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Abstract

Large Language Models (LLMs) have revo-001
lutionized many fields of Natural Language002
Processing (NLP), including summarization.003
These systems, however, consist of billions004
of parameters and, as such, they have the cru-005
cial shortcoming of being energy-intensive. In006
this work, we present a thorough evaluation of007
very recent, small-sized LLMs (SLMs) on the008
task of Aspect-Based Summarization of Cli-009
mate Change Reports. In doing so, we show010
that modern SLMs are sufficiently good for011
the task and can bring value in assisting with012
summarization for policymakers while being013
more efficient than their bigger counterparts014
without significant performance deterioration.015
We also show how energy consumption among016
SLMs themselves does not correlate with bet-017
ter performance, further proving the point that018
smaller models can be effectively used for the019
task. Finally, we release the new dataset that020
we collected to perform our experiments, from021
which we hope research in NLP for climate022
change and research in efficient Aspect-Based023
Summarization with LLMs can develop further.024

1 Introduction025

Aspect-Based Summarization (ABS) is a popular026

task in Natural Language Processing (NLP), deal-027

ing with summarizing a text with respect to a spe-028

cific aspect or topic (Titov and McDonald, 2008).029

Recently, the landscape of NLP has seen a rev-030

olution happening in the form of Large Language031

Models (LLMs), which are capable of perform-032

ing the majority of tasks that were previously per-033

formed by specifically trained systems, often out-034

performing the latter without the need for any su-035

pervision (Ziyu et al., 2023). These models, how-036

ever, comprise billions of parameters, and, as such,037

their carbon footprint is one of the main factors038

leading to criticisms of their use in various areas039

in which smaller, comparable models are available040

(Faiz et al., 2024). These observations, as well041

as hardware constraints, have led to the develop- 042

ment of smaller LLMs, which, notwithstanding the 043

still comparatively higher number of parameters 044

compared to previous systems, have been labeled 045

as Small Language Models (SLMs) (Ranaldi and 046

Freitas, 2024). 047

In this work, then we combine the latest devel- 048

opment in SLMs with the task of ABS and we 049

perform the first comprehensive evaluation in our 050

knowledge of SLMs for the task. We do so by in- 051

troducing a new domain for ABS, namely the one 052

of climate change reports for which we introduce 053

a new dataset. Climate change reports, in fact, are 054

critical for policy-makers and researchers in tack- 055

ling climatic challenges and, as such, fine-grained 056

automatic summarization of such reports is a task 057

in line with recent work advocating for ways in 058

which NLP can help climate scientists and policy- 059

makers (Stede and Patz, 2021). Furthermore, the 060

task itself is a natural benchmark for advocating 061

the use of low-carbon LLMs. 062

The main questions informing our work are: 063

Q1: are SLMs comparable in performance to 064

larger LLMs for our task? 065

Q2: among SLMs, is energy consumption posi- 066

tively correlated to performance on the task? 067

Q3: how do our models’ performance deterio- 068

rate in the absence of ground truth paragraphs to 069

summarize? 070

Our main contributions then are multiple: 071

1) We evaluate SLMs in the context of ABS. 072

2) We introduce a new dataset for the new do- 073

main of climate change reports within the scope of 074

the task. 075

3) We focus on energy efficiency and we adapt 076

an existing framework for energy-aware summa- 077

rization evaluation to our use case while analyzing 078

the correlation between energy consumption and 079

performance. We present the first energy-aware 080

comparison of modern LLMs for summarization 081

and paving the way for future research in this area. 082
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2 Related Work083

2.1 Aspect-Based Summarization084

ABS is the task of summarizing a given text with085

respect to a specific aspect or topic (Titov and Mc-086

Donald, 2008). The task is particularly useful in087

aiding the reading of complex, multi-topic content088

such as news bulletins (Frermann and Klementiev,089

2019) or Wikipedia articles (Hayashi et al., 2021).090

In the context of ABS, the models developed091

for the task falls broadly in the category of super-092

vised (Tan et al., 2020; Ma et al., 2022; Ahuja et al.,093

2022) and unsupervised models (Soleimani et al.,094

2022; Coavoux et al., 2019), where the firsts have095

shown improvements over the latter, but do need096

a sufficient number of training samples, for which097

there is a scarcity of data, especially in certain098

domains (Yang et al., 2023). More recently, mod-099

ern LLMs have shown performance on par with100

previous supervised models also in unsupervised101

(i.e. zero-shot) setting for various NLP tasks (Ziyu102

et al., 2023) including summarization (Zhang et al.,103

2024). Such models are mostly under-explored in104

the context of ABS, as just isolated examples of105

their use for the task exist in the literature, which106

does not present comparisons between LLMs and107

SLMs and is limited to hotel reviews summariza-108

tion (Jeong and Lee, 2024; Bhaskar et al., 2023).109

In our work, then, we aim to fill this gap, while110

focusing on the efficiency and on the more specific111

domain of climate reports ABS.112

2.2 SLMs and Efficiency Evaluation113

Modern LLMs are extremely effective for a vari-114

ety of tasks, but they comprise billions of param-115

eters, leading to consideration of efficiency and116

environmental externalities associated with their117

use (Tokayev, 2023). These concerns have led to118

consider the overall environmental cost of such119

models when deploying them (Faiz et al., 2024).120

At the same time, in the last year much effort has121

been spent in making the LLM landscape more effi-122

cient (Wan et al., 2024), either by proposing SLMs,123

yielding comparable results to LLMs thanks to re-124

fined datasets and knowledge distillation (Abdin125

et al., 2024; Team et al., 2024; Gu et al., 2024), or126

by exploring different types of quantization which127

can diminish the computational burden while main-128

taining a good trade-off with performance (Yao129

et al., 2024) or both.130

Recent literature has proposed to include mod-131

els’ efficiency in evaluating summarization (Moro132

et al., 2023), but without including LLMs in their 133

experiments. Much NLP literature has often ig- 134

nored considerations about model efficiency, but as 135

the models get bigger and the marginal improve- 136

ments get smaller, including model efficiency in 137

the evaluation is important for more sustainable 138

and, ultimately, more usable NLP systems. 139

In this work, then, we draw also on literature on 140

SLMs and efficiency evaluation in developing our 141

experiments and then assessing them. 142

2.3 NLP and Climate Change 143

NLP can help with a variety of problems related to 144

Climate Change including but not limited to: cli- 145

mate stance detection (Fraile-Hernandez and Peñas, 146

2024), climate-related question answering (Vaghefi 147

et al., 2023; Biester et al., 2022) and automatic 148

fact-checking (Meddeb et al., 2022; Mazid and 149

Zarnaz, 2022). NLP can also improve access to 150

information, which can be used for educational or 151

policy-making purposes (Stede and Patz, 2021). 152

Our contribution, then, points in this direction 153

and it builds on previous work to assess a new 154

task in the area, namely that of ABS. Previous 155

work, in fact, has drawn from data similar to the 156

one we use in order to create a chatbot that can 157

answer questions related to climate change with 158

access to the most up-to-date information (Vaghefi 159

et al., 2023). As new reports and new knowledge 160

get produced at a fast pace, however, the need to 161

assess the zero-shot ability of LLMs to summarize 162

such reports in an efficient and fine-grained way 163

is crucial to further help their reading from both 164

policy-makers and researchers. No existing work 165

in this direction exists in our knowledge and our 166

work aims to fill this gap. 167

3 Methodology 168

3.1 Zero-Shot Aspect-Based Summarization 169

with LLMs 170

In order to perform ABS with out-of-the-box LLMs 171

and SLMs, we developed a simple prompt template 172

which is presented to each model for a fair com- 173

parison. The prompt template T has the following 174

format: 175

T="Summarize the main takeaways from the 176

following text with respect to topic {topic}. Text: 177

{text}" 178

We define the substitution function sub, which 179

takes as inputs the template T , topic and text and 180

substitutes {topic} and {text} in T with topic and 181
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text, respectively, thus obtaining:182

prompt = sub(T, topic, text) (1)183

As we will see below, at times more than one184

paragraph needs to be summarized. Defining185

the collection of paragraphs to be summarized186

P = {p1, ..., pn}, where pi are the individual para-187

graphs, we obtain:188

text =

{
P, |P | = 1

concat(P ), |P | > 1
(2)189

where concat indicates the concatenation of all190

the paragraphs in P .191

The generation process, then, is done as:192

ŷ = LLM(prompt) (3)193

Where LLM is the LLM currently used and ŷ is194

the generated summary.195

In many cases, there is also a limitation in the196

number of maximum tokens that some of the mod-197

els can accept and especially in the case of many198

paragraphs p to be summarized the length of the199

input text might exceed this limit. Given this limi-200

tation, we also set a character threshold over which201

we get a set of interim results ypint:202

ypint = LLM(sub(T, topic, p))∀p ∈ P (4)203

Then, having the collection Yint of all ypint, we204

get the final text as:205

text = concat(Yint) (5)206

which can then be passed in equation 1 to obtain207

the final prompt to be passed in equation 3. The208

implications on the performance of such cases are209

further analyzed below.210

3.2 Retrieval Augmented Generation211

To answer Q3 and test the limits of our approach,212

we also investigate Retrieval Augmented Genera-213

tion (RAG), where we automatically retrieve the k214

most relevant paragraphs from the given climate re-215

port and we use them as input for the LLM, instead216

of the ground truth paragraphs. This setting relates217

to the real-world use case in which, e.g., a policy-218

maker wants an automatic system to both find the219

relevant information in the report and summarize220

it. Formally, we define an encoder model enc such221

that it encodes all the reports’ paragraphs pi as:222

ei = enc(pi), ei ∈ ℜd (6)223

with d being the dimensionality of the embeddings 224

from the given encoder enc. At inference time, the 225

given aspect or topic topic is encoded in the same 226

embeddings space as: 227

q = enc(topic), q ∈ ℜd (7) 228

At this point, we define a number k of para- 229

graphs that we want to retrieve from the collection 230

of all paragraph indices Pind = {1, ..., N} and we 231

retrieve the subset of paragraph indices Psub ⊂ P 232

as: 233

Psub = argmaxi∈Pind
(cos(q, ei)), s.t.|Psub| = k

(8) 234

where cos represents the cosine distance be- 235

tween the query embedding q and the given para- 236

graph embedding ei. 237

Having obtained the paragraphs associated with 238

their indices in Psub, we then obtain text as de- 239

scribed in equation 2. The final summary ŷ is then 240

obtained as: 241

ŷ = LLM(promptrag) (9) 242

where promptrag is obtained either with equa- 243

tion 1 or with equations 4 and 5 according to 244

whether text is longer than the character thresh- 245

old as explained above. 246

3.3 Extractive Summarization Baseline 247

To compare the performance of LLMs with a non- 248

generative baseline, we develop a simple extractive 249

approach, based on the understanding of the task 250

as a question-answering task. For each example, 251

we again define an encoder enc and we follow 252

equation 7 to obtain a query embedding q. Having 253

obtained text in one of the ways previously defined, 254

we then divide it into sentences with the method 255

by Kiss and Strunk (2006) and group them as S = 256

{s1, ..., sn} with n being the number of sentences 257

in text. Each sentence si is then encoded as: 258

eis = enc(si), e
i
s ∈ ℜd (10) 259

We define a number k of sentences to be ex- 260

tracted and the collection of all sentence indices in 261

the document Sind = {1, ..., n} and we obtain its 262

subset Ssub ⊂ Sind as: 263

Ssub = argmaxi∈Sind
(cos(q, eis)), s.t.|Ssub| = k

(11) 264

The final summary is obtained by concatenating 265

the sentences associated with such indices, that is: 266

ŷ = concat(si)∀i ∈ Ssub (12) 267
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3.4 Evaluation268

3.4.1 Aspect-Based Summarization269

Evaluation270

Following recent research in the field of summariza-271

tion evaluation, we use the ChatGPT-RTS (Shen272

et al., 2023) for evaluation. This metric uses the273

powerful ChatGPT LLM (i.e. GPT 3.5) as an eval-274

uator, by framing the evaluation task as a ques-275

tion concerning the property of the summaries276

with respect to 4 key attributes individuated by277

Hayashi et al. (2021): coherence, consistency, flu-278

ency, and relevance. For each reference summary,279

paragraphs, and topic triplet, ChatGPT is given the280

definition of the dimension to evaluate as well as281

the triplet and asked to output a score from 1 to 5,282

together with an explanation for such a decision.283

We introduced a key modification to the relevance284

definition in the prompt to include the target topic285

so that, with minimal modification, the final score286

also takes into consideration the target aspect. In287

appendix A we illustrate in more detail the prompts288

fed to ChatGPT for performing the evaluation, as289

well as the correlation with human judgment and290

comparison with other metrics.291

3.4.2 Retrieval Evaluation292

To assess how successful different encoders are in293

retrieving the correct paragraphs in the RAG set-294

ting, we use the Mean Reciprocal Rank (MRR)295

metric, an information retrieval metric that consid-296

ers how high in a ranked list the retriever can place297

the correct item (in our case the correct paragraph)298

(Radev et al., 2002).299

In our case, we set the hyperparameter of MRR300

to 10, meaning that we consider the first 10 items301

as scored by the retriever as the limit beyond which302

we consider the retriever to have failed (leading to303

MRR@10 equals 0).304

3.5 Energy Consumption and Efficiency305

Re-Weighting306

The Carburacy method was proposed to account307

for efficiency in summarization evaluation, by re-308

weighting the ROUGE metric for summarization309

with the cost for running the model C = E ∗ D,310

where E is the cost of a single example measured311

as the kg of CO2 emitted by summarization models312

and D is the dataset size (Moro et al., 2023). The313

re-weighting formula is then applied as:314

γ =
elogαR

1 + C ∗ β
(13)315

with R being the effectiveness score (i.e. the initial 316

summarization metric) and α = 1 and β = 100 317

following the original work. The authors further 318

divided the costs in inference and training costs, 319

but in our unsupervised setting just the first applies. 320

In applying the Carburacy re-weighting scheme 321

to our context we took into account the fact that 322

LLMs can lead to very different outcomes in terms 323

of summaries length and this has an effect on the 324

cost C as longer sequences will lead to higher con- 325

sumption in the auto-regressive setting of decoder- 326

only modern LLMs. In our case, we want to isolate 327

the cost of each LLM as a function solely of its 328

architecture, rather than of its output. Therefore, 329

we compute equation 13 by setting D = 1 and E 330

such that: 331

E = Emission(LLMstop:k(promptfix)) (14) 332

Where promptfix is a fixed prompt for each sys- 333

tem and Emission is the function computing CO2 334

emissions. The key of the above modification is rep- 335

resented by LLMstop:k which we define as a con- 336

strained generation from the given system, where 337

the generation stops automatically at a token num- 338

ber k which we set to 10. This way, each LLM 339

receive a prompt of same input and output a same- 340

length output, and by keeping these factors constant 341

we assure to measure just differences in emissions 342

caused by structural differences between LLMs 343

(e.g. number of parameters). 344

When applying Carburacy to the extractive base- 345

lines and to the RAG models, instead, we sim- 346

ply apply equation 13 with the cost of encoding 347

promptfix in the first case and with the cost of 348

encoding the entire dataset D in the latter. In the re- 349

trieval experiments, we empirically set β = 10000 350

to account for the difference in emission scale. 351

We measure CO2 levels with the codecarbon 352

python library1, leveraging CPU as well as GPU 353

energy consumption. 354

4 Data 355

For the purpose of this work, we have collected 356

and released the SumIPCC dataset, comprising 140 357

topic-annotated summaries and relative paragraphs 358

from climate change reports. We used two reports 359

from the authoritative Intergovernmental Panel on 360

Climate Change (IPCC) as a data source. The re- 361

ports we used are the synthesis reports AR5 (IPCC, 362

2014b) and AR6 (IPCC, 2023b) for two separate 363

1https://codecarbon.io/
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Feature AR5 AR6 All
Summaries 70 70 140
Paragraphs 34 38 72
Summary Topics 63 70 133
Summary Section Headers 4 3 7
Summary Sub-Section Headers 17 18 35
Paragraphs Section Headers 34 38 72

Table 1: Statistics of our IPCC-Sum dataset. For all
features, we report the number of unique occurrences
for the different subsets (AR5 and AR6), as well as for
the whole dataset. It can be noticed how many topics
are repeated in different summaries.

years, 2014 and 2023, which collected the contri-364

butions of different working groups on a variety365

of topics related to climate change and linked poli-366

cies. The two reports were chosen among the IPCC367

synthesis report collections as they both include368

accompanying publications named Summary for369

Policy-Makers (IPCC, 2014a, 2023a), which in-370

clude short summaries related to specific topics and371

referring to paragraphs in the respective synthesis372

reports. Each summary includes the main high-373

lights with regard to a specific topic as discussed in374

the report and it might refer to multiple paragraphs375

in the original report, in case the specific topic is376

treated in different parts of the report.377

On occasions, we observed summaries that were378

too broad in scope, referring to many different long379

paragraphs, but comprising just a few lines on a380

broad topic: we filtered out these cases. The fi-381

nal result is a dataset comprising 140 paragraph-382

summary pairs with associated topics, which we383

manually annotated to be as precise as possible.384

Paragraphs and section headers from the Summary385

for Policy-Makers could also have been used to386

annotate the summaries, but they were ambiguous387

as they grouped different summaries; they are also388

included as features in the dataset, even though we389

don’t explore their use in this work. As we will390

see, however, there are a number of summaries391

sharing the same topic but in different contexts and392

future work might include additional information393

to better disambiguate these cases, especially in394

the RAG context. Table 1 shows the features from395

the collected dataset and their occurrences, while396

Appendix E includes additional information.397

5 Experimental Setup398

5.1 LLMs and Extractive Baselines399

We compare recent and popular LLMs: 9 open-400

source SLMs and 2 big, proprietary LLMs. For the401

SLMs, there is no single definition of how small402

Model Billions of Parameters C
Qwen 0.5B 0.5 4.06e-05
Qwen 1.8B 1.8 4.19e-05
Qwen 4B 4 5.28e-05
Qwen 7B 7 5.63e-05
Gemma 2B 2 4.41e-05
Gemma 7B 7 6.41e-05
Phi 3 3.8 5.30e-05
Llama 3 8 6.20e-05
Mistral 7 6.03e-05
ChatGPT ∼ 175 ∼ 3.86e-03
GPT4 ∼ 175 ∼ 3.86e-03
MPNet 0.11 1.65e-07

Table 2: Number of parameters and estimated energy
cost C for the ABS models. In every case, we used the
conventional abbreviated notation, e.g., e-05 to signify
a multiplier of 10−5 for the given value. Model size
does not perfectly correlate with energy consumption,
as different architectures might have different efficiency.

a model should be to be considered such, there- 403

fore we impose a hardware constraint to choose 404

the models, namely to be able to fit in a single 405

NVIDIA® Tesla T4 GPU with 16GB of memory: 406

to achieve this, we have then selected models up to 407

8 billion parameters, while using 4-bit quantization 408

on all the models from this category; the effect of 409

the quantization has been shown to be negligible 410

in most cases (Yao et al., 2024). The SLMs we 411

used are: Qwen 1.5 (Qwen) 0.5B, 1.8B, 4B and 412

7B (Bai et al., 2023), Gemma 1.1 (Gemma) 2B and 413

7B (Team et al., 2024), Phi 3 (Abdin et al., 2024), 414

Llama 3 8B (Llama 3) (Meta, 2024) and Mistral 415

v0.2 7B (Mistral) (Jiang et al., 2023). In every 416

case, we have used the instruction-tuned versions 417

of the models: we give additional details about the 418

models’ source and run time in Appendix F. 419

To compare the performance of SLMs with big- 420

ger LLMs, we compare them with the state-of-the- 421

art GPT4 (OpenAI et al., 2024) and its earlier ver- 422

sion, ChatGPT (Brown et al., 2020); no public 423

information about the quantization settings nor the 424

model size exist for the two models, but table 2 in- 425

cludes estimates on size and energy cost C for these 426

models together with the actual models size and 427

cost for the small-sized LLMs. We computed C as 428

per equation 14, while we report a rough estimate 429

of the sizes of GPT4 and ChatGPT by equating 430

them to the size of the related model GPT3 (Brown 431

et al., 2020) and we estimated their cost C by mul- 432

tiplying the cost of Gemma 2B for the module 433

of the respective model parameters; this is indeed 434

a very rough estimate, but it should give a good 435

approximation of the scale of difference between 436
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Model Billions of Parameters C
DistilRoB 0.08 4.06e-05
MPNet 0.11 4.19e-05
MiniLM 0.2 4.42e-10
GTR 1.2 5.63e-05
ST5 1.2 4.41e-05
GTE 0.44 6.41e-05

Table 3: Number of parameters and estimated energy
cost C for the text encoders used as zero-shot retrievers
in our RAG experiments.

small-sized LLMs and bigger, state-of-the-art ones.437

Finally, for the extractive baselines we have used438

the all-mpnet-base-v2 (MPNet) model, further de-439

scribed in the next section. Also for this models,440

we include the energy cost C in table 2.441

5.2 Retrieval and Extractive Models442

To choose the zero-shot text retrieval models for the443

RAG experiments, we have mostly drawn from the444

top open-source systems from the MTEB bench-445

marks evaluating out-of-the-box text embedding446

systems (Muennighoff et al., 2023). At the same447

time, we have included the same hardware con-448

straints explained in section 5.1 to limit our choice449

to relatively small-sized encoders. The final models450

we used in the RAG setting, then, are: all-mpnet-451

base-v2 (MPNet), an encoder based on the MPNet452

architecture (Song et al., 2020) and on the sentence453

transformers framework (Reimers and Gurevych,454

2019) to be highly performative in a variety of455

sentence encoding tasks, all-distilroberta-v1 (Dis-456

tilRoB), a distilled version of RoBERTa (Liu et al.,457

2019) trained similarly to MPNet, all-MiniLM-458

L12-v2 (MiniLM), a small and extremely efficient459

transformer encoder (Gu et al., 2024) further fine-460

tuned similarly to MPNet, gtr-t5-xl (GTR) (Ni et al.,461

2022b) and sentence-t5-xl (ST5) (Ni et al., 2022a),462

two sentence encoders both based on the encoder463

part of the T5 architecture (Raffel et al., 2020) but464

fine-tuned on different datasets for text retrieval,465

and gte-large-en-v1.5 (GTE) (Li et al., 2023), a466

transformer encoder trained with multi-stage con-467

trastive learning.468

Table 3 shows the number of parameters for this469

set of models, together with the energy cost C470

computed as described in the methodology section.471

6 Experiments472

6.1 SLMs Evaluation473

Table 5 shows the results obtained by running474

and comparing to reference summaries our SLMs475

and baselines over the SumIPCC dataset with the476

Figure 1: Pearsons’ correlation between the metrics’
aspects and energy consumption.

ground truth paragraphs for each reference sum- 477

mary (i.e. without RAG). The results clearly high- 478

light a very good performance on behalf of most 479

SLMs and LLMs, whereas the extractive baselines 480

show inferior performance for all the given evalu- 481

ation dimensions; such a difference is statistically 482

significant (p < 0.05) and it confirms the superi- 483

ority of LLMs of any size to the simple extractive 484

models. It is interesting to notice, however, that 485

the performance of the extractive method is gener- 486

ally good in absolute terms for the relevance and 487

consistency dimensions, highlighting the style of 488

this dataset, where many exact lines from the target 489

paragraphs are present in the reference summaries 490

(see appendix A and appendix E for more details). 491

When comparing SLMs with the LLMs base- 492

lines, we can observe some striking results in 493

that the ChatGPT baseline appears to be the best- 494

performing system overall, even more so than the 495

superior GPT4 baseline. This apparently counter- 496

intuitive result can, however, be explained by three 497

factors: first, as the metric we use is based on 498

ChatGPT itself it might show a bias in favor of 499

the model, as observed in previous studies (Pan- 500

ickssery et al., 2024), second, the reliability of the 501

metric in the context of high-quality summaries 502

is generally lower (Shen et al., 2023), and third, 503

ChatGPT is not significantly better than GPT4 in 504

any evaluation dimension. These points also apply 505

to most SLMs. More recent and relatively more 506

powerful SLMs like Llama 3, in fact, appear to be 507

worse than other models like ChatGPT itself, but 508

ultimately the difference is statistically insignifi- 509

cant, rather indicating that most SLMs and LLMs 510

perform similarly in our context. SLMs, then, can 511

be as effective as larger LLMs for our task (Q1). 512

Turning to Q2, figure 1 shows how the energy 513

consumption shows a weak, but relevant correla- 514

tion with LLMs performance on each dimension. 515

A key driver of this correlation is the poor perfor- 516

mance of Qwen 0.5B, suggesting that there is a 517

threshold under which model size severely impacts 518

the capacity of SLMs to perform this task. The 519
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Model Consistency ↑ Coherence ↑ Fluency ↑ Relevance ↑ Average ↑
Qwen 0.5B 4.52* 4.33* 4.41* 4.06* 4.33*
Qwen 1.8B 4.89 4.83 4.88 4.79 4.85
Qwen 4B 4.75* 4.84 4.91 4.56* 4.77
Qwen 7B 4.84 4.94 4.9 4.74 4.86
Gemma 2B 4.86 4.86 4.96 4.71 4.85
Gemma 7B 4.85 4.94 4.99 4.81 4.9
Phi 3 4.84 4.92 4.94 4.74 4.86
Llama 3 4.82 4.84 4.91 4.74 4.83
Mistral 4.78* 4.84 4.95 4.6 4.79
ChatGPT 4.94 4.96 4.98 4.79 4.91
GPT4 4.83 4.89 4.96 4.81 4.89
MPNet 4.44* 3.03* 3.45* 4.15* 3.77*

Table 4: Summarization results for all dimensions obtained by evaluating our models with the ChatGPT-RTS metric.
Asterisks indicate that the results are significantly worse than the best model (i.e. ChatGPT).

Figure 2: ChatGPT RTS Average scores re-weighted
via Carburacy.

updated ranking of models in figure 2 using the520

Carburacy technique, however, shows how on cer-521

tain occasions, notably that of Qwen 1.8B, very522

small SLMs can perform similarly to larger ones.523

The re-ranking confirms once more that most SLMs524

perform similarly, and that are generally better than525

very small LLMs (Qwen 0.5B) and then the extrac-526

tive baseline. It follows, that ChatGPT and GPT4527

are actually the worst models when considering528

the efficiency/effectiveness trade-off because the529

increase in energy consumption is not justified by530

a relevant increase in the models’ performance.531

6.2 RAG Evaluation532

Figure 3 shows the results of using different re-533

trieval models on the two subsets of our dataset,534

separately. It can be seen how also in this case most535

models perform similarly and, applying the Carbu-536

racy method to re-weight the MRR@10 score, this537

leads to comparatively smaller models being the538

best choice to perform the retrieval in our context.539

Having identified the best retrieval models for540

Figure 3: Retrieval results in terms of MRR@10 metric
re-weighted via the Carburacy method.

both subsets of our dataset, we employ them to re- 541

trieve the top 2 documents for each query and then 542

we employ the method described in section 3.2 to 543

generate the summaries. In this case, we have used 544

just the best models for each family, as indicated 545

by results in table 5. It is interesting to notice how 546

this time the results from different models are more 547

spread, highlighting more significant differences 548

individuated by our metric in this more challenging 549

scenario. This is in line with what was previously 550

observed for the same metric, as using ChatGPT to 551

evaluate ABS has been shown to be more accurate 552

and more confident about its own decision when 553

the difference in the quality of the generated sum- 554

maries is substantial (Shen et al., 2023). The fact 555

of using two paragraphs that might not be the cor- 556

rect ones as input to be summarized according to a 557

specific topic, in fact, seems to have an effect on all 558

dimensions, not only on the relevance one (which 559

presents the biggest overall drop in performance, 560

as it could have been expected). This evidence 561

suggests that our task in a RAG setting is indeed a 562

more challenging task, which requires further inves- 563
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Model Consistency ↑ Coherence ↑ Fluency ↑ Relevance ↑ Average ↑
Qwen 1.8B 3.66 4.36 4.24 3.11 3.84
Gemma 2B 3.21* 3.81* 3.67* 3.21 3.48*
Phi 3 3.32* 3.82* 3.74* 3.23 3.53*
Llama 3 3.76 4.27 4.44 3.26 3.93
Mistral 3.02* 3.61* 3.56* 3.02 3.30*
ChatGPT 3.24* 3.81* 3.52* 2.96 3.38*
MPNet 2.68* 2.39* 2.5* 2.36* 2.48*

Table 5: Summarization results for all dimensions obtained by evaluating our models with the ChatGPT-RTS metric
on the retrieved passages. Asterisks indicate results that are significantly worse than the best model (i.e. Llama 3).

Figure 4: ChatGPT RTS Average scores for the RAG
experiment re-weighted via the Carburacy method.

tigation both in terms of the retrieval model being564

used and in terms of the summarization model. Dif-565

ferent LLMs, in fact, appear to be more capable of566

dealing with heterogeneous information and filter567

out irrelevant information, while maintaining good568

coherence, fluency, and consistency with the input569

paragraphs (more qualitative examples under this570

respect are presented in D). Because of this, in this571

context the choice of the model appears to be rele-572

vant, with Llama 3 performing significantly better573

than most other models, in line with the models’574

performance on existing benchmarks (Meta, 2024).575

Interestingly it can be seen how the much smaller576

Qwen 1.8B, however, performs similarly to Llama577

3 and this leads to the model being ranked as good578

as the latter in the re-weighted results using Carbu-579

racy, shown in figure 4. This last evidence shows580

once more that smaller LLMs can perform as well581

as bigger ones in our context and this might be582

because of a variety of reasons including but not583

limited to training data, stochasticity, and prompt584

preferences: in deciding which model is best for585

a specific task, then, the inclusion of efficiency in586

the evaluation framework allows to identify mod-587

els with a smaller energy-cost, while leading to a588

drop in performance which is minimal or even not 589

significant. 590

7 Conclusion and Future Directions 591

In this work, we have investigated the use of SLMs 592

for ABS in the context of climate change reports. 593

Apart from the task itself, which has a variety of 594

uses in policy-making and education, our aim was 595

that of evaluate whether smaller, more efficient 596

LLMs (i.e. SLMs) can lead to comparable results 597

to bigger one in a task in which LLMs are ex- 598

tremely capable. The results indeed confirmed that 599

SLMs are a valid alternative to bigger LLMs, espe- 600

cially in the easier scenario in which ground truth 601

paragraphs were provided. As this task was easy 602

enough to be solved by most LLMs, in fact, results 603

were not significantly different in most cases, and 604

applying a re-weighting scheme that takes into con- 605

sideration the CO2 emissions of the models helped 606

identify the best model both in terms of efficiency 607

and performance. 608

When we turned to the RAG scenario, instead, 609

it could be seen that the difference in the models 610

we used appeared to be more significant. Also in 611

this case, however, the smallest model performed 612

comparably with the best-performing one and, even 613

though this might be due to various things not re- 614

flecting a more general equivalence, the evidence 615

suggests, at least, that smaller models can be a valid 616

alternative also in more challenging cases. 617

Finally, we release our dataset and this can lead 618

to many interesting research directions both in 619

terms of NLP applications for climate science and 620

in terms of SLMs evaluation. Specifically, future 621

research could explore the RAG setting further by 622

incorporating more fine-grained information dur- 623

ing retrieval (e.g. section and/or paragraph titles, 624

which are included in the dataset) and fine-tune 625

SLMs on the small available data to test the ability 626

of such models to learn from small data. We leave 627

these directions open for future research. 628
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8 Limitations629

Our work deals with the use of SLMs for ABS630

and has shown that they often perform similarly631

to larger LLMs in our context. Given the specific632

domain of application (i.e. climate change reports),633

however, we are limited to a small size dataset,634

which in turn increases results’ variability. Another635

limitation of our work involve the evaluation met-636

ric, which includes a number of problems such as637

having around 80% agreement with human judge-638

ment, as shown in appendix A: this value is rela-639

tively high for summarization metrics, but it is still640

low enough to represent a significant limitation in641

terms of how much we can trust the metric itself in642

certain cases. Other evaluation limitations include643

the fact that our metric has been shown to corre-644

late less with human judgement when dealing with645

high-performing systems (which is our case in the646

first experiment using ground truth paragraphs) and647

the already noticed fact that the metric appears to648

be biased towards certain LLMs (i.e. ChatGPT).649

Finally, there is initial evidence that the aspects650

we have evaluated for each sample in our dataset651

might be too broad leading to the summarizers re-652

porting redundant information in the summaries.653

Future research might consider using the additional654

features we provided in the released dataset in order655

to better define the aspect on which the summariza-656

tion models should focus.657

9 Ethical Considerations658

Using LLMs and SLMs to summarize climate659

change reports raises several ethical considerations:660

1) Accuracy and Reliability. If inaccurate or661

misleading summaries are produced by LLMs, this662

could potentially misinform stakeholders and the663

public, leading to poor decision-making. Therefore,664

it is essential to have a human-in-the-loop approach665

in double checking the summaries produced by666

such systems.667

2) Transparency and Accountability. LLMs668

are black-box and therefore are not transparent nor669

accountable in terms of what output they produce.670

Notwithstanding the de-biasing and alignment with671

human preferences that the systems we used un-672

dertook, the reasons why such models produced673

certain summaries remain opaque.674

3) Representation Issues and Bias. LLMs have675

been shown to include a number of biases derived676

from the training data. In the context of climate677

change reports, dealing with different world re-678

gions and cultures, this might lead to inaccurate 679

and/or biased depiction of different populations. 680

4) Accessibility and Inclusivity. The use of 681

LLMs require access to resources that might not 682

be widely available in less developed countries 683

and poorly funded institutions and, therefore, these 684

could lead to problem of inclusivity and reduced 685

access to our tool for policy-makers and educators 686

from such background. 687
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A Metric Correlation with Human1104

Judgement1105

Previous research has variously shown how summa-1106

rization metrics are generally unreliable, yielding1107

low correlation with human judgement; the use of1108

ChatGPT in this context was observed to be the1109

method yielding results more similar to the judge-1110

ment expressed by human annotators, with corre-1111

lation values around 0.50 (Shen et al., 2023). Still,1112

our use case was slightly different from the one in1113

the above work, as it deals with ABS rather than1114

normal summarization and, given the specificity of1115

our dataset (see appendix A) it also includes vari-1116

ous snippets of texts directly copied from the main1117

text in the reference summaries.1118

To assess the reliability of different metrics in1119

this context and to choose which to report, we have1120

asked two human annotators to rank 10 pairs of1121

summaries generated by different LLMs and then1122

we compared the results thus obtained with the1123

ranking produced by different summarization met-1124

rics. Table 6 shows the results thus obtained in1125

terms of percentage of matches between human1126

annotators’ rankings and the metrics obtained by1127

recent metrics based on LLMs. It can be seen1128

how ChatGPT RTS far outperforms the alternatives1129

reaching very high agreement with the human an-1130

notators (close to 80%).1131

If we consider the agreement with traditional,1132

similarity-based metrics depicted in figure 5, we1133

can also observe how the the majority of traditional1134

metrics generally agree with human annotators in1135

this task at a level close to the one reached by1136

ChatGPT RTS. This is indeed quite specific to the1137

dataset we are considering as summaries are of-1138

ten presented as highlights reporting entire sen-1139

tences from the source paragraph and, as LLMs1140

Figure 5: Average percentage of agreement between
human annotators and similarity-based summarization
metrics: standard deviation is also included in the form
of error bars.

are asked to generate highlights as well, rather than 1141

summaries, similarity-based metrics are actually 1142

quite good in this scenario. As traditional metrics 1143

lack a distinction between different dimensions of 1144

the generated summaries, however, we opted for 1145

ChatGPT RTS as the metric for our main experi- 1146

ments, as it yields similar agreement with human 1147

annotators, but with the added value of giving a 1148

multi-dimensional evaluation. 1149

B Evaluation Prompts 1150

In using the ChatGPT RTS, we have prompted 1151

ChatGPT with 4 different prompts per summary, 1152

to evaluate the different dimensions of the gener- 1153

ated summaries. For what concerns consistency, 1154

coherence and fluency, we have adopted the same 1155

prompts from Shen et al. (2023). For what concerns 1156

relevance, we re-adapted the original formulation 1157

to make it fit for ABS, where we want our sum- 1158

mary to be relevant with respect to a specific topic, 1159

in addition to the reference summary, where the 1160

original formulation did not include any topic nor 1161

reference summary. 1162

We refer the reader to the original formulation 1163

in Shen et al. (2023) for the prompt used for con- 1164

sistency, coherence and fluency dimensions. For 1165

the relevance dimension, we show the prompt we 1166

used in figure 6. 1167
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Metric Consistency Coherence Fluency Relevance
ChatGPT RTS 0.77± 0.0 0.83± 0.06 0.66± 0.11 0.77± 0.0

ChatGPT MCQ 0.06± 0.06 0.55± 0.0 0.17± 0.06 0.44± 0.0
UniEval 55± 0.11 0.61± 0.06 0.33± 0.22 0.67± 0.0

Table 6: Average percentage of agreement between human annotators and LLM-based summarization metrics:
standard deviation is also included.

Figure 6: The prompt used for evaluation with ChatGPT
with the ChatGPT RTS evaluation method for the rele-
vance aspect. At inference time {article} is substituted
with the target paragraphs, {aspect} is substituted with
the aspect on which the summarizer should focus, {refer-
ence_summary} is replaced with the reference summary
and {summary} is replaced with the generated summary.
All other dimensions have been evaluated with similar
prompts, but without the need of {reference_summary}
and {aspect} and substituting the description of the di-
mension with the relevant description from the other
dimensions, as described in Shen et al. (2023).

Figure 7: Comparison of performance in terms of Chat-
GPT RTS for instances longer (left) and shorter (right)
than our fixed threshold (th).

C Effect of Long Inputs 1168

In the methodology section, we highlighted how 1169

when using SLMs for summarization is usual to 1170

find instances in which input paragraphs are longer 1171

than the allowed token limits for the model. We 1172

have tackled these instances by applying an iter- 1173

ative procedure where we summarize individual 1174

paragraphs and then we ask the given LLM to sum- 1175

marize the concatenation of the summaries (see 1176

4). In order to ensure that such a process won’t 1177

lead to drop in performance we have plotted the 1178

performance of instances in which the paragraphs 1179

are longer than the fixed character threshold that 1180

we have empirically set in our experiments and 1181

we compared them to the plotted performance of 1182

instances where paragraphs are shorter than the 1183

threshold. Figure 7 shows such comparison: as 1184

it can be noticed, the difference in performance 1185

shows longer inputs performing marginally worse 1186

due to the iterative procedure. Still, the difference 1187

is minimal suggesting that our method does not 1188

negatively affect performance and, as such, it is a 1189

feasible way to overcome models’ context limits. 1190
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Figure 8: An example of three summaries obtained us-
ing three LLMs: ChatGPT, Llama 3 and Qwen 0.5B.
Prompt indicates the command given to the LLMs, in-
cluding the text to be summarized and the target aspect.
Reference indicates the reference human-generated sum-
mary. It can be seen how all models, even the smaller
Qwen 0.5B, manage to produce sensible summaries,
even though they do include extra information with
respect to the reference summary (for which a more
specific aspect formulation might be needed).

D Qualitative Evaluation1191

Figure 8 show an example of summaries generated1192

for a given reference by different LLMs, together1193

with the reference summary and the prompt used to1194

obtain the summaries, including the target ground1195

truth paragraph to be summarized. When ground1196

truth target paragraphs are included, it can be seen1197

that all LLMs give sensible answers which are com-1198

parable to each other. Some redundant information1199

is included in all cases, but specifying the aspect1200

more strictly is likely to solve that problem. When1201

retrieved paragraphs are used in the RAG setting,1202

instead, LLMs struggle to produce sensible results,1203

as the discrepancy between the input (incorrect)1204

paragraph and the aspect to be summarized tend1205

to confuse the models, as highlighted in figure 9:1206

this effect is stronger for weaker models as evident1207

from the significance of the results in table 5 and, 1208

looking picture 9, from the case of Mistral, which 1209

produced a summary which is relatively long and 1210

mostly unrelated to the target aspect. 1211

Figure 9: An example of three summaries obtained
using three LLMs: ChatGPT, Llama 3 and Mistral (the
weakest LLM among this set of experiments). Prompt
indicates the command given to the LLMs, including
the text to be summarized and the target aspect. The
reference summary is depicted in figure 8.
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Figure 10: Average word count in the reference sum-
maries for the two subsets of our dataset.

Figure 11: Average word count in the target paragraphs
for the two subsets of our dataset.

E Dataset Statistics1212

Here, we present more in depth statistics for our1213

SumIPCC dataset which we release under MIT li-1214

cense. Specifically, we report average word counts1215

in summaries (figure 10) and in target paragraphs1216

(figure 11), more common words in the summaries’1217

topics for AR5 (figure 12) and AR6 (figure 13) sub-1218

sets and lexical overlaps between reference sum-1219

maries and target paragraphs in terms of rouge-1,1220

rouge-2 and rouge-l (figure 14).1221

Overall, topics are similar between the two sub-1222

sets and AR5 generally includes shorter paragraphs1223

and shorter summaries than AR6. Also, it is evident1224

by comparing figures 10 and 11 how the compres-1225

sion rate is quite high. Finally, figure 14 show how1226

the lexical overlap between reference summaries1227

and target paragraphs is also quite high reflecting1228

the nature of the summaries often reflecting high-1229

lights rather than abstractive summaries.1230

Figure 12: Most common summary topics in the AR5
subset of our dataset.

Figure 13: Most common summary topics in the AR6
subset of our dataset.

Figure 14: Rouge-1, rouge-2 and rouge-l scores of the
reference summaries with respect to the target full para-
graphs. These metrics represent the general overlap of
the summaries with respect to the paragraphs, which is
overall quite high in our case.
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F Model Details1231

In our experiments we have used in all cases the1232

pre-trained models as hosted on Huggingface Hub,1233

but for ChatGPT and GPT4, for which we have1234

used the official API.1235

Specifically, we report below the link for each1236

of the open-source models we used:1237

1. Qwen 0.5B: https://huggingface.co/1238

Qwen/Qwen1.5-0.5B-Chat1239

2. Qwen 1.8B: https://huggingface.co/1240

Qwen/Qwen1.5-1.8B-Chat1241

3. Qwen 4B: https://huggingface.co/1242

Qwen/Qwen1.5-4B-Chat1243

4. Qwen 7B: https://huggingface.co/1244

Qwen/Qwen1.5-7B-Chat1245

5. Llama 3: https://huggingface.co/1246

meta-llama/Meta-Llama-3-8B1247

6. Gemma 2B: https://huggingface.co/1248

google/gemma-1.1-2b-it1249

7. Gemma 7B: https://huggingface.co/1250

google/gemma-1.1-7b-it1251

8. Phi 3: https://huggingface.co/1252

microsoft/Phi-3-mini-128k-instruct1253

9. Mistral: https://huggingface.co/1254

mistralai/Mistral-7B-Instruct-v0.21255

The models were all quantized in 4 bit with the1256

bitandbytes python library2 and run on a single1257

NVIDIA® T4 GPU3 with 16GB of RAM, as pre-1258

viously explained. All the models run between 2.51259

and 10 hours, depending on model size and length1260

of generated summaries: no sampling was applied1261

for replicability.1262

Details of the GPT models we used are presented1263

in table 7:

Model Model Official Name Revision
ChatGPT gpt-35-turbo-16k 0613

GPT4 gpt-4 0125-Preview

Table 7: Details of the used GPT models.
1264

Notice that throughout this work we have used1265

the term ChatGPT to refer to GPT 3.5, consistently1266

with previous literature (Shen et al., 2023): this1267

naming is, however, erroneous as ChatGPT refers1268

to the service rather than the underlying model.1269
2https://github.com/TimDettmers/bitsandbytes
3https://www.nvidia.com/en-us/data-center/tesla-t4/
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