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ABSTRACT

Graph Neural Networks (GNNs) play a pivotal role in graph-based tasks for their
proficiency in representation learning. Among the various GNN methods, spec-
tral GNNs employing polynomial filters have shown promising performance on
both homophilous and heterophilous graph structures. The scalability of spectral
GNNs is limited because forward propagation requires multiple graph propaga-
tion executions, corresponding to the degree of the polynomial. On the other
hand, scalable spectral GNNs detach the graph propagation and linear layers,
allowing the message-passing phase to be pre-computed and ensuring effective
scalability on large graphs. However, this pre-computation can disrupt end-to-end
training, possibly impacting performance, and becomes impractical when deal-
ing with high-dimensional input features. In response to these challenges, we
propose a novel graph spectral sparsification method to approximate the propa-
gation pattern of spectral GNNs. We prove that our proposed methods generate
Laplacian sparsifiers for the random-walk matrix polynomial, incorporating both
static and learnable polynomial coefficients. By considering multi-hop neighbor
interactions into one-hop operations, our approach facilitates the use of scalable
techniques. To empirically validate the effectiveness of our methods, we conduct
an extensive experimental analysis on datasets spanning various graph scales and
properties. The results show that our method yields superior results in comparison
with the corresponding approximated base models.

1 INTRODUCTION

Graph Neural Networks (GNNs) have gathered increasing research attention because of their versa-
tility in handling graph-structured data. They have demonstrated prominent performance in several
kinds of real-world graph learning tasks, including link prediction (Sankar et al., 2021), recommen-
dation systems (Wu et al., 2019b; Ying et al., 2018; Zhang et al., 2023), social analysis (Lin et al.,
2022), drug discovery (Jiang et al., 2021), and traffic forecasting (Cui et al., 2020).

Spectral GNNs represent one fundamental branch of GNNs that works by constructing a graph filter
in the spectral domain of the graph Laplacian matrix. This filtering mechanism enables the recom-
bination of graph signals at different frequencies, effectively leveraging their spectral properties.
Constrained by the impractical overhead of eigendecomposition, various works adopt distinct poly-
nomial bases to approximate the desired filter operation, such as GPR-GNN (Chien et al., 2021)
leverages a monomial basis, and BernNet (He et al., 2021) employs a Bernstein polynomial basis.

In general, spectral GNNs employing polynomial filters can be formally expressed as Y =
gw(L, fθ(X)), where gw(·) denotes the polynomial graph filter with coefficients w, fθ(·) repre-
sents the linear layer with learnable parameters θ, L is the Laplacian matrix, X and Y refer to the
original node representation matrix and the output, respectively. Unlike GNNs that design a uniform
aggregation function, spectral GNNs use polynomial filters to combine representations from K-hop
neighbors, where K is the polynomial degree. This property enables spectral GNNs to capture a
broader scope of graphs and alleviates the dependence on “homophily assumption”.

Motivation. Current spectral GNNs usually involve the computation of Lkfθ(X), which demands
the full graph propagation during the kth forward propagation of training. However, existing ac-
celeration devices, such as GPUs, suffer bottlenecks in storing the computational trees and node
representation for large graphs. Drawing inspirations from SGC (Wu et al., 2019a), many works
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such as ChebNetII (He et al., 2022) and OptBasis (Guo & Wei, 2023) detach the graph propagation
phase from the linear layers to allow for the precomputation of LkX. This transformation converts
model training into the linear combination of LkX using learnable coefficient wk and linear layers.
This process is independent of the graph structure and can be mini-batched naturally. Nevertheless,
this method introduces the following defects with scalability: 1) Some researches (Lutzeyer et al.,
2022; Busch et al., 2020) argue that separating training from the graph structure simplifies the net-
work architecture and will negatively impact performance. 2) The training is no longer end-to-end
due to the graph propagation preprocess. Emerging approaches (Chen et al., 2023; Chien et al.,
2022) based on language models enhance the performance on Ogbn-papers100M, which requires
the raw text as input and end-to-end training. 3) Preprocess is potentially impractical when dealing
with large graphs with high-dimensional node features since the dimension of original features can-
not be reduced by MLP. Given these considerations, it prompts the question: Is there an approach
to enhance the scalability of spectral GNNs without decoupling the graph propagation phase?

Contribution. Inspired by Laplacian sparsification, we propose a novel approach to approximate
the equivalent propagation matrix of filters in spectral methods. Specifically, we approximate L̃K ≈∑K

k=0 wkL
k, while keeping the number of non-zeros within an acceptable range. This sparsification

effectively connects multi-hop neighbors by compressing the multi-step graph propagation, which
enables the application of numerous scalable GNN algorithms (Hamilton et al., 2017; Zou et al.,
2019; Fey et al., 2021). Importantly, it retains the integration of graph propagation within the model.
Our contributions are summarized as follows:

• Scalable method designing. We propose a method termed Graph Neural Networks with Lapla-
cian Sparsification (GNN-LS), which is the first work tackling the scalability issue of spectral
GNNs to the best of our knowledge.This method offers various adaptions for different scenarios,
including models with static polynomial coefficients, those with learnable polynomial coefficients,
and a node-wise sampling way for semi-supervised tasks.

• Theoretical analysis. We provide rigorous mathematical proofs demonstrating that all the varia-
tions of our method construct Laplacian sparsifiers of

∑K
k=0 wkL

k with a high probability and a
low approximation error ε. This property ensures the quality and reliability of generated sparsi-
fiers, guaranteeing the performance and efficiency of our model.

• Extensive experiments. We conduct comprehensive experiments aimed at validating the effec-
tiveness and scalability of our methods, entangling with some spectral methods. The results
consistently highlight the practical performance of our method, showcasing stable improvements
compared to the corresponding baselines across diverse real-world datasets.

2 PRELIMINARIES

Notations. In this study, we consider the undirected graph G = (V,E), where V represents the
node set and E is the edge set. Let n = |V | and m = |E| denote the number of nodes and edges,
respectively. A ∈ {0, 1}n×n represents the adjacency matrix of the graph G. The diagonal degree
matrix is denoted by D, and Dii =

∑
j Aij . The normalized adjacency matrix and normalized

graph Laplacian of G are defined as P = D−1/2AD−1/2 and L = In −D−1/2AD−1/2, respec-
tively. Note that the normalized graph Laplacian L is symmetric and positive semidefinite. We
express the eigenvalue decomposition of L as UΛU⊤, where U is a unitary matrix containing the
eigenvectors, and Λ = diag{λ1, λ2, . . . , λn} comprises the eigenvalues of L. We usually modify
the Laplacian with L̂ = 2L

λmax
− I to scale the eigenvalues to [−1, 1]. Note that the λmax is set to 2

in practice, then we have L̂ ≈ −P.

Spectral GNNs. Spectral-based GNNs exploit the spectral attributes of G and apply the graph
convolution operation on the spectral domain. Many works (Klicpera et al., 2019; He et al., 2022)
either approximate the filter with polynomial or exhibit similar properties of polynomial filters. The
graph filtering operation with respect to the graph Laplacian matrix L and signal x is defined as

h(L) ∗ x = Uh(Λ)U⊤x ≈ U

(
K∑

k=0

wkΛ
k

)
U⊤x =

(
K∑

k=0

wkL
k

)
x, (1)

where w = [w0, w1, . . . , wk] represents the polynomial coefficient vector.
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Homophily. Homophily measures the tendency of the connected nodes on the graph to have the
same label in node classification tasks. This property heavily influences the classic GNN models
which utilize one-hop neighbors, while the spectral GNNs can leverage multi-hop neighbor impor-
tance. We usually quantify the homophily of a graph with the following edge homophily:

H(G) =
1

m
|{(u, v) : y(u) = y(v) ∧ (u, v) ∈ E}| ,

where y(·) returns the label of nodes. Intuitively, H(·) denotes the ratio of homophilous edges on
the graph. A heterophilous graph impliesH(G)→ 0.

3 PROPOSED METHOD

3.1 MOTIVATION

If we take retrospect on the spectral GNNs, this category of GNNs yields promising results, espe-
cially when applied to heterophilous datasets. However, an aspect that has received less attention in
existing spectral GNN research is scalability. Numerous works(Hamilton et al., 2017; Zeng et al.,
2020) that prioritize scalability resort to random sampling techniques to reduce the neighborhood of
central nodes, or employ methods like historical embedding (Fey et al., 2021) to approximate node
embeddings. However, the convolution of spectral GNNs gathers information from up to K-hop
neighbors, posing challenges to the effective deployment of scalable techniques.

Nevertheless, it is still possible to enhance the scalability of spectral GNNs using straightforward
methods. Following SGC (Wu et al., 2019a), many of the spectral methods (He et al., 2022; Guo &
Wei, 2023) decouple the graph propagation from training to simplify the network architecture. Dur-
ing the graph propagation, they compute Lkx as described in Equation 1, which can be preprocessed
on the CPU. Consequently, the learnable parameters control the linear combination and transforma-
tion of the propagated embeddings. Since the graph structure is only used in graph propagation, the
training naturally lends itself to mini-batching.

However, this method is not without its drawbacks. First, the decoupling of the GNNs leads to a non-
end-to-end model. We cannot use the learnable language models to enhance the node representations
with the raw text of large-scale datasets like Ogbn-papers100M. Second, we cannot apply a learnable
linear layer to reduce the dimension of raw features. The incoming dataset must be preprocessed
with additional CPU time and storage space. Third, the performance of SGC has been proven to
suffer a loss in comparison with GCN. Given these considerations, the question arises: Is it feasible
to enhance the scalability of spectral GNNs without decoupling the network architecture?

3.2 SIMPLIFY THE GRAPH PROPAGATION WITH LAPLACIAN SPARSIFICATION

When we revisit Equation 1, we observe that the filter step can be reformulated as a matrix multipli-
cation involving the combined powers of Laplacian (referred to as LK =

∑K
k=0 wkL

k, Laplacian
polynomial) and the input signal. If we obtain the Laplacian polynomial LK , the propagation is then
squeezed to a single step instead of multi-hop message-passing. Since the computation and storage
of matrix Lk is overwhelming, we introduce the Laplacian sparsification (Spielman & Teng, 2011)
to approximate the matrix within high probability and tolerable error.

Laplacian sparsification is designed to create a sparse graph that retains the spectral properties of
the original graph. In essence, the constructed graph, with fewer edges, is spectrally similar to the
original one. We provide a formal definition of the spectrally similar as follows.

Definition 3.1. Given an weighted, undirected graph G = (V,E,w) and its Laplacian LG. We say
graph G′ is spectrally similar to G with approximation error ε if we have

(1− ε)LG′ ≼ LG ≼ (1 + ε)LG′ ,

where we declare that two matrix X and Y satisfy X ≼ Y if Y −X is semi-definite.

A well-established result states that X ≼ Y implies λi(X) ≤ λi(Y) for each 1 ≤ i ≤ n, where
λi(·) denotes the ith largest eigenvalue of the matrix. This corollary reveals that when two matrices,
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i. original graph
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Figure 1: An overview of how Laplacian sparsification works. For clarity, the propagation of one
single center node is illustrated. Laplacian sparsification is applied to the entire graph, generating
fully sparsified graphs to satisfy the propagation requirements of all the nodes in the graph.

Algorithm 1: Edge Sampling of D(D−1A)k

Input: Edge set E, power index k.
Output: Sampled edge (u, v)

1 e← sample an edge from E uniformly at random
2 i← sample an integer in [0, k − 1] uniformly at random
3 u← the end of random walk on E (i.e. graph G), starting from eu with length i
4 v ← the end of random walk on E (i.e. graph G), starting from ev with length k − i− 1
5 return (u, v)

such as LG and LG′ , exhibit spectral similarity, their quadratic form and eigenvalues are in close cor-
respondence Graph sparsification is a fundamental problem of graph theory. Many studies (Batson
et al., 2013) have introduced algorithms capable of generating ε-sparsifiers for a given graph.

The sole difference between scaled Laplacian and the propagation matrix is a negative sign, we have

LK =

K∑
k=0

wkL
K ≈

K∑
k=0

wkP
k = D−1/2 ·D

(
K∑

k=0

wk

(
D−1A

)k)
D−1/2, (2)

where the negative sign can incorporated into the coefficients wk. From Equation 2, we observe
that we may convert our desiring matrix LK to a random walk matrix polynomial

(
D−1A

)k
with

coefficients [w0, ..., wK ]. Following the prior works (Spielman & Srivastava, 2008; Cheng et al.,
2015), we have a promising guarantee to approximate random walking matrix polynomial by effec-
tive resistance termed Theorem 3.2.

Theorem 3.2. (Random walk polynomial sparsification.) For any weighted, undirected graph
G with n vertices and m edges, any w = [w0, w2, ..., wK ] ∈ R(K+1),w ̸= 0 and any ap-
proximation parameter ε, we can construct an ε-sparsifier of the random walk matrix polynomial∑K

k=0 wkD
(
D−1A

)k
within O(n log n/ε2) edges and probability 1−K/n at least.

We have extended the original theorem proposed by (Cheng et al., 2015) to accommodate non-
normalized polynomial coefficients w. Sampling an edge from D(D−1A)k is an atomic operation
in constructing our desired graph, and it is frequently employed in our subsequent algorithms. We
state this procedure in Algorithm 1. In the upcoming sections, we will present our comprehensive
algorithms, which include the weight correction and the adaptation for both static and learnable poly-
nomial coefficients w. For in-depth discussion regarding the approximation estimation, correctness
proof, and complexity analysis, please retrieve section 4 and appendix A.1.
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Algorithm 2: Static Laplacian Sparsified Graph Construction (SLSGC)
Input: Hop weights w.
Input: Model Saved: Vertice set V , edge set E, degrees d, maximum neighbor hop K, total

sampling number M .
Output: Weighted edge set Ẽ after laplacian sparsification.

1 m← |E|
2 Ẽ ← ∅
3 for i from 1 to M do
4 k ← sample an integer k from distribution Pr{k = j} = |wj |/∥w∥1
5 (u, v)← Edge Sampling(E, k)

6 Ẽ ← Ẽ ∪
(
(u, v), sgn(wk)∥w∥1d−1/2

u d
−1/2
v · mM

)
7 return Ẽ

3.2.1 LAPLACIAN SPARSIFICATION FOR STATIC POLYNOMIAL COEFFICIENTS

Some of the early classic GNNs, like GCN (Kipf & Welling, 2017) and APPNP (Klicpera et al.,
2019), employ static Laplacian polynomials as the graph filter. For example, the propagation layer
of APPNP fixes the weight wk = α(1− α)k, k ̸= K, and wK = (1− α)K for different hops.

Note that if we repeat Algorithm 1 for M times with the same power index k and apply each obtained
edge with the weight m/M , we can approximate D(D−1A)k. This result is still distant from our
desired form in Equation 2. First, we need to approximate the random walk matrix polynomial based
on our existing method of approximating a term D(D−1A)k. One intuitive and efficient idea is to
distribute the M edges among all K + 1 subgraphs of D(D−1A)k. The number of edges assigned
to each subgraph follows a multinomial distribution with weights w. Note that wk is not guaranteed
to be positive. The absolute value of wk is proportional to the probability of being sampled, while
sgn(wk) decides the sign of the edge weight. We select a random walk length k based on the
probability distribution Pr{k = i} = |wi|/∥w∥1. Second, we execute Algorithm 1 with edge set
E and power index k to generate an edge (u, v). Given that we are now approximating the graph
D(D−1A)k, the edge value is adjusted to sgn(wk)∥w∥1 · d−1/2

u d
−1/2
v ·m/M .

We provide the pseudo-code for constructing a Laplacian sparsified random walk matrix polynomial
with static coefficients in Algorithm 2. Additionally, we offer an example of such a model integrated
with our method APPNP-LS in Appendix A.2.1.

3.2.2 LAPLACIAN SPARSIFICATION FOR LEARNABLE POLYNOMIAL COEFFICIENTS

Several recent spectral works, like GPR-GNN (Chien et al., 2021), BernNet (Wu et al., 2019b),
and ChebNetII (He et al., 2022), employ learnable polynomial coefficients to dynamically adapt
the proper filter. For example, GPR-GNN uses monomial bases to identify the optimal filter, while
BernNet employs Bernstein polynomial basis to align with the property that the eigenvalues of nor-
malized Laplacian fall within the range [0, 2].

Upon revisiting Algorithm 2, it becomes apparent that the polynomial coefficients w primarily affect
the sampling of the power index k and the adjustment of edge weights. To facilitate the training of w,
we need to calculate the derivative of each wk for gradient descent. However, following Algorithm 2,
we cannot obtain the correct derivatives of w since all the wk equally contribute to the part that
generates gradients. To address this issue, we directly multiply the polynomial coefficients w with
the weight of the sampled edges instead of the sampling with probability |wk|/∥w∥1 in SLSGC.
Thus, the edge weight becomes wkd

−1/2
u d

−1/2
v · m/M . This adjustment connects the gradient of

w with the message passed by the corresponding edges, ensuring the correct derivative chain for
training w. However, this modification splits coefficients wk, leading to independent sampling for
each hop k and potentially sacrificing the efficiency. Theoretically, we need to sample more edges
to support the training of w while maintaining the bound of approximation.

We provide the pseudo-code of constructing a Laplacian sparsified random walk matrix polynomial
with learnable coefficients (named GLSGC) in Appendix A.2.2. Besides, we offer an example of
such a model integrated with our method GPR-LS in Appendix A.2.2
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Algorithm 3: Edge Sampling by Effective Resistance
Input: Edge set E, upper bound of effective resistance Rsup, sampling number M .
Output: Sampled edge set Ẽ

1 Ẽ ← ∅
2 for i from 1 to M do
3 Ẽ ← Ẽ ∪ sampled edge e with probability p(e) ∝ w(e)Rsup(e) and weight 1/(M ·Rsup(e))

4 return E

3.3 NODE-WISE LAPLACIAN SAMPLING FOR SEMI-SUPERVISED TASKS

For representation learning tasks on large-scale graphs with few training nodes, classic S/GLSGC are
wasteful as most edges are sampled between nodes in the validation/test set. To address this issue,
we propose a node-wise sampling method to approximate the corresponding rows of the result of
Equation 2 for the training nodes. This enhancement significantly improves the training efficiency,
as nodes in the validation/test set will not aggregate information during training.

Reflecting on Equation 2, it becomes clear that ((D−1A)k)i,j determines the probability of a ran-
dom walk of length k starting from node i and ending at node j. This inspires us that we can ensure
at least on incident node of the sampled edge belongs to the training set by directly sampling the
random walk from the training set. Following Equation 2, for each random walk length k, we first
distribute the M sampled edges among all nodes in proportion to their degrees. Then we perform
random walk samplings and correct the value of each generated edge (u0, uk) to d

−1/2
u0 d

−1/2
v0 ·wk/M

for each sampled walk (u0, u1, ..., uk).

It can be mathematically proven that the proposed algorithm produces an unbiased approximation
of the selected rows of D(D−1A)k. Moreover, this method is node-wise, allowing for natural
mini-batching. As a result, we achieve a strong scalability promotion of the spectral methods. The
pesudo-code of this algorithm is proposed in Appendix 8

4 THEORETICAL ANALYSIS

In this section, we will conduct a comprehensive analysis, including rigorous proofs of correctness,
complexity, and other key properties of the methods we have introduced. Our mathematical analyses
closely follow the theoretical foundations proposed by Cheng et al. (2015).

From a graph theory perspective, a weighted graph has a close relationship with electric flow. Each
edge with weight w(e), e = (u, v) ∈ E (w(e) = 1 for an unweighted graph) can be considered
equivalent to a resistor with resistance 1/w(e) connecting nodes u and v. When we view the graph as
a large complex resistor network, the resistance between u and v is defined as the effective resistance
R(u, v).
Theorem 4.1. (Cheng et al., 2015) Given a weighted graph G and the upper bound of its effective
resistance Rsup(e) ≥ R(e). For any approximation parameter ε, there exists a sampled graph G̃
with M = O

(
log n/ε2 ·

(∑
e∈E w(e)Rsup(e)

))
, satisfying (1− ε)LG ≼ LG̃ ≼ (1 + ε)LG with at

least 1− 1/n probability.

This theorem marks the initial step, whose pseudo-code of the algorithm is presented at Algorithm 3.
Even though our focus is on an unweighted graph G, the final destination of our approximation
D(D−1A) is inherently weighted. The weight between node u and v on the graph Gr with its
adjacency matrix Ar = D(D−1A)r can be considered as the union of all the paths between nodes
u and v with length r showing up in the unweighted graph G, i.e. Ar(u, v) =

∑
p∈P w(p), where

P = {(u = i0, i1, · · · , ir − 1, v = ir)|(ij , ij+1) ∈ E, j = 0, 1, · · · , r − 1}.
Lemma 4.2. (Cheng et al., 2015) (Upper bound of effective resistance.) The effective resistance
between two nodes u and v on graph Gr is upper bounded by

RGr
(u, v) ≤

r−1∑
j=0

2

A(ij−1, ij)
,

where (u = i0, i1, · · · , ir−1, v = ir) is a path on G.
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This is a general version of the upper bound of effective resistance about the graph Gr. As we are
primarily concerned with unweighted graph G, Rsup,Gr

(u, v) can be simplified to a constant 2r. We
can prove a more robust conclusion that Algorithm 1 draws path p on graph G with the probability
strictly proportional to w(p). This probability is independent of the Rsup,Gr

(·), which means that
running a Monte-Carlo sampling on the graph yields an unbiased approximation of Gr.

Therefore, by replacing the sampling process in Algorithm 3 with Algorithm 1, we obtain an un-
biased graph sparsifier of Gr with O(rm log n/ε2) edge. This sparsifier can be further reduced to
O(n log n/ε2) by the existing works []. Both our proposed methods, SLSGC and GLSGC, follow
the complexity outlined in Theorem 3.2. The detailed proof is proposed in Appendix A.1. Note
that the proposed bound is much tighter than what is practically required. In practice, the sampling
number can be set rather small to achieve the desired performance.

In the method proposed in Section 3.3, the sampled random walk of length r originating from a
distinct source node u also shares the same upper bound of effective resistance 2r, which can be
considered as the effective resistance based Laplacian sparsification. However, our method is more
intuitive and simplified since we directly sample the desired edge in proportional to w(p), without
relying on effective resistance. We take consideration of the single candidate start u for the random
walks and define cr(u, v) as the final generated edge weight of (u, v) on graph Gr.
Theorem 4.3. Given a weighted graph G, and the candidate set U of the random walk starts. For
any u ∈ U and v ∈ V , we have cr(u, v) is the unbiased approximation of

(
D(D−1A)r

)
u,v

.

The detailed proof is presented in Appendix A.1. Similarly, we do not need a large number of
samples to achieve superior performance in practice. This node-centered sampling method enables
us to adapt our method to semi-supervised tasks, saving the memory for a larger batch size.

5 RELATED WORKS

Spectral GNNs. To align with the proposed methods above, we categorize the spectral GNNs
based on their used polynomial filter: static (predefined) polynomial filters and learnable polynomial
filters. For static polynomial filters, GCN (Kipf & Welling, 2017) uses a fixed simplified Chebyshev
polynomial approximation and operates as a low-pass filter. APPNP (Klicpera et al., 2019) combines
the GCN with Personalized PageRank, which can approximate more types of filters but still cannot
operate as an arbitrary filter. GNN-LF/HF (Zhu et al., 2021) predefines the graph filter from the
perspective of graph optimization. For learnable polynomial filters, ChebNet (Defferrard et al.,
2016) first approximates the desired filter with the Chebyshev polynomial base, which can operate
as an arbitrary filter theoretically. Similarly, GPRGNN (Chien et al., 2021) considers the monomial
base to learn the importance of k−hop neighbors directly. BernNet (He et al., 2021) utilizes the
Bernstein polynomial base to make the filter semi-positive definite. ChebNetII (He et al., 2022)
revisits the ChebNet and proposes a new filter design via Chebyshev interpolation. Guo & Wei
(2023) proposes FavardGNN to learn a basis from all possible orthonormal bases and OptBasisGNN
to compute the best basis for the given graph.

Graph Sparsification. Graph sparsification is a consistently studied topic in graph theory. Spiel-
man & Teng (2004) introduces the concept of graph sparsification and presents an efficient algorithm
to approximate the given graph Laplacian with a smaller subset of edges while maintaining the spec-
tral properties. Spielman & Srivastava (2008) leverages effective resistance to yield the promising
random sampled edges on the graph. Lee & Sun (2015) proposes the first method to construct
linear-sized spectral sparsification within almost linear time. Our work is mainly enlightened by the
works (Qiu et al., 2019) and (Cheng et al., 2015), which make an approximation to the series of the
multi-hop random walk sampling matrix.

6 EXPERIMENTS

6.1 TESTED MODELS, DATASETS, AND CONFIGURATIONS

Tested models. We compare our method with the vanilla MLP, classic GNNs like GCN, GC-
NII (Chen et al., 2020), and GAT (Velickovic et al., 2018), detaching methods like SGC, spectral

7
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Table 1: Experimental results of some baselines and our Laplacian sparsification entangled methods
on multiple small-scale datasets. Model name with suffix “-LS” represents the spectral methods
entangled with our proposed method. The lines beginning with “∆” reveal the performance differ-
ence between the base model and its variation. Most evaluation metrics are accuracy(%), but ROC
AUC (%) for datasets with 2 classes (Twitch-de, and Twitch-gamers / Penn94 in Table 2). The bold
font highlights the best results, whereas the underlined numbers indicate the second and third best.

Dataset Cora Cite. PubM. Actor Wisc. Corn. Texas Photo Comp. T-de
H(G) 0.810 0.736 0.802 0.219 0.196 0.305 0.108 0.827 0.777 0.632

MLP 76.72 77.29 86.48 39.99 90.75 92.13 92.11 90.11 85.00 68.84
GAT 86.80 81.15 86.61 35.26 69.13 71.97 79.02 93.31 88.39 67.90
GCNII 88.52 81.24 89.17 41.20 82.88 90.49 84.75 94.20 88.55 68.03

GCN 87.78 81.50 87.39 35.62 65.75 71.96 77.38 93.62 88.98 73.72
SGC 87.24 81.53 87.17 34.40 67.38 70.82 79.84 93.41 88.61 73.70
∆ -0.54 +0.03 -0.22 -1.22 +1.63 -1.14 +2.46 -0.21 -0.37 -0.02

GPR 88.80 81.57 90.98 40.55 91.88 89.84 92.78 95.10 89.69 73.91
GPR-LS 89.31 81.65 90.95 41.82 93.63 91.14 92.62 95.30 90.47 73.49
∆ +0.51 +0.08 -0.03 +1.27 +1.75 +1.30 -0.16 +0.20 +0.78 -0.42

APPNP 88.69 81.32 88.49 40.73 90.38 90.98 90.82 93.82 86.97 68.28
APPNP-LS 88.44 82.28 88.70 41.98 91.00 92.30 90.98 93.79 87.84 72.82
∆ -0.25 +0.96 +0.21 +1.25 +0.62 +1.32 +0.16 -0.03 +0.87 +4.54

GNN with static polynomial coefficients like APPNP, and spectral GNN with learnable coefficients
GPRGNN. For the APPNP and GPR-GNN, we entangle them with our proposed Laplacian sparsi-
fication method for the effectiveness test. All the baselines are reimplemented with Pytorch (Paszke
et al., 2019) and PyG (Fey & Lenssen, 2019) library modules as competitors. Detailed parameter
matrix and reproduction guidance are stated in Appendix A.4.

Datasets. All the baselines and our proposed method are tested with various datasets with diverse
homophily and scales. Cora, Citeseer, and PubMed (Sen et al., 2008; Yang et al., 2016) have been
the most widely tested citation networks since the emergence of the GCN. Photos and comput-
ers (McAuley et al., 2015; Shchur et al., 2018) are the segment of the co-purchase graphs from Ama-
zon. Actor (Pei et al., 2020) is the co-occurrence graph of film actors on Wikipedia. Cornell, Texas,
and Wisconsin (Pei et al., 2020) are the webpage hyperlink graphs from WebKB. Twitch-de and
Twitch-gamers (Lim et al., 2021) are the social network of Twitch users. Penn94 (Lim et al., 2021)
is a friendship network from the Facebook 100 networks. Ogbn-arxiv and Ogbn-papers100M (Hu
et al., 2020) are two public datasets proposed by the OGB team. The downstream task of these
datasets is node classification. Detailed information on the datasets is stated in Appendix A.3.

Configurations. All the experiments except those with dataset Ogbn-papers100M are conducted on
the server equipping GPU NVIDIA A100 40GB. For Ogbn-papers100M, we deploy our experiment
on the server with GPU NVIDIA A100 80GB and 512G RAM. Detailed information on experimen-
tal environments and package versions are stated in Appendix A.4.1.

6.2 RESULTS ON SMALL-SCALE REAL-WORLD DATASETS

In this section, we conduct full-supervised transductive node classification tasks on 10 small-scale
real-world datasets. The detailed results are presented in the Table 1. Please note that we evaluate the
relative performance change between the original base model and its variant, with a clear distinction
marked by the horizontal line.

We first examine the comparison of GCN and SGC. SGC can be seen as the detached version of
GCN, which first executes a K-hop graph propagation (K = 2 in practice), followed by the linear
layers. Our empirical findings verify that the detaching manner does exert a negative influence on
the performance of GCN. Despite SGC exhibiting occasional performance improvements on specific
small-scale datasets, the overall results are still distant from the powerful baseline GPR.

The remaining entries in Table 1 offer an insightful comparison between some well-established GNN
models, chosen spectral works, and their Laplacian sparsified variation. GPR-GNN (abbreviated as
GPR) is one of the strongest spectral GNNs with a learnable polynomial filter, making our evaluation
promising. The practical performance of GPR-GNN with Laplacian sparsification is superior to its
original version, even under the potential risk of effect loss caused by the approximation.
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Table 2: Experimental results of some baselines and our Laplacian sparsification entangled meth-
ods on multiple medium- and large-scale datasets. Proposed results shares the same annotation
formats with Table 1, whereas asterisk(∗) denotes that the result is generated by detached models.

Dataset Ogbn-arxiv Twitch-gamers Penn94 Ogbn-papers100M
H(G) 0.655 0.554 0.470 -

MLP 54.04 64.90 84.17 41.36
GAT 70.45 62.47 74.14 (GPU OOM)
GCNII 70.64 63.10 75.19 (GPU OOM)

GCN 70.18 67.86 82.55 (GPU OOM)
SGC 70.35 66.87 (GPU OOM) 59.26∗

∆ +0.17 -0.99 - -

GPR 71.03 66.69 82.92 61.68∗
GPR-LS 70.32 66.45 85.00 61.76
∆ -0.71 -0.24 +2.08 +0.08

APPNP 69.87 65.11 82.89 (GPU OOM)
APPNP-LS 69.08 65.83 83.17 62.10
∆ -0.79 +0.72 +0.28 -

We choose APPNP as the typical baseline for those spectral works with static polynomial filters. In
our implementation, the number of sampled edges for the Laplacian sparsification in spectral works
with static polynomial filters is a mere fraction (specifically, k times less) when compared to those
with learnable filters. Surprisingly, APPNP-LS exhibits equivalent or even superior performance
compared to the original APPNP while achieving a similar performance elevation to the GPR series,
despite employing far fewer sampled edges.

6.3 RESULTS ON LARGE-SCALE REAL-WORLD DATASETS

To further assess the scalability of both our models and the baselines, we conduct experiments on
a diverse range of medium- and large-scale real-world datasets. Note that the dataset Penn94 con-
tains high-dimensional original node representation, and Ogbn-papers100M includes an extensive
network with over 108 nodes and 109 edges. The experimental results are presented in Table 2.

As is shown in Table 2, our models consistently deliver competitive results even as we scale up to
large datasets. Interestingly, on the heterophilous datasets proposed by Lim et al. (2021), our mod-
els show a slight performance advantage over the corresponding base models, despite the inherent
approximation imprecision. This phenomenon shows that the Laplacian sparsification possesses the
outstanding ability in 1) denoising, i.e. sampling the unnecessary neighbor connections with low
probabilities, and 2) approximating the desired complex filters tailored to the heterophilous graphs.

As data scales up, many existing models suffer scalability challenges. For instance, the standard
SGC cannot execute forward propagation on Penn94 without preprocessing since Penn94 contains
1.4 million edges and 4,814 dimensions of original features. The graph propagation leads to GPU
out-of-memory errors without the dimension reduction. The dashed lines in Table 2 signify instances
where the model cannot be trained on our devices. For SGC and GPRGNN, we preprocess the graph
propagation of the required hops on Ogbn-papers100M. Our results clearly demonstrate that GPR-
LS attains the performance of the corresponding decoupling method. APPNP-LS allows APPNP to
function normally within limited storage space. These outcomes validate the effectiveness of our
proposed method in significantly enhancing the scalability of conventional spectral approaches.

7 CONCLUSION

In this paper, we present a novel method centered on Laplacian sparsification to significantly en-
hance the scalability of spectral GNNs. Our approach demonstrates its capability to approximate
the equivalent propagation matrix of Laplacian filters, making it compatible with existing scalable
techniques. We provide the theoretical proof affirming that our model produces the correct sparsifier
with a high probability, low approximation parameter ε, and an acceptable number of non-zeros in
the propagation matrix. The experimental results validate that our methods yield comparable or even
superior performance compared to the corresponding base models. This remarkable achievement is
particularly noteworthy considering that we sample far fewer edges than the theoretical bound, un-
derscoring the exceptional ability of our method to approximate desired filters.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Joshua D. Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral sparsi-
fication of graphs: theory and algorithms. Commun. ACM, 56(8):87–94, 2013. doi: 10.1145/
2492007.2492029.

Julian Busch, Jiaxing Pi, and Thomas Seidl. Pushnet: Efficient and adaptive neural message pass-
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A APPENDIX

A.1 PROOFS OF THE PROPOSED THEORIES

A.1.1 DETAILED ANALYSIS ABOUT SLSGC AND GLSGC ALGORITHM

In this section, we begin by restating the previously established conclusion. The weight of a path,
denoted as p = (u0, u1, ..., ur) can be formally expressed as

w(p) =

∏r−1
i=0 Aui−1,ui∏r−1
i=1 Dui,ui

.

This value is symmetrical when viewed from u0 and ur, which is a slight deviation from the random
walk probability, as it encompasses the probability of the walk starting from the initial node.

The upper bound of effective resistance for a path p on the weighted graph can be expressed as

Rsup,Gr (u0, ur) =

r−1∑
i=0

2

Aui,ui+1

,

where p is a path within graph G, startingfrom u0, ending at ur, and possessing a length of r.
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As proposed by Cheng et al. (2015), we restate the conclusion that∑
p=(u0,··· ,ur)

w(p)Rsup,Gr (u0, ur) =
∑
p

(
r−1∑
i=0

2

Aui,ui+1

)(∏r−1
j=0 Auj ,uj+1∏r−1
j=1 Duj ,uj

)

= 2
∑
p

r∑
i=1

(∏i−1
j=1 Auj−1,uj

∏r−1
j=i Auj ,uj+1∏r−1

j=1 Duj ,uj

)

= 2
∑
e∈E

r∑
i=1

 ∑
p|(ui−1,ui)=e

∏i−1
j=1 Auj−1,uj∏j−1
i=1 Duj ,uj

·
∏r−1

j=i Auj,uj+1∏r−1
j=i Duj ,uj


(3)

= 2
∑
e∈E

r∑
i=1

1

= 2mr. (4)

This conclusion holds since Du,u =
∑

v∈V Au,v . Recall that the derivation of Equation 3 implies
the sampling method process of the Laplacian sparsification.

For the proposed Algorithm 1, the probability of sampling a distinct path p = (u0, · · · , ur) can be
derived as

Pr(p = (u0, · · · , ur|e, k)) = Pr((uk−1, uk) = e) · Pr(p = (u0, · · · , ur)|(uk−1, uk) = e)

=
1

m
·
k−1∏
i=1

Aui,ui−1

Dui,ui

·
r−1∏
i=k

Aui,ui+1

Dui,ui

=
1

m
·

∏r
i=1 Aui−1,ui(∏r−1

i=1 Dui,ui

)
·Auk−1,uk

.

Since e is sampled uniformly at random, as indicated by the term Pr(uk−1, uk) = e above, we now
consider the randomness introduced by k. k is also sampled uniformly at random. Thus, eliminating
k finally yields

Pr(p = (u0, · · · , ur)) =

(
1

m
·
∏r

i=1 Aui−1,ui∏r−1
i=1 Dui,ui

)(
1

r
·

r∑
k=1

1

Auk−1,uk

)

=
1

2mr
w(p)Rsup,Gr

(p).

Since all the edge weights are considered as 1 on unweighted graphs, the upper bound Rsup,Gr is 2r
for any p with length r. Consequently, the probability of sampling a distinct path p is proportional
to w(p). Follow Equation 4, the summation of w(p) for any length r is m. We can execute the
Monte-Carlo sampling M times to generate M path with length r and weight m/M to generate the
unbiased approximation of D(D−1A)r.

Cheng et al. (2015) have proven that there exists an algorithm that employs the process out-
lined above to generate an ε-sparsifier of D(D−1A)r within M = O(n log n/ε2) edges
with the probability 1 − 1/n at least. Our final objective is to approximate the D−1/2 ·
D
(∑K

k=0 wk

(
D−1A

)k)
D−1/2 proposed in Equation 1.

In general, all of the sampled edges (u0, ur), representing path p = (u0, ..., ur), should be multiplied
by a correction coefficient of d−1/2

u0 d
−1/2
ur , intuitively.

For random walk polynomials with static coefficients, such as in SLSGC, one effective method to
approximate the middle term is to distribute all the edges with the probability proportional to |wi| for
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each path length i. Hence, we can first pick the length i with the probability Pr{r = i} = |wi|/∥w∥1,
then sample the edge and correct the edge weight with d

−1/2
u0 d

−1/2
v0 sgn(wi)∥w∥1 to compensate for

the rescaling of the probability. This process intuitively maintains the unbiased approximation and
the Laplacian sparsification properties.

For random walk polynomials with learnable coefficients, the models are required to generate the
correct hop-independent derivative of the wi. This limitation prevents us from directly sampling
with wk. Instead, we may sample the graph hop-by-hop, meaning that for each random walk length
i, we independently generate the sparsifier of graph D(D−1A)i and stack them with corresponding
coefficients wi. To maintain the property of being an ε−sparsifier of the given graph, one sufficient
condition is that all the generated sparsifiers are ε-sparsifiers. This method increases the required
number of generated edges to O(Kn log n/ε2), and the probability decreases to (1 − 1/n)K ≥
1−K/n. Since K is a predefined constant and K ≪ n, the complexity does not change significantly.

A.1.2 PROOF OF THEOREM 4.3

We can begin by considering the probability of the sampling method selecting a distinct path on the
graph. Assume the desired path is p = (u0, · · · , ur) and the first selected node is u, we can derive
the probability as follows:

Pr(p = (u0, · · · , ur)) = Pr(u = u0) · · · Pr(p = (u0, · · · , ur)|u = u0)

=
Du0,u0∑
v∈V c Dv,v

·
r−1∏
i=0

Aui,ui+1

Dui,ui

=
1∑

v∈V c Dv,v
·
∏r−1

i=0 Aui,ui+1∏r−1
i=1 Dui,ui

=
w(p)∑

v∈V c Dv,v
,

where V c is the set of nodes where the start of random walks are selected from.

From the derivation of Equation 4, we can conclude that the summation of weights of all the paths
starting from node u can be divided into Du,u series, where each series starts with one of the Du,u

edges incident with node u. Since the summation of all the paths with one distinct k satisfying
(uk, uk+1) = e is 1, we have the summation of weights of all the paths starting from u is Du,u. This
means the probability of sampling a distinct path is proportional to its weight.

The entry
(
D(D−1A)r

)
i,j

represents the combination of the weights of all the path p = (u0 =

i, u1, · · · , ur−1, ur = j). For each sampled path, we can correct it by multiplying it with
1
M

∑
v∈V c Dv,v to obtain an unbiased approximation of the weight of each path. The union of

the paths will inevitably generate an unbiased approximation of the corresponding rows of V c in
D(D−1A)r. Thus, the final weight generated for the path p = (u0, · · · , ur) is

d
−1/2
u0 d

−1/2
ur

M

(∑
v∈V c

Dv,v

)
.

A.2 EXAMPLE PSEUDO-CODES OF THE ENTANGLED

A.2.1 APPNP

This section presents the pseudo-code of Laplacian sparsification entangled APPNP in Algorithm 4.
Note that the hop weight matrix W is not learnable. W is predefined as W0,i = α(1− α)i, i ̸= K
and W0,K = (1− α)K , where α is a hyper-parameter.

A.2.2 GLSGC AND GPRGNN-LS

This section presents the pseudo-code of constructing a Laplacian sparsified random walk ma-
trix polynomial with learnable coefficients in Algorithm 5 and Laplacian sparsification entan-
gled GPRGNN in Algorithm 6. Note that the hop weight matrix W is learnable. Please follow
GPRGNN (Chien et al., 2021) for more details of the initialization of W.
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Algorithm 4: APPNP with Laplacian Sparsification
Input: Node embeddings X, training status T .
Input: Model Saved: Vertice set V , edge set E, degrees d, maximum neighbor hop K,

sampling number M , hop weight matrix W.
Output: Processed node embeddings X̃

1 X← Linear(X)
2 if T then
3 Ẽ ← SLSGC(W0)

4 X̃← A round of message passing of X on edge set Ẽ
5 else
6 X̃←W0,0X
7 for i from 1 to K do
8 X← A round of message passing of X on edge set G.E with weights D−1/2AD−1/2

9 X̃← X̃+W0,iX

10 # Possibly move ahead.
11 X̃← Linear(X̃)

12 return X̃

Algorithm 5: General Laplacian Sparsified Graph Construction (GLSGC)
Input: Hop weights w.
Input: Model Saved: Vertice set V , edge set E, degrees d, maximum neighbor hop K,

layer-wise sampling number M .
Output: Weighted edge set Ẽ after laplacian sparsification.

1 m, Ẽ ← |E|, ∅
2 for each v ∈ V do
3 Ẽ ← Ẽ ∪ ((v, v),w0)

4 for k from 1 to K do
5 for j from 1 to M do
6 (u, v)← Edge Sampling(E, k)

7 Ẽ ← Ẽ ∪
(
(u, v),wkd

−1/2
u d

−1/2
v · mM

)
8 return Ẽ

A.2.3 NODE-WISE LAPLACIAN SAMPLING

In this section, Algorithm 7 presents the pseudo-code of the node-wise Laplacian sampling algorithm
for semi-supervised tasks.

A.3 DATASET DETAILS

Here we list the detailed information of used datasets in the experiment. All the information we
proposed here refers to the original version of data collected by PyG. All the graphs are not converted
to the undirected graph and added self-loops, which are precomputed and saved.

A.4 EXPERIMENT DETAILS

A.4.1 CONFIGURATIONS

Here we list the detailed information on the experimental platform and the environment we deployed.

• Operating System: Red Hat Linux Server release 7.9 (Maipo).

• CPU: Intel(R) Xeon(R) Gold 8358 64C@2.6GHz.
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Algorithm 6: GPRGNN with Laplacian Sparsification
Input: Node embeddings X, training status T .
Input: Model Saved: Vertice set V , edge set E, degrees d, maximum neighbor hop K,

sampling number M , hop weight matrix W.
Output: Processed node embeddings X̃

1 X← Linear(X)
2 if T then
3 Ẽ ← GLSGC(W0)

4 X̃← A round of message passing of X on edge set Ẽ
5 else
6 X̃←W0,0X
7 for i from 1 to K do
8 X← A round of message passing of X on edge set G.E with weights D−1/2AD−1/2

9 X̃← X̃+W0,iX

10 # Possibly move ahead
11 X̃← Linear(X̃)

12 return X̃

Algorithm 7: Node-Wise Laplacian Sampling
Input: Hop weights w, batch B
Input: Model Saved: Vertice set V , edge set E, degrees d, maximum neighbor hop K,

sampling number M .
Output: Weighted edge set Ẽ after random walk sampling.

1 s←∑
u∈B du

2 Ẽ ← ∅
3 for k from 1 to K do
4 for j from 1 to M do
5 u← sample a node in B from distribution Pr{u = u0} = du0/s
6 v ← the end of a random walk on E (i.e. graph G), starting from u with length k

7 Ẽ ← Ẽ ∪
(
(u, v),wkd

−1/2
u d

−1/2
v · s

M

)
8 return Ẽ

• GPU: NVIDIA A100 40GB PCIe.
GPU: NVIDIA A100 80GB PCIe for the experiment on Ogbn-papers100M.

• GPU Driver: 525.125.06.
• RAM: 512G.
• Python: 3.10.6.
• CUDA toolkit: 11.3.
• Pytorch: 1.12.1.
• Pytorch-geometric: 2.1.0.

A.4.2 DETAILS FOR SMALL-SCALE EXPERIMENTS.

For all the datasets involved in Table 1, we conduct a full-supervised node classification experiment.
Except for Twitch-de, all the datasets are randomly divided into 10 splits with the commonly adapted
training/validation/test proportions of 60%/20%/20%. For the Twitch-de, we use the default 5 splits
proposed by PyG and propose the average performance of all the datasets.

We limit the hidden size to 64 and the layers of MLP to 2 for a relatively fair comparison among
all the tested models. We propose the best hyperparameters of our Laplacian sparsification extended
models in Table 4 and 5 for full reproducibility.

17



Under review as a conference paper at ICLR 2024

Table 3: Detailed information about used datasets.
Dataset Nodes Edges Features Classes H(G) scale

Cora 2,708 5,278 1,433 7 0.810 small
Citeseer 3,327 4,552 3,703 6 0.736 small
PubMed 19,717 44,324 500 3 0.802 small
Actor 7,600 30,019 932 5 0.219 small
Wisconsin 251 515 1,703 5 0.196 small
Cornell 183 298 1,703 5 0.305 small
Texas 183 325 1,703 5 0.108 small
Photo 7,650 119,081 745 8 0.827 small
Computers 13,752 245,861 767 10 0.777 small
Twitch-de 9,498 153,138 2,514 2 0.632 small
Ogbn-arxiv 169,343 1,166,243 128 40 0.655 medium
Twitch-gamers 168,114 6,797,557 7 2 0.554 medium
Penn94 41,554 1,362,229 4,814 2 0.489 medium
Ogbn-papers100M 111,059,956 1,615,685,872 128 172 - large

Table 4: The hyper-parameters of APPNP-LS on small-scale datasets.
Dataset learning rate weight decay dropout=dprate α K ec

Cora 0.05 0.0005 0.5 0.1 5 10
Citeseer 0.01 0 0.8 0.5 10 10
PubMed 0.05 0.0005 0.0 0.5 10 10
Actor 0.01 0.0005 0.8 0.9 2 10
Wisconsin 0.05 0.0005 0.5 0.9 10 20
Cornell 0.05 0.0005 0.5 0.9 5 20
Texas 0.05 0.0005 0.8 0.9 2 20
Photo 0.05 0 0.5 0.5 5 10
Computers 0.05 0 0.2 0.1 2 10
Twitch-de 0.01 0.0005 0.5 0.1 2 10

A.4.3 DETAILS FOR LARGE-SCALE EXPERIMENTS

For all the datasets involved in Table 2, we conduct a supervised node classification experiment.
Since the proportion of training nodes in Ogbn-papers100M is small, we consider it a semi-
supervised task. All the datasets here have the default splits provided by PyG. For Twitch-gamers
and Penn94, we propose the average accuracy of all the default splits. For OGB datasets, we re-
peat the experiment on the single split 5 times with different random seeds and report the average
accuracy.

We limit the hidden size to 128 and the layers of MLP to 3 at most for a relatively fair comparison
among all the tested models. We propose the best hyperparameters for our Laplacian sparsification
extended models in Table 6 and 7 for full reproducibility.
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Table 5: The hyper-parameters of GPR-LS on small-scale datasets.
Dataset lr=prop lr wd=prop wd dropout=dprate α K ec

Cora 0.05 0.0005 0.8 0.9 10 3
Citeseer 0.01 0 0.2 0.5 10 10
PubMed 0.05 0.0005 0.2 0.5 5 10
Actor 0.05 0.0005 0.5 0.5 10 3
Wisconsin 0.05 0.0005 0.8 0.9 10 10
Cornell 0.05 0.0005 0.5 0.9 2 1
Texas 0.05 0.0005 0.8 0.5 10 10
Photo 0.05 0.0005 0.8 0.1 2 10
Computers 0.05 0 0.5 0.1 10 10
Twitch-de 0.01 0.0005 0.8 0.1 2 20

Table 6: The hyper-parameters of APPNP-LS on medium- and large-scale datasets.
Dataset learning rate weight decay dropout=dprate α K ec

Ogbn-arxiv 0.01 0 0 0.1 5 10
Twitch-gamer 0.01 0 0 0.5 2 10
Penn94 0.01 0 0.5 0.9 10 10
Ogbn-papers100M 0.01 0 0.2 0.1 2 -

Table 7: The hyper-parameters of GPR-LS on medium- and large-scale datasets.
Dataset lr=prop lr wd=prop wd dropout=dprate α K ec

Ogbn-arxiv 0.01 0 0.2 0.5 10 10
Twitch-gamer 0.05 0 0.5 0.1 5 10
Penn94 0.01 0 0.5 0.1 2 10
Ogbn-papers100M 0.01 0 0.2 0.9 2 -
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