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Abstract

Deep AndersoNN is a framework for accelerating
Al by taking the continuum limit as the number
of explicit layers in a neural network approaches
infinity, and can be taken as a single implicit layer,
known as a deep equilibrium model. Solving for
parameters of a deep equilibrium model reduces
to a nonlinear fixed point iteration problem, en-
abling use of vector-to-vector iterative solvers and
windowing techniques, such as Anderson extrap-
olation, for accelerating convergence to the fixed
point deep equilibrium. Here we show that Deep
AndersoNN achieves up to an order of magnitude
of speed-up in training and inference. The method
is demonstrated on density functional theory re-
sults for industrial applications by constructing
artificial life and materials ‘scientists’ capable of
classifying biomolecules, drugs, and compounds
as strongly or weakly polar, sorting metal-organic
frameworks by pore size, and classifying crys-
talline materials as metals, semiconductors, and
insulators, using graph images of node-neighbor
representations transformed from atom-bond net-
works. Results exhibit accuracy up to 98% and
showcase synergy between Deep AndersoNN and
machine learning capabilities of modern comput-
ing architectures, e.g. GPUs, for accelerated com-
putational life and materials science by quickly
identifying structure-property relationships. This
paves the way for saving up to 90% of compute
required for Al, reducing its carbon footprint by
up to 60 gigatons per year by 2030, and scaling
above memory limitations of explicit neural net-
works in life and materials science, and beyond.
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1. Introduction & Background

High-performance computing (HPC) is becoming essential
to artificial intelligence (AI) in the modern paradigm of
machine learning (Schwarz, Nicholas et al, 2020). Foun-
dation models, large language models (LLMs), and multi-
agent natural language societies of mind (NLSOMs) (Zhuge,
Mingchen et al., 2023) require significant computing re-
sources and large amounts of data to achieve practical accu-
racies with up to trillions of parameters using explicit neural
networks (Andrae, Anders S.G. and Edler, Tomas, 2015;
de Vries, Alex, 2023; Patterson, David et al., 2021; Jones,
Nicola et al., 2018). As the number of layers in a neural net-
work approaches infinity, these models can be approximated
with single-layer implicit models, known as deep equilib-
rium (DEQ) models (Bai, 2022; Bai, Shaojie and Kolter, J
Zico and Koltun, Vladlen, 2019; Bai, Shaojie and Koltun,
Vladlen and Kolter, J Zico; 2021; Huang et al., 2021; Geng,
Zhengyang and Zhang, Xin-Yu and Bai, Shaojie and Wang,
Yisen and Lin, Zhouchen, 2021). Solving for the parameters
of a single implicit layer that takes both the input, x, and
the output, y, as inputs are reduced to a fixed point iteration
problem that is proven to converge to a deep equilibrium
state with stable behavior under optimal hyperparameters
where the fixed point converges. Vector-to-vector iterative
solvers such as Anderson extrapolation (Anderson, 1965;
2019; Ouyang, Wenqing et al., 2020; Fung, Samy Wu et
al., 2022) can be employed to accelerate convergence. By
accelerating convergence with a window of iterates, perfor-
mance similar to explicit networks can be achieved while
scaling neural networks and reducing the necessary compute
resources. Using accelerated DEQ models enables previ-
ously computationally prohibitive applications. Here we
demonstrate constructing artificial life and materials scien-
tists using Deep AndersoNN, a system to develop scalable
machine learning models with Anderson-accelerated DEQ
models.

Drug discovery is at the intersection of life and materials
science. Density functional theory (DFT) is currently at the
forefront of materials modeling, yet suffers from computa-
tional limitations with high-atom biological systems needed
in the life sciences. Responding to the COVID-19 pan-
demic required high-throughput, rapid methods to screen
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and discover drugs that could be pipelined into laboratory
and, ultimately, clinical trials to treat different and evolving
variants of the virus (Clyde et al., 2021b;a; Bhati et al., 2021;
Clyde et al., 2023; Saadi et al., 2021; Babuji et al., 2020;
Lee et al., 2021). Machine learning and scaling DFT enables
high-throughput classification of candidate drugs based on
their material properties, such as pore size for DNA/RNA
capture and dipole moment for polarity.

Algorithm 1 Extrapolation for Fixed Point Iteration (Zico
Kolter, David Duvenaud, and Matt Johnson)

Input: Function f, initial guess zy, window size m =
5, regularization A = le — 5, maximum iterations
maz_iter = 1000, tolerance tol = le — 2, mixing pa-
rameter 5 = 1.0
Initialize number of data points n, batch size b, number
of input and output channels d, frame height H, frame
width W from x¢.shape
X, F' + Initialize iterate and function tensors based on
b,m,andd x H x W
H,y < Initialize H and y for the least squares solver
where H = GTG + Al in Eqn. 4
times, res < Initialize lists for timing and residuals
for k = 2 to max_iter do

Start timing this iteration

n < min(k, m)

G+ F[:,:n] — X[:,:n]

Update H matrix using G in Eqn. 2

Solve linear system to find « in Eqn. 4

Update X and F' using «, m, & (3 according to Eqn. 5

Compute residual, W

Store time and residual

Check for convergence

if residual < tol then

break

end if
end for
return X [:, k%m]|(xo), residuals, times

2. Methods & Datasets

This study showcases Deep AndersoNN with three high-
throughput DFT datasets, integrating life and materials sci-
ence: QMugs, OQMD, and QMOF. QMugs is a dataset of
hundreds of COVID-related drug structures (Isert, Clemens
et al., 2022) along with their material and biological proper-
ties that are a subset of a larger ChNEMBL database (Gaulton,
Anna et al., 2012). OQMD is a growing database of >1 mil-
lion compounds from Chris Wolverton’s group at Northwest-
ern computed with DFT (Saal, James E et al., 2013; Kirklin,
Scott et al., 2015; Shen, Jiahong et al., 2022). QMOF is a
dataset of 20,000 metal-organic frameworks (MOFs) from
Rosen et al. (Rosen, Andrew S et al., 2022). Each dataset

provides crystal structures along with material and func-
tional properties, where dipole moment, pore size, and band
gaps are taken as examples.
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Figure 1. Representative SARS-CoV drug compound (top left),
representative hypothetical MOF (middle left), and representa-
tive experimentally validated MOF (bottom left) molecular struc-
ture. Graphical representations of the compounds (center). Node-
neighbor representations (right). The node-neighbor representa-
tions are inputs for machine learning density functional theory
physical properties.

Across each dataset, properties are read with standard li-
braries for reading comma-separated text files. Labels are
deduced by imposing physical limits for these properties,
i.e., size of molecule capture for pore size fit, size of band
gap for classifying metallic, semiconducting, and insulating
behavior, and dipole moment magnitude relative to a one
proton-electron dipole moment for polarity. Structures are
read as graph images, where structure files in CIF, PDF,
SDF, etc. Formats are taken as atom-bond graphs which
are then converted to atom node-neighbor representations
with a 3.4 A cutoff for MOFs and 24 cutoff for compounds,
then saved as images with each atom as a unique color. An
example is shown in Fig. 1.

Fixed-point acceleration begins with the traditional fixed
point iteration formula 2* = f(z*, x), which seeks a point
z* that remains unchanged when a function f is applied to it.
Forward iteration, an essential technique for navigating to-
wards this fixed point, is denoted by z¥*1 = f(z*, ). This
represents the step-wise movement from an initial guess z*
towards the fixed point.

Anderson acceleration refines this process by incorporating
a linear combination of prior iterates. This is defined mathe-
matically as 251 = 3" o, f(2* 71 z). The weights or
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Table 1. Comparison of accuracy across four use cases by algorithm, standard versus accelerated, training and testing.

Algorithm CIFAR10 benchmark  Drug dipole moment MOF pore sizes Material band gaps
. Standard 65% 77% 96% 98%
Training
Accelerated 96% 81% 7% 98%
. Standard 64% 78% 96% 98%
Testing
Accelerated 79% 80% 96% 98%

coefficients «; are optimized to minimize the residual vector
norm, M, leading to a more rapid convergence
than simple standard forward iteration. This optimization is
subject to a constraint that ensures the coefficients sum to

unity:

minimize, ||Gel3, subjectto 1Ta=1 (1)

Given the optimization problem, the matrix G in the mini-
mization problem is composed as follows, where G is de-
fined as:

G = [f(Zk,x) - Zkv ) (Zk_m+17x) - zk—m+1] (2)

and z* represents the solution estimate at iteration k, f
represents the fixed-point function, x is an input parameter,
and m is the memory of past iterates considered in the
Anderson extrapolation.

The Lagrangian L(«, v) that incorporates the equality con-
straint into the optimization problem is given by:

L(a,v) =||Gall; — v(1Ta - 1) 3)

where « is a vector of coefficients that we are optimizing
over, and v is the Lagrange multiplier associated with the
constraint 17a = 1.

To solve for the coefficients «;, we set up and solve a linear
system, where H = GTG + \I:

o 171, [o 17 v1_[1] 4
1 7|9 1 ¢teear||a|T 0| @

The Anderson acceleration can also incorporate a mixing
parameter 3, which allows for a balance between the contri-
butions of the original and extrapolated iterates:

A= (1-8) Y @ 4B auf(F T 2) (5)
=1 =1

The function f, which represents the forward pass through
the implicit DEQ layer, ensures that despite the intermediate

expansion of the channel depth to k; inner channels, the
output tensor Z retains the same dimensions as the input
tensor X € R XHXW by setting the number of outer
channels k5 to number of input and output channels, d.
This design maintains spatial dimensions across the network
layer while enhancing feature representations through depth
adjustments and enabling residual learning.

Our pipeline implements Anderson acceleration as the
solver for the forward pass of a DEQ model with gradi-
ents only calculated for the backward pass. The problem
is posed as supervised learning image classification where
density functional theory-calculated properties are learned
within the implicit layer parameters. We use PyTorch on
GPUs.

3. Results

The fundamental tradeoff between accuracy, represented by
k k
relative residual, W, and time is shown in Fig. 2.
This shows the acceleration obtainable for a single inference
by a forward pass of a random input x through the DEQ

model.

Tuning accuracy is shown in the upper right panel of
Fig. 2 by optimizing the window size, m, and the iterate-
extrapolate mixing ratio, 3, to achieve an order of mag-
nitude higher accuracy. The usage of these parameters is
demonstrated in Alg. 1. A representative loss function of
Anderson acceleration compared to standard forward iter-
ation is shown in the lower panel of Fig. 2, demonstrating
significant speedup to lower loss, with accuracy and speedup
results from all runs shown in Tab.1 and Tab. 2.

The behavior of Anderson acceleration in its convergence to
the fixed-point, deep equilibrium state are shown in Fig. 3.
The upper left panel shows an order of magnitude speedup
with Anderson acceleration in comparison to the unstable be-
havior of standard forward iteration until slow convergence,
with fixed learning rate for an accurate comparison. The
upper right panel shows highest accuracy, lowest speedup
behavior, achieving up to 98% accuracy using both Ander-
son acceleration and forward iteration, and 4x speedup with
Anderson. The lower left panel shows trapping of forward
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Table 2. Summary of algorithmic speedup of training across four use cases, accelerated over standard.

Algorithm CIFARI10 benchmark  Drug dipole moment MOF pore sizes Material band gaps
N Standard 1.2x10* 8.4x10? 5.3x103 2.3x10°
Training time [seconds]
Accelerated 1.4x103 5.1x10! 3.0x102 5.3x10?
Speed-up relative to standard  Ratio 8.6 16.5 17.6 4.4
Compute saved 88% 94% 94% 77%
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Figure 2. Accelerating convergence to fixed point deep equilibrium
with (top right) inferences (single forward pass), (top left) represen-
tative behavior of speedup tuning for higher accuracy with window
size, m, and iterate-extrapolate ratio, 3, and (bottom) training until
residual tolerance achieved.

iteration in a local minimum with increasing accuracy for
Anderson acceleration. The lower right panel shows higher
generalization due to lower initialization error for Anderson
compared to forward iteration.

Representative confusion matrices are shown in Fig. 4,
constructing artificial scientists capable of classifying com-
pounds, drugs, and MOFs based on example structure-
property relationships. The summary of these results for
all cases are shown in Tab. 1, with the lowest accuracy for
artificial life scientists classifying polarity based on dipole
moment for COVID drug discovery.

The algorithmic tradeoff between speedup and accuracy is
shown in Fig. 5, showing linear behavior between 80-90%
accuracies at an order of magnitude increase in speedup
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Figure 3. Achieving accuracy near unity with data augmentation
(top left, QMOF pore size classification, and right, OQMD QMOF
band gap classification) versus trapping in local minimum by stan-
dard forward iteration (lower left, QMugs COVID drug polarity
classification), compared to CIFAR10 benchmark (lower right).
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Figure 4. Representative confusion matrix deep equilibrium con-
vergence results for testing with (top left) standard forward iter-
ation and (top right) extrapolation for classifying compounds, as
well as (lower left) classifying COVID drug dipoles and (lower
right) MOF pore sizes.

compared to standard forward iteration when using Ander-
son acceleration as the forward pass DEQ model solver. A
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Figure 5. Algorithmic trade-off between training speedup and test-
ing accuracy for four use cases with Anderson acceleration plotting
the third row of Tab. 2 against the fourth row of Tab. 1.

significant drop in speedup is observed for achieving >95%
accuracy up to 98%. These speedups are summarized in
Tab. 2.

4. Discussion

We demonstrate the effectiveness of learning based on
graph images derived from copious density function the-
ory databases (Saal, James E et al., 2013; Kirklin, Scott et
al., 2015; Rosen, Andrew S et al., 2022; Isert, Clemens et al.,
2022) to predict properties important for life and materials
science with application to industrial screening. To achieve
accuracies greater than 98%, more data could be included
in future studies since these models are trained on about
1,000-10,000 inputs out of these databases.

Single-property classification predictions are shown to be
learnable. Future studies should explore multi-objective op-
timizations for all properties at once, or learning the electron
density, energy, forces, and wavefunctions directly from the
graph images, from which all properties could be calculated
based on standard analysis pipelines.

Algorithmic performance of Anderson acceleration in com-
parison to standard forward iteration shows different asymp-
totic accuracies. These could be optimized further by tuning
the cosine annealing rate. Furthermore, tuning Anderson ac-
celeration window sizes and iterate-extrapolate ratios could
be posed as an Al problem in itself by a grid search for
further optimization. This is evident by the representative
tunability curve shown in Fig. 2.

The superiority of Anderson acceleration to standard for-
ward iteration in searching for the minimum loss fixed-point,
deep equilibrium state is attributed to minimizing a residual
over a subspace spanning previous iterations. This appears
to overcome the frequent trapping of standard forward itera-

tion in local minima. Anderson accelerations thus delivers
some of the benefits expected from second-order methods
of machine learning without the overhead of approximating
or manipulating Hessian matrices. Its memory-austere oper-
ationally uniform character make it eminently suitable for
GPUs and for distributed memory implementations.

The effectiveness of graph image node-neighbor repre-
sentations is attributed to the fact that these are edge-
transitive graphs that represent different topologies of drugs,
molecules, and compounds, which, in turn, change the prop-
erties and bioactivities of these materials in life science
applications. Simply by swapping identities of the atoms in
these nodes, there are trillions of combinations that could
be constructed and trained on for larger datasets for the
accuracies required in practical applications. Furthermore,
introducing metal alloying, defects, dopants, and other ma-
terials engineering methods, could construct even more data
to train on. Using graph images enable constructing datasets
large enough to build industry-competitive datasets with
state-of-the-art accuracies on high-performance computers.

5. Conclusion

This work shows that with accelerated deep equilibrium
models, artificial life and materials scientists could be con-
structed for practical industry applications based on first
principles theory. A speedup of up to an order of magnitude
enables an order of magnitude larger models and/or 90%
less computing resources for similar accuracies, paving the
way for LLMs, NLSOMs, and foundation models for both
training these models and running inferences.

Future work will incorporate larger datasets to build multi-
objective optimized models, LLMs, NLSOMs, and foun-
dation models capable of making these types of inferences
for drug discovery and biocatalysis at scale, integrating life
and materials science in a novel, unprecedented way. With
these methods, training models the size of LLMs could be
democratized for academic environments without the need
to resort to industrial scale computing resources.
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