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ABSTRACT

In recent years, deep neural networks (DNNs) have excelled at learning from
high-throughput genome-profiling experiments to predict transcription factor (TF)
binding. TF binding is driven by sequence motifs, and explaining how and why
DNNs make accurate predictions could help identify these motifs, as well as their
logical syntax. However, the black-box nature of DNNs makes interpretation dif-
ficult. Most post-hoc methods evaluate the importance of each base pair in isola-
tion, often resulting in noise since they overlook the fact that motifs are contiguous
regions. Additionally, these methods fail to capture the complex interactions be-
tween different motifs. To address these challenges, we propose Motif Explainer
Models (MEMs), a novel explanation method that uses sufficiency and necessity
to identify important motifs and their syntax. MEMs excel at identifying multiple
disjoint motifs across DNA sequences, overcoming limitations of existing meth-
ods. Moreover, by accurately pinpointing sufficient and necessary motifs, MEMs
can reveal the logical syntax that governs genomic regulation.

1 INTRODUCTION

The regulatory function of DNA sequences is determined by short DNA segments called “motifs”,
where certain proteins called “transcription factors” (TFs) bind to regulate gene activity (Klug,
1995; Alberts et al., 2002; Siggers & Gordân, 2014; Lambert et al., 2018). TF binding depends
on the arrangement and logical combination of these motifs. High-throughput experiments provide
a genome-wide view of regulatory activity in various cell types (Consortium et al., 2012). Tech-
niques like DNase-seq and ATAC-seq identify regions of open chromatin where TFs can bind, while
more targeted methods like ChIP-seq offer insights into specific protein–DNA interactions.

Given the complexity and volume of data from these experiments, accurately predicting genome
activity from DNA sequences requires models that can handle large datasets and capture the intricate
interactions and arrangement of motifs. Deep neural networks (DNNs), with their proven success in
various biological sequence prediction tasks, are well-suited for this challenge. They have achieved
state-of-the-art performance in predicting TF binding from DNA sequences (Alipanahi et al., 2015;
Avsec et al., 2021; Eraslan et al., 2019). Genomic DNNs take DNA sequences as inputs and learn
to predict a label from a regulatory profiling experiment, such as whether a TF binds to a given
sequence. The goal is to use these accurate models to identify the motifs and syntax governing
genomic regulation (Novakovsky et al., 2023).

Despite their success, the black-box nature of these models makes it difficult to understand how and
why they make specific predictions (Zednik, 2021; Tomsett et al., 2018). In regulatory genomics,
this has led to the development of post-hoc methods to explain genomic DNNs at the local (sample)
level. Given a model f and an input N -length DNA sequence x = (x1, x2, . . . , xN ) ∈ RN , these
methods aim to identify important motifs for the prediction f(x) by assigning an importance score
to each base pair xi, and then segmenting out high-importance regions as putative motifs. However,
many of these methods fall short because they evaluate the importance of individual base pairs in
isolation, and do not leverage the fact that motifs are short, contiguous regions. Furthermore, these
methods also fail to capture the complex interactions between motifs.

To address these challenges, Linder et al. (2022) introduced scramblers, a model-based explanation
method optimized for the discrete nature of biological sequences. Scramblers outperform other
post-hoc methods by identifying important motifs using learned stochastic masks. However, when
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the input is a complex DNA sequence with multiple motifs, scramblers struggle to identify multiple
short contiguous regions as they do not leverage the key properties of motifs we know of. Due to
this shortcoming, like other methods, scramblers also cannot uncover the logical syntax governing
regulatory behavior.

In this work, we propose a novel model-based explanation method called Motif Explainer Models
(MEMs), which leverages the concepts of sufficiency and necessity to produce meaningful explana-
tions. For complex DNA sequences composed of disjoint and contiguous motifs, we show that our
method accurately identifies sufficient and necessary motifs, and outperforms the current state-of-
the-art method of scramblers. Furthermore, by employing both sufficient and necessary explanations
together, MEMs reveal the logical syntax between motifs that governs genomic regulation.

1.1 RELATED WORKS

Several methods have been proposed for discovering motifs from genomic DNNs.

Visualizing Convolutional Filters. Nearly all genomic DNNs are convolutional in their first lay-
ers (Alipanahi et al., 2015; Zhou & Troyanskaya, 2015; Kelley et al., 2016; Avsec et al., 2021). To
identify important motifs, many works have focused on visualizing CNN filters (Alipanahi et al.,
2015; Kelley et al., 2016) because early convolutional layers often capture basic patterns, while
deeper layers capture more complex features (Zeiler & Fergus, 2014; Yosinski et al., 2015; Si-
monyan et al., 2014). However, this approach has shown limited success, as it assumes each filter
learns one motif, and each motif is learned by one filter. Recent research shows that motifs are
distributed across multiple filters and layers (Tseng et al., 2024).

Measuring Influence via Post-hoc Explanation Methods. Popular post-hoc explanation meth-
ods like CAM (Zhou et al., 2016), LIME (Ribeiro et al., 2016), gradient-based approaches (Selvaraju
et al., 2017; Shrikumar et al., 2017; Jiang et al., 2021), Shapley value-based methods (Chen et al.,
2018; Teneggi et al., 2022), and perturbation-based methods (Fong & Vedaldi, 2017; Fong et al.,
2019) have been adapted to identify motifs. These methods assign importance scores to each base
pair (Sundararajan et al., 2017; Shrikumar et al., 2017), but they perform poorly for two reasons.
First, by evaluating base pairs individually, they miss key motifs because subsequences inherently
interact in complex ways to regulate function. Second, these methods are computationally expen-
sive. For instance, integrated gradients and DeepLIFT require integrating over the entire DNN,
while Shapley-based methods require exponential computations (Strumbelj & Kononenko, 2010;
Lundberg & Lee, 2017). Additionally, the importance scores are often noisy, fragile, and fail to
reveal the model’s true decision-making process (Ghorbani et al., 2019; Tseng et al., 2020), making
it difficult to rely on downstream tools like MoDISco to cluster them into motifs (Shrikumar et al.,
2018).

Scramblers. To overcome these limitations, Linder et al. (2022) proposed scramblers, a model-
based explanation method that learns stochastic masks to highlight the base pairs crucial for pre-
dictions. Scramblers predict position-specific scoring matrices (PSSMs), where unimportant base
pairs are “scrambled” by increasing their entropy. Scramblers have a distinct advantage over many
traditional post-hoc explanation methods due to their model-based approach: a scrambler only needs
to be trained once for any model predictive f , after which importance scores for any query DNA
sequence can be obtained in a single evaluation. While scramblers outperform other post-hoc meth-
ods, they still struggle with sequences composed of multiple disjoint and contiguous motifs. This
is due to a regularization penalty that focuses on controlling entropy, rather than incorporating the
core characteristics of motifs (small, contiguous, and disjoint). As a result, scramblers are limited in
complex settings and fail to uncover the logical syntax of motif interactions for genomic regulation.

1.2 SUMMARY OF OUR CONTRIBUTIONS

We address the challenges of interpreting genomic DNNs by proposing a novel model-based ex-
planation method focused on identifying important motifs and the logical syntax governing gene
regulation. Specifically, our method can identify both sufficient or necessary motifs for predictions,
providing more accurate and interpretable explanations for genomic DNNs on complex DNA se-
quences. Our contributions include:
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1. Motif Explainer Models (MEMs): We introduce Motif Explainer Models (MEMs), a
model-based explanation method capable of generating sufficient or necessary explana-
tions for genomic DNNs. MEMs can handle disjoint and contiguous motifs gracefully,
capturing the intricate arrangements and interactions that other methods miss.

2. Uncovering Logical Syntax via Sufficiency and Necessity: By combining sufficient and
necessary explanations, we show that MEMs can reveal the logical syntax governing how
motifs interact to regulate downstream gene expression.

3. Experimental Validation: Through a series of experiments, we demonstrate that MEMs
outperform scramblers, the current state-of-the-art method in identifying important motifs.
Additionally, we show how MEMs can deduce common biological syntactical rules, such
as cooperation, repression, and redundancy.

2 BACKGROUND

Notation. Random vectors and their observed values are denoted with boldface uppercase (e.g.,
X) and lowercase (e.g., x) letters. For a subset of features S ⊆ [N ] (where [N ] := {1, . . . , N}),
we denote its complement as S̄ = [N ] \ S. Additionally, subscripts index features, e.g. the vector
xS is the restriction of x to the components indexed by S. The input domain of N -length DNA
sequences and output domain of binary labels are denoted as X = {A, C, G, T}N and Y =
{0, 1}, respectively. A distribution over features and labels X × Y is denoted as D and for such a
distribution, the marginal distribution over features is represented as DX . Lastly, denote ρ : R×R 7→
R to be any symmetric function that measures the similarity between elements a, b ∈ R with the
property ρ(a, b) = 0 ⇐⇒ a = b. A common choice is ρ(a, b) = |a − b|, which we use in our
experiments.

Setting. We consider a binary classification setting with an unknown distribution D over X ×
Y , a domain of N -length DNA sequences and binary labels. Since the inputs are N -length DNA
sequences, when we refer to an input DNA sequence x, note it is implicitly being expressed as a
one-hot encoded pattern, x ∈ {0, 1}N×4 (a N -length sequences of alphabet size 4, representing
the 4 base pairs {A, C, G, T}). We assume access to a differentiable predictor f : X 7→ Y ,
pretrained on DNA sequence–label pairs, (X, Y ) ∼ D. Our goal of interpretation is: for a fixed
DNA sequence x, identify which short subsequences, i.e. motifs, in x are most important for the
prediction f(x). To do so, our method—as with many other post-hoc methods (Covert et al., 2021;
Fong & Vedaldi, 2017; Fong et al., 2019)—relies on evaluating how a predictor’s behavior changes
when base-pairs in x are retained or omitted. Since f can only accept N -length sequences as an
input we employ the standard technique for querying f on subsets of features by evaluating the
average restricted prediction

fS(x) = E
XS̄∼VS̄

[f(xS ,XS̄)] (1)

where xS is fixed and XS̄ is a random vector sampled from VS̄ , the marginal distribution, over S, of
an arbitrary reference distribution V[N ] (Covert et al., 2021; Teneggi et al., 2023; Bharti et al., 2024).

2.1 SUFFICIENCY AND NECESSITY

Our method takes as input a pretrained predictor f : X 7→ Y and a fixed DNA sequence x, and
outputs a subset S ⊆ [d] that is considered “important” for the prediction f(x). We define the
importance of S using slightly modified notions of sufficiency and necessity originally proposed by
Bharti et al. (2024). We present our modified definitions, below for clarity:
Definition 1 (Sufficiency & Necessity (Bharti et al., 2024)). Let ϵ and ∆ > 0. Denote ρ : R×R 7→ R
to be a similarity measure. For a predictor f and sample x, denote Ŷ (x) = 1[f(x) ≥ 0.5] to be the
predicted class of x by f .

A subset S ⊆ [d] is ϵ-sufficient with respect to a distribution V for f at x if

ρ(Ŷ (x), fS(x)) ≤ ϵ (2)
A subset S ⊆ [d] is ∆-necessary with respect to a distribution V for f at x if

ρ(Ŷ (x), fS̄(x)) ≥ ∆. (3)
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In other words, this definition of sufficiency states that, for a reference distribution V , a subset of
features S is ϵ-sufficient if, with xS fixed, the average restricted prediction fS(x) is ϵ close to the
predicted class Ŷ (x). Conversely, the definition of necessity states that, for V , a subset S is ∆-
necessary if, when the features in S are marginalized out, the resulting average restricted prediction
fS̄(x) is ∆ away from the predicted class Ŷ (x). Later in this work, we will demonstrate why
accurate sufficient and necessary explanations are essential for deducing motif syntax. Furthermore,
we highlight that while scramblers attempt to generate these explanations with some success, our
proposed method achieves far greater accuracy, enabling more reliable deduction of the underlying
motifs and their logic.

2.2 SCRAMBLERS

Given a pre-trained predictor f and fixed DNA-sequence x, a scrambler (Linder et al., 2022) is a
learned model g : X 7→ RN

>0 that predicts a set of real-valued importance scores in (0,∞]N . These
scores produce a probability distribution Pg(x) that we can sample from. Specifically, Pg(x) is a
set of N categorical softmax-nodes, also known as a position-specific scoring matrix (PSSM) that
interpolates between x ∈ {0, 1}N×4 and a non-informative background distribution B̃ ∈ [0, 1]N×4.
One can learn a scrambler S by solving the following optimization problem

arg min
g ⊆ H

E
X∼DX

[
L(f,X, Pg) + λ · CON(Pg(X), B̃,X)

]
(4)

where L(f,X, Pg) denotes a loss function, CON(Pg(X), B̃,X) a conservation penalty, and λ > 0
a hyperparameter which controls the magnitude of the penalty. Depending on the type of scram-
bler one wants to learn, the loss function L(f,X, Pg), the conservation penalty, and the functional
form of probability distribution Pg(X) will vary. There are two types of scramblers, an inclusion
scrambler and occlusion scrambler.

Inclusion Scrambler. An inclusion scrambler is trained with

L(f,X, Pg) = E
X̃∼Pg(X)

[
KL
[
f(X̃)||f(X)

]]
(5)

CON(Pg(X), B̃,X) =

(
tbits −

1

N
KL
[
B̃||Pg(X)

])2

(6)

Pg(x) = σ(log(B̃) + x× ġ(x)). (7)

where σ denotes the softmax σ(L)ij =
exp(Lij)∑M

k=1 exp(Lik)
and ġ(x) ∈ (0,∞]N×M represent the scores

g(x) broadcasted across the base (ACGT) dimension. With these choices of L(f,X, Pg), conserva-
tion penalty, and Pg(x), an inclusion scrambler is trained to output scores in (0,∞]N which produce
a distribution Pg(x) with maximum entropy but whose samples X̃ ∼ Pg(x) minimize the predictive

reconstructive error, E
X̃∼Pg(X)

[
KL
[
f(X̃)||f(X)

]]
, thus identifying sufficient features.

Occlusion Scrambler. An occlusion scrambler is trained with

L(f,X, Pg) = − E
X̃∼Pg(X)

[
KL
[
f(X̃)||f(X)

]]
(8)

CON(Pg(X), B̃,X) =

(
tbits −

1

N
KL [Pg(X)||X]

)2

(9)

Pg(x) = σ(log(B̃) + x/ġ(x)). (10)

With these choices of L(f,X, Pg), conservation penalty, and Pg(x) an occlusion scrambler is
trained to output scores in (0,∞]N which produce a distribution Pg(x) with minimum entropy
but whose samples X̃ ∼ Pg(x) maximize the predictive reconstructive error. Since the samples
from Pg(x) maximize the reconstructive error, this formulation identifies necessary features.

4
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2.3 SHORTCOMINGS OF SCRAMBLERS

While scramblers outperform common post-hoc methods in providing explanations, they still face
some key limitations that affect their overall effectiveness.

Lack of Key Prior Knowledge. DNA motifs are generally recognized as small, contiguous, and
disjoint subsequences within a larger sequence (Klug, 1995; Alberts et al., 2002; Siggers & Gordân,
2014; Lambert et al., 2018; Stormo, 2013; Maston et al., 2006). Thus, incorporating this key in-
formation as an inductive bias into explanation methods could greatly improve the quality of the
identified motifs. However, scramblers do not explicitly consider this prior knowledge; instead, they
learn a distribution Pg(X) over sequences, which optimizes jointly for the prediction reconstruction
error and for entropy. While this formulation is valid to produce necessary or sufficient explanations,
it fails to capture prior knowledge of motif biology, particularly that motifs occur as one or more
small, contiguous, and disjoint subsequences.

Limitations of the Conservation Penalty. While inclusion and occlusion scramblers aim to max-
imize and minimize the entropy of Pg(x) via their conservation penalty, CON(Pg(X), B̃,X), their
effectiveness heavily depends on the choice of the tbits parameter. This parameter controls the en-
tropy and serves as the target value for the expected entropy of Pg(X). For example, a larger tbits

allows more entropy for Pg(x) with respect to either the background B̃ or the sample X, depending
on whether an inclusion or occlusion scrambler is being learned. The challenge with this formulation
is that we often do not know how many motifs exist or how distinct they are from the background
signal, making it difficult to determine an appropriate target entropy for Pg(x). Additionally, consid-
ering our prior knowledge of motif biology, there is no theoretically justifiable reason that enforcing
entropy will lead to the identification of small, contiguous motifs, which we will demonstrate in our
experimental section.

3 MOTIF EXPLAINER MODELS

To address the limitations of scramblers and provide more accurate explanations that highlight con-
tiguous and disjoint motifs, we propose Motif Explainer Models (MEMs). This model-based based
explanation approach is designed to incorporate the key properties of motifs, better capturing the
structure and arrangement of motifs within sequences, and offering a more precise and biologically
meaningful interpretation. A MEM is a model m : X 7→ [0, 1]N that outputs importance scores in
[0, 1]N . For a sequence x, a MEM outputs scores m(x) = (m1, . . . ,mN ) producing a probabil-
ity distribution Pm(x). In the formulation of MEMs, Pm(x) is a probability distribution over the
random variable X̃ = (X̃1, . . . , X̃N ) where

Pr[X̃i = xi] = mi and Pr[X̃i = bi] = 1−mi, (11)

i.e., X̃i ∼ Bernoulli(mi) with outcomes {xi, bi}. Here bi are entries of a vector b ∈ X , a back-
ground vector used to fill the entries of X̃. A MEM is learned by solving the following general
optimization problem

arg min
m ⊆ H

E
X∼DX

[L(f,X, Pg) +R(m(X))] (12)

Here, L(f,X, Pm) is a loss function that measures the reconstruction error between original predic-
tions f(X) and predictions on the samples from Pm(X). The term R(m(X)) is a regularizer that
controls the complexity of the MEM outputs. There are two types of MEMs that can be learned: a
sufficient MEM (s-MEM) and a necessary MEM (n-MEM), depending on the choice of loss function
L(f,X, PM ). The regularizer R remains the same for both types of MEMs.

Loss Function. The choice of loss function determines whether one wants to learn a s-MEM or
n-MEM. To learn an s-MEM we utilize the following loss function:

L(f,X, Pm) = ρ
(
f(x),E[f(X̃)]

)
. (13)

where, ρ : R × R 7→ R is a measure of similarity on R and the expectation is over PM and b
(if b is not fixed and instead sampled from some distribution). With this choice of L, an s-MEM

5
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minimizes the reconstruction error between the original prediction f(X) and the average prediction
over Pm(X). Thus, an s-MEM is specifically designed to identify sufficient sets.

Conversely, a n-MEM is trained using the following loss function:

L(f,X, Pm) = −ρ(f(x),E[f(X̃)]). (14)

where the expectation is over P(1−m(x))
1 and b. Minimizing this loss is equivalent to maximizing

ρ(f(x),E[f(X̃)]), implying that an n-MEM is maximizing the reconstruction error between a orig-
inal predictions f(X) and the average prediction over Pm(X). Therefore, an n-MEM is specifically
designed to identify necessary sets.

Regularizers. Since motifs are known to be small, contiguous subsequences, we incorporate this
key prior knowledge into our MEMs. Unlike scramblers, we regularize our models with an inductive
bias that directly encourages the identification of disjoint, contiguous regions consisting of a limited
number of base pairs.

To construct the regularizer R, we draw inspiration from sentiment analysis in natural language
processing (Brinner & Zarrieß, 2023). In NLP, disjoint clusters of words typically interact to convey
sentiment; similarly, base pairs in DNA sequences interact to form motifs. Indeed, it has been
shown that the syntactical structure of genome regulation has many similarities to natural language
(Hwang et al., 2024). Following the approach of Brinner & Zarrieß (2023), we assume a linear
coordinate system on the input DNA sequences x and define a distance d(i, j) between base pairs i
and j. With this assumed structure, instead of having our MEM directly outputting scores m(x) =
(m1, . . .mN ), we have it output two vectors w ∈ RN and σ ∈ RN

>0, and calculate the final scores
as follows:

mj = sigmoid

(∑
i

wi,j

)
where wi,j = wi · exp

(
−d(i, j)2

σi

)
Thus, the optmization is done with respect to w and σ. As noted by (Brinner & Zarrieß, 2023), this
parameterization of m(X) will encourage neighboring base-pairs to be assigned similar scores if the
corresponding σ values are large. Large σ values promoted with an additional regularization term:

λ2 ·
1

N

∑
i

log(σi). (15)

This allows for sharper boundaries between importance scores for neighboring base-pairs as needed.
With this parameterization, the final regularizer R is then defined as

R(m(X)) = λ1 · ||m(X)||1 − λ2 ·
1

N

∑
i

log(σi). (16)

where || · ||1 is the ℓ1 norm. This regularizer incorporates prior domain knowledge about motifs to
enable the MEM to identify them effectively. The first term encourages the importance scores to
be sparse, meaning only a small number of base pairs are assigned high scores. The second term
encourages neighboring importance scores to be similar while also promoting sharp boundaries
when optimal. This is crucial because it allows for the discovery of disjoint contiguous regions,
enabling a more accurate representation of the motifs and their distinct properties.

4 EXPERIMENTAL RESULTS

We conduct experiments on synthetic DNA sequences x ∈ {0, 1}500×4 containing two motifs, A
and B, which are the SPI1 and CTCF DNA-binding motifs consisting of 10 and 12 base-pairs,
respectively (Friedman, 2007; Pchelintsev et al., 2016). We model three common logical syntax
rules—cooperation, repression, and redundancy—to determine the labels Y ∈ {0, 1}. We will
show that MEMs outperform scramblers in accurately detecting important motifs and deducing the
underlying logic.

11 is the vector of all 1’s in RN

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.0

0.2

0.4

0.6

0.8

1.0

Su
ffi

cie
nc

y

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0

20

40

60

80

Nu
m

be
r o

f B
as

e 
Pa

irs

Inclusion Scrambler
Sufficient MEM

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0

1

2

3

4

5

Nu
m

be
r o

f D
isj

oi
nt

 R
eg

io
ns

(a) s-MEMs vs. inclusion scramblers in a cooperative setting
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(b) n-MEMs vs. occlusion scramblers in a cooperative setting
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(f) Occlusion scrambler importance scores

Figure 1: Results on positively labeled sequences (Y = 1) under a cooperative syntax

For all three logical rules, we define our base predictor model f (predicting labels from input se-
quences) to be a residual network with dilated convolutions. To ensure a fair comparison between
MEMs and scramblers, we normalize the attribution scores from scramblers to the range [0, 1] by
generating PSSMs using Eqs. (7) and (10), computing the information content as per (Shannon,
1948), and then applying min/max normalization. The normalized importance scores yield solu-
tion sets St by thresholding scores for t ∈ (0, 1). For any t, St is represented as a binary vector
st ∈ {0, 1}500, where (st)j = 1 if j ∈ St and 0 otherwise.

To compare the effectiveness of MEMs and scramblers, we quantify key properties of the solution
sets St on an external sample of 100 DNA sequences. We measure the sufficiency and necessity of St

with 1−|Ŷ (x)−fSt(x)| and |Ŷ (x)−fS̄t
(x)|, where Ŷ (x) is the predicted class of model f . Higher

values of these quantity indicate greater sufficiency and necessity of St, respectively. Additionally,
we count the number of base pairs in St as |St| = ||st||0 and determine the number of disjoint
regions by counting clusters of consecutive ‘1’s in st. A crucial limitation of scramblers is that it
is impossible to select an appropriate value of t a priori (the threshold for distinguishing important
from non-important features). Thus, we compute our interpretability metrics on scramblers for all
t ∈ (0, 1). As a result, the effectiveness of MEMs and scramblers will be measured by how their
ability to generate good explanations over all possible such threshold. We will see that in contrast
to MEMs, the performance of scramblers is highly sensitive to the value of t, and there is generally
no single value of t in any experiment for which scramblers can outperform MEMs. Details on
experiment implementation and additional figures are included in Appendices A.1 and A.2

4.1 LEARNING LOGICAL SYNTAX

We consider the three following types of logical syntax between motifs. These three arguably con-
stitute the vast majority of syntactical constraints between motifs in regulatory biology.

Cooperative Redundant Repressive

Y =

{
1 if A ∧B

0 otherwise
Y =

{
1 if A ∨B

0 otherwise
Y =

{
1 if M1 ∧ ¬M2

0 otherwise

4.1.1 COOPERATIVE SYNTAX

We begin by considering a data-generating process that follows a cooperative syntax. This rule
assigns a positive label only when both motifs A and B are present, resulting in a negative label oth-
erwise. Consequently, for a predictor trained on this rule, the set {A,B} should be deemed sufficient
for positive predictions Ŷ = 1, as the true data-generating process necessitates the presence of both
motifs to produce a positive label. Conversely, amongst the positive predictions, either set, {A} or
{B}, is necessary because without both, the true data-generating process produces a negative label.
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Figure 2: Results on positively labeled sequences (Y = 1) under a redundant syntax

In Fig. 1a, we compare the effectiveness of s-MEMs and inclusion scramblers in explaining the pre-
dictor and recovering the correct set of sufficient motifs. For the sequences with true label Y = 1, the
results show that for thresholds t ∈ (0, 0.6), both methods successfully identify sufficient features.
However, as t increases, the inclusion scrambler struggles to recover the sufficient set. Notably, the
s-MEM is more accurate and outperforms the inclusion scrambler because it identifies two motifs as
being sufficient for the predictor. Across all t ∈ (0, 1), the s-MEM identifies approximately 20–30
important base pairs across 2–3 disjoint regions, while the inclusion scrambler detects between 0
and 80 base pairs, with 0–6 regions depending on the threshold t.

In Fig. 1b, we compare the effectiveness of n-MEMs and occlusion scramblers in recovering the
correct necessary motifs. The results indicate that, for all thresholds both methods identify necessary
regions, with the n-MEM detecting more necessary regions. More importantly though, the n-MEM
is identifying motifs while the scrambler is not. The n-MEM is identifying 0-20 important base-pairs
dispered in 1-1.5 regions, while the scrambler is detecting anywhere from 0-60 base-pairs dispersed
randomly, as indicated by identify a 0-0.5 regions on average. Examples are provided in Figs. 1e
and 1f.

By combining the interpretations from our s-MEM and n-MEM, we are able to accurately and ro-
bustly identify the that 2 motifs are sufficient and 1 is necessary for a positive prediction. Thus, we
can deduce that this setting indeed follows a cooperative syntax.

4.1.2 REDUNDANT SYNTAX

We next consider a redundant syntax setting. This rule assigns a positive label if either A, B, or
both are present, and a negative label otherwise. As a result, for a predictor that effectively learns
this rule, either the sets {A} and {B} are sufficient since the true data-generating process assigns
a positive label when either motif is present. On the other hand, depending on whether a sequence
contains either A or B or both, the set of necessary motifs may vary. For sequences that contain
both, the set {A,B} is necessary since only when both are removed will the predictor generate
predictions that yield a classification = 0. For a sequence that contains only A (or B), the set {A}
(or {B}) is necessary as the removal of this single motif will render the label Y = 0.

In Fig. 2b, we compare s-MEMs and inclusion scramblers in a redundant setting. The results show
that for thresholds t ∈ (0, 0.9), both methods identify sufficient regions; however, as t increases, the
inclusion scrambler struggles to recover sufficient regions. Notably, for sequences labeled Y = 1
due to a single motif (either A or B), both methods identify sets that are slightly less sufficient com-
pared to those for positively labeled sequences containing both motifs. More importantly though,
for the Y = 1 sequences with a single motif, the s-MEM is able to detect 1 disjoint region for nearly
all t while the inclusion scrambler identifies more regions for smaller t and less regions for large
t. Likewise, for sequences with a ground truth of two motifs, the sufficient MEM detects 20-30
base-pairs that are dispersed in 1.5 to 2 regions. Note, theoretically, one motif is sufficient to predict
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Figure 3: Results on positively labeled sequences (Y = 1) under a repressive syntax

the positive label but the s-MEM identifies a bit more. We attribute this to the s-MEM’s learning
that there are two motifs present in this sequence and it attributing some importance to the second
motif.

In Fig. 2e, we highlight how n-MEMs are able to identify necessary motifs with much greater suc-
cess than occlusion scramblers. The results show that across all thresholds, both methods identify
necessary regions, with n-MEMs identifying regions that are much more necessary. Additionally,
n-MEMs are able to accurately detect the correct the number of motifs amonghts the two modes of
the ground truth (i.e., whether there is 1 or 2 motifs). As expected, for sequences with two motifs,
our n-MEM identifies 10-30 base-pairs and 2-2.5 regions for many t, while for sequences with only
one motif, the n-MEM identifies 5-10 base-pairs and that make up 1-1.5 regions to be necessary. On
the other hand, the occlusion scrambler fails to distinguish these details. Instead, it outputs the same
(incorrect) explanations for both modes of the ground truth, identifying 20-30 base pairs making up
0.5-1 regions to be necessary.

Thus, by using a s-MEM and n-MEM, we are able to accurately identify the that 1 motif is sufficient
and 1-2 motifs is necessary (depending on the sequence) for a positive prediction. Therefore, we
can conclude this setting indeed follows a redundant syntax.

4.1.3 REPRESSIVE SYNTAX

Lastly, we consider a data-generating process based on a repressive syntax. This rule assigns a
positive label if M1 is present and M2 is absent, and a negative label in all other cases. The logic in
this rule is more involved as M2 represses M1 from generating a positive labeling. In this setting,
for sequences with Y = 1, the smallest sufficient and necessary set is {M1} since its sole presence
results in a positive classification and removal in a negative classification. On the other hand, for the
subset of negatively labeled sequences, Y = 0, the logic is more involved. When the label = 0 due
to both M1 and M2 being present, the sufficient and necessary set is M2 because its presence yields
the correct negative prediction and its removal results in the sequence having only M1 present which
yields a positive label. For the subset of negatively labeled sequences that contains M2 only, the set
{M2} is both sufficient and necessary.

In Figs. 3a and 3b, we compare the ability of MEMs and scramblers to identify the sufficient and
necessary motifs on sequences with Y = 1. In, Fig. 3a we see for thresholds t ∈ (0, 0.8), both
methods identify sufficient regions but as t continues to increase, the inclusion scrambler fails to
recover sufficient regions. Furthermore, the s-MEM outperforms the scrambler for t ∈ (0, 0.8) in
correctly identifying a single motif. The s-MEM identifies 15-30 important base pairs dispersed in 1-
1.5 regions while the scrambler inaccurately dentifies 15-50 important base pairs dispersed anywhere
from 0.5-3 regions. In Fig. 3b, both n-MEMs and occlusion scramblers identify necessary base-pairs
with the n-MEM identifying those that are more necessary. Interestingly, the occlusion scramblers
identify a smaller number of important base-pairs. However, for t ∈ [0.1, 0.9] the n-MEM detects
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Figure 4: Results on negatively labeled sequences (Y = 0) under a repressive syntax

0.5-1.5 regions while the occlusion detects nearly no regions on average. This suggests that the
occlusion scrambler is erroneously identifying random base-pairs as necessary and not the actual
important motifs. One can see an example of this in Fig. 3f

In Fig. 4b, we highlight how n-MEMs are able to indeed identify necessary motifs for the subpopu-
lation of sequences that have label Y = 0 due to the presence of both A and B. The results show that
both methods identify necessary regions, with necessary explainers identifying regions that are more
necessary. Additionally, both methods identify roughly the same number of important base-pairs,
which ranges form 5-25. However, the n-MEM is able to discern that there are 1-2 important regions
(i.e. the B motif) while the occlusion scrambler cannot, as noticed by it identifying 0-1 important
regions. An example of this is illustrated in Fig. 4f

In conclusion, by using an s-MEM and n-MEM, we are able to accurately discern that, for positive
predictions, one motif (A) is both sufficient and necessary. Additionally, for negative predictions,
there exists a sub population of sequences that for which one motif, B, is sufficient. Furthermore,
amongst this sub-population there exists sequences for which 1 motif, B, is necessary where remov-
ing it generates a positive prediction, (implying A was repressed by B). Thus, we can ultimately
deduce that this setting indeed follows a repression syntax.

5 CONCLUSION & FUTURE DIRECTIONS

In this work, we introduced Motif Explainer Models (MEMs), a novel explanation method for ge-
nomic DNNs that identifies both sufficient and necessary motifs in complex DNA sequences. In
contrast to current methods like scramblers, MEMs leverage prior domain knowledge as an induc-
tive bias to cleanly identify individual motifs as disjoint and contiguous subsequences. Furthermore,
by discovering sufficient and necessary motifs separately, MEMs address the limitations of existing
post-hoc methods that often fail to capture the intricate logical relationships between motifs. Our
approach not only improves the interpretability of genomic DNNs, but also uncovers the logical
syntax governing gene regulation, distinguishing between as cooperative, repressive, and redundant
interactions.

Through extensive experiments, we demonstrated that MEMs outperform current methods in de-
tecting important motifs and deciphering their underlying syntax. By providing more accurate and
comprehensive explanations, MEMs offer new insights into the functional roles of motifs in gene
regulation, paving the way for better understanding of transcription-factor binding and genomic
activity. In summary, MEMs represent a significant step forward in interpreting complex genomic
models, offering a robust framework for elucidating the logic behind motif interactions. Future work
may explore extending this framework to more diverse regulatory contexts, ultimately enhancing our
ability to interpret the functional landscape of the genome.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL DETAILS

Implementation of MEMs. To learn s-MEMs or n-MEMs S we solve the following optimzation
problem

arg min
m ⊆ H

E
X∼DX

[L(f,X, Pg) + λ ·R(m(X))] (17)

Where to learn s-MEMS we let
L(f,X, Pm) = |Ŷ (X)− EPm

[f(X̃)]| (18)
and to learn n-MEMS we let

L(f,X, Pm) = −|Ŷ (X)− EP1−m [f(X̃)]. (19)

We solve this problem via empirical risk minimization. Given N samples {Xi}Ni=1
i.i.d.∼ DX , we

learn a model m to minimize

1

N

N∑
i=1

[L(f,Xi, Pm) + λ ·R(m(Xi))] (20)

where

E[f(X̃i)] =
1

K

K∑
j=1

f((X̃i)j). (21)

In theory, the entries of (X̃i)j are Bernoulli(mi) with outcomes {xi, bi}. where bi are entries of
a vector b ∈ X , a background vector used to fill the entries of X̃. In practice, to allow for differ-
entiaion during optimization, we generate discrete samples using the Gumbel-Softmax distribution.
During optimization we set K = 10.

Recall the form of regularizer

R(m(X)) = λ1 · ||m(X)||1 − λ2 ·
1

N

∑
i

log(σi). (22)

To learn MEMs use a residual network with dilated convolutions. To learn s-MEMs, we set λ1 = 2
and λ2 = 0.5. To learn n-MEMs, we set λ1 = 5 and λ2 = 0.01. We used a batch size of 32
and trained for each MEM for 25 epochs using an Adam optimizer with default β-parameters of
β1 = 0.9, β2 = 0.99 and a fixed learning rate of 0.001.
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Implementation of Scramblers. To learn inclusion and occlusion scramblers we simply follow
the protocol in Linder et al. (2022) and use a residual network with dilated convolutions. To learn
inclusion scramblers, we set λ = 2 and tbits = 1 × 10−4. To learn occlusion scramblers, we set
λ = 5 and tbits = 1 × 10−4. We use a batch size of 32 and train for 25 epochs using an Adam
optimizer with default β-parameters of β1 = 0.9, β2 = 0.99 and a fixed learning rate of 0.001.

A.2 ADDITIONAL FIGURES
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Figure 5: Inclusion scrambler importance scores for a cooperative syntax
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Figure 6: s-MEM importance scores for a cooperative syntax
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Figure 7: Occlusion scrambler importance scores for a cooperative syntax
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Figure 8: n-MEM importance scores for a cooperative syntax
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Figure 9: Inclusion scrambler importance scores for a redundant syntax
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Figure 10: s-MEM importance scores for a redundant syntax
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Figure 11: Occlusion scrambler importance scores for a redundant syntax
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Figure 12: n-MEM importance scores for a redundant syntax
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Figure 13: Inclusion scrambler importance scores for a repressive syntax
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Figure 14: s-MEM importance scores for a repressive syntax
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Figure 15: Occlusion scrambler importance scores for a repressive syntax
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Figure 16: n-MEM importance scores for a redundant syntax
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