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Abstract

Understanding the fundamental concepts and
trends in a scientific field is crucial for keeping
abreast of its continuous advancement. In this
study, we propose a systematic framework for
analyzing the evolution of research topics in a
scientific field using causal discovery and in-
ference techniques. We define three variables
to encompass diverse facets of the evolution of
research topics within NLP and utilize a causal
discovery algorithm to unveil the causal connec-
tions among these variables using observational
data. Subsequently, we leverage this structure
to measure the intensity of these relationships.
By conducting extensive experiments on the
ACL Anthology corpus, we demonstrate that
our framework effectively uncovers evolution-
ary trends and the underlying causes for a wide
range of NLP research topics. Specifically,
we show that tasks and methods are primary
drivers of research in NLP, with datasets fol-
lowing, while metrics have minimal impact.1

1 Introduction

Experts in a field sometimes conduct historical stud-
ies to synthesize and document the key research
ideas, topics of interest, methods, and datasets that
shaped a field of study. They document how new
research topics eclipsed older ones and contributed
to shaping the trajectory of the research area (Kuhn,
1970). Aspiring scientists learn the craft of their
discipline by delving into the examination of past
scientific accomplishments documented in research
papers. However, conducting such a historical
study is challenging: Experts in a field rely on
years of experience and peruse large amounts of
past published articles to determine the chronolog-
ical progression of a research field. Further, the
exponential growth of scientific publications in re-
cent years has rendered it arduous even for domain
experts to stay current. Therefore, an automated

1We publish the code and dataset for our experiments at
https://github.com/UKPLab/CausalNLPTrends

method to track the temporal evolution of research
topics can be beneficial in offering an overview of
the field and assisting researchers in staying abreast
of advancements more efficiently.

In this work, we propose a systematic framework
to examine the evolutionary journey of research
topics within the realm of Natural Language Pro-
cessing (NLP), harnessing causal discovery and
inference techniques. Prior research on historical
analysis of NLP has predominantly concentrated
on scrutinizing metadata associated with research
papers (Hall et al., 2008; Mohammad, 2019; Uban
et al., 2021; Singh et al., 2023; Wahle et al., 2023)
such as number of citations, title, author profile, af-
filiation, and publication venue. These studies have
examined the research trends through unigram or
bigram frequency analysis, but they do not provide
insights into the underlying causes propelling these
research topics.

Our study centers on four distinct fundamental
types of entities in NLP research: tasks represent-
ing well defined problems; methods, signifying
the solutions or approaches employed to tackle the
tasks; datasets, indicating the relevant textual re-
sources such as corpora and lexicons; and metrics,
encompassing the evaluation techniques tailored
to specific tasks. We abbreviate these types as
TDMM for short. Specifically, we examine the
interplay between an NLP task that is commonly
viewed as a focused research topic (e.g., Machine
Translation) and the key entities that exert pivotal
influence on the target task (such as “BLEU” (Pa-
pineni et al., 2002) or “Transformers” (Vaswani
et al., 2017)).

Our goal is to identify the TDMM entities
(E) associated with a specific task (t) and assess
their causal influence on the task’s research trends
(TDMM-Task causal analysis). Specifically, we
address the following key research questions asso-
ciated with a task entity t: (a) Which entities E
effectively indicate the research trends for this task
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Research trends and the top causal entities for machine translation 

Symbolic NLP Period Statistical NLP Period Neural NLP Period Pretrained LLMs Period

Type Entity Causal Effect

Method Statistical Models 0.2505

Metric Perplexity 0.2504

Dataset Wordnet 0.2497

Task Language Generation 0.2492

1990-2002

Type Entity Causal Effect

Dataset WMT Dataset 0.2528

Metric BLEU 0.2495

Method Attention Mechanism 0.2489

Task Language Generation 0.2486

2003-2017

Type Entity Causal Effect

Method Transformers 0.2515

Metric Meteor 0.2507

Task Language Generation 0.2503

Dataset WMT dataset 0.2470

2018-2022

Figure 1: Evolution of Machine Translation (MT) research. Blue line: Number of MT papers (1979-2022). Tables
show the top causal entities/types for different periods (excluding 1979-1989 due to limited MT papers).

t? (b) Are there discernible causal relationships
between t and E? (c) What is the extent of the
causal impact exerted by E on t?

Unlike Uban et al. (2021) and Koch et al. (2021)
that heavily rely on manual annotations and have
limited coverage, our analysis is based on TDMM
entities automatically extracted from 55K papers
in the ACL Anthology2. Our framework not only
recognizes the key entities driving the research di-
rection of a research topic but also measures the
causal effects of these entities on the target topic
in an end-to-end fashion. Figure 1 shows the most
influential entities for Machine Translation (MT)
in different time periods. For instance, “statistical
models” used to be the popular method for MT
in 1990-2002, and the evaluation metric “BLEU”
is one of the top causal entities driving the MT
research in 2003-2017. In the era of pre-trained
large language models (LLMs) starting from 2018,
“transformer” has become the popular method for
MT. For another research topic of “Speech recogni-
tion”, our framework uncovers the influential role
of “language modeling” between 1979 to 2022,
where speech recognition models utilize probability
scores from language models to recognize coherent
text from speech (Negri et al., 2014).

In this work, we analyze 16 tasks from a diverse
set of research areas identified by ACL 2018 orga-
nizers. Our framework is versatile and applicable
to other tasks and domains, benefiting both young
and experienced researchers. It can aid in litera-

2https://aclanthology.org/

ture surveys by identifying related research areas
and enable young researchers to delve into new re-
search focuses by establishing connections among
different research areas.

In summary, we make three-fold contributions
in this study: Firstly, we propose a framework to
quantify research activities, including (1) trends
and stability of an NLP research task, and (2) re-
lation intensity between TDMM entities and NLP
research tasks. Secondly, we employ causal anal-
ysis algorithms to uncover causal structures and
measure effects between tasks and related TDMM
entities (TDMM-Task causal analysis). To the best
of our knowledge, this represents the first histori-
cal study of a scientific research anthology from
a causal perspective. Finally, through extensive
experiments on the ACL Anthology, we offer an
empirical overview of the NLP research landscape.
In the following sections, we will refer to TDMM-
Task causal analysis as causal analysis.

2 Related Work

Scientific Trends Analysis The analysis of sci-
entific trends has been a research focus since Hall
et al. (2008). In the field of “scientometrics”, exten-
sive literature explores citation patterns and utilizes
topological measures in citation networks for trend
analysis (Small, 2006; Shibata et al., 2008; Boyack
and Klavans, 2022).

Another line of research focuses on metadata
and content analysis. For instance, Prabhakaran
et al. (2016) employed rhetorical framing to exam-

https://aclanthology.org/
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Figure 2: System architecture.

ine trend patterns. Grudin (2009), Liu et al. (2015),
and Mohammad (2019) investigated the interac-
tion between the topics in publications, research
grants, author profiles, highly impactful papers, and
dataset usage patterns. Additionally, Koch et al.
(2021) studied dataset usage patterns among differ-
ent research communities, while Uban et al. (2021)
analyzed relationships between NLP research top-
ics based on their co-occurrence in text and the
degree of correlation between their popularity over
time. In our work, we develop entity recognition
models to extract TDMM entities from NLP re-
search papers and focus on analyzing the causal re-
lations between a task entity and its related TDMM
entities.

Causality in NLP Existing works on NLP ap-
plying causal analysis algorithms mainly focus on
two directions. The first line of work discovers
causal relations among textual features or expres-
sions of events in texts and uses them in various
downstream tasks, such as question answering (Oh
et al., 2016), commonsense reasoning (Bosselut
et al., 2019; Sap et al., 2019), and relation extrac-
tion (Do et al., 2011; Mirza and Tonelli, 2014; Duni-
etz et al., 2017).

In another avenue of this field, researchers rep-
resent causal elements using textual features (Jin
et al., 2021; Fong and Grimmer, 2016; Veitch et al.,
2020; Keith et al., 2020) and define the causal graph
structure based on domain knowledge. Our work
falls within this line of research, where we employ
causal algorithms to analyze the trends in NLP re-
search topics and the underlying causes.

3 Data Collection

ACL Anthology Corpus Following prior work
by Mohammad (2020), we utilize ACL Anthology
as the source of NLP Research papers. For this
work, we collect 55,366 NLP papers that belong to
the “ACL Events” category3 from the ACL anthol-
ogy published between 1979 and 2022. For each
paper, we use GROBID (GRO, 2008–2022) and the
PDF table parser from Hou et al. (2019) to extract
sentences from each of the individual sections as
well as from the table and figure captions. In a
post-processing step, we remove all the URLs from
the extracted sentences. On average, we have 1,258
papers per year and 1,117 sentences per paper.

It is worth noting that certain NLP paper
preprints may become accessible on preprint
servers before they are officially published in the
ACL Anthology. However, we argue that the peer
review process in ACL Anthology serves as a ro-
bust quality assurance mechanism. Hence, we con-
sider ACL Anthology a more reliable source com-
pared to preprint servers.

TDMM Entity Extraction To identify tasks,
datasets, metrics, and methods entities from NLP
papers, we developed two entity taggers based on
Flair (Akbik et al., 2018). The first tagger is based
on the TDMSci annotations (Hou et al., 2021) for
recognizing task, dataset, and metric entities. The
second tagger is trained using the SciERC dataset

3This category covers major NLP conferences, workshops,
and journals including ACL, NAACL, EMNLP, EACL, AACL,
CL, and TACL. Additionally, we also include papers published
at COLING from the “Non-ACL events category”.



Period Years Key Research Themes

Early Years 1979–1989 Foundational work in syntactic parsing, machine translation, and information
retrieval.

Formative Years 1990–2002 Advances in language modeling, named entity recognition, and discourse analy-
sis (research focus shifted towards data-driven approaches).

Statistical Revolution &
Neural Networks

2003–2017 Focus on statistical techniques (text classification, statistical machine translation,
etc.) and resurgence of neural networks (word embeddings, neural machine
translation, etc.)

Deep Learning Era 2018–2022 Dominance of transformer-based architectures (BERT and their variants).

Table 1: Chronological Periods of NLP Research.

(Luan et al., 2018) to extract method entities. On
the testing datasets of TDMSci and SciERC, the
two taggers achieve a micro-average F1 of 0.77
and 0.78 for the type partial match (Segura-Bedmar
et al., 2013), respectively. In type partial match,
a predicted entity is considered correct if it par-
tially overlaps with a gold entity and has the same
type. For example, “Penn Treebank” is counted as
a correct prediction even if the corresponding gold
annotation is “Penn Treebank dataset”.

To further improve the precision of the TDMM
taggers, we include only entities that appear in
more than five papers in the dataset. For each pa-
per, we collect the most frequent task mentions
appearing in the title, abstract, experiment section,
table, and figure captions to approximate the tasks
that the paper has done research on.

Taxonomy for Periods of Reference In order to
facilitate in-depth analysis, in this paper, we adopt a
taxonomy that partitions our reference time frame
(1979-2022) into four distinct intervals. Table 1
illustrates the defined intervals. These intervals
have been designed to approximate the overarching
trends observed in NLP research throughout the
years, aligning with our perspective on the field’s
evolution. It is important to acknowledge that the
exact boundaries and thematic emphases may differ
based on varying perspectives and specific research
areas within NLP. However, we highlight that our
framework and methodologies are highly adaptable,
allowing end users to effortlessly apply them to any
desired time interval or a specific analysis.

4 Entity Influence in NLP Research: A
Regression Analysis

Before conducting the causal analysis, we aim to
identify the key variables that significantly impact
the evolution of NLP Research. Specifically, we
investigate which types of entities exert the most

Variables R-Squared (↑)

unique tasks 0.87
+ unique datasets 0.91
+ unique methods 0.93
+ unique metrics 0.97

Table 2: Variable Selection for Regression.

influence on the research direction of NLP. To
achieve this understanding, we employ Multiple
Linear Regression (see Appendix D for details),
a widely utilized tool in economics research (Bar-
rios and Hochberg, 2020). Figure 2 (step1/step2)
illustrates the framework.

Our analysis assumes that if the TDMM entities
have played a role in the emergence or disappear-
ance of task entities, this influence will be reflected
in the number of unique task entities in subsequent
years, which can be captured through regression
analysis. While the study does not provide spe-
cific information on the precise influence of each
TDMM entity on individual task entities, the partial
regression coefficients shed light on the types of
entities responsible for influencing the overall task
entity landscape.

Method. Mathematically, we predict the number
of task entities Y t in a given year t as a function
of the cumulative counts of all types of entities
{Xt−1

i } (TDMM entities) until that year, t−1, given
by Y t = r0 +

∑
i riX

t−1

i . {ri} quantifies the re-
lationship strength between the predicted variable
(number of task entities) and the independent vari-
ables (number of TDMM entities).

Evaluation. We evaluate the regression model
using the R2 measure (coefficient of determina-
tion) to assess the goodness of fit. Additionally,
we perform a null hypothesis test to determine the
statistical significance of the partial regression co-



efficients.

Results and Discussion.
1) Optimized Number of Variables. In our initial
experiment, we determine the optimal number
of variables and summarize the corresponding
R2 values in Table 2. Additionally, all regression
coefficients are statistically significant at 5%
level, indicating their strong relationship with the
predicted variable. Discussion: The overall results
indicate that the model achieves a good fit to the
data when all four variables (number of tasks,
datasets, metrics, and method entities) are used to
predict the number of task entities in subsequent
years. We also explore the possibility of reducing
the number of variables while maintaining similar
performance. Interestingly, using only one variable
results in a significant drop of 0.1 in the R2 value
(R2 value 0.87), indicating a poor fit to the model.
Conversely, increasing the number of variables
improves the model fit, suggesting the significance
of all four variables in analyzing research trends
(R2 value 0.97). It is worth noting that we
exhaustively explored various combinations of
variables, including those presented in the table,
and consistently obtained similar results.

2) Influence of the Variables. In the second ex-
periment, we assess the association between the
target variable and each independent variable. In
Table 3, we present the regression coefficients cor-
responding to each entity type. Larger values of
regression coefficients indicate a stronger relation-
ship between the target variable and the respective
independent variable. Discussion: Overall, we
note that the gradual emergence of newer tasks
has been a driving force behind research progress.
However, when we analyze the trends within each
year interval, we uncover more nuanced patterns.
During the Early Years (1979–1989), when NLP
was in its nascent stage as an independent research
field, the focus was on creating new datasets to
fuel research advancements. In the Formative
Years (1990–2002), we witnessed the introduc-
tion of new methods, particularly data-driven ap-
proaches, which played a crucial role in shaping
the field. Subsequently, from 2003 to 2017, statis-
tical methods underwent a revolution, and later in
the same period, neural network methods experi-
enced a resurgence, indicating significant shifts in
research trends. Now, in the present Deep Learning
Era (2018–2022), we observe a rapid creation of

Years
Partial Regression Coefficient

Tasks Datasets Methods Metrics

1979–1989 0.35 2.24 0.21 0.02
1990–2002 0.82 0.89 2.86 0.81
2003–2017 5.37 6.26 7.00 0.69
2018–2022 1.47 3.38 1.79 0.41

1979 - 2022 3.50 1.07 2.92 0.54

Table 3: Variables Influencing NLP task entities.

newer datasets in a relatively short span of time,
driven by the research needs and the data require-
ments of deep learning models. These highlight key
factors influencing research trajectory over time.

5 Causal Methodology for NLP Research
Analysis

Drawing on the insights gained from the Regres-
sion Analysis (Section 4), we now establish the
cornerstone of our study by defining three causal
variables that drive the causal analysis in the sub-
sequent sections. Using causal discovery and in-
ference techniques, we analyze the causal relation-
ships among the variables and measure the impact
of TDMM entities on target task entities based on
these relationships. Figure 2 illustrates the archi-
tecture that underpins our framework.

5.1 Causal Variables

Task Frequency Shift Value: Distinguishing
from the previous approaches (Tan et al., 2017;
Prabhakaran et al., 2016), that rely on word frequen-
cies, we define task frequency f(y)t as the number
of published papers focusing on a specific task y
in a given year t, normalized by the total number
of papers published on the same year. The task
frequency shift value ∆freqt2t1 (y) captures the av-
erage change in the number of published papers on
y between two years t1 < t2. This value serves as a
measure of the research trends associated with the
task during that time interval, indicating whether it
experienced growth or decline. The frequency shift
value is given by: ∆freqt2t1 (y) =

f(y)t2−f(y)t1
t2−t1

.

Task Stability Value: We introduce the concept
of task stability value to measure the change in
the research context of a given task, y, between
two years, t1 < t2. This value quantifies the
overlap in neighboring TDMM entities that appear
in the same publication as y within the specified
time interval. To calculate task stability, we adapt



the semantic stability approach of Wendlandt et al.
(2018) to our setting and define it specifically for
task entities. Initially, we represent each paper in
our dataset as a sequence of TDMM entity men-
tions, removing non-entity tokens. We then em-
ploy “Skip-gram with negative sampling” (Mikolov
et al., 2013) to obtain embeddings from this rep-
resentation. Formally, let e1, e2, ..., en be this en-
tity representation of a paper, and the objective
of skip-gram is to maximize the mean log proba-
bility 1

n

∑n
i=1

∑
−c≤j≤c logp(ei+j |ei), where c is

called the context window size. Finally, the task
stability value ∆stabilityt2t1 (y) of y between t1 and
t2 is computed as the percentage overlap between
the nearest l neighboring entities of the given task
in two representation spaces. The stability value

is given by: ∆stabilityt2t1 (y) =
|N l

t1
(y)∩N l

t2
(y)|

|N l
t1
(y)∪N l

t2
(y)| ,

where N l
t (y) is the set of l neighbours of y in the

representation space of year t. In this study, we
consider the context window c to encompass the
entire document, and we set the value of l to 5.

Entity Change Value: We use entity change
value to track emerging and disappearing of spe-
cific TDMM entities associated with a task, quan-
tifying these changes and capturing related entity
occurrences within a specific time period. Put sim-
ply, we measure the difference in the co-occurrence
frequency of a TDMM entity x and a task y be-
tween two years t1 and t2. When we identify a
significant change in the co-occurrence frequency
of x and y over this period, it likely signals a shift
in the relation between x and y and, in turn, a shift
in NLP Research trends. We define entity change
value δy(x)

t2
t1

of an entity x of type τ(x) ∈ {task,
dataset, metric, method} with respect to a task y
as the absolute difference in frequencies of x co-
occurring with y in the same sentence, between
years t1 and t2 normalized by the total number of
entities of the same type as x that co-occur with y
in both years. The entity change value is given by:
δy(x)

t2
t1

=
|Ct1 (x,y)−Ct2 (x,y)|∑

∀e:τ(e)=τ(x) (Ct1 (e,y)+Ct2 (e,y))
, where

the frequency of x co-occurring with y in year t is
given by Ct(x, y).

In summary, we quantify task trends and re-
search context changes using task frequency change
and task stability values. Below we explore the re-
lationship between entity change values and these
two variables and estimate the causal impact of
TDMM entities on task research landscapes.

5.2 Causal Algorithms

Causal Structure Discovery To uncover the
causal structure among variables from observa-
tional data, we employ DirectLinGAM (Shimizu
et al., 2011), which assumes a non-Gaussian data-
generating process. Since the variables in Sec-
tion 5.1 come from non-Gaussian frequency dis-
tributions, DirectLinGAM is suitable. It uses an
entropy-based measure to subtract the effect of
each independent variable successively. Unlike PC-
Stable (Colombo and Maathuis, 2014), it does not
require iterative search or algorithmic parameters.
We apply DirectLiNGAM with a 5% significance
level for causal discovery (see Appendix C for de-
tails).

Causal Inference Once the causal structure
between the variables has been established,
we leverage this structure to assess the causal
effects. Specifically, we measure the causal
effects by the entity change value of entity x
on the frequency shift and subsequently on the
stability values associated with a given task y.
For this purpose, we use the probability density
function instead of probability mass, as all our
causal variables are continuous in nature. We
measure the causal effects in two steps: first,
we estimate the probability density of the entity
change variable using a linear regression model.
In the next step, we regress the frequency shift and
stability against the entity change value, weighted
by the inverse probability densities obtained in
the previous step. We model the functional form
of this regression using a spline to avoid bias
due to misspecification. Finally, we calculate
the causal effect as Veitch and Zaveri (2020):
µ(∆freqt2t1 (y)) = E[∆freqt2t1 (y)|δy(x)

t2
t1
]

and similarly, µ(∆stabilityt2t1 (y)) =

E[∆stabilityt2t1 (y)|δy(x)
t2
t1
].

6 Results and Analysis

Correlation-based measures provide a simple way
to quantify the association between variables. How-
ever, they fall short of explaining complex cause-
effect relationships and can yield misleading re-
sults. Causality is essential for gaining a deeper
understanding of variable relationships, enhancing
the robustness and reliability of our findings be-
yond the limitations of correlation. We discuss
more about the importance of causal methods over
correlation-based measures in Section 7. In this



Figure 3: Causal Graph of TDMM Entities (entity
change values) and Task Entity Frequency Shift.

section, our focus is on uncovering relationships
among causal variables (Section 6.1) and measur-
ing the impact of TDMM entities on target task
entities (Section 6.2).

6.1 Causal Relation between the Variables

Figure 3 shows the discovered causal graph for the
frequency shift of task entities. Overall, we observe
that the entity change values of associated tasks,
datasets, metrics, and methods have a direct causal
effect on the frequency shift values of the target
tasks. Since frequency shift value quantifies the
trend in NLP research, we infer from the causal
graph that the trend of a task is governed primarily
by the life cycles of its associated TDMM enti-
ties. We see similar causal relation on task stability
value (see Figure 4, Appendix A). Evaluation: We
perform a sensitivity analysis of the causal graph
by adding Gaussian noise with zero mean and unit
variance to the entity change values in the data
(Cinelli et al., 2019). This gives an estimate of the
robustness of the graph in the presence of unob-
served confounders. We observe that the graph is
stable to unobserved confounding, giving all edge
probabilities greater than 0.5.

6.2 Causal Impact of the Variables

The organizers of ACL 20184 categorize NLP
research into 21 areas, and provide a set of popular
tasks for each area. Out of those, we curate 16
areas and select one task from each based on
its frequency of occurrence in our corpus. We
estimate the effect of TDMM entities (entity
change value) behind the development of these
tasks (frequency shift value) (see Section 5.1) and
summarize the results in Table 4. Since we do
not have confounders (Section 6.1), evaluating the
causal effect reduces to estimating the conditional
expectation of the frequency shift values given
the entity change values. We present detailed
results in Appendix A.2. We examine the results
by addressing the following set of inquiries.

4https://acl2018.org/call-for-papers/

Q1. What role do the methodologies play in
causally driving the shift in NLP tasks?
New methodologies have a significant influence on
research in various areas of Natural Language Pro-
cessing (NLP). In the field of Language Modeling,
we observe a shift in influence between different
methodologies over time.

Between 2003 and 2017, Recurrent Neural Net-
works (RNNs) had the most decisive impact on
Language Modeling research. However, this trend
shifted with the emergence of Transformers, which
have since become the dominant influence in re-
search on this task.

Dialogue Systems, which involve automatic re-
sponse generation, are closely related to Language
Modeling. Therefore, research in this area is highly
influenced by Generative Models. From 1990 to
2002, Probabilistic Models played a crucial role in
shaping Dialogue Systems research, while RNNs
took the lead between 2003 and 2017.

Machine Translation, another task related to
Language Modeling, requires the generation of the
translated text. Naturally, we observe the influence
of similar entities in Machine Translation research.
Probabilistic Models had the most decisive impact
between 1990 and 2002. In recent years (2018-
2022), Transformers have emerged as the dominant
influence in this research area.

In the field of Speech Recognition, Hidden
Markov Models (HMMs) have shown a signifi-
cant influence. HMMs have played a crucial role
in shaping Speech Recognition research between
1979 to 2002.

Named Entity Recognition (NER) has also
been influenced by Hidden Markov Models, par-
ticularly in its early days (1990-2002), as NER is
often formulated as a sequence tagging problem.
Various parser algorithms were employed to solve
the problem in the period between 2003 and 2017.

For Semantic Parsing, parser algorithms have
been instrumental and have had a significant impact
on research in this area. Between 1979 and 1989,
Grammar Induction techniques were used to elicit
the underlying semantic parse trees.

From 1990 to 2002, researchers employed vari-
ous statistical models in Morphological Analysis,
which is evident from our results.

In Semantic Role Labeling, Support Vector
Machines and Neural Network Models have been
widely used to solve this task.

In Co-reference Resolution, Neural Network

https://acl2018.org/call-for-papers/


Task

Primary Cause

1979-1989 1990-2002 2003-2017 2018-2022 1979-2022
Language Modeling - - Recurrent Neural NetworksM TransformersM TransformersM

Dialogue System - Probabilistic Generative ModelsM Recurrent Neural NetworksM MultiWozD MultiWozD

Machine Translation - Probabilistic Generative ModelsM WMT DataD TransformersM TransformersM

Speech Recognition Hidden Markov ModelsM Hidden Markov ModelsM Machine TranslationT Machine TranslationT Hidden Markov ModelsM

Named Entity Recognition - Hidden Markov ModelsM POS TaggingT Relation ExtractionT POS TaggingT

POS Tagging - Text ClassificationT Parser AlgorithmsM Word SegmentationT Word SegmentationT

Semantic Parsing Grammar InductionM Parser AlgorithmsM Parser AlgorithmsM Dependency ParsingT Parser AlgorithmsM

Morphological Analysis - Statistical ModelsM Dependency ParsingT UD TreebankD Statistical ModelsM

Semantic Role Labeling - - Support Vector MachinesM Neural Network ModelsM Support Vector MachinesM

Co-reference Resolution - MUC-VI Text CollectionD Integer Linear ProgrammingM Neural Network ModelsM Neural Network ModelsM

Word Sense Disambiguation - WordnetD Maximum Entropy ModelsM Neural Network ModelsM WordnetD

Sentiment Analysis - - Twitter DatasetD Text ClassificationT Text ClassificationT

Argument Mining - - Text ClassificationT Sentiment AnalysisT Sentiment AnalysisT

Question Answering Parsing AlgorithmsM Information ExtractionT Information ExtractionT Pre-Trained LLMsM Information ExtractionT

Textual Entailment - - Stastical ModelsM Pre-Trained LLMsM Pre-Trained LLMsM

Summarization - WordnetD Sentence CompressionT Pre-Trained LLMsM Pre-Trained LLMsM

Table 4: Causal analysis identifies the main drivers (Methods, Tasks, Datasets) of frequency shifts in NLP tasks
across four periods, with "-" indicating insufficient data for analysis.

models have gained prominence starting in 2018.
However, from 2003 to 2017, Integer Linear Pro-
gramming was also utilized to address this prob-
lem.

Pre-trained Language Models (LLMs) have
demonstrated superior performance in several
NLP tasks, including Question Answering. Re-
searchers have also explored parsing algorithms
to parse questions and align them with potential
answers.

Furthermore, Textual Entailment and Sum-
marization have been heavily influenced by
pre-trained LLMs between 2018 and 2022, as
evident from our results.

Q2. How have changes in data availability con-
tributed to the NLP Research Tasks?
High-quality datasets play a crucial role in advanc-
ing NLP research. While new methodologies are
important, they cannot fully propel the field for-
ward without the support of high-quality datasets.
Researchers understand the significance of dataset
quality and actively curate datasets to drive ad-
vancements in the field. Our findings further con-
firm the prevalence of this trend, highlighting the
strong emphasis on dataset quality in NLP research.

In the early stages of deep neural models, such as
Recurrent Neural Networks (RNNs), the creation of
large datasets became essential for efficient model
training. Between 2018 and 2022, several datasets
were curated, with MultiWoz being the most widely
used dataset for research in Dialogue Systems.

In the domain of Machine Translation, the sig-
nificance of datasets in shaping research direction
cannot be overlooked. The influence of WMT
datasets on Machine Translation research is evi-
dent from our findings.

For Morphological Analysis, the Universal De-

pendency Treebank dataset is frequently used as
a benchmark, indicating its importance in driving
research in this area.

During the period of 1990-2002, the creation
of the MUC-VI dataset played a crucial role in
advancing research in Co-reference resolution.

In the field of Sentiment Analysis, the Twit-
ter dataset holds significant importance in driving
research in this domain.

Overall, our analysis underscores the vital role
of datasets in shaping and driving research across
various NLP tasks.

Q3. Do evaluation metrics drive paradigm shifts
in NLP research?
Most NLP tasks rely on a standard set of metrics
borrowed from other domains, such as machine
learning and computer vision, to evaluate system
performance. However, there is limited research
dedicated to improving these metrics within
the field of NLP, as it often requires theoretical
knowledge beyond the scope of NLP itself.
Despite this, our analysis in Table 5 reveals some
noteworthy exceptions. Metrics explicitly designed
for evaluating NLP tasks, such as BLEU and
METEOR, have demonstrated significant impact
in advancing Machine Translation research.
Similarly, the metric ROUGE has influenced
research in the field of Summarization. While
perplexity scores are commonly used to measure
the generalization capabilities of probability
distributions, they are predominantly utilized for
evaluating language models in NLP tasks.

Q4. What is the causal impact of cross-pollina-
tion of ideas between related NLP tasks?
We consistently observe a pattern of related NLP
tasks evolving in tandem, borrowing ideas and tech-



niques from one another. This trend is clearly re-
flected in our findings. For instance, Speech Recog-
nition and Machine Translation are linked as re-
searchers explore end-to-end systems that translate
speech, and our results show that Machine Trans-
lation has had the greatest influence on Speech
Recognition research between 2003 and 2022.

Named Entity Recognition (NER) is commonly
approached as a sequence tagging problem, and it
is influenced by related tasks such as POS Tag-
ging (2003-2017) and Relation Extraction (2018-
2022), as these problems are often jointly solved.
Similarly, POS Tagging initially posed as a text
classification problem (1990-2002), is significantly
impacted by the word segmentation task, as evi-
dent from our results in the period of 2018-2022.

In recent years (2018-2022), dependency and se-
mantic parsing have been jointly solved using the
same neural model, highlighting the influence of
dependency parsing on research in semantic pars-
ing. Sentiment Analysis has garnered consider-
able research interest and is commonly framed as
a text classification problem. Additionally, Argu-
ment Mining, which involves understanding the
sentiments behind arguments, is influenced by sen-
timent analysis. Furthermore, the classification of
various argument components, such as claims and
evidence, is often approached as text classification
problems, as evidenced by our results.

7 Discussion: Correlation and Causation

“correlation does not imply causation”
– Pearson (1892)

Causation and correlation, although related, are
distinct concepts. While they can coexist, corre-
lation does not simply imply causation. Causa-
tion signifies a direct cause-and-effect relationship,
where one action leads to a specific outcome. In
contrast, correlation simply indicates that two ac-
tions are related in some way, without one neces-
sarily causing the other.

In our work, we focus on causal inference from
data. While correlation-based measures provide
a straightforward method for quantifying associa-
tions between variables, they often fall short when
it comes to explaining complex cause-and-effect
relationships.

To demonstrate the effectiveness of our frame-
work, we establish a simple baseline using a PMI-
based correlation measure (Bouma, 2009). For this
analysis, we select Machine Translation as our tar-

get task entity due to its prominent presence in our
corpus and the NLP research landscape. We calcu-
late the PMI scores of Machine Translation with
all other TDMM entities. The PMI score represents
the probabilities of co-occurrence between two en-
tities in sentences from research papers, normalized
by their individual occurrence probabilities.

Interestingly, we find that accuracy, an entity of
type metric, has the highest PMI score with Ma-
chine Translation among all other entities. How-
ever, it is important to note that accuracy is a widely
used metric across various NLP tasks, and it is not
specifically developed for machine translation, nor
has machine translation influenced the concept of
accuracy. This observation emphasizes the insuffi-
ciency of relying solely on correlation-based met-
rics to understand and analyze research influence
on an entity.

We observe that relying solely on correlations
can lead to misleading results and interpretations.
Therefore, in order to understand the influence of
associated TDMM entities on NLP Task entities,
we utilize causal algorithms that enable us to gain
insights into the cause-and-effect dynamics among
the variables we study.

8 Concluding Remarks

In this paper, we retrospectively study NLP re-
search from a causal perspective, quantifying re-
search trends of task entities and proposing a sys-
tematic framework using causal algorithms to iden-
tify key reasons behind the emergence or disappear-
ance of NLP tasks. Our analysis reveals that tasks
and methods are the primary drivers of research in
NLP, with datasets following their influence, while
metrics have minimal impact. It is important to
note that in our analysis, we have structured the ref-
erence time into four distinct intervals (see Table 1);
however, it can be applied to diverse timeframes,
ranging from longer periods to brief intervals, in-
cluding single years. This adaptability, in the con-
text of rapid recent advancements in NLP, allows
to zoom in on local trends and developments that
might otherwise go unnoticed (such as the influ-
ence of in-context learning on NLP tasks).

We believe our causal analysis enhances under-
standing of the interplay of research entities in NLP,
contributing to the growing body of work on causal-
ity and NLP (Feder et al., 2021). We provide with
additional analysis and insights in Appendix B.



Limitations

This work is centered on NLP research papers from
ACL Anthology, with a focus on papers from the
“ACL Events” category. The “ACL Events” cate-
gory encompasses major conferences, workshops,
and journals, including ACL, NAACL, EMNLP,
EACL, AACL, CL, and TACL. We also include
papers published at COLING from the “non-ACL
Events” category. Nevertheless, it is important to
acknowledge the presence of NLP papers beyond
ACL Anthology in AI journals, regional confer-
ences, and preprint servers. Furthermore, we recog-
nize that certain NLP papers may become available
on preprint servers before their official publication
in peer-reviewed venues. In this study, we focus
on ACL Anthology, which can introduce a time lag
when assessing the early impact of influential pa-
pers released as preprints (e.g., BERT) or only on
preprint servers (e.g., RoBERTa). To address such
challenges, we leave the curation and inclusion of
NLP research papers from these alternative sources
for future works.

Our framework requires research papers tagged
with entities as input. Hence, the quality of the tags
plays a crucial role in the causal inference of our
proposed method. The taggers generate noisy out-
puts and, thus, might require human intervention
to denoise the tags. Moreover, causal algorithms
require a large amount of data to produce statis-
tically significant results. Hence, research areas
that are less explored or newly emerging may not
always be suitable for this framework to be applied.
Additionally, we highlight that in this work, we
do not consider extra-linguistic factors like author
affiliations, funding, gender, etc. We leave them
for future research work.

Ethics Statement

In this work, we use publicly available data from
ACL Anthology and do not involve any personal
data. It is important to recognize that, while our
framework is data-driven, individual perspectives
toward research are inherently subjective. Deci-
sions involving science should consider data as
well as ethical, social, and other qualitative factors.
Furthermore, we underscore that the low influence
of TDMM entities in our analysis should not be
the sole reason for devaluing research papers or
reducing their investments. Ethical and academic
considerations should guide decisions on research
evaluation and resource allocation.
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Figure 4: Causal Graph: The graph shows that the emergence and disappearance of TDMM entities (entity change
values) have a direct causal effect on the stability of task entities.

A.2 Causal Effects

In Table 5, we observe the entities (Tasks, Datasets,
Methods, and Metrics) that influence research on a
given NLP Task.

B Appendix: Supplementary Analysis

In addition to the primary results presented in the
paper (Section 6), in this section, we describe the
supplementary analysis.

B.1 NLP Tasks and Their Dataset Evolution

Frequently Pursued NLP Tasks. From Table 5
in our paper, we observe that overall (from 1979-
2022), among all the tasks, “Text Classification”
(column 6) holds a remarkable position. This
prominence stems from the frequent usage of var-
ious NLP tasks being framed or aligned as “Text
Classification” or borrowing concepts from it to ad-
dress other tasks such as “Sentiment Analysis” or
“Word Sense Disambiguation.” Additionally, our
framework offers the flexibility to perform a similar
analysis between any chosen periods.

Evolution of Datasets in NLP Tasks. Refer-
ring to Table 5 in our paper, in the context of
“Speech Recognition,” we observe a shift in in-
fluential datasets over different periods. Between
1990-2002, the “WSJ Corpus” took the lead, while
in the subsequent period of 2003-2017, the “ATIS
Dataset” had more influence. Interestingly, be-
tween 2018-2022, the trend shifted once again to
the “Switchboard Dataset”.

A similar trend is reflected in the “Summariza-
tion” task as well: in the years 1990-2002, “Word-
net” played a significant role, while the “Gigaword
Dataset” took over in 2003-2017. However, in
the most recent period of 2018-2022, “Pubmed”
emerged as the notable dataset for the “Summariza-
tion” task.

Common Datasets Across NLP Tasks. We ob-
serve from Table 5 (column 6) that across the
entire span from 1979 to 2022, the “Penn Tree-

bank” dataset emerged as a pivotal influence, sig-
nificantly impacting tasks such as “Language Mod-
eling,” “POS Tagging,” and “Semantic Parsing.”
Using our framework, a similar analysis could also
be done between any chosen periods.

B.2 Entitiy Influence on Task Frequency and
Stability

Influence of Research Entities on Task Stability.
We measure the causal effect of research entities
on Task Stability Value (see Section 5.1). From
the resulting causal graph (Figure 4), we observe
that the entity change values of associated tasks,
datasets, metrics, and methods directly impact the
stability value of the target task, similar to the task
frequency shift value.

Correlations Between Task Frequency Change
and Stability. We observe a slightly positive cor-
relation between frequency change and stability of
research tasks with a Pearson coefficient of 0.08.
This is because when a new task emerges, initially,
a few researchers start working on it, which grad-
ually increases its frequency of appearance. At
the same time, researchers experiment with various
methods and datasets to solve these newly emerged
tasks, causing high instability (e.g., Math Problem
Solving (Zhang et al., 2018)). On the contrary,
the opposite is not always true: well-defined tasks
are often the most researched, and yet researchers
always explore new ideas on these tasks, which
harms stability.

Overview and Insights. Our analysis shows that
research in NLP is primarily driven by tasks and
methods; the influence of datasets follows them,
and metrics have minimum impact. Our analysis of
frequency shift values reveals the gradual paradigm
shift in NLP research. Initially, the focus was on
practical problems such as Speech Recognition
and Machine Translation. However, over time,
researchers ventured into more complex areas like
textual entailment and argument mining, neces-
sitating domain knowledge and extensive data rea-



Task

Primary Cause

1979-1989 1990-2002 2003-2017 2018-2022 1979-2022

Language Modeling

- - Recurrent Neural NetworksM TransformersM TransformersM

- - Machine TranslationT Text GenerationT Text GenerationT

- - Penn TreebankD Perplexitym Perplexitym

- - Perplexitym SuperGLUED Penn TreebankD

Dialogue System

- - Recurrent Neural NetworksM MultiWozD MultiWozD

- - MultiWozD TransformersM TransformersM

- - Language GenerationT Response GenerationT Response GenerationT

- - Perplexitym Rougem Rougem

Machine Translation

- Probabilistic Generative ModelsM WMT DataD TransformersM TransformersM

- Speech RecognitionT BLEUm METEORm METEORm

- Perplexitym Attention MechanismM Language ModelingT Language GenerationT

- Penn TreebankD Language GenerationT WMT DataD WMT DataD

Speech Recognition

Hidden Markov ModelsM Hidden Markov ModelsM Machine TranslationT Machine TranslationT Hidden Markov ModelsM

Machine TranslationT WSJ Corpus D Hidden Markov ModelsM Acoustic Models M Language ModelingT

Perplexitym Perplexitym ATIS DatasetD Switchboard DatasetD Perplexitym

- Language ModelingT Word Error Ratem Word Error Ratem ATIS DatasetD

Named Entity Recognition

- Hidden Markov ModelsM POS TaggingT Relation ExtractionT POS TaggingT

- Information ExtractionT Conditional Random FieldsM Wikipedia CorpusD Random FieldsM

- Genia CorpusD PubmedD Pre-Trained LLMsM Conditional OntonotesD

- F1 Scorem F1 Scorem F1 Scorem F1 Scorem

POS Tagging

- Text ClassificationT Parser AlgorithmsM Word SegmentationT Word SegmentationT

- Discriminative ModelsM Word SegmentationT Neural Network ModelsM Neural Network ModelsM

- Penn TreebankD Penn TreebankD Penn TreebankD Penn TreebankD

- F1 Scorem F1 Scorem F1 Scorem F1 Scorem

Word Sense Disambiguation

- WordnetD Maximum Entropy ModelsM Neural Network ModelsM WordnetD

- Semantic TaggingT Text ClassificationT Text ClassificationT Neural Network ModelsM

- Discriminative ModelsM WordnetD WordnetD Text ClassificationT

- Accuracym F1 Scorem F1 Scorem F1 Scorem

Morphological Analysis

- Statistical ModelsM Dependency ParsingT UD TreebankD Statistical ModelsM

- Word SegmentationT Statistical ModelsM Pre-Trained LLMsM Dependency ParsingT

- UD TreebankD UD TreebankD LemmatizationT UD TreebankD

- Accuracym Accuracym F1 Scorem Accuracym

Semantic Parsing

Grammar InductionM Parser AlgorithmsM Parser AlgorithmsM Dependency ParsingT Parser AlgorithmsM

Information RetrievalT Information ExtractionT Dependency ParsingT Parser AlgorithmsM Penn TreebankD

Accuracym Penn TreebankD Penn TreebankD Penn TreebankD Dependency ParsingT

- F1 Scorem F1 Scorem F1 Scorem F1 Scorem

Semantic Role Labeling

- - Support Vector MachinesM Neural Network ModelsM Support Vector MachinesM

- - Relation ExtractionT Named Entity RecognitionT Named Entity RecognitionT

- - PropbankD PropbankD PropbankD

- - F1 Scorem F1 Scorem F1 Scorem

Co-reference Resolution

- MUC-VI Text CollectionD Integer Linear ProgrammingM Neural Network ModelsM Neural Network ModelsM

- Discriminator ModelsM OntonotesD OntonotesD OntonotesD

- Word Sense DisambiguationT Mention DetectionT Mention DetectionT F1 Scorem

- F1 Scorem F1 Scorem F1 Scorem Mention DetectionT

Sentiment Analysis

- - Twitter DatasetD Text ClassificationT Text ClassificationT

- - Text ClassificationT Pre-Trained LLMsM Neural Network ModelsM

- - Neural Netowrk ModelsM Amazon ReviewsD Twitter DatasetD

- - F1 Scorem F1 Scorem F1 Scorem

Argument Mining

- - Text ClassificationT Sentiment AnalysisT Sentiment AnalysisT

- - Neural Network ModelsM Neural Network ModelsM Neural Network ModelsM

- - Wikipedia CorpusD Wikipedia CorpusD Wikipedia CorpusD

- - F1 Scorem F1 Scorem F1 Scorem

Question Answering

Parsing AlgorithmsM Information ExtractionT Information ExtractionT Pre-Trained LLMsM Information ExtractionT

Information RetrievalT WordnetD FreebaseD SquadD Pre-Trained LLMsM

Accuracym Accuracym Parsing AlgorithmsM SummarizationT SquadD

- Statistical ModelsM F1 Scorem F1 Scorem F1 Scorem

Textual Entailment

- - Statistical ModelsM Pre-Trained LLMsM Pre-Trained LLMsM

- - Information ExtractionT SNLI DatasetD SNLI DatasetD

- - F1 Scorem Text ClassificationT Text ClassificationT

- - - F1 Scorem F1 Scorem

Summarization

- WordnetD Sentence CompressionT Pre-Trained LLMsM Pre-Trained LLMsM

- Probabilistic Generative ModelsM Recurrent Neural NetworksM Rougem Rougem

- F1 Scorem Rougem PubmedD Question AnsweringT

- Information RetrievalT GigawordD Question AnsweringT PubmedD

Table 5: The primary reason behind the frequency shift of the tasks. We analyze the trends in four different
periods of reference. Most influential Task(T), Dataset(D), Method(M) and Metric(m) are given in the decreasing
order of their influence. "-" means there is not enough data instances for the causal analysis.

soning. Examining stability values, we note that
pre-trained language models have emerged as ver-
satile solutions, reducing the need for task-specific
approaches.

C Appendix: Algorithms

C.1 DirectLinGAM

In Algorithm 1, we describe the DirectLinGAM
algorithm (oracle version) in high level as described
by Shimizu et al. (2011).



Algorithm 1: Causal Graph Discovery:
DirectLinGAM-Algorithm

1 Given a p-dimensional random vector x, a
set of its variable subscripts U and a p× n
data matrix of the random vector as X ,
initialize an ordered list of variables
K := ϕ and m := 1;

2 Repeat until p - 1 subscripts are appended to
K: Perform least square regression of xi
and xj , ∀i ∈ U −K(i ̸= j) and compute
the residual vectors r(j) and the residual
data matrix R(j) from the matrix X ,
∀j ∈ U −K. Final a variable xm
independent of its residuals and append m
to the end of K;

3 Append the remaining variable to the end of
K;

4 Construct a strictly lower triangular matrix
B by following the order in K, and
estimate the connection strengths bij by
using some conventional covariance-based
regression such as least squares and
maximum likelihood approaches on the
original random vector x and the original
data matrix X;

D Appendix: Multiple Linear Regression

We use multiple linear regression to regress a
variable on several variables (Pearl et al., 2016).
For instance, if we want to predict the value
of a variable Y using the values of variables
X1, X2, ..., Xk−1, Xk, we perform multiple linear
regression of Y on {X1, X2, ..., Xk−1, Xk}, and
estimate a regression relationship (Eqn. 1), which
represents an inclined plane through the (k + 1)-
dimensional coordinate system.

Y = r0 +
k∑

i=1

riXi (1)

The Gauss-Markov theorem (Williams and Ras-
mussen, 2006) simplifies the computation of par-
tial regression coefficients (r1, ..., rk in Eqn 1). It
states that if we write Y as a linear combination of
X1, X2, ..., Xk−1, Xk and noise term ϵ,

Y = r0 +
k∑

i=1

riXi + ϵ (2)

then, regardless of the distributions of the vari-
ables Y,X1, X2, ..., Xk, the best least-square coef-
ficients are obtained when ϵ is uncorrelated with
each regressors, i.e.,

Cov(ϵ,Xi) = 0,∀i = 1, 2, ..., k (3)


