
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNCOVERING BIOLOGICAL MOTIFS AND SYNTAX
VIA SUFFICIENT AND NECESSARY EXPLANATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, deep neural networks (DNNs) have excelled at learning from
high-throughput genome-profiling experiments to predict transcription factor (TF)
binding. TF binding is driven by sequence motifs, and explaining how and why
DNNs make accurate predictions could help identify these motifs, as well as their
logical syntax. However, the black-box nature of DNNs makes interpretation dif-
ficult. Most post-hoc methods evaluate the importance of each base pair in isola-
tion, often resulting in noise since they overlook the fact that motifs are contiguous
regions. Additionally, these methods fail to capture the complex interactions be-
tween different motifs. To address these challenges, we propose Motif Explainer
Models (MEMs), a novel explanation method that uses sufficiency and necessity
to identify important motifs and their syntax. MEMs excel at identifying multiple
disjoint motifs across DNA sequences, overcoming limitations of existing meth-
ods. Moreover, by accurately pinpointing sufficient and necessary motifs, MEMs
can reveal the logical syntax that governs genomic regulation.

1 INTRODUCTION

The regulatory function of DNA sequences is determined by short DNA segments called “motifs”,
where certain proteins called “transcription factors” (TFs) bind to regulate gene activity (Klug,
1995; Alberts et al., 2002; Siggers & Gordân, 2014; Lambert et al., 2018). TF binding depends
on the arrangement and logical combination of these motifs. High-throughput experiments provide
a genome-wide view of regulatory activity in various cell types (Consortium et al., 2012). Tech-
niques like DNase-seq and ATAC-seq identify regions of open chromatin where TFs can bind, while
more targeted methods like ChIP-seq offer insights into specific protein–DNA interactions.

Given the complexity and volume of data from these experiments, accurately predicting genome
activity from DNA sequences requires models that can handle large datasets and capture the intricate
interactions and arrangement of motifs. Deep neural networks (DNNs), with their proven success in
various biological sequence prediction tasks, are well-suited for this challenge. They have achieved
state-of-the-art performance in predicting TF binding from DNA sequences (Alipanahi et al., 2015;
Avsec et al., 2021; Eraslan et al., 2019). Genomic DNNs take DNA sequences as inputs and learn
to predict a label from a regulatory profiling experiment, such as whether a TF binds to a given
sequence. The goal is to use these accurate models to identify the motifs and syntax governing
genomic regulation (Novakovsky et al., 2023).

Despite their success, the black-box nature of these models makes it difficult to understand how and
why they make specific predictions (Zednik, 2021; Tomsett et al., 2018). In regulatory genomics,
this has led to the development of post-hoc methods to explain genomic DNNs at the local (sample)
level. Given a model f and an input N -length DNA sequence x = (x1, x2, . . . , xN) ∈ RN , these
methods aim to identify important motifs for the prediction f(x) by assigning an importance score
to each base pair xi, and then segmenting out high-importance regions as putative motifs. However,
many of these methods fall short because they evaluate the importance of individual base pairs in
isolation, and do not leverage the fact that motifs are short, contiguous regions. Furthermore, these
methods also fail to capture the complex interactions between motifs.

To address these challenges, Linder et al. (2022) introduced scramblers, a model-based explanation
method optimized for the discrete nature of biological sequences. Scramblers outperform other
post-hoc methods by identifying important motifs using learned stochastic masks. However, when

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the input is a complex DNA sequence with multiple motifs, scramblers struggle to identify multiple
short contiguous regions as they do not leverage the key properties of motifs we know of. Due to
this shortcoming, like other methods, scramblers also cannot uncover the logical syntax governing
regulatory behavior.

In this work, we propose a novel model-based explanation method called Motif Explainer Models
(MEMs), which leverages the concepts of sufficiency and necessity to produce meaningful explana-
tions. For complex DNA sequences composed of disjoint and contiguous motifs, we show that our
method accurately identifies sufficient and necessary motifs, and outperforms the current state-of-
the-art method of scramblers. Furthermore, by employing both sufficient and necessary explanations
together, MEMs reveal the logical syntax between motifs that governs genomic regulation.

1.1 RELATED WORKS

Several methods have been proposed for discovering motifs from genomic DNNs.

Visualizing Convolutional Filters. Nearly all genomic DNNs are convolutional in their first lay-
ers (Alipanahi et al., 2015; Zhou & Troyanskaya, 2015; Kelley et al., 2016; Avsec et al., 2021). To
identify important motifs, many works have focused on visualizing CNN filters (Alipanahi et al.,
2015; Kelley et al., 2016) because early convolutional layers often capture basic patterns, while
deeper layers capture more complex features (Zeiler & Fergus, 2014; Yosinski et al., 2015; Si-
monyan et al., 2014). However, this approach has shown limited success, as it assumes each filter
learns one motif, and each motif is learned by one filter. Recent research shows that motifs are
distributed across multiple filters and layers (Tseng et al., 2024).

Measuring Influence via Post-hoc Explanation Methods. Popular post-hoc explanation meth-
ods like CAM (Zhou et al., 2016), LIME (Ribeiro et al., 2016), gradient-based approaches (Selvaraju
et al., 2017; Shrikumar et al., 2017; Jiang et al., 2021), Shapley value-based methods (Chen et al.,
2018; Teneggi et al., 2022), and perturbation-based methods (Fong & Vedaldi, 2017; Fong et al.,
2019) have been adapted to identify motifs. These methods assign importance scores to each base
pair (Sundararajan et al., 2017; Shrikumar et al., 2017), but they perform poorly for two reasons.
First, by evaluating base pairs individually, they miss key motifs because subsequences inherently
interact in complex ways to regulate function. Second, these methods are computationally expen-
sive. For instance, integrated gradients and DeepLIFT require integrating over the entire DNN,
while Shapley-based methods require exponential computations (Strumbelj & Kononenko, 2010;
Lundberg & Lee, 2017). Additionally, the importance scores are often noisy, fragile, and fail to
reveal the model’s true decision-making process (Ghorbani et al., 2019; Tseng et al., 2020), making
it difficult to rely on downstream tools like MoDISco to cluster them into motifs (Shrikumar et al.,
2018).

Scramblers. To overcome these limitations, Linder et al. (2022) proposed scramblers, a model-
based explanation method that learns stochastic masks to highlight the base pairs crucial for pre-
dictions. Scramblers predict position-specific scoring matrices (PSSMs), where unimportant base
pairs are “scrambled” by increasing their entropy. Scramblers have a distinct advantage over many
traditional post-hoc explanation methods due to their model-based approach: a scrambler only needs
to be trained once for any model predictive f , after which importance scores for any query DNA
sequence can be obtained in a single evaluation. While scramblers outperform other post-hoc meth-
ods, they still struggle with sequences composed of multiple disjoint and contiguous motifs. This
is due to a regularization penalty that focuses on controlling entropy, rather than incorporating the
core characteristics of motifs (small, contiguous, and disjoint). As a result, scramblers are limited in
complex settings and fail to uncover the logical syntax of motif interactions for genomic regulation.

1.2 SUMMARY OF OUR CONTRIBUTIONS

We address the challenges of interpreting genomic DNNs by proposing a novel model-based ex-
planation method focused on identifying important motifs and the logical syntax governing gene
regulation. Specifically, our method can identify both sufficient or necessary motifs for predictions,
providing more accurate and interpretable explanations for genomic DNNs on complex DNA se-
quences. Our contributions include:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1. Motif Explainer Models (MEMs): We introduce Motif Explainer Models (MEMs), a
model-based explanation method capable of generating sufficient or necessary explana-
tions for genomic DNNs. MEMs can handle disjoint and contiguous motifs gracefully,
capturing the intricate arrangements and interactions that other methods miss.

2. Uncovering Logical Syntax via Sufficiency and Necessity: By combining sufficient and
necessary explanations, we show that MEMs can reveal the logical syntax governing how
motifs interact to regulate downstream gene expression.

3. Experimental Validation: Through a series of experiments, we demonstrate that MEMs
outperform scramblers, the current state-of-the-art method in identifying important motifs.
Additionally, we show how MEMs can deduce common biological syntactical rules, such
as cooperation, repression, and redundancy.

2 BACKGROUND

Notation. Random vectors and their observed values are denoted with boldface uppercase (e.g.,
X) and lowercase (e.g., x) letters. For a subset of features S ⊆ [N] (where [N] := {1, . . . , N}),
we denote its complement as S̄ = [N] \ S. Additionally, subscripts index features, e.g. the vector
xS is the restriction of x to the components indexed by S. The input domain of N -length DNA
sequences and output domain of binary labels are denoted as X = {A, C, G, T}N and Y =
{0, 1}, respectively. A distribution over features and labels X × Y is denoted as D and for such a
distribution, the marginal distribution over features is represented as DX . Lastly, denote ρ : R×R 7→
R to be any symmetric function that measures the similarity between elements a, b ∈ R with the
property ρ(a, b) = 0 ⇐⇒ a = b. A common choice is ρ(a, b) = |a − b|, which we use in our
experiments.

Setting. We consider a binary classification setting with an unknown distribution D over X ×
Y , a domain of N -length DNA sequences and binary labels. Since the inputs are N -length DNA
sequences, when we refer to an input DNA sequence x, note it is implicitly being expressed as a
one-hot encoded pattern, x ∈ {0, 1}N×4 (a N -length sequences of alphabet size 4, representing
the 4 base pairs {A, C, G, T}). We assume access to a differentiable predictor f : X 7→ Y ,
pretrained on DNA sequence–label pairs, (X, Y) ∼ D. Our goal of interpretation is: for a fixed
DNA sequence x, identify which short subsequences, i.e. motifs, in x are most important for the
prediction f(x). To do so, our method—as with many other post-hoc methods (Covert et al., 2021;
Fong & Vedaldi, 2017; Fong et al., 2019)—relies on evaluating how a predictor’s behavior changes
when base-pairs in x are retained or omitted. Since f can only accept N -length sequences as an
input we employ the standard technique for querying f on subsets of features by evaluating the
average restricted prediction

fS(x) = E
XS̄∼VS̄

[f(xS ,XS̄)] (1)

where xS is fixed and XS̄ is a random vector sampled from VS̄ , the marginal distribution, over S, of
an arbitrary reference distribution V[N] (Covert et al., 2021; Teneggi et al., 2023; Bharti et al., 2024).

2.1 SUFFICIENCY AND NECESSITY

Our method takes as input a pretrained predictor f : X 7→ Y and a fixed DNA sequence x, and
outputs a subset S ⊆ [d] that is considered “important” for the prediction f(x). We define the
importance of S using slightly modified notions of sufficiency and necessity originally proposed by
Bharti et al. (2024). We present our modified definitions, below for clarity:
Definition 1 (Sufficiency & Necessity (Bharti et al., 2024)). Let ϵ and ∆ > 0. Denote ρ : R×R 7→ R
to be a similarity measure. For a predictor f and sample x, denote Ŷ (x) = 1[f(x) ≥ 0.5] to be the
predicted class of x by f .

A subset S ⊆ [d] is ϵ-sufficient with respect to a distribution V for f at x if

ρ(Ŷ (x), fS(x)) ≤ ϵ (2)
A subset S ⊆ [d] is ∆-necessary with respect to a distribution V for f at x if

ρ(Ŷ (x), fS̄(x)) ≥ ∆. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In other words, this definition of sufficiency states that, for a reference distribution V , a subset of
features S is ϵ-sufficient if, with xS fixed, the average restricted prediction fS(x) is ϵ close to the
predicted class Ŷ (x). Conversely, the definition of necessity states that, for V , a subset S is ∆-
necessary if, when the features in S are marginalized out, the resulting average restricted prediction
fS̄(x) is ∆ away from the predicted class Ŷ (x). Later in this work, we will demonstrate why
accurate sufficient and necessary explanations are essential for deducing motif syntax. Furthermore,
we highlight that while scramblers attempt to generate these explanations with some success, our
proposed method achieves far greater accuracy, enabling more reliable deduction of the underlying
motifs and their logic.

2.2 SCRAMBLERS

Given a pre-trained predictor f and fixed DNA-sequence x, a scrambler (Linder et al., 2022) is a
learned model g : X 7→ RN

>0 that predicts a set of real-valued importance scores in (0,∞]N . These
scores produce a probability distribution Pg(x) that we can sample from. Specifically, Pg(x) is a
set of N categorical softmax-nodes, also known as a position-specific scoring matrix (PSSM) that
interpolates between x ∈ {0, 1}N×4 and a non-informative background distribution B̃ ∈ [0, 1]N×4.
One can learn a scrambler S by solving the following optimization problem

arg min
g ⊆ H

E
X∼DX

[
L(f,X, Pg) + λ · CON(Pg(X), B̃,X)

]
(4)

where L(f,X, Pg) denotes a loss function, CON(Pg(X), B̃,X) a conservation penalty, and λ > 0
a hyperparameter which controls the magnitude of the penalty. Depending on the type of scram-
bler one wants to learn, the loss function L(f,X, Pg), the conservation penalty, and the functional
form of probability distribution Pg(X) will vary. There are two types of scramblers, an inclusion
scrambler and occlusion scrambler.

Inclusion Scrambler. An inclusion scrambler is trained with

L(f,X, Pg) = E
X̃∼Pg(X)

[
KL
[
f(X̃)||f(X)

]]
(5)

CON(Pg(X), B̃,X) =

(
tbits −

1

N
KL
[
B̃||Pg(X)

])2

(6)

Pg(x) = σ(log(B̃) + x× ġ(x)). (7)

where σ denotes the softmax σ(L)ij =
exp(Lij)∑M

k=1 exp(Lik)
and ġ(x) ∈ (0,∞]N×M represent the scores

g(x) broadcasted across the base (ACGT) dimension. With these choices of L(f,X, Pg), conserva-
tion penalty, and Pg(x), an inclusion scrambler is trained to output scores in (0,∞]N which produce
a distribution Pg(x) with maximum entropy but whose samples X̃ ∼ Pg(x) minimize the predictive

reconstructive error, E
X̃∼Pg(X)

[
KL
[
f(X̃)||f(X)

]]
, thus identifying sufficient features.

Occlusion Scrambler. An occlusion scrambler is trained with

L(f,X, Pg) = − E
X̃∼Pg(X)

[
KL
[
f(X̃)||f(X)

]]
(8)

CON(Pg(X), B̃,X) =

(
tbits −

1

N
KL [Pg(X)||X]

)2

(9)

Pg(x) = σ(log(B̃) + x/ġ(x)). (10)

With these choices of L(f,X, Pg), conservation penalty, and Pg(x) an occlusion scrambler is
trained to output scores in (0,∞]N which produce a distribution Pg(x) with minimum entropy
but whose samples X̃ ∼ Pg(x) maximize the predictive reconstructive error. Since the samples
from Pg(x) maximize the reconstructive error, this formulation identifies necessary features.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.3 SHORTCOMINGS OF SCRAMBLERS

While scramblers outperform common post-hoc methods in providing explanations, they still face
some key limitations that affect their overall effectiveness.

Lack of Key Prior Knowledge. DNA motifs are generally recognized as small, contiguous, and
disjoint subsequences within a larger sequence (Klug, 1995; Alberts et al., 2002; Siggers & Gordân,
2014; Lambert et al., 2018; Stormo, 2013; Maston et al., 2006). Thus, incorporating this key in-
formation as an inductive bias into explanation methods could greatly improve the quality of the
identified motifs. However, scramblers do not explicitly consider this prior knowledge; instead, they
learn a distribution Pg(X) over sequences, which optimizes jointly for the prediction reconstruction
error and for entropy. While this formulation is valid to produce necessary or sufficient explanations,
it fails to capture prior knowledge of motif biology, particularly that motifs occur as one or more
small, contiguous, and disjoint subsequences.

Limitations of the Conservation Penalty. While inclusion and occlusion scramblers aim to max-
imize and minimize the entropy of Pg(x) via their conservation penalty, CON(Pg(X), B̃,X), their
effectiveness heavily depends on the choice of the tbits parameter. This parameter controls the en-
tropy and serves as the target value for the expected entropy of Pg(X). For example, a larger tbits

allows more entropy for Pg(x) with respect to either the background B̃ or the sample X, depending
on whether an inclusion or occlusion scrambler is being learned. The challenge with this formulation
is that we often do not know how many motifs exist or how distinct they are from the background
signal, making it difficult to determine an appropriate target entropy for Pg(x). Additionally, consid-
ering our prior knowledge of motif biology, there is no theoretically justifiable reason that enforcing
entropy will lead to the identification of small, contiguous motifs, which we will demonstrate in our
experimental section.

3 MOTIF EXPLAINER MODELS

To address the limitations of scramblers and provide more accurate explanations that highlight con-
tiguous and disjoint motifs, we propose Motif Explainer Models (MEMs). This model-based based
explanation approach is designed to incorporate the key properties of motifs, better capturing the
structure and arrangement of motifs within sequences, and offering a more precise and biologically
meaningful interpretation. A MEM is a model m : X 7→ [0, 1]N that outputs importance scores in
[0, 1]N . For a sequence x, a MEM outputs scores m(x) = (m1, . . . ,mN) producing a probabil-
ity distribution Pm(x). In the formulation of MEMs, Pm(x) is a probability distribution over the
random variable X̃ = (X̃1, . . . , X̃N) where

Pr[X̃i = xi] = mi and Pr[X̃i = bi] = 1−mi, (11)

i.e., X̃i ∼ Bernoulli(mi) with outcomes {xi, bi}. Here bi are entries of a vector b ∈ X , a back-
ground vector used to fill the entries of X̃. A MEM is learned by solving the following general
optimization problem

arg min
m ⊆ H

E
X∼DX

[L(f,X, Pg) +R(m(X))] (12)

Here, L(f,X, Pm) is a loss function that measures the reconstruction error between original predic-
tions f(X) and predictions on the samples from Pm(X). The term R(m(X)) is a regularizer that
controls the complexity of the MEM outputs. There are two types of MEMs that can be learned: a
sufficient MEM (s-MEM) and a necessary MEM (n-MEM), depending on the choice of loss function
L(f,X, PM). The regularizer R remains the same for both types of MEMs.

Loss Function. The choice of loss function determines whether one wants to learn a s-MEM or
n-MEM. To learn an s-MEM we utilize the following loss function:

L(f,X, Pm) = ρ
(
f(x),E[f(X̃)]

)
. (13)

where, ρ : R × R 7→ R is a measure of similarity on R and the expectation is over PM and b
(if b is not fixed and instead sampled from some distribution). With this choice of L, an s-MEM

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

minimizes the reconstruction error between the original prediction f(X) and the average prediction
over Pm(X). Thus, an s-MEM is specifically designed to identify sufficient sets.

Conversely, a n-MEM is trained using the following loss function:

L(f,X, Pm) = −ρ(f(x),E[f(X̃)]). (14)

where the expectation is over P(1−m(x))
1 and b. Minimizing this loss is equivalent to maximizing

ρ(f(x),E[f(X̃)]), implying that an n-MEM is maximizing the reconstruction error between a orig-
inal predictions f(X) and the average prediction over Pm(X). Therefore, an n-MEM is specifically
designed to identify necessary sets.

Regularizers. Since motifs are known to be small, contiguous subsequences, we incorporate this
key prior knowledge into our MEMs. Unlike scramblers, we regularize our models with an inductive
bias that directly encourages the identification of disjoint, contiguous regions consisting of a limited
number of base pairs.

To construct the regularizer R, we draw inspiration from sentiment analysis in natural language
processing (Brinner & Zarrieß, 2023). In NLP, disjoint clusters of words typically interact to convey
sentiment; similarly, base pairs in DNA sequences interact to form motifs. Indeed, it has been
shown that the syntactical structure of genome regulation has many similarities to natural language
(Hwang et al., 2024). Following the approach of Brinner & Zarrieß (2023), we assume a linear
coordinate system on the input DNA sequences x and define a distance d(i, j) between base pairs i
and j. With this assumed structure, instead of having our MEM directly outputting scores m(x) =
(m1, . . .mN), we have it output two vectors w ∈ RN and σ ∈ RN

>0, and calculate the final scores
as follows:

mj = sigmoid

(∑
i

wi,j

)
where wi,j = wi · exp

(
−d(i, j)2

σi

)
Thus, the optmization is done with respect to w and σ. As noted by (Brinner & Zarrieß, 2023), this
parameterization of m(X) will encourage neighboring base-pairs to be assigned similar scores if the
corresponding σ values are large. Large σ values promoted with an additional regularization term:

λ2 ·
1

N

∑
i

log(σi). (15)

This allows for sharper boundaries between importance scores for neighboring base-pairs as needed.
With this parameterization, the final regularizer R is then defined as

R(m(X)) = λ1 · ||m(X)||1 − λ2 ·
1

N

∑
i

log(σi). (16)

where || · ||1 is the ℓ1 norm. This regularizer incorporates prior domain knowledge about motifs to
enable the MEM to identify them effectively. The first term encourages the importance scores to
be sparse, meaning only a small number of base pairs are assigned high scores. The second term
encourages neighboring importance scores to be similar while also promoting sharp boundaries
when optimal. This is crucial because it allows for the discovery of disjoint contiguous regions,
enabling a more accurate representation of the motifs and their distinct properties.

4 EXPERIMENTAL RESULTS

We conduct experiments on synthetic DNA sequences x ∈ {0, 1}500×4 containing two motifs, A
and B, which are the SPI1 and CTCF DNA-binding motifs consisting of 10 and 12 base-pairs,
respectively (Friedman, 2007; Pchelintsev et al., 2016). We model three common logical syntax
rules—cooperation, repression, and redundancy—to determine the labels Y ∈ {0, 1}. We will
show that MEMs outperform scramblers in accurately detecting important motifs and deducing the
underlying logic.

11 is the vector of all 1’s in RN

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.0

0.2

0.4

0.6

0.8

1.0

Su
ffi

cie
nc

y

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0

20

40

60

80

Nu
m

be
r o

f B
as

e
Pa

irs

Inclusion Scrambler
Sufficient MEM

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0

1

2

3

4

5

Nu
m

be
r o

f D
isj

oi
nt

 R
eg

io
ns

(a) s-MEMs vs. inclusion scramblers in a cooperative setting

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ne
ce

ss
ity

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

10

20

30

40

50

60
Nu

m
be

r o
f B

as
e

Pa
irs

Occlusion Scrambler
Necessary MEM

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f D
isj

oi
nt

 R
eg

io
ns

(b) n-MEMs vs. occlusion scramblers in a cooperative setting

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(c) s-MEM importance scores

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(d) Inclusion scrambler importance scores

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(e) n-MEM importance scores

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(f) Occlusion scrambler importance scores

Figure 1: Results on positively labeled sequences (Y = 1) under a cooperative syntax

For all three logical rules, we define our base predictor model f (predicting labels from input se-
quences) to be a residual network with dilated convolutions. To ensure a fair comparison between
MEMs and scramblers, we normalize the attribution scores from scramblers to the range [0, 1] by
generating PSSMs using Eqs. (7) and (10), computing the information content as per (Shannon,
1948), and then applying min/max normalization. The normalized importance scores yield solu-
tion sets St by thresholding scores for t ∈ (0, 1). For any t, St is represented as a binary vector
st ∈ {0, 1}500, where (st)j = 1 if j ∈ St and 0 otherwise.

To compare the effectiveness of MEMs and scramblers, we quantify key properties of the solution
sets St on an external sample of 100 DNA sequences. We measure the sufficiency and necessity of St

with 1−|Ŷ (x)−fSt(x)| and |Ŷ (x)−fS̄t
(x)|, where Ŷ (x) is the predicted class of model f . Higher

values of these quantity indicate greater sufficiency and necessity of St, respectively. Additionally,
we count the number of base pairs in St as |St| = ||st||0 and determine the number of disjoint
regions by counting clusters of consecutive ‘1’s in st. A crucial limitation of scramblers is that it
is impossible to select an appropriate value of t a priori (the threshold for distinguishing important
from non-important features). Thus, we compute our interpretability metrics on scramblers for all
t ∈ (0, 1). As a result, the effectiveness of MEMs and scramblers will be measured by how their
ability to generate good explanations over all possible such threshold. We will see that in contrast
to MEMs, the performance of scramblers is highly sensitive to the value of t, and there is generally
no single value of t in any experiment for which scramblers can outperform MEMs. Details on
experiment implementation and additional figures are included in Appendices A.1 and A.2

4.1 LEARNING LOGICAL SYNTAX

We consider the three following types of logical syntax between motifs. These three arguably con-
stitute the vast majority of syntactical constraints between motifs in regulatory biology.

Cooperative Redundant Repressive

Y =

{
1 if A ∧B

0 otherwise
Y =

{
1 if A ∨B

0 otherwise
Y =

{
1 if M1 ∧ ¬M2

0 otherwise

4.1.1 COOPERATIVE SYNTAX

We begin by considering a data-generating process that follows a cooperative syntax. This rule
assigns a positive label only when both motifs A and B are present, resulting in a negative label oth-
erwise. Consequently, for a predictor trained on this rule, the set {A,B} should be deemed sufficient
for positive predictions Ŷ = 1, as the true data-generating process necessitates the presence of both
motifs to produce a positive label. Conversely, amongst the positive predictions, either set, {A} or
{B}, is necessary because without both, the true data-generating process produces a negative label.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.2

0.4

0.6

0.8

1.0

Su
ffi

cie
nc

y

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0

10

20

30

40

50

Nu
m

be
r o

f B
as

e
Pa

irs

Inclusion Scrambler
Sufficient MEM

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

be
r o

f D
isj

oi
nt

 R
eg

io
ns 1 Motif

2 Motifs

(a) s-MEMs vs. inclusion scramblers

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.5

0.6

0.7

0.8

0.9

Ne
ce

ss
ity

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

10

20

30

40

50
Nu

m
be

r o
f B

as
e

Pa
irs

Occlusion Scrambler
Necessary MEM

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

be
r o

f D
isj

oi
nt

 R
eg

io
ns 1 Motif

2 Motifs

(b) n-MEMs vs. occlusion scramblers

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(c) s-MEM importance scores

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(d) Inclusion scrambler importance scores

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(e) n-MEM importance scores

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(f) Occlusion scrambler importance scores

Figure 2: Results on positively labeled sequences (Y = 1) under a redundant syntax

In Fig. 1a, we compare the effectiveness of s-MEMs and inclusion scramblers in explaining the pre-
dictor and recovering the correct set of sufficient motifs. For the sequences with true label Y = 1, the
results show that for thresholds t ∈ (0, 0.6), both methods successfully identify sufficient features.
However, as t increases, the inclusion scrambler struggles to recover the sufficient set. Notably, the
s-MEM is more accurate and outperforms the inclusion scrambler because it identifies two motifs as
being sufficient for the predictor. Across all t ∈ (0, 1), the s-MEM identifies approximately 20–30
important base pairs across 2–3 disjoint regions, while the inclusion scrambler detects between 0
and 80 base pairs, with 0–6 regions depending on the threshold t.

In Fig. 1b, we compare the effectiveness of n-MEMs and occlusion scramblers in recovering the
correct necessary motifs. The results indicate that, for all thresholds both methods identify necessary
regions, with the n-MEM detecting more necessary regions. More importantly though, the n-MEM
is identifying motifs while the scrambler is not. The n-MEM is identifying 0-20 important base-pairs
dispered in 1-1.5 regions, while the scrambler is detecting anywhere from 0-60 base-pairs dispersed
randomly, as indicated by identify a 0-0.5 regions on average. Examples are provided in Figs. 1e
and 1f.

By combining the interpretations from our s-MEM and n-MEM, we are able to accurately and ro-
bustly identify the that 2 motifs are sufficient and 1 is necessary for a positive prediction. Thus, we
can deduce that this setting indeed follows a cooperative syntax.

4.1.2 REDUNDANT SYNTAX

We next consider a redundant syntax setting. This rule assigns a positive label if either A, B, or
both are present, and a negative label otherwise. As a result, for a predictor that effectively learns
this rule, either the sets {A} and {B} are sufficient since the true data-generating process assigns
a positive label when either motif is present. On the other hand, depending on whether a sequence
contains either A or B or both, the set of necessary motifs may vary. For sequences that contain
both, the set {A,B} is necessary since only when both are removed will the predictor generate
predictions that yield a classification = 0. For a sequence that contains only A (or B), the set {A}
(or {B}) is necessary as the removal of this single motif will render the label Y = 0.

In Fig. 2b, we compare s-MEMs and inclusion scramblers in a redundant setting. The results show
that for thresholds t ∈ (0, 0.9), both methods identify sufficient regions; however, as t increases, the
inclusion scrambler struggles to recover sufficient regions. Notably, for sequences labeled Y = 1
due to a single motif (either A or B), both methods identify sets that are slightly less sufficient com-
pared to those for positively labeled sequences containing both motifs. More importantly though,
for the Y = 1 sequences with a single motif, the s-MEM is able to detect 1 disjoint region for nearly
all t while the inclusion scrambler identifies more regions for smaller t and less regions for large
t. Likewise, for sequences with a ground truth of two motifs, the sufficient MEM detects 20-30
base-pairs that are dispersed in 1.5 to 2 regions. Note, theoretically, one motif is sufficient to predict

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Su
ffi

cie
nc

y

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0

10

20

30

40

50

Nu
m

be
r o

f B
as

e
Pa

irs

Inclusion Scrambler
Sufficient MEM

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f D
isj

oi
nt

 R
eg

io
ns

(a) s-MEMs vs. inclusion scramblers

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ne
ce

ss
ity

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

10

20

30

40

50

60
Nu

m
be

r o
f B

as
e

Pa
irs

Occlusion Scrambler
Necessary MEM

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f D
isj

oi
nt

 R
eg

io
ns

(b) n-MEMs vs. occlusion scramblers

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(c) s-MEM importance scores

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(d) Inclusion scrambler importance scores

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(e) n-MEM importance scores

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(f) Occlusion scrambler importance scores

Figure 3: Results on positively labeled sequences (Y = 1) under a repressive syntax

the positive label but the s-MEM identifies a bit more. We attribute this to the s-MEM’s learning
that there are two motifs present in this sequence and it attributing some importance to the second
motif.

In Fig. 2e, we highlight how n-MEMs are able to identify necessary motifs with much greater suc-
cess than occlusion scramblers. The results show that across all thresholds, both methods identify
necessary regions, with n-MEMs identifying regions that are much more necessary. Additionally,
n-MEMs are able to accurately detect the correct the number of motifs amonghts the two modes of
the ground truth (i.e., whether there is 1 or 2 motifs). As expected, for sequences with two motifs,
our n-MEM identifies 10-30 base-pairs and 2-2.5 regions for many t, while for sequences with only
one motif, the n-MEM identifies 5-10 base-pairs and that make up 1-1.5 regions to be necessary. On
the other hand, the occlusion scrambler fails to distinguish these details. Instead, it outputs the same
(incorrect) explanations for both modes of the ground truth, identifying 20-30 base pairs making up
0.5-1 regions to be necessary.

Thus, by using a s-MEM and n-MEM, we are able to accurately identify the that 1 motif is sufficient
and 1-2 motifs is necessary (depending on the sequence) for a positive prediction. Therefore, we
can conclude this setting indeed follows a redundant syntax.

4.1.3 REPRESSIVE SYNTAX

Lastly, we consider a data-generating process based on a repressive syntax. This rule assigns a
positive label if M1 is present and M2 is absent, and a negative label in all other cases. The logic in
this rule is more involved as M2 represses M1 from generating a positive labeling. In this setting,
for sequences with Y = 1, the smallest sufficient and necessary set is {M1} since its sole presence
results in a positive classification and removal in a negative classification. On the other hand, for the
subset of negatively labeled sequences, Y = 0, the logic is more involved. When the label = 0 due
to both M1 and M2 being present, the sufficient and necessary set is M2 because its presence yields
the correct negative prediction and its removal results in the sequence having only M1 present which
yields a positive label. For the subset of negatively labeled sequences that contains M2 only, the set
{M2} is both sufficient and necessary.

In Figs. 3a and 3b, we compare the ability of MEMs and scramblers to identify the sufficient and
necessary motifs on sequences with Y = 1. In, Fig. 3a we see for thresholds t ∈ (0, 0.8), both
methods identify sufficient regions but as t continues to increase, the inclusion scrambler fails to
recover sufficient regions. Furthermore, the s-MEM outperforms the scrambler for t ∈ (0, 0.8) in
correctly identifying a single motif. The s-MEM identifies 15-30 important base pairs dispersed in 1-
1.5 regions while the scrambler inaccurately dentifies 15-50 important base pairs dispersed anywhere
from 0.5-3 regions. In Fig. 3b, both n-MEMs and occlusion scramblers identify necessary base-pairs
with the n-MEM identifying those that are more necessary. Interestingly, the occlusion scramblers
identify a smaller number of important base-pairs. However, for t ∈ [0.1, 0.9] the n-MEM detects

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.0

0.2

0.4

0.6

0.8

1.0

Su
ffi

cie
nc

y

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0

20

40

60

Nu
m

be
r o

f B
as

e
Pa

irs

Inclusion Scrambler
Sufficient MEM

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0

1

2

3

4

Nu
m

be
r o

f D
isj

oi
nt

 R
eg

io
ns 1 Motif

2 Motifs

(a) s-MEMs vs. inclusion scramblers

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.0

0.2

0.4

0.6

0.8

1.0

Ne
ce

ss
ity

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

10

15

20

25
Nu

m
be

r o
f B

as
e

Pa
irs

Occlusion Scrambler
Necessary MEM

0.0 0.2 0.4 0.6 0.8 1.0
Thresholds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f D
isj

oi
nt

 R
eg

io
ns

(b) n-MEMs vs. occlusion scramblers

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(c) s-MEM importance scores

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(d) Inclusion scrambler importance scores

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(e) n-MEM importance scores

0.0
0.2
0.4
0.6
0.8
1.0

Im
p
or

ta
n
ce

 S
co

re

(f) Occlusion scrambler importance scores

Figure 4: Results on negatively labeled sequences (Y = 0) under a repressive syntax

0.5-1.5 regions while the occlusion detects nearly no regions on average. This suggests that the
occlusion scrambler is erroneously identifying random base-pairs as necessary and not the actual
important motifs. One can see an example of this in Fig. 3f

In Fig. 4b, we highlight how n-MEMs are able to indeed identify necessary motifs for the subpopu-
lation of sequences that have label Y = 0 due to the presence of both A and B. The results show that
both methods identify necessary regions, with necessary explainers identifying regions that are more
necessary. Additionally, both methods identify roughly the same number of important base-pairs,
which ranges form 5-25. However, the n-MEM is able to discern that there are 1-2 important regions
(i.e. the B motif) while the occlusion scrambler cannot, as noticed by it identifying 0-1 important
regions. An example of this is illustrated in Fig. 4f

In conclusion, by using an s-MEM and n-MEM, we are able to accurately discern that, for positive
predictions, one motif (A) is both sufficient and necessary. Additionally, for negative predictions,
there exists a sub population of sequences that for which one motif, B, is sufficient. Furthermore,
amongst this sub-population there exists sequences for which 1 motif, B, is necessary where remov-
ing it generates a positive prediction, (implying A was repressed by B). Thus, we can ultimately
deduce that this setting indeed follows a repression syntax.

5 CONCLUSION & FUTURE DIRECTIONS

In this work, we introduced Motif Explainer Models (MEMs), a novel explanation method for ge-
nomic DNNs that identifies both sufficient and necessary motifs in complex DNA sequences. In
contrast to current methods like scramblers, MEMs leverage prior domain knowledge as an induc-
tive bias to cleanly identify individual motifs as disjoint and contiguous subsequences. Furthermore,
by discovering sufficient and necessary motifs separately, MEMs address the limitations of existing
post-hoc methods that often fail to capture the intricate logical relationships between motifs. Our
approach not only improves the interpretability of genomic DNNs, but also uncovers the logical
syntax governing gene regulation, distinguishing between as cooperative, repressive, and redundant
interactions.

Through extensive experiments, we demonstrated that MEMs outperform current methods in de-
tecting important motifs and deciphering their underlying syntax. By providing more accurate and
comprehensive explanations, MEMs offer new insights into the functional roles of motifs in gene
regulation, paving the way for better understanding of transcription-factor binding and genomic
activity. In summary, MEMs represent a significant step forward in interpreting complex genomic
models, offering a robust framework for elucidating the logic behind motif interactions. Future work
may explore extending this framework to more diverse regulatory contexts, ultimately enhancing our
ability to interpret the functional landscape of the genome.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. Dna-
binding motifs in gene regulatory proteins. In Molecular Biology of the Cell. 4th edition. Garland
Science, 2002.

Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the se-
quence specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology, 33
(8):831–838, 2015.

Žiga Avsec, Melanie Weilert, Avanti Shrikumar, Sabrina Krueger, Amr Alexandari, Khyati Dalal,
Robin Fropf, Charles McAnany, Julien Gagneur, Anshul Kundaje, et al. Base-resolution models
of transcription-factor binding reveal soft motif syntax. Nature genetics, 53(3):354–366, 2021.

Beepul Bharti, Paul Yi, and Jeremias Sulam. Sufficient and necessary explanations (and what lies in
between), 2024. URL https://arxiv.org/abs/2409.20427.

Marc Brinner and Sina Zarrieß. Model interpretability and rationale extraction by input mask opti-
mization. In Findings of the Association for Computational Linguistics: ACL 2023, pp. 13722–
13744, 2023.

Jianbo Chen, Le Song, Martin J Wainwright, and Michael I Jordan. L-shapley and c-shapley: Effi-
cient model interpretation for structured data. arXiv preprint arXiv:1808.02610, 2018.

ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the human
genome. Nature, 489(7414):57, 2012.

Ian Covert, Scott Lundberg, and Su-In Lee. Explaining by removing: A unified framework for
model explanation. Journal of Machine Learning Research, 22(209):1–90, 2021.

Gökcen Eraslan, Žiga Avsec, Julien Gagneur, and Fabian J Theis. Deep learning: new computational
modelling techniques for genomics. Nature Reviews Genetics, 20(7):389–403, 2019.

Ruth Fong, Mandela Patrick, and Andrea Vedaldi. Understanding deep networks via extremal per-
turbations and smooth masks. In Proceedings of the IEEE/CVF international conference on com-
puter vision, pp. 2950–2958, 2019.

Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful pertur-
bation. In Proceedings of the IEEE international conference on computer vision, pp. 3429–3437,
2017.

Alan D. Friedman. Transcriptional control of granulocyte and monocyte development. The Journal
of Experimental Medicine, 204(8):1937–1943, 2007.

Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3681–3688, 2019.

Yunha Hwang, Andre L. Cornman, Elizabeth H. Kellogg, Sergey Ovchinnikov, and Peter R. Girguis.
Genomic language model predicts protein co-regulation and function. Nature Communications,
15(1):2880, 2024. doi: 10.1038/s41467-024-46947-9. URL https://doi.org/10.1038/
s41467-024-46947-9.

Peng-Tao Jiang, Chang-Bin Zhang, Qibin Hou, Ming-Ming Cheng, and Yunchao Wei. Layercam:
Exploring hierarchical class activation maps for localization. IEEE Transactions on Image Pro-
cessing, 30:5875–5888, 2021.

David R Kelley, Jasper Snoek, and John L Rinn. Basset: learning the regulatory code of the ac-
cessible genome with deep convolutional neural networks. Genome research, 26(7):990–999,
2016.

Aaron Klug. Gene regulatory proteins and their interaction with dna. Annals of the New York
Academy of Sciences, 758:143–160, 1995.

11

https://arxiv.org/abs/2409.20427
https://doi.org/10.1038/s41467-024-46947-9
https://doi.org/10.1038/s41467-024-46947-9

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Samuel A Lambert, Arttu Jolma, Laura F Campitelli, Pratyush K Das, Yimeng Yin, Mihai Albu,
Xiaoting Chen, Jussi Taipale, Timothy R Hughes, and Matthew T Weirauch. The human tran-
scription factors. Cell, 172(4):650–665, 2018.

Johannes Linder, Alyssa La Fleur, Zibo Chen, Ajasja Ljubetič, David Baker, Sreeram Kannan, and
Georg Seelig. Interpreting neural networks for biological sequences by learning stochastic masks.
Nature machine intelligence, 4(1):41–54, 2022.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances
in Neural Information Processing Systems, 30, 2017.

Glenn A Maston, Stephanie K Evans, and Michael R Green. Transcriptional regulatory elements in
the human genome. Annual Review of Genomics and Human Genetics, 7:29–59, 2006.

Gherman Novakovsky, Nick Dexter, Maxwell W Libbrecht, Wyeth W Wasserman, and Sara
Mostafavi. Obtaining genetics insights from deep learning via explainable artificial intelligence.
Nature Reviews Genetics, 24(2):125–137, 2023.

N. A. Pchelintsev et al. Ctcf: a key regulator of the 3d genome. Current Opinion in Genetics
Development, 37:21–27, 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Claude E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27:379–423, 623–656, 1948.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International conference on machine learning, pp. 3145–
3153. PMLR, 2017.

Avanti Shrikumar, Katherine Tian, Žiga Avsec, Anna Shcherbina, Abhimanyu Banerjee, Mahfuza
Sharmin, Surag Nair, and Anshul Kundaje. Technical note on transcription factor motif discovery
from importance scores (tf-modisco) version 0.5. 6.5. arXiv preprint arXiv:1811.00416, 2018.

Trevor Siggers and Raluca Gordân. Protein–dna binding: complexities and multi-protein codes.
Nucleic acids research, 42(4):2099–2111, 2014.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
sualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2014.

Gary D. Stormo. Modeling the specificity of protein-dna interactions. Quantitative Biology, 1:
115–130, 2013.

Erik Strumbelj and Igor Kononenko. An efficient explanation of individual classifications using
game theory. The Journal of Machine Learning Research, 11:1–18, 2010.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Jacopo Teneggi, Alexandre Luster, and Jeremias Sulam. Fast hierarchical games for image explana-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4494–4503, 2022.

Jacopo Teneggi, Beepul Bharti, Yaniv Romano, and Jeremias Sulam. Shap-xrt: The shapley value
meets conditional independence testing. Transactions on Machine Learning Research, 2023.

Richard Tomsett, Dave Braines, Dan Harborne, Alun Preece, and Supriyo Chakraborty. Inter-
pretable to whom? a role-based model for analyzing interpretable machine learning systems.
arXiv preprint arXiv:1806.07552, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Tseng, Avanti Shrikumar, and Anshul Kundaje. Fourier-transform-based attribution priors
improve the interpretability and stability of deep learning models for genomics. Advances in
Neural Information Processing Systems, 33:1913–1923, 2020.

Alex M Tseng, Gökcen Eraslan, Nathaniel Lee Diamant, Tommaso Biancalani, and Gabriele Scalia.
A mechanistically interpretable neural-network architecture for discovery of regulatory genomics.
In ICLR 2024 Workshop on Machine Learning for Genomics Explorations, 2024.

Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding neural
networks through deep visualization. In Deep Learning Workshop, International Conference on
Machine Learning (ICML), 2015.

Carlos Zednik. Solving the black box problem: a normative framework for explainable artificial
intelligence. Philosophy & Technology, 34(2):265–288, 2021.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2921–2929, 2016.

Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep learning–
based sequence model. Nature methods, 12(10):931–934, 2015.

A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL DETAILS

Implementation of MEMs. To learn s-MEMs or n-MEMs S we solve the following optimzation
problem

arg min
m ⊆ H

E
X∼DX

[L(f,X, Pg) + λ ·R(m(X))] (17)

Where to learn s-MEMS we let
L(f,X, Pm) = |Ŷ (X)− EPm

[f(X̃)]| (18)
and to learn n-MEMS we let

L(f,X, Pm) = −|Ŷ (X)− EP1−m [f(X̃)]. (19)

We solve this problem via empirical risk minimization. Given N samples {Xi}Ni=1
i.i.d.∼ DX , we

learn a model m to minimize

1

N

N∑
i=1

[L(f,Xi, Pm) + λ ·R(m(Xi))] (20)

where

E[f(X̃i)] =
1

K

K∑
j=1

f((X̃i)j). (21)

In theory, the entries of (X̃i)j are Bernoulli(mi) with outcomes {xi, bi}. where bi are entries of
a vector b ∈ X , a background vector used to fill the entries of X̃. In practice, to allow for differ-
entiaion during optimization, we generate discrete samples using the Gumbel-Softmax distribution.
During optimization we set K = 10.

Recall the form of regularizer

R(m(X)) = λ1 · ||m(X)||1 − λ2 ·
1

N

∑
i

log(σi). (22)

To learn MEMs use a residual network with dilated convolutions. To learn s-MEMs, we set λ1 = 2
and λ2 = 0.5. To learn n-MEMs, we set λ1 = 5 and λ2 = 0.01. We used a batch size of 32
and trained for each MEM for 25 epochs using an Adam optimizer with default β-parameters of
β1 = 0.9, β2 = 0.99 and a fixed learning rate of 0.001.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Implementation of Scramblers. To learn inclusion and occlusion scramblers we simply follow
the protocol in Linder et al. (2022) and use a residual network with dilated convolutions. To learn
inclusion scramblers, we set λ = 2 and tbits = 1 × 10−4. To learn occlusion scramblers, we set
λ = 5 and tbits = 1 × 10−4. We use a batch size of 32 and train for 25 epochs using an Adam
optimizer with default β-parameters of β1 = 0.9, β2 = 0.99 and a fixed learning rate of 0.001.

A.2 ADDITIONAL FIGURES

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Figure 5: Inclusion scrambler importance scores for a cooperative syntax

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Figure 6: s-MEM importance scores for a cooperative syntax

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Figure 7: Occlusion scrambler importance scores for a cooperative syntax

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Figure 8: n-MEM importance scores for a cooperative syntax

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Figure 9: Inclusion scrambler importance scores for a redundant syntax

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Figure 10: s-MEM importance scores for a redundant syntax

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Figure 11: Occlusion scrambler importance scores for a redundant syntax

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Figure 12: n-MEM importance scores for a redundant syntax

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Figure 13: Inclusion scrambler importance scores for a repressive syntax

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Figure 14: s-MEM importance scores for a repressive syntax

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Figure 15: Occlusion scrambler importance scores for a repressive syntax

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rta
nc

e
Sc

or
e

Figure 16: n-MEM importance scores for a redundant syntax

19

	Introduction
	Related Works
	Summary of Our Contributions

	Background
	Sufficiency and Necessity
	Scramblers
	Shortcomings of Scramblers

	Motif Explainer Models
	Experimental Results
	Learning logical syntax
	Cooperative Syntax
	Redundant Syntax
	Repressive Syntax

	Conclusion & Future Directions
	Appendix
	Additional Experimental Details
	Additional Figures

