
Published as a conference paper at ICLR 2024

LEARNING WITH LANGUAGE-GUIDED
STATE ABSTRACTIONS

Andi Peng
MIT

Ilia Sucholutsky∗
Princeton

Belinda Z. Li∗
MIT

Theodore R. Sumers
Princeton

Thomas L. Griffiths
Princeton

Jacob Andreas
MIT

Julie A. Shah
MIT

ABSTRACT

We describe a framework for using natural language to design state abstractions
for imitation learning. Generalizable policy learning in high-dimensional observa-
tion spaces is facilitated by well-designed state representations, which can surface
important features of an environment and hide irrelevant ones. These state repre-
sentations are typically manually specified, or derived from other labor-intensive
labeling procedures. Our method, LGA (language-guided abstraction), uses a
combination of natural language supervision and background knowledge from
language models (LMs) to automatically build state representations tailored to
unseen tasks. In LGA, a user first provides a (possibly incomplete) description
of a target task in natural language; next, a pre-trained LM translates this task de-
scription into a state abstraction function that masks out irrelevant features; finally,
an imitation policy is trained using a small number of demonstrations and LGA-
generated abstract states. Experiments on simulated robotic tasks show that LGA
yields state abstractions similar to those designed by humans, but in a fraction of
the time, and that these abstractions improve generalization and robustness in the
presence of spurious correlations and ambiguous specifications. We illustrate the
utility of the learned abstractions on mobile manipulation tasks with a Spot robot.

1 INTRODUCTION

In unstructured environments with many objects, distractors, and possible goals, learning generaliz-
able policies from scratch using a small number of demonstrations is challenging (Bobu et al., 2024;
Correia & Alexandre, 2023). Consider the demonstration in Fig. 1A, which shows a Spot robot ex-
ecuting a specific maneuver to perform a desired task. Which task is demonstrated here—grabbing
an object, grabbing an orange, or giving an orange to a user? Here, the observations do not provide
enough evidence to meaningfully disentangle which features are relevant for downstream learning.

In humans, abstraction is essential for generalizable learning (McCarthy et al., 2021b). When learn-
ing (and planning), humans reason over simplified representations of environment states that hide
details and distinctions not needed for action prediction (Ho et al., 2022). Useful abstractions are
task-dependent, and a growing body of evidence supports the conclusion that humans flexibly and
dynamically construct such representations to learn new tasks (Ho et al., 2023; Huey et al., 2023).
Importantly, this process of abstraction does not begin with a blank slate—instead, experience,
common-sense knowledge, and direct instruction provide rich sources of prior knowledge about
which features matter for which tasks (Fan et al., 2020). In Fig. 1A, learning that the demonstrated
skill involves a fruit combined with prior knowledge about which objects are fruits makes clear that
the object’s identity (orange) is likely important. Meanwhile, the demonstration provides comple-
mentary information (about the desired movement speed, goal placement, etc.) that is hard to specify
in language and not encapsulated by the utterance bring me a fruit alone. In other words, actions
also contain valuable information that is necessary to complement the abstraction.

∗Equal contribution.

1



Published as a conference paper at ICLR 2024

A B

state s

language l

“Bring me the fruit.”

state abstraction 

abstraction 

(water:(216,307)) 
(orange:(404,296)) 
(drill:(173,155)) 

…

(water:(216,307)) 
(orange:(404,296)) 
(drill:(173,155)) 

…

policy

abstract state

demonstration

segmentation 

caption

Figure 1: A: Example demonstration in our environment, showing Spot picking up an orange and bringing it to
the user. B: Our approach, Language Guided Abstraction (LGA), creates a state abstraction with task-relevant
features identified by an LM. The policy is learned directly over this abstracted state.

What would it take to build autonomous agents that can leverage both demonstrations and back-
ground knowledge to reason about tasks and representations? State abstraction has been a major
topic of research from the very earliest days of research on sequential decision-making, with signifi-
cant research devoted to both unsupervised representation learning (Coates & Ng, 2012; Bobu et al.,
2023; Higgins et al., 2017; Lee et al., 2021) and human-aided design (Abel et al., 2018; Cakmak
& Thomaz, 2012; Bobu et al., 2021; Abel et al., 2016). However, there are currently few tools for
autonomously incorporating human prior knowledge for constructing state abstractions in unseen,
unstructured environments.

In this paper, we propose to use natural language as a source of information for constructing state ab-
stractions. Our approach, Language-Guided Abstraction (LGA) (Fig. 1B), begins by querying hu-
mans for high-level task descriptions, then uses a pre-trained language model (LM) to translate these
descriptions into task-relevant state abstractions. Importantly, LGA requires only natural language
annotations for state features. Unlike most recent work applying LMs to sequential decision-making
tasks, it does not depend on pre-trained skills (Ahn et al., 2022; Huang et al., 2022b), environment
interaction (Du et al., 2023), large multitask datasets (Karamcheti et al., 2023; Shridhar et al., 2022),
or even the ability to describe behavior in language (Kwon et al., 2023). It complements traditional
supervised learning methods like behavior cloning (BC), without relying on additional assumptions
about the data labeling process. Experiments comparing LGA to BC (and stronger variants of BC)
show that LGA-generated abstractions improve sample efficiency and distributional robustness in
both single- and multi-task settings. They match the performance of human-designed state abstrac-
tions while requiring a fraction of the human effort.

In summary, we (1) introduce LGA, a method for using text descriptions and language models to
build state abstractions for skill learning; (2) show that LGA produces state abstractions similar (and
similarly effective) to those manually designed by human annotators with significantly less time; (3)
show that LGA-constructed state abstractions enable imitation learning that is more robust to the
presence of observational covariate shift and ambiguous linguistic utterances; and (4) demonstrate
LGA’s utility in real world mobile manipulation tasks with a Spot robot.

2 RELATED WORK

Language-Aided Reward Design. Large language models, trained on large amounts of text data,
contain commonsense information about object properties, functions, and their salience/relevance to
various tasks. Several works (Goyal et al., 2019; Kwon et al., 2023; Sumers et al., 2021; Carta et al.,
2022) leverage this to shape or learn reward models by training a policy to complete intermediate or
higher-level tasks and asking the LM to annotate resulting behavior. Language feedback can then be
incorporated as a way to guide the policy during training (Mu et al., 2022; Du et al., 2023). However,
just as with any reinforcement learning method, these works assume continuous environment access
during the training process as the policy gradually improves with the updated reward (Shinn et al.,
2023). In contrast, we instead leverage LMs to produce state abstractions for learning skills via
imitation learning, which does not require continuous environment interaction or access to rewards.
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Language-Aided Planning. In parallel, a great deal of work has leveraged LMs to output plans
directly, i.e. generate primitives or high-level action sequences (Sharma et al., 2022; Ahn et al.,
2022; Huang et al., 2022a;b).= These approaches use priors embedded in LMs to produce better
instruction following models, or in other words, better compose pre-existing skills to generate more
complex behavior (Zeng et al., 2023; Li et al., 2023; Ahn et al., 2022; Wang et al., 2023). Such
methods can be thought of as performing action abstraction and require access to a library of pre-
trained (often text annotated) skills. In contrast, we use LMs to perform state abstraction for learning
better skills from scratch, and can therefore also sit upstream of any instruction following method.

State Abstractions in Learning. There is substantial evidence to suggest much of the flexibility
of human learning and planning can be attributed to information filtering of task-relevant features
(McCarthy et al., 2021a; Huey et al., 2023; Ho et al., 2022; Chater & Vitányi, 2003). This suggests
flexibly creating task-conditioned abstractions is important for generalizable downstream learning,
particularly in low-data regimes (Mu et al., 2022; Bobu et al., 2024). While state abstraction has
been explored in sequential decision-making (Thomas & Barto, 2011), existing methods often as-
sume pre-defined hierarchies over the state-action space of the given environment or hand defined
primitives (Abel et al., 2016; Diuk et al., 2008). In this work, we explore a method to autonomously
construct state abstractions from RGB observations with only a text specification of the task.

Perhaps the closest comparison to our work is Misra et al. (2018), which conditions on language and
raw visual observations to create a binary goal mask, specifying goal location within an observation.
However, our approach is much more flexible (our approach can learn any demonstrated behavior,
not just goal navigation) and more personalizable (our approach allow humans to interact with the
system, enabling them to refine the representation based on individual preference).

3 PROBLEM STATEMENT

Preliminaries. We formulate our tasks as Markov Decision Processes (MDPs) (Puterman, 2014)
defined by tuples ⟨S,A, T ,R⟩ where S is the state space, A the action space, T : S×A×S → [0, 1]
the transition probability distribution, and R : S ×A → R the reward function. A policy is denoted
as πψ : S → A.

In behavioral cloning (BC), we assume access to a set of expert demonstrations Dtrain = {τ i}ni=0 =
{(si0, ai0, si1, ai1, ...sit, ait)}ni=0 from which we “clone” a policy πψ (Pomerleau, 1988) by minimizing:

LBC = E(sit,a
i
t) ∼Dtrain

[∥πψ(sit)− ait∥22] . (1)

In goal-conditioned behavioral cloning (GCBC), policies additionally condition on goals ℓ (Co-
Reyes et al., 2018). Motivated by the idea that natural language is a flexible, intuitive interface for
humans to communicate, we specify the goal through language instruction ℓ ∈ L, resulting in:

LGCBC = E(sit,a
i
t,ℓ

i) ∼Dtrain
[∥πψ(sit, ℓi)− ait∥22] . (2)

Above we have highlighted differences from BC in red.

A (GC)BC policy π(sit, ℓ
i) must generalize to novel commands ℓi and contextualize them against

potentially novel states sit. Due to difficulties with sampling representative data and expense of
collecting a large number of expert demonstrations, systematic biases may be present in both the
training demonstrations (si0, a

i
0, · · · ) for a goal, or the commands ℓi describing the goal. This can

result in brittle policies which fail to generalize (Ross et al., 2011).

We study two sources of covariate shift: (1) out-of-distribution observations si, or (2) out-of-
distribution utterances ℓi. Training a policy π to be robust to both types requires a wealth of task-
specific training data that can be expensive for humans to annotate and produce (Peng et al., 2023).
Below, we offer a more efficient way to do so by constructing a task-specific state abstraction.
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4 LANGUAGE-GUIDED ABSTRACTION (LGA)

Traditional (GC)BC forces the behavioral policy to learn a joint distribution over language, obser-
vations, and actions—effectively requiring the robot to develop both language and perceptual scene
understanding simultaneously, and to ground language in the current observation. Our approach in-
stead offloads contextual language understanding to a LM which identifies task-relevant features in
the perceptual state. Unlike other recent methods that offload language understanding to LMs (Ahn
et al., 2022), we do not rely on libraries of pre-trained language-annotated skills, which may be
insufficient when there are key behaviors indescribable in language. Instead, we introduce a state
abstraction function that takes the raw perceptual inputs and language-specified goal, and outputs a
set of task-relevant features. Intuitively, LGA can be seen as a form of language-guided attention
(Bahdanau et al., 2015): it conditions the robot’s observations on language, removing the burden of
language understanding from the policy. We describe our general framework below, which we will
instantiate in Section 5.

4.1 STATE ABSTRACTION FUNCTION

Formally, we define a state abstraction function f̂ that produces task-relevant state representations:
f̂ : S × L → Ŝ, consisting of three steps:

Textualization (s → ϕ). First, similar to other LM-assisted methods (Huang et al., 2022b; Ahn
et al., 2022) the raw perceptual input s is transformed into a text-based feature set ϕ, representing
a set of features (described in natural language) that encapsulate the agent’s full perceptual inputs.1
This text representation may include common visual attributes of the observation like objects in
the scene, which are extractable via segmentation models (Kirillov et al., 2023). In Figure 1B, for
example, textualization transforms observations to a feature set of object names and pixel locations.

Feature abstraction (ϕ → ϕ̂). Given a feature set ϕ, we achieve abstraction by using an LM
to select the subset of features from ϕ relevant to the task ℓ: (ϕ, ℓ) → ϕ̂. In Figure 1B, abstraction
removes distractor objects from the feature set, in this case preserving only the target object (orange).

Instantiation (ϕ̂ → ŝ). As a last step, we transform the abstracted feature set back into an (ab-
stracted) perceptual input with only relevant features on display: ϕ̂ → ŝ. This step is required for
rendering the abstracted feature set in a form usable by a policy. In Figure 1B, for example, this step
transforms the abstracted feature set into an observation showing only the relevant object.

4.2 ABSTRACTION-CONDITIONED POLICY LEARNING

After receiving an abstract state ŝ from the state abstraction function, we learn a policy mapping
from the abstract state to actions, yielding πψ̂ : Ŝ → A.2 πψ̂ is trained to minimize the loss:

LLGA = E(sit,a
i
t,ℓ

i) ∼Dtrain
[||πψ̂(f̂(s

i
t, ℓ

i))− ait||22], (3)

with the differences from GCBC (Eq. 2) highlighted in red. The LGA policy πψ̂ never sees the
language input ℓ; instead, it operates over the language-conditioned state representation, ŝ. Conse-
quently, it can exhibit non-trivial generalization capabilities relative to Eqs. 1 and 2, which given a
single goal seen at training and test, collapse to the same non-generalizable policy.

LGA offers several appealing properties relative to traditional (GC)BC. First, it mitigates spurious
correlations during training because all goal information is highlighted in semantic maps rather
than raw pixels. Second, the LM can help resolve ambiguous goals present at test by converting
the language utterance and test observation into an unambiguous abstract state — effective even if
LGA has only seen a single unambiguous task at training. Therefore, using LMs confer valuable
generalization capabilities at test-time, as LMs can “intercede” to determine only the contextually-
appropriate task-relevant features for policy input.

1In the general case, this could be implemented via segmentation (Kirillov et al., 2023) and a captioner.
2LGA can also be used to augment the original observation, in which case a policy is learned over the

concatenated original and abstracted state-spaces, e.g., πψ̂ : Ŝ×S → A. This is a more conservative approach,
allowing the policy to observe both the original and abstracted states.
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5 EXPERIMENTAL SETUP

5.1 ENVIRONMENT AND FEATURE SPACE

A

B

C

Figure 2: We evaluate on three task set-
tings in VIMA. A: Pick-and-place. B: Ro-
tate. C: Sweep while avoid. Red bounding
boxes depict task-relevant features which
must be accounted for in the abstraction.

We generate robotic control tasks from VIMA (Jiang
et al., 2022), a vision-based manipulation environment.
We study three types of tasks: pick-and-place of an ob-
ject onto a goal location, rotation of an object to a pre-
specified degree, and sweep of an object while avoid-
ing a potential obstacle. The environment consists of a
large feature space (29 objects, e.g. bowl, and 81 col-
ors/textures, e.g. wooden) of various semantic mean-
ing. Observations are top-down RGB images and actions
are continuous pick-and-place or sweep poses each con-
sisting of a 2D coordinate and a rotation expressed as a
quaternion. Success is determined by executing the cor-
rect action on the target object within radius ϵ of the goal.

VIMA is an appealing domain for evaluation due to (1)
its combinatorially large feature space for assessing pol-
icy generalization and (2) the presence of tasks that re-
quire behaviors that are difficult to specify in language
(e.g. velocity, rotation, etc.). The latter means we cannot
deploy an instruction-following method with a library of
language-annotated, pre-trained skills.

The task-relevant feature set ϕ̂ is specified via a JSON containing the set of possible task-relevant
objects and colors. For pick-and-place/rotate, this feature set includes the target object; for sweep,
this feature set parameterizes both the target object and the object to be avoided. Because the fea-
ture space can be combinatorially large, constructing abstractions that preserve only task-relevant
features of an ambiguously specified objective, e.g. something that holds water, is challenging.

5.2 LGA IMPLEMENTATION

Textualization. We first extract a structured feature set ϕ by obtaining the ground truth state seg-
mentation mask and object descriptions from the simulator.

Feature abstraction. We use two versions of LGA for defining relevant feature sets ϕ̂. LGA uses
GPT4 (OpenAI, 2023) to specify a relevant feature set.3 We give GPT4 a description of the VIMA
environment (including a list of all possible object types and colors), the goal utterance, and a target
object type or feature to evaluate (full prompt and additional details can be found in appendix A.2).
GPT4 provides a binary response indicating whether the object type or feature should be included in
the abstraction. LGA-HILL extends this by placing a human in the loop. The human is shown the
proposed abstraction and can refine it by adding or removing features (see Section 5.4 for details).

Instantiation. As described in Section 5.1, the abstract state representation consists of a distribution
over object types and object colors, including both target objects and relevant obstacles. Given a
specified task-relevant object type and color, we use an image editor to identify all salient objects
in the observation. In particular, the image editor produces a “goal mask”, a pixel mask where
the relevant objects are converted to ones and everything else is zeroed out. 4 In our setting, the
simulator provides the ground-truth scene segmentation which we use to produce the goal mask ŝ.

Abstraction-Augmented Policy Learning We instantiate the abstraction-augmented policy proce-
dure, described in Section 4.2, in our environment. We assume access to ground truth demonstrations
generated by an oracle. LGA learns a policy from scratch via imitation learning on these demon-
strations, using ŝ. We implement a CNN architecture that processes abstract states into embeddings,
which we then feed through a MLP for action prediction. See Appendix A.3 for details.

3We use the gpt-4-0613 version of GPT4.
4Here, we produce a simple binary pixel mask highlighting relevant objects. In general, however, it may be

fruitful to experiment with more general scalar cost maps, such as highlighting areas that should be avoided.
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5.3 TRAINING AND TEST TASKS

Training Tasks. We are interested in studying how well different methods perform task-relevant
feature selection, i.e. specify ϕ̂ given a single language description of the task. We evaluate the
quality of abstractions by using them to construct a training distribution for each task (on which
we perform imitation learning). We want methods which construct a minimal abstraction ϕ̂ that
contains features necessary for the task. If these abstractions do not contain all features necessary
for completion of the task, then the policy will not succeed; if these abstractions are not minimal,
then learning will be less data-efficient. Thus, we evaluate both data efficiency and task performance;
good abstractions will result in the policy achieving higher success with fewer demonstrations.

We construct this distribution by placing a uniform probability over the set of task-relevant features
specified in ϕ̂. To create a task, we sample an object and texture from this distribution as the “target”
object and place it randomly in the environment. For example, for something that can hold water,
we sample an object from {pan, bowl, container} and sample a color from the universe of all colors.
In the sweep task, we perform this same process, but for possible obstacles. We then generate a
random distractor object. Distractors, target objects, and obstacles are randomly placed in one of
four discretized state locations. Last, for pick-and-place, we place a fixed goal object (pallet) in the
state as the “place” goal. We generate corresponding training demonstrations via an oracle.

Test Tasks. In practice, we do not have access to ground-truth distributions – this specification
must come from the end user. However, for our experiments, the first three authors defined “true”
distributions from which we sampled starting states for each task. See details in Appendix A.2.

5.4 COMPARISONS

We analyze our approach (LGA and LGA-HILL) against three baselines and two ablations.

Human (Baseline). The first baseline explores having users (instead of LMs) manually specify task-
relevant features ϕ̂ in the feature abstraction stage, to isolate the effect of LM-aided specification.
All other components remain the same as in LGA. The features are fed to the same CNN architecture
as for LGA and the policy is again learned over the generated state abstractions.

GCBC-DART (Baseline): Our second baseline is (goal-conditioned) behavior cloning, described
in Eq. 2. Because imitation learning is notoriously brittle to distribution shift, we implement a
stronger variant (DART) (Laskey et al., 2017) by injecting Gaussian noise (swept from µ = 0.0 to 0.2,
β = 0.5) into the collected demonstrations, sampling 5 noisy demonstrations per true demonstration.
We implement goal-conditioning by concatenating an LM embedding of the goal utterance with a
CNN embedding of the state and then learning a policy over the joint representation. We generate
language embeddings using Sentence-BERT (Reimers & Gurevych, 2019).

GCBC-SEG (Baseline): To study the impact of object segmentation, our third baseline implements
goal-conditioning on the segmentation mask in addition to the observation. We independently pro-
cess the two observations via CNNs, and concatenate the embeddings as a joint representation.

LGA-S (Ablation): We explore the effect of training with both the raw observation s in addition to
ŝ to study the impact of discarding the original observation. The two observations are independently
processed via CNNs, then concatenated as a joint representation.

LGA-L (Ablation): We implement a variant of abstraction where we condition only on the language
embedding of the relevant features ϕ̂ rather than on the state abstraction ŝ.

Human Data Collection. For comparisons that require human data (LGA-HILL and Human), we
conducted a computer-based in-person user study to assess the ability of humans to specify task-
relevant features ϕ̂ in the feature abstraction step, both with and without an LM. We recruited 18
participants (67% male, aged 22-44) from the greater MIT community. We paid each participant
$30 for their time. Our study received institutional IRB approval and all user data was anonymized.

We first introduce the user to the environment and full feature space ϕ. To additionally help partici-
pants, we provide both a text and visual representation of features (the latter of which the LM does
not see). We also walk the user through an example task specification. In the Human condition, we
introduce task objectives (detailed in Section 5) sequentially to the user and ask for them to specify
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Figure 3: (Q1) A: Comparing task performance (averaged over all tasks) of each method when controlling
the number of training demonstrations. B: Comparing the amount of time (averaged over all tasks) that human
users spent specifying task-relevant features for each method. LGA outperforms baselines on task performance
while significantly reducing user time spent compared to manual feature specification (p < 0.001).

ϕ̂ by typing their selected features into a task design file (we provide the full feature list for easy
access). In the LGA-HILL condition, we show the same objectives, but with LM answers prefilled
as the “raw” ϕ̂. To minimize ordering bias, we randomly assign half of our participants to begin with
each condition. For both conditions, we measure the time each user spent specifying the feature set.

6 RESULTS

6.1 Q1: IMPROVING EASE AND POLICY PERFORMANCE OF TASK SPECIFICATION

We begin by evaluating both LGA and LGA-HILL against the baseline methods on nine scenarios
from pick-and-place, two from rotate, and two from sweep. Each scenario demonstrates varied
feature complexity, where the ground truth task distributions may be combinatorially large. Each
method learns a single-task policy from scratch for each of the tasks.

Metrics. We report two metrics: task performance vs. # of demonstrations and user time. Task
performance is assessed as the success rate of the policy on 20 sampled test states. We plot this with
respect to the number of training demonstrations an agent sees. User specification time is measured
as the time (in seconds) each user spent specifying the task-relevant feature set for each task.

Task Objectives. For pick-and-place, we construct nine scenarios with a wide range of target ob-
jects: red heart, heart, letter, tiger-colored object, letter from the word letter, consonant with a
warm color, vowel with multiple colors, something to drink water out of, and something from a typi-
cal kitchen. We chose these tasks to 1) test the ability of the LM in LGA to semantically reason over
which target objects and features satisfy human properties, e.g., to drink water out of, and 2) explore
how potentially laborious performing manual feature specification from large feature sets can be for
human users. For rotate, we construct two scenarios: rotate block, rotate something I can put food in,
to illustrate LGA’s ability to learn behaviors that are difficult to specify in language (e.g., rotate an
object 125 degrees), but easy to specify for task-relevance (e.g., pan). For sweep, we construct two
scenarios: sweep the block without touching the pan and sweep the block without touching the line
to illustrate LGA’s ability to identify task-relevant features that are both target objects and obstacles.

Results. We vary the number of demonstrations that each policy is trained on from 10 to 50. We
visualize the resulting policy performance in Figure 3 (A). In Figure 3 (B), we visualize how much
time users spent specifying the task-relevant features for each method.5 From these results, it is clear
that the feature-specification methods (i.e. LGA, LGA-HILL, and Human) are more sample-efficient
than baselines with consistently higher performance at each number of training demonstrations.
Furthermore, LGA methods require significantly less user time than the Human baseline (p < 0.001
using a paired t-test for all tasks). We note that despite comparable task performance between LGA
and LGA-HILL, the latter remains a valuable instantiation for tasks that require human input, such
as high-stakes decision-making scenarios or personalization to individual user preferences.

Summary. LGA requires significantly less human time than manually specifying features, but still
leads to more sample-efficient performance compared to baselines.

5While we assign zero time spent specifying features for GCBC in our experiments, in practice, user time
would be instead spent specifying initial state configurations for generating every demonstration, which only
disadvantages naive GCBC even more when compared to methods that specify features.
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Figure 4: (Q2) A: Results on state covariate shifts. LGA variants that condition on state abstractions (with or
without the original observation) outperform LGA-L (which conditions on the language abstraction only) and
GCBC+DART (which attempts to use noise injection to handle covariate shift). (Q3) B: Results on multi-task
ambiguity. We observe the same trends, with LGA variants that condition on state abstractions able to resolve
previously unseen linguistic commands.

6.2 Q2: IMPROVING POLICY ROBUSTNESS TO OBSERVATIONAL COVARIATE SHIFT

We have shown that LGA enables faster feature specification when compared to hand-engineering
features from scratch, and also leads to more sample-efficient policies when compared to traditional
imitation learning. We now ask how the different design choices taken in LGA handle state covariate
shift compared to GCBC+DART, which is a stronger imitation learning baseline designed to help
mitigate covariate shift by synthetically broadening the demonstrations data with injected noise.

Task Objectives. We evaluate on four previously defined scenarios in Q1: heart (pick-and-place),
letter (pick-and-place), bowl (rotate), and block (sweep while avoid). For each task, we now con-
struct state covariate shifts designed to test policy robustness.

For all tasks, we define a training distribution where the task-relevant features contain some subset
of the feature list, e.g., red and blue. At test time, we evaluate by sampling tasks from a distribution
where either 1) task-relevant textures change (e.g., objects are now pink) or 2) a sampled distractor
is added to the scene. These tasks are intended to evaluate LGA’s flexibility in including (and
excluding) appropriate task-relevant features relative to imitation learning over raw observations.

Results. For each method, we train on 50 demonstrations from the train distribution then evaluate
on 20 tasks from the test distribution. As shown in Fig. 4A, policies trained with either of the LGA
methods are more robust to state covariate shifts than those trained with GCBC+DART. Notably, we
observe that LGA-L (our ablation where we provide the language abstraction only) underperforms
the variants that operate over state abstractions. This makes sense considering observations (even if
masked) contain information that directly grounds task-relevant information for the policy to oper-
ate over into the environment. This confirms our hypothesis that providing a non-ambiguous state
abstraction that already precludes non-relevant task features from the state result in policies that are
less brittle to spuriously correlated state features.

Summary. Policies trained with LGA state abstractions (with or without raw observations) are more
robust to observational shift than GCBC+DART.

6.3 Q3: IMPROVING MULTI-TASK POLICY ROBUSTNESS TO LINGUISTIC AMBIGUITY

The previous experiments have focused on evaluating LGA in single-task settings where each policy
corresponds to a singular language specification. We now evaluate how LGA performs in the multi-
task case where test time environments allow for multiple task specifications, and conditioning on
language is necessary to resolve the ambiguity.

Task Objectives. We now define three new tasks: pick up fruit (pick-and-place), put food in (rotate),
and avoid utensil (sweep). For each task, we train a multi-task policy. We define our training
distribution as states that contain a single object from each specification (e.g., a tomato or apple). At
test time, we present the policy with states that now contain both objects. We condition the policy
on both the linguistic utterances it has seen before: e.g., “Bring me a tomato.” or “Bring me an
apple”, and as well as one it has not: e.g., “Bring me a fruit.” We now evaluate LGA’s zero-shot
generalization performance on both seen and unseen linguistic goal utterances.

Results. For each method, we train on 50 demonstrations sampled from the train distribution for
each task, then evaluate on 20 task instances from the test distribution. We visualize the averaged
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results in Figure 4B. These results demonstrate LGA’s ability to flexibly construct state abstractions
even if the language utterance was previously unseen.

Summary. Multi-task policies trained with LGA can better resolve task ambiguity compared to
GCBC+DART as they can flexibly adapt new language specifications to the observation.

7 REAL-WORLD ROBOTICS TASKS

We highlight LGA’s real world applicability on a Spot robot performing mobile manipulation tasks.

Robot Platform. Spot 6 is a mobile manipulation legged robot equipped with six RGB-D cameras
(one in gripper, two in front, one on each side, one in back), each producing an observation of size
480×640. For our demonstrations, we only use observations taken from the robot’s front camera.

Tasks and Data Collection. We collected demonstrations of a human operator teleoperating the
robot while performing two mobile manipulation tasks with various household objects: bring fruit
and throw away object. The manipulation action space consists of the following three actions along
with their parameters: (xy, grasp), (xy, move), (drop) while the navigation action space consists of a
SE(3) group denoting navigation waypoints. For bring fruit, the robot is tasked with picking up fruit
on a table, bringing it to a user at a specified location, and dropping it in their hand. For throw away
drink, the robot is tasked with picking up a drink from a table, moving to a specified location, and
dropping it into a recycling bin. Both tasks include possible distractors like brushes and drills on the
table. For each task, we collected a single demonstration of the robot successfully performing the
task (e.g., throwing away a soda can). The full action sequence is recorded for training.

Training and Test Procedure. First, we extract a segmented image using Segment Anything (Kir-
illov et al., 2023) and captioner Dedic (Zhou et al., 2022); second, we query the feature list along
with the linguistic specification (e.g., throw away drink) to construct our abstract feature list; last,
we map the abstract feature list back into the original observation as an abstracted state. We train a
policy to map from the abstracted state into the action sequence.7 For test, we then change the scene
(e.g., with a new target object like a water bottle instead of a soda can, along with distractors) and
predict the action sequence from the new observation.

Takeaway. LGA produced policies capable of successfully completing both tasks consistently. The
failures we did observe were largely due to captioning errors (e.g., the segmentation model detected
the object but was unable to produce a good text description).

8 DISCUSSION & CONCLUSION

We proposed LGA to leverage LMs to learn generalizable policies on state abstractions produced
for task-relevant features. Our results confirmed that LGA produces state abstractions similarly
effective to those manually designed by human annotators while requiring significantly less user
time than manual specification. Furthermore, we showed that these abstractions yield policies robust
to observational covariate shift and ambiguous language in both single-task and multi-task settings.

Limitations. We assume state abstractions for training good policies can be captured by visual
features present in individual scenes. An exciting direction for future work would be to learn how to
build state abstractions for trajectory-relevant features. We also assume features are a) segmentable
and b) expressible in language, i.e. a LM (or human) can understand how each feature may or may
not relate to the task. In more complex scenarios, many real-world tasks may be dependent on
features that are less expressible in text, e.g. relative position, and are difficult to encapsulate in
an abstraction. Although there is evidence to suggest even ungrounded LMs can learn grounded
concepts such as spatial relations (Patel & Pavlick, 2021), we did not rigorously test this. We are
excited to explore additional feature representations (perhaps multimodal visualization interfaces in
addition to language representations) that can be jointly used to construct state abstractions.

6Our Spot’s name is Moana.
7For latency purposes and ease of data generation, we perform imitation learning over the full trajectory

rather than each state (i.e. predict a sequence of actions from an initial observation only).
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André Correia and Luı́s A Alexandre. A survey of demonstration learning. arXiv preprint
arXiv:2303.11191, 2023.

Carlos Diuk, Andre Cohen, and Michael L Littman. An object-oriented representation for efficient
reinforcement learning. In International Conference on Machine Learning, pp. 240–247, 2008.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, 2023.

Judith E Fan, Robert D Hawkins, Mike Wu, and Noah D Goodman. Pragmatic inference and visual
abstraction enable contextual flexibility during visual communication. Computational Brain &
Behavior, 3:86–101, 2020.

Prasoon Goyal, Scott Niekum, and Raymond J Mooney. Using natural language for reward shaping
in reinforcement learning. International Joint Conference on Artificial Intelligence, 2019.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
2017.

11



Published as a conference paper at ICLR 2024

Mark K Ho, David Abel, Carlos G Correa, Michael L Littman, Jonathan D Cohen, and Thomas L
Griffiths. People construct simplified mental representations to plan. Nature, 606(7912):129–136,
2022.

Mark K Ho, Jonathan D Cohen, and Thomas L Griffiths. Rational simplification and rigidity in
human planning. PsyArXiv, Mar 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. arXiv preprint
arXiv:2201.07207, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022b.

Holly Huey, Xuanchen Lu, Caren M Walker, and Judith E Fan. Visual explanations prioritize func-
tional properties at the expense of visual fidelity. Cognition, 236:105414, 2023.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
multimodal prompts. International Conference on Machine Learning, 2022.

Siddharth Karamcheti, Suraj Nair, Annie S Chen, Thomas Kollar, Chelsea Finn, Dorsa Sadigh,
and Percy Liang. Language-driven representation learning for robotics. Robotics: Science and
Systems, 2023.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv
preprint arXiv:2304.02643, 2023.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. International Conference on Learning Representations, 2023.

Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. Dart: Noise injection
for robust imitation learning. In Conference on Robot Learning, pp. 143–156, 2017.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive rein-
forcement learning via relabeling experience and unsupervised pre-training. arXiv preprint
arXiv:2106.05091, 2021.

Belinda Z Li, William Chen, Pratyusha Sharma, and Jacob Andreas. Lampp: Language models as
probabilistic priors for perception and action. arXiv e-prints, pp. arXiv–2302, 2023.

William P McCarthy, Robert D Hawkins, Haoliang Wang, Cameron Holdaway, and Judith E Fan.
Learning to communicate about shared procedural abstractions. arXiv preprint arXiv:2107.00077,
2021a.

William P McCarthy, Marcelo G Mattar, David Kirsh, and Judith E Fan. Connecting perceptual and
procedural abstractions in physical construction. In Proceedings of the Annual Meeting of the
Cognitive Science Society, volume 43, 2021b.

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind Niklasson, Max Shatkhin, and Yoav Artzi.
Mapping instructions to actions in 3D environments with visual goal prediction. In Conference
on Empirical Methods in Natural Language Processing, pp. 2667–2678, 2018.

Jesse Mu, Victor Zhong, Roberta Raileanu, Minqi Jiang, Noah Goodman, Tim Rocktäschel, and
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A APPENDIX

A.1 ENVIRONMENT DETAILS

States are fully-observable images and represent a RGB fixed-camera topdown view of the scene.
The action space is continuous of dimension 4 and consists of high-level pick-and-place actions
parameterized by the pose of the end effector. There are 4 possible objects that can be spawned:
the target (manipulated) object, goal object, and (up to) two possible distractors. There are two
types of target features (object type and texture) and 29 possible instantiations of object type and 81
instantiations of texture. Visual depictions of the features can be found in the user study below.

A.2 TASK DETAILS

We provide details regarding all tasks, including ground truth task distributions and full LM prompt.

Pick-and-place:

red heart:

• Task prompt: Bring me the red heart.
• True distribution: {objects: heart}, {textures: red, dark red, dark red swirl, red paisley}

heart:

• Task prompt: Bring me the heart.
• True distribution: {objects: heart}, {textures: ALL}

tiger-colored object:

• Task prompt: Bring me the tiger-colored object.
• True distribution: {objects: ALL}, {textures: tiger}

letter from the word letter:

• Task prompt: Bring me a letter from the word ‘letter’.
• True distribution: {objects: letter E, letter R, letter T}, {textures: ALL}

consonant with warm-color:

• Task prompt: Bring me a consonant with a warm color on it.
• True distribution: {objects: letter G, letter M, letter R, letter T, letter V}, {textures:

dark {red—yellow—pink—orange}, dark {red—yellow—pink—orange} and * stripe,
{red—yellow—pink—orange} and * polka dot, dark {red—yellow—pink—orange}
and * polka dot, {red—yellow—pink} swirl, dark {red—yellow—pink} swirl,
{red—yellow—pink} paisley, tiger, magma, wooden, rainbow, tiles, brick}

vowel with multiple colors:

• Task prompt: Bring me a vowel with multiple colors on it.
• True distribution: {objects: letter A, letter E}, {textures: polka dot, tiles, checkerboard,

plastic, tiger, magma, rainbow, * and * stripe, * and * polka dot, * swirl, * paisley}

something to drink water out of :

• Task prompt: Bring me something to drink water out of.
• True distribution: {objects: bowl, pan, container}, {textures: ALL}

something from a typical kitchen:

• Task prompt: Bring me something from a typical kitchen.
• True distribution: {objects: bowl, pan, container}, {textures: ALL}

Rotate:

block:

• Task prompt: Rotate the block.
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• True distribution: {objects: block, small block, shorter block, L shaped block}, {textures:
ALL}

something to drink water out of :

• Task prompt: Rotate something to drink water out of.
• True distribution: {objects: container, bowl, pan}, {textures: red, dark red, dark red swirl,

red paisley}
Sweep While Avoid:

block, pan:

• Task prompt: Sweep the block without touching the pan.
• True distribution: {objects: block, small block, shorter block, L shaped block, pan},
{textures: ALL}

block, line:

• Task prompt: Sweep the block without touching the line.
• True distribution: {objects: block, small block, shorter block, L shaped block, line},
{textures: ALL}

A.2.1 FULL PROMPT

ChatGPT models (including GPT4) can take in both system prompts and user prompts. We split our
prompt into these two parts as follows.

System prompt where {object list} is replaced by the list of all object types in the environment and
{object colors} by the list of all colors and textures:

You are interfacing with a robotics environment that has a robotic arm learning
to manipulate objects based on some linguistic command (e.g. “pick up the red
bowl”). At each interaction, the researcher will specify the command that you
need to teach the robot. In order to teach the robot, you will need to help design the
training distribution by specifying what properties task-relevant objects can have
based on the given command. Objects in this environment have two properties:
object type, object color. Any object type can be paired with any color, but an
object can only take on exactly one object type and exactly one color.
Object types:
{object list}
Object colors:
{object colors}

User prompt where {rule} is replaced by one of the task prompts listed above, {group} is replaced
by “object color” or “object type”, and {candidate} is replaced by each candidate object color or
type that we would like the LM to evaluate:

The command is “{rule}”. In an instantiation of the environment that contains
only some subset of the object types and colors, could the target object have
{group} “{candidate}”? Think step-by-step and then finish with a new line that
says “Final answer:” followed by “yes” or “no”.

A.3 ARCHITECTURE AND TRAINING DETAILS

Architecture.

For GCBC, Sentence-BERT processes a goal utterance in natural language into an embedding of size
384, which we additionally process through a linear MLP of output size 100. We process the state
using a standard Conv2D block consisting of 3 stacked Conv2D layers of output channel sizes 32,
64, 32, and strides 4, 2, and 1. Each output layer is processed by BatchNorm2D as well as a ReLU
activation. After the last Conv2D layer, we flatten the output and concatenate with the output of the
goal utterance. We feed the concatenated output through a last linear layer for action prediction.
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For LGA, we process both the state and the state abstraction through dual Conv2Ds blocks like
above. We concatenate the output and feed through a last linear layer for action prediction.

Training.

We train all networks to convergence for a maximum of 750 epochs. All computation was done
on two NVIDIA GeForce RTX 3090 GPUs. Rollouts were rendered locally using PyBullet on
commercial hardware (a Macbook Pro).

A.4 USER STUDY

In the following pages, we have included the full user study shared with participants. Following stan-
dard user study procedure, we initial briefed users by telling them how long the study was (roughly
30 mins) and that they were free to leave at anytime. Demographic information was collected in
person. We showed participants the first pdf during the familiarization phase to introduce them to
the environment and full feature list. We then randomly chose to begin with either the human-only
task (second pdf) or the LM-aided task (third pdf). After the study, users were debriefed and given
the email of the study designer to contact if they had any questions.
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In [3]: task_kwargs = {
     'possible_dragged_obj': ['diamond',

'triangle',
'hexagon',
'pentagon',
'square'],

     'possible_dragged_obj_texture': ['red and yellow polka dot', 
'red and green polka dot', 
'red and blue polka dot', 
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot', 



'dark red and green polka dot', 
'dark red and blue polka dot', 
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',]}



In [2]: 'possible_dragged_obj': ['L-shaped block',
'block',
'bowl',
'container',
'cross',
'diamond',
'flower',
'frame',
'heart',
'hexagon',
'letter A',
'letter E',
'letter G',
'letter M',
'letter R',
'letter T',
'letter V',
'line',
'pallet',
'pan',
'pentagon',
'ring',
'round',
'shorter block',
'small block',
'square',
'star',
'three-sided rectangle',
'triangle']

In [ ]: 'possible_dragged_obj_texture': ['brick',
'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',
'dark green',
'dark olive',
'dark orange',
'dark pink',



'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']

In [4]: task_kwargs = {
     'possible_dragged_obj': [],



     'possible_dragged_obj_texture': []}
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In [ ]: 'possible_dragged_obj': ['L-shaped block',
'block',
'bowl',
'container',
'cross',
'diamond',
'flower',
'frame',
'heart',
'hexagon',
'letter A',
'letter E',
'letter G',
'letter M',
'letter R',
'letter T',
'letter V',
'line',
'pallet',
'pan',
'pentagon',
'ring',
'round',
'shorter block',
'small block',
'square',
'star',
'three-sided rectangle',
'triangle']

In [ ]: 'possible_dragged_obj_texture': ['brick',
'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',



'dark green',
'dark olive',
'dark orange',
'dark pink',
'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']



In [ ]: task_kwargs = {
     'possible_dragged_obj': ['heart'],
     'possible_dragged_obj_texture': ['red',

'dark red',
'red swirl',
'dark red swirl'
'red paisley']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['heart'],
     'possible_dragged_obj_texture': ['brick',

'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',
'dark green',
'dark olive',
'dark orange',
'dark pink',
'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',



'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['L-shaped block',

'block',
'bowl',
'container',
'cross',
'diamond',
'flower',
'frame',
'heart',
'hexagon',
'letter A',
'letter E',
'letter G',
'letter M',
'letter R',
'letter T',
'letter V',
'line',
'pallet',
'pan',
'pentagon',
'ring',
'round',
'shorter block',



'small block',
'square',
'star',
'three-sided rectangle',
'triangle'],

     'possible_dragged_obj_texture': ['tiger']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['letter E'

'letter R',
'letter T'],

     'possible_dragged_obj_texture': ['brick',
'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',
'dark green',
'dark olive',
'dark orange',
'dark pink',
'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',



'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['letter G',

'letter M',
'letter R',
'letter T',
'letter V'],

     'possible_dragged_obj_texture': ['polka dot',
'orange',
'pink',
'red',
'yellow',
'dark orange',
'dark pink',
'dark red',
'dark yellow',
'red and yellow stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark yellow and purple stripe',
'red and yellow polka dot',
'dark red and yellow polka dot',
'red swirl',
'yellow swirl',
'dark red swirl',
'dark yellow swirl',



'red paisley',
'yellow paisley']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['letter A',

'letter E'],
     'possible_dragged_obj_texture': ['polka dot',

'checkerboard',
'tiger',
'magma',
'rainbow',
'yellow',
'dark green',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'yellow swirl',
'green swirl',
'blue swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',



'dark purple swirl',
'red paisley',
'green paisley',
'blue paisley',
'purple paisley']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['letter A',

'letter E',
'letter G',
'letter M',
'letter R',
'letter T'],

     'possible_dragged_obj_texture': ['brick',
'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',
'dark green',
'dark olive',
'dark orange',
'dark pink',
'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',



'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['bowl',

'container'],
     'possible_dragged_obj_texture': ['brick',

'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',



'dark green',
'dark olive',
'dark orange',
'dark pink',
'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']}



In [ ]: task_kwargs = {
     'possible_dragged_obj': ['bowl',

'container',
'pan'],

     'possible_dragged_obj_texture': ['brick',
'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',
'dark green',
'dark olive',
'dark orange',
'dark pink',
'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',



'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']}
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