dataset with and without document as
context, on Wiki-Test.

ing on its knowledge. Nonetheless, both the 1.1B 560

and 7B models still produce positive results when 561

they can only rely on their learned knowledge. Ad- 562

ditionally, the assessment did not include optimiz- 563

ing for the optimal threshold, τK which may yield 564

more favorable results, as observed in Sec. 5.3. We 565

perform additional studies on the effects of varying 566

K in Sec. A.3. 567

6 Conclusion 568

In this work, we present a cost-effective approach 569

to guiding LLMs to perform self-training on their 570

own output. We develop a framework that mini- 571

mizes human intervention and demonstrates that 572

LLMs can self-correct errors through preference- 573

tuning. Specifically, our framework facilitates the 574

creation of a high-quality preference dataset by ex- 575

cluding low signal-to-noise ratio samples using a 576

knowledge detection technique. Our experiments 577

illustrate the dual benefits of our approach: en- 578

hancing the truthfulness of LLMs and promoting 579

knowledge retention post-training. Moreover, self- 580

training offers significant incentives such as main- 581

taining data privacy, which is crucial for organi- 582

zations hesitant to expose sensitive information to 583

third-party platforms for dataset generation. 584

This work opens multiple avenues for future re- 585

search. Given that the context is built upon publicly 586

accessible material that may have been exposed to 587

the model during pre-training, an intriguing direc- 588

tion would be to investigate its impact on special- 589

ized domains such as healthcare reports or finan- 590

cial statements, where human-labeled data is often 591

scarce and private. Additionally, our current re- 592

sults are based on a single iteration. Future work 593

could explore the potential for continual improve- 594

ment by augmenting the preference dataset with 595

new context through successive iterations. 596
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7 Limitations597

Firstly, our work is constrained to a single itera-598

tion of our self-training framework due to limited599

resources for generating additional materials for600

continual preference tuning. Another limitation is601

the scope of subjects, as our experiments are re-602

stricted to ten specified topics collected on a single603

platform. In the future, we plan to extend our frame-604

work on materials which can be collected across605

multiple platforms, including news reports, recent606

research papers or data from third-party sources.607

This could potentially yield greater improvements608

since the model is unlikely to be exposed to such609

information.610
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A Appendix 792

A.1 Details on Data Generation 793

In step one of Figure 1, we generate instructions 794

from a text segment of the selected document from 795

Wikipedia. Both GPT-3.5 and GPT-4 are prompted 796

with the format from Table 4. We ensure that the 797

instruction does not explicitly mention the docu- 798

ment since at test time, the model is not given any 799

reference material. We do so by asking GInstr to 800

provide a straightforward instruction and omit in- 801

structions on instances when it failed to do so after 802

several tries. This results in a yield rate of 72.5%. 803

More efficient methods can be used in the future 804

to improve the yield rate without sacrificing too 805

much cost in API usage or manual inspection. The 806
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second half of Table 4 contains the prompt used807

to generate responses which includes the relevant808

document as additional context. This includes both809

curating the label for DRC and generating y∗c for810

DDPO.811

A.2 Dataset Statistics812

The selective training framework performs a two-813

stage filtering process. In general, consistency fil-814

tering does not affect the original dataset much for815

larger models. We find that due to the difference in816

probability calibration between models of different817

sizes, a value of 0.5 may not be suitable across all818

models. The dataset sizes are shown in Table 3.819

An example of a generated instruction corre-820

sponding to the document is in Table 4. To un-821

derstand why knowledge filter is crucial for per-822

forming DPO, we can observe from the example823

in Table 6. We show two instances, one labeled as824

unknown and another as known. There is a visible825

difference between the two responses in unknown,826

where the dispreferred response incorrectly names827

"Criminal" as the lead single, while the preferred828

response correctly names the title "Shameika".829

The instability in implementing DPO arises when830

the preferred and dispreferred response contains831

marginal differences as shown in the known exam-832

ple. This creates a noisy signal for the model since833

the dispreferred response is an acceptable answer834

to the instruction, causing the model to inevitably835

lower the probabilities of the correct sequence.836

τL τK
0.5 0.5 0.6 0.7 0.8

1.1B 5182 4172 3459 2742 2035
7B 5740 2379 1834 1401 1053
13B 5754 2234 1708 1277 946

Table 3: Statistics on the size of the D∗ after knowledge
filtering by varying the value of τK . The original dataset
size without filtering is 5780.

We notice a trend where a larger model tends to837

prune a higher number of samples during knowl-838

edge filtering. This is expected as larger models839

tend to produce responses that are more truthful840

and thus, fewer hallucinated cases can be identified.841

A.3 Approximating knowledge detection by842

varying K843

Previously, we approximated the indicator of the844

knowledge presence of a model by averaging across845

the contradiction score over a set of sampled re- 846

sponses, controlled by the sampling parameter, K. 847

One straightforward simplification is to directly use 848

the greedy decoded response without providing the 849

reference context, c to get y∗r = f∗(GSFT , x). We 850

can then derive the knowledge score, by comput- 851

ing the contradiction score between the two greedy 852

decoded responses, y∗c and y∗r . 853

Figure 5: Impact of varying K to approximate the av-
erage contradiction score. The value of K affects the
number of responses used to compute both SL and SK .

However, comparing against a single response 854

may generate an inaccurate estimate of knowledge 855

being present in the model. In Figure 5, using a 856

single sample results in a lower win rate, and using 857

more than 5 allows for a better estimate. However, 858

this affects larger models to a lesser extent, similar 859

to previous findings in Sec. 5.4 where larger models 860

tend to be more consistent between the sampled 861

outputs. The results show that the standard value 862

of K = 10 is generally acceptable and a lower 863

value such as K = 5 is sufficient in scenarios 864

where computational resources are limited, without 865

sacrificing too much on the performance. 866
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Instruction generation Instruction: Propose a single question regarding the topic of
{topic}, whose corresponding answer can be found in the given
document.
The question must be detailed and objective, whose correspond-
ing answer should be non-debatable and be found in the given
document.
The proposed question must not mention the existence of the
document, but should mention the topic, {topic}.
Document: {document}
Proposed question:

Reading Comprehension Read the document provided and use the relevant information
to answer the question carefully.
It is important that you must not explicitly mention the docu-
ment’s existence, while ensuring that your response is factual
and relevant according to the document.
Ensure your answer is well-structured according to the question.
Document: {document}
Question: {instruction}
Answer:

Table 4: Prompts used for instruction generation and eliciting responses from the instruct-tuned model, GSFT when
exposed to the document.

Document Willard Carroll Smith II (born September 25, 1968) is an Ameri-
can actor, rapper and film producer. In 2008, Smith was reported
to be developing a film entitled The Last Pharaoh, in which he
would be starring as Taharqa. Smith later starred in the super-
hero movie Hancock, which grossed $227,946,274 in the United
States and Canada and had a worldwide total of $624,386,746.
In 2013, Smith starred in After Earth with his son Jaden. The
film was a disappointment at the domestic box office and was
panned critically. Calling the film "the most painful failure in
my career", Smith ended up taking a year and a half break as a
result.

Generated instruction What film did Will Smith star in with his son Jaden in 2013,
and how was it received?

Table 5: Example of a document in the topic of "Actor" and a generated instruction from GPT-3.5.
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Unknown

Instruction What was the lead single from Fiona Apple’s fifth studio album,
"Fetch the Bolt Cutters," that won the Grammy Award for Best
Rock Performance in 2021?

Preferred response The lead single from Fiona Apple’s fifth studio album, "Fetch
the Bolt Cutters," that won the Grammy Award for Best Rock
Performance in 2021 was "Shameika."

Dispreferred response The lead single from Fiona Apple’s fifth studio album, "Fetch
the Bolt Cutters", titled "Criminal", won the Grammy Award
for Best Rock Performance in 2021. The song features a catchy
melody and lyrics about being arrested and charged with a crime.
It has become one of Apple’s most popular tracks and is often
cited as her best work.

Known

Instruction What film did Will Smith star in with his son Jaden in 2013,
and how was it received?

Preferred response In 2013, Will Smith starred in the film "After Earth" alongside
his son Jaden. The film was a commercial disappointment at the
domestic box office and received negative reviews from critics.
Smith himself described the film as "the most painful failure in
my career," leading him to take a break from acting for over a
year and a half following its release.

Dispreferred response Will Smith and his son Jaden Smith starred together in the
science fiction action film "After Earth" (2013), directed by
M. Night Shyamalan. The film received mixed reviews, with
critics praising the visual effects but criticizing the lack of
character development and predictable plot. Despite this, the
movie grossed over $270 million worldwide.

Table 6: Example from samples classified as known and unknown. Generations from the SFT model, Llama2-7B.
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