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A Multidimensional Tensor Low Rank Method
for Magnetic Resonance Image Denoising

Lizhen Deng , Yuxin Cao , Zhongyang Wang , Xiaokang Wang , and Yu Wang

Abstract—In this paper, we present the Magnetic Resonance
Image (MRI) denoising method via nonlocal multidimensional low
rank tensor transformation constraint (NLRT). We first design
a nonlocal MRI denoising method by non-local low rank tensor
recovery framework. Furthermore, a multidimensional low rank
tensor constraint is used to obtain low-rank prior information com-
bined with 3-dimensional structure feature of MRI image cubes.
Our NLRT can achieve denoising by retaining more image detail
information. The optimization and updating process of the model is
solved via the alternating direction method of multipliers (ADMM)
algorithm. Several state-of-the-art denoising methods are selected
for comparative experiments. In order to reflect the performance
of the denoising method, Rician noise with different levels is added
to the experiment to analyze the results. The experimental results
prove that our NLTR has more outstanding denoising ability and
can obtain better MRI images.

Index Terms—Medical image, MRI denoise, ADMM, nonlocal
tensor.

I. INTRODUCTION

M EDICAL imaging is a key technology in modern medical
research and is of great importance to medical treat-

ment [1], [2], [3], [4]. Due to its benefits of high tissue and
high resolution, multi-sequence imaging, magnetic resonance
imaging (MRI) is a widely utilized medical imaging technology.
Unfortunately, it has low resolution and large noise artifacts
after reconstruction, which affects image quality and subsequent
clinical diagnosis and treatment. Therefore, MRI denoising has
become an important pre-processing step to improve the quality
of medical examination and analysis tasks such as reconstruction
or segmentation. However, it is quite difficult to maintain the
denoising in whole three-dimensional MRI because of high
computational cost and heavy information.
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In recent years, many methods have been proposed to solve
the difficulty of denoising from MRIs [5], which can be can
be summarized into several categories: filtering approach [6],
transform domain approach [7] and statistical approach. The spa-
tial filter [8] reduced the Gaussian noise in MRI by convolving
the image in the spatial domain, smoothing the final image and
reducing the high spatial frequencies in the image. The temporal
filter can avoid blending artifacts by choosing a suitable relation-
ship between sampling intervals. However, it cannot be widely
used because too narrow a frequency response will degrade the
signal at the edge of the image, or too wide a frequency response
will introduce noise. The NL-means filter mainly realized the
denoising by comparing image patches and estimating each pixel
of the image as a weighted average of pixels in a search window.
Due to its simplicity and high-denoising performance, the NL-
means filter has been adapted in the denoising of MR images
widely [9], [10]. Manjon et al. [11] modified the original NLM
algorithm and combined the information of various channels to
obtain the similarity measure between multi-spectral sequences,
and then reduced the noise of multi-spectral MRI.

In addition to the filter-based method, the transform domain-
based method is also a common denoising method. The principle
is to project the noisy image into the transform domain to obtain
the transform coefficients. This method used the separation
transform coefficient between the image signal and the noise
signal to achieve the denoising process [12]. Wavelet transform
and block matching 3D filtering algorithms (BM3D) [13] were
both common transform domain denoising algorithms. The main
drawback of the wavelet transform method is that the denoising
process eliminates some structural information. The BM3D
algorithm combines the non-local self-similarity of the image
with the wavelet transform method, which overcomes the defects
of the wavelet transform to some extent. Thus, it is often used
as the baseline of MRI denoising [14].

Statistical learning-based denoising methods have gradually
become a research hotspot recently, especially the methods
based on dictionary learning and image block prior knowledge
learning. The principle of dictionary-based learning for denois-
ing is to exploit the sparsity of images and train on a large
image dataset to obtain a redundant dictionary. The trained
dictionary is then used to represent the noisy images for the
purpose of denoising. Although the dictionary learning-based
denoising method achieved good results [15], this denoising
method ignores the similarity of the images themselves. More-
over, dictionary learning itself is a very time-consuming process.
Image blocks contain rich local structure information, which
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can provide enough a prior information for image denoising.
Meanwhile, denoising small blocks of images can reduce the
computational effort and improve the computational efficiency.
Yu et al. [16] demonstrated that the Gaussian mixture model
and the maximum a posterior algorithm based on expectation
maximization (MAP-EM) can provide a general and efficient
solution to the inverse problem in image processing. Based on
this, a segmented linear estimation algorithm based on image
chunking is proposed to solve the image inverse problem.

In recent years, deep learning has rapidly penetrated into vari-
ous fields of research [2], [17], [18], [19], [20], [21]. As research
into MRI denoising continues, deep learning is beginning to
be applied to this task. Compared to traditional MRI denois-
ing algorithms, network training with deep learning avoids the
problems of oversimplified parameter selection and sparse trans-
formations. Converting the optimisation process of traditional
iterative denoising algorithms to deep learning network training
enables faster and more accurate denoising and reconstruction
of MRI. Unlike existing MRI denoising methods that utilise
spatial neighbourhood information around pixels or patches, Li
et al. [22] proposed a progressive network learning strategy by
fitting pixel-level and feature-level intensity distributions. The
network consists of two residual blocks, one for fitting the pixel
domain, one for fitting the feature domain, and one for fitting
the feature domain. [23] proposed a new approach to MR image
denoising using conditional generative adversarial networks
(GANs). Specifically, CNNs are utilised as discriminators to
remove as much noise as possible from noisy MRI images using
a generator based on a convolutional encoder-decoder network.
The whole architecture is trained by adversarial learning. But the
limitation of deep learning strategy is its lack of adaptability.
It relies excessively on k-space data for training images and
scanning methods. Therefore, Hou et al. proposed an iterative
method IDPCNN [24] for MRI reconstruction by combining the
advantages of traditional and deep learning methods. Denoising
and projection are the two phases that make up the approach.
The denoising step uses a state-of-the-art denoiser to smooth
the image. The projection stage investigates a prior information
from the frequency domain and iteratively adds details to the
spatial domain.

To improve the performance of 3D MR image denoising, this
paper uses 3D operators to characterize MR images. Similar
patches are filtered collaboratively while maintaining the nat-
ural 3D morphology of MRI. Based on the similarity of the
patches with same size, multi-dimensional data sets of MR
images are grouped into multiple groups. The use of high-
dimensional matching blocks allows for the capture of local
correlations for each 3D image patch and non-local correla-
tions for different image patches. And since the nonlocal low
rank constraint equilibrium matrix scheme is very balanced,
imposing NLRT a prior on these tensors can effectively learn the
correlation of the three modes. Thus, NLRT can effectively un-
derstand the correlation between spatial, spectral and non-local
modes in multidimensional 3D MR images with low-rank prior
information. The optimization-as-update process designs the
classical ADMM algorithm into an MRI reconstruction frame-
work. The framework is able to use existing image denoising

methods as a prior knowledge for reconstruction. It has the
advantages of fewer parameters and more stable influence of
parameter size on reconstruction quality. On the other hand, it
is able to apply relatively mature image denoising methods to
ADMM reconstruction, which makes the framework extensive.

In this paper, we study MRI denoising algorithms based on
nonlocal low-rank tensor transform constraints, with the follow-
ing main contributions:
� We exploit the low-rank nature of high-dimensional images

and the advantages of tensor decomposition in processing
high-dimensional data by combining the 3D structural
features of the MRI image cube with non-local low-rank
regularisation terms to obtain a prior information on the
image features.

� The correlation between MRI spatial modes, interlaminar
modes and non-local domain modes can be effectively
captured by forming four-dimensional tensor feature ex-
pressions using raw image features and low-rank features.
And the ADMM method is used to decompose it into four
subproblems to be solved optimally in separate iterations.

� In order to analyse the denoising performance of NLRT,
this paper conducts extensive experiments by comparing
the experimental results of several advanced denoising
methods on different MRI datasets and the effectiveness
of low-rank denoising is verified by ablation studies.

The rest of the paper is organized as follows: Section II
presents a review of low-rank constraint and tensor decompo-
sition methods, providing a detailed description of some algo-
rithms belonging to these classes. Section III is devoted to the
model of our proposed algorithm and the optimization process of
ADMM. Section IV reports extensive experimental simulations,
as well as a detailed discussion of the results. Finally, Section V
draws conclusions.

II. RELATED WORK

A. Low Rank Constraint

The mathematical representation of an image is usually de-
scribed in the form of a matrix. The rows and columns of the
matrix correspond to the height and width of the image, and
the elements of the matrix correspond to the intensity values
at the corresponding pixel positions of the image. The pro-
cessing of digital images is often done by means of matrices,
and the properties of matrix rank are also applicable in image
processing [25], [26], [27], [28], [29], [30]. The rank of the image
matrix can indicate the richness of information in an image. The
elements in the image matrix are arbitrary and can represent
the structure of the image, the color, and the surrounding pixel
points. In addition, there are many non-locally similar regions in
the images, so the rank of all natural images is very low. If there is
too much noise in an image, it will add extra clutter information
to the image and break the low-rankness of the image. The low
rank of an image indicates that it contains a large amount of
redundant information, which can be used for the denoising
process of noisy images and also for the recovery of missing
images. Because low-rank priors can effectively learn data re-
dundancy and self-similarity, low-rank learning has been widely
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Fig. 1. (a) The weighted kernel norm low-rank constraint denoising process. (b) The three-dimensional tensor decomposition denoising process.

used for matrix completion [31], image fusion [32], clustering
[33], and pattern recognition [34]. The MRI downsampling data
reconstruction non-local mean method developed in recent years
exploits the similarity and redundancy between blocks. Dong
et al. [35] first combined the nonlocal similarity method with the
low-rank method to reconstruct MRI images using the low-rank
property of nonlocal bidirectional differencing. They proposed
to use the spatially adaptive iterative solar value thresholding
(SAIST) algorithm to solve the problem, which improved the
computational efficiency and reconstruction quality compared
with the BM3D algorithm. Haldar [36] proposed the low-rank
model for local k-domain (LORAKS), which improves the
flexibility of the MR reconstruction framework and is easily
extended to parallel imaging applications. Yoon et al. [37] also
introduced motion compensation based on the block low-rank
method, which effectively improves the sparsity of the data.
In the process of structured low-rank model research, the re-
construction algorithm of this model is also a research hotspot
because the computation is usually large. In this paper, the
ADMM is optimally solved by using the augmented Lagrangian
function which is based on the low-rank algorithm. This can
further improve the reconstruction accuracy and reduce the
computational complexity.

B. Tensor Decomposition

In practical applications, the vast majority of data is three-
dimensional or even higher dimensional. Traditional data repre-
sentation methods based on scalars, vectors and matrices are
obviously difficult to fully represent such high-dimensional
data and its internal structure. Classical methods (e.g., PCA,
SVM, etc.) only vectorize or matrixize high-dimensional data
before analyzing and studying them. The data spatial structure
is often ignored, leading to the problem of corrupted data spatial
structure. Vectorization or matrixization of high-dimensional
data also result in larger dimensional vectors or matrices, which
requires more storage and computation for computers. Tensor
expressions [38] have received much attention because of their
outstanding advantages. As one of the most popular tensor rep-
resentation methods, the tensor training (TT) method defines a

new tensor level called TT level. TT level includes a matrix level
formed by balanced matrix format, i.e., the tensor is constructed
as a matrix along the pattern arrangement. Tensor decomposition
avoids the damage caused by vectorization or matrixization
of high-dimensional data. Since matrices have many similar
features to each other, tensor can be seen as a generalization of
matrices. Zeng et al. [39] proposed a tensor sparse method based
on Kronecker basis representation and applied it to the field of
CT imaging. Yu et al. [40] proposed a CS-DMRI reconstruction
method based on tensor sparse decomposition, which uses tensor
higher-order singular value decomposition (HOSVD) to DMR
signal to perform sparse processing. Yang et al. [41] proposed
to add a weighted schattenp parameter method to the expansion
matrix of each mode of the tensor as the low-rank regular term
of the reconstructed model, and finally solved the optimization
problem using the Bregman iterative algorithm.

III. OUR PROPOSED METHOD

A. The Proposed NLRT Method

The Fig. 2 shows the formation process of the 4-D tensor
rank constraint of the MR image and the objective function.
As shown in the Fig. 2, the kth group can constitute a 4-D
tensorZk ∈ RdL×dW×dH×Nk , which has four modes, i.e., length
mode, width mode, height mode and nonlocal mode. Inspired
by tensor training [42], [43], the following will introduce our
tensor low rank constraint function in detail.

In general, the rank constraint of a matrix M is nonconvex and
hard to optimize, thus the nuclear norm ‖M‖∗ is usually used to
replace the rank constraint, which is defined as

‖M‖∗ =
∑
i

σi(M) (1)

where σi(M) denotes the i−th singular value of the matrix M .
Then the matrix can get the closed-form solution by singular
value decomposition(SVD). According to [44], the log sum of
singular values is more effective to solve the rank minimization
problems, which can be defined as

∑
i log(σi(M) + ε).
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Fig. 2. Illustration of NLRT of 3-D MR images. The 3-D MRI is first decomposed and feature extracted, and the feature cubes are classified for similarity, and
then constrained using low rank after conversion into a 4-D tensor. For algorithm optimization we introduce Lagrange multipliers with three each auxiliary variables
for ADMM iterative solution. Y(3) is the three mode examination matrix of the sampled version of the 4-D tensor Z.

Taking the log sum into the tensor to consider, the rank
constraint of 4-D tensor Zk can be defined as:

∥∥Zk
∥∥
RC

=

3∑
t=1

αt

∑
i

log(σi(M) + ε) (2)

where αt is the trade-off parameter, which is defined as
follows:

αt =

√
βt∑3

t=1

√
βt

,

βt = min

⎛
⎝ t∏

j=1

Ii

3∏
j−t

Ij

⎞
⎠ , t = 1, 2, 3 (3)

where Ij denotes the dimension of jth mode of ten-
sor Zk. The rank constraint ‖Zk‖TT contains the rank
of matricesZk

〈1〉 ∈ RdL×dW dHNk ,Zk
〈2〉 ∈ RdLdW×dHNk ,Zk

〈3〉 ∈
RdLdW dH×Nk , Zk

〈1〉 constrains the pixel information, Zk
〈2〉

presents the image information, and Zk
〈3〉 represents the features

among the tensor cubes.
Because the well-balanced matrization scheme of TT rank

can effectively learn the correlation between spatial patterns,
spectral patterns and nonlocal patterns, this paper combines
the low tensor-train rank (LTTR) of TT rank optimization with
NLRT to impose LTTR constraints on the model, and we can
get the following optimization problems:

min
X(3)

‖Y(3) −X(3)‖2F + λ

K∑
k=1

‖Xk‖RC (4)

where λ is the rank constraint regularization parameter. Com-
bining with (2), the above optimization problem is equivalent as

min
X(3)

‖Y(3) −X(3)‖2F + λ

K∑
k=1

3∑
t=1

αtlog(σi(X
k
〈t〉) + ε) (5)

B. Optimization

For the proposed model is an unconstrained optimization
problem, We utilize the ADMM framework to handle the prob-
lem.

By introducing three variables U = X , V = X and W = X .
The augmented Lagrangian function is shown as follows:

L(U, V,W,X,O, P,Q)=
∥∥X(3)−X(3)

∥∥2
F
+μ

∥∥∥∥U−X+
O

2μ

∥∥∥∥2
F

+ λ

K∑
k=1

α1log(σi

(
Uk
〈1〉
)
+ ε) + μ

∥∥∥∥V −X +
P

2μ

∥∥∥∥2
F

+ λ

k∑
k=1

α2log(σi

(
V k
〈2〉
)
+ ε) + μ

∥∥∥∥W −X +
Q

2μ

∥∥∥∥2
F

+ λ

K∑
k=1

α3log(σi

(
W k

(〈3〉)
)
+ ε) (6)

where O, P and Q are the Lagrangian multipliers and μ is the
penalty parameter. The augmented Lagrangian function can be
minimized by iteratively solving the following subproblems:
� Denoising Module.

X = argmin
X

L(U, V,W,X,O, P,Q)

= argminX
∥∥Y(3) −X(3)

∥∥2
F
+ μ

∥∥∥∥U −X +
O

2μ

∥∥∥∥2
F

+ μ

∥∥∥∥V −X+
P

2μ

∥∥∥∥2
F

+μ

∥∥∥∥W−X+
Q

2μ

∥∥∥∥2
F

(7)

The formula mentioned above is strong convex. Therefore,
X(3) can be solved by gradient descent:

X(3) = [(3μ+ 1)I]−1

[
Y(3) + μ

(
U(3) +

O(3)

2μ

)
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+ μ

(
V(3) +

P(3)

2μ

)
+ μ

(
W(3) +

Q(3)

2μ

)]
(8)

whereU(3), V(3),W(3), O(3), P(3) andQ(3) are three-mode
unfolding matrices of tensors U ,V,W,O,P and Q, re-
spectively. I ∈ RdH×dH is the identity matrix.

� Pixel-level Feature.

U = argmin
U

L(U, V,W,X,O, P,Q)

= argmin
U

μ

∥∥∥∥U −X +
O

2μ

∥∥∥∥2
F

+ λ

K∑
k=1

α1(U
k
〈1〉) (9)

The above problem can be separately solved for each
cluster, i.e.,

argminUμ

∥∥∥∥U −X +
O

2μ

∥∥∥∥2
F

+ λ

K∑
k=1

α1(U
k
〈1〉) (10)

where Uk
〈1〉, X

k
〈1〉 and Qk

〈1〉 are the mode-1 canonical ma-

trices of tensors Uk, X k, Ok. The 4-D tensors Uk, X k,
Ok are constituted by kth cube cluster in Uk, X k, Ok,
respectively. The optimization problem has the following
solution:

Uk
〈1〉 = Uk

1

∑̃k

1
V k
1 , 1 ≤ k ≤ K (11)

where and are acquired by the SVD, i.e.,Xk
〈1〉 −

(
Ok

〈1〉
2µ

)
=

Uk
1

∑k
1 V1.

∑̃k

1 is the diagonal matrix. After obtain
mode− 1 canonical matric Uk

〈1〉, we can acquire tensor

Uk via Uk = fold1(U〈1〉), and U is obtained by placing
the cube clusters Uk, 1 < k < K, into the corresponding
positions.

� Image-level Feature.

V = argmin
V

L(U, V,W,X,O, P,Q)

= argmin
V

μ

∥∥∥∥V −X+
P

2μ

∥∥∥∥2
F

+λ

K∑
k=1

α2(V
k
〈2〉) (12)

� Cube-level Feature.

W = argmin
W

L(U, V,W,X,O, P,Q)

= argmin
W

μ

∥∥∥∥W−X+
Q

2μ

∥∥∥∥2
F

+λ

K∑
k=1

α3(W
k
〈3〉)

(13)

The solution process of V and W is consistent with the
solution of U , which is not fully shown here.

IV. DENOISING EXPERIMENTS

In this section, in order to evaluate the proposed method, we
take use of the well-known BrainWeb 3D MRI datasets [45]
which contains the noise-free T1 weighted dataset (T1w), T2

weighted dataset (T2w) and proton weighted dataset (PDw).
The size of the MR image data is 181× 217× 181with 1× 1×
1 mm3. Similar to [46], we add varying levels of Rician noise
(1− 9% of maximum intensity). Rician noise [47] which is not
additive was generated by adding Gaussian noise to real and
imaginary parts and then computing the magnitude images. In
addition, we analyze the performance of all denoising models
by comparing the values of quantitative measures and visual
graphs. All experiments are implemented in MATLAB on two
RTX3090TI GPUs.

A. Metrics and Comparison Methods

To evaluate the performance of denoising methods, we mainly
use three quantitative measures.
� The first one is the mean square error (MSE) between the

denoised data and ground truth, defined as follows:

MSE =
1

H ×W

H∑
i=1

W∑
j=1

[X(i, j)− Y (i, j)]2 (14)

where (i, j) represents the pixel location, X is the given
target image, Y is the reconstructed image, and H and W
represent the height and width of the image, respectively.

� The second quantitative measure is the structural similarity
index (SSIM), which is consistent with human eye per-
ception. SSIM is a full-reference image quality evaluation
index, which measures image similarity in terms of bright-
ness, contrast, and structure. The value range of SSIM is
[0,1]. The larger the value, the smaller the image distortion.
It is defined as follows:

SSIM =
(2μyμỹ + c1)(2σyỹ + c2)

(μ2
y + μ2

ỹ + c1)(σ2
y + σ2

ỹ + c2)
(15)

where μy and μỹ are mean value of images y and ỹ, σy and
σỹ are the standard deviation of images y and ỹ, σyỹ is the
covariance of y and ỹ, c1 and c2 are constants.

� The last quantitative measure is the peak signal-to-noise
ratio (PSNR), which is the most common and widely used
objective measurement method to evaluate image qual-
ity. PSNR calculates the similarity between two images
and evaluates the noise intensity of a denoised image
relative to the original image. However, it is based on
the error between corresponding pixels, that is, based on
error-sensitive image quality evaluation. A larger value of
PNSR indicates better quality. The MSE-based definition
of PSNR is as follows:

PSNR = 10 ∗ log10
MAX2

MSE
(16)

In order to evaluate the noise suppression ability of the pro-
posed method, we selected four representative methods for com-
parison experiments, and several methods are briefly described
below.
� ANLM [10]. ANLM, the so-called adaptive non-local mean

filter, mainly deals with MRI with spatially varying noise
levels. It uses a new local noise estimation method to
automatically obtain information about the local image
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TABLE I
PSNR, SSIM AND MSE PERFORMANCE COMPARISON OF NOISY OBSERVATION FOR ANLM, MNLM3D, SANLM3D, PRINLM3D AND OUR NLRT ON T1W

DATABASES. THE BEST VALUES ARE MARKED IN RED

noise level from the image to adjust the denoising strength
of the filter.

� PRINLM3D [48]. The pre-filtered rotationally invariant
non-local mean filter (PRINLM3D) is based on a 3D
moving window discrete cosine transform hard threshold
segmentation and a 3D rotationally invariant non-local
mean filter. It has a run time of less than 1 minute and
is available in most clinical and research settings.

� SANLM3D [10]. Spatial adaptive nonlocal mean
(SANLM) uses Gaussian kernel spatial smoothing as
a preprocessing step to average time series from spatially
adjacent voxels. It blurs the tissue boundaries and reduces
the spatial resolution, thus smoothing the common
multi-band EPI (mEPI) noise and improving the tissue
specificity of the default network mapping.

� MNLM3D [49]. Adaptive multi-resolution block-domain
non-local mean filtering (MNLM) based on adaptive soft
wavelet coefficient mixing implicitly adjusts the amount of
denoising based on the spatial and frequency information
contained in the image, which can effectively remove noise
while maintaining fine structure.

B. Evaluation on Synthetic Data

1) Quantitative Analysis: The detailed denoising results of
our NLRT, ANLM, PRI-NLM3D, SANLM3D, and MNLM3D
are reported in Tables I, II, and III. Each denoising model was
tested on three data sets (T1w, T2w, PDw), and the perfor-
mance of the experiment was demonstrated by three indicators
(PSNR, SSIM, MSE). The values in each row of the table are

obtained under different conditions of Rician noise. In order to
highlight the comparison results, we mark the optimal value of
the indicator under each condition in red. As can be seen from
Tables I, II, and III, NLRT has an excellent performance in the
experiment.

In the table, when σ = 1% and σ = 8%, the best performance
of MSE and SSIM is PRINLM3D. Because PRINLM3D makes
use of sparsity and self-similarity to pay more attention to the
elimination of artifacts and other problems in the process of
denoising. The model in this paper is aimed at high-dimensional
tensor structure, and combined with low-rank can better capture
the correlation between different modes, and maintain the de-
tailed texture and overall contour of the image. Except for a few
cases, NLRT obtains the best indicators, especially on the PDw
dataset. Even if the best results are not obtained, the performance
metric value obtained by our method is not much different from
the first one. For example, under the condition that σ = 8%, the
SSIM values of our method are only 0.076% and 0.032% less
than the first place on T1w and T2w datasets, respectively. And
if the σ value is 1%, MSE value of NLRT method ranks second,
which is 0.31 larger than PRINLM3D. When σ > 1, the MSE
value of our NLRT is optimal. On the whole, the performance
of all denoising models decreases with the increase of the noise
ratio, the performance of our model under less noise is much
better than that with more noise, and it is much competitive than
other methods.

2) Qualitative Analysis: To clearly illustrate the perfor-
mance of the comparison method, we choose to compare the
results of the three datasets together to better compare the ad-
vantages and disadvantages. Fig. 3 provide visual evaluations of
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TABLE II
PSNR, SSIM AND MSE PERFORMANCE COMPARISON OF NOISY OBSERVATION FOR ANLM, MNLM3D, SANLM3D, PRINLM3D AND OUR NLRT ON T2W

DATABASES. THE BEST VALUES ARE MARKED IN RED

TABLE III
PSNR, SSIM AND MSE PERFORMANCE COMPARISON OF NOISY OBSERVATION FOR ANLM, MNLM3D, SANLM3D, PRINLM3D AND OUR NLRT ON PDW

DATABASES. THE BEST VALUES ARE MARKED IN RED
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Fig. 3. Example denoising results of compared methods on T1w, T2w and Pdw corrupted with 5% Rician noise. From left to right: clean image, noisy image,
ANLM, PRINLM3D, SANLM3D, MNLM3D and our NLRT. The corresponding PSNR and MSE values of the result plots are shown below each graph, where
the best results are marked in blue, i.e. the metrics of NLRT.

denoising results of T1w, T2w and PDw datasets corrupted with
5% Rician-distributed noise, respectively. It should be noted that
the SPNR and MSE values are marked under each sub-picture.
These two values are obtained after denoising the single picture,
which is different from the average value of the indicators in the
table mentioned above.

As can be seen from these images, the NLRT method is more
effective than the other methods in terms of both the overall
profile and the degree of denoising. In Fig. 2, although the PNRS
values of both ANLM and MNLM3D are above 35 on the T1w
dataset, the overall image after denoising by these two methods
is still blurrier and loses a lot of detailed textures, which means
that the image is heavily smoothed and the quality of the image
after denoising is not excellent enough. Although SANLM3D
retains the detailed texture information better, the PSNR value
is lower and the image denoising is not thorough enough. the
difference of image details between the denoised visual image of
PRINLM3D and the denoised image of NLRT method cannot be
seen directly, but the PANR and MSE values under each image
prove that the denoising performance of our method is better
than that of PRINLM3D, and the PSNR of NLRT is higher than
that of PRINLM3D by 1.11%. T2w dataset and PDw dataset
with similar results. Although the performance of the MNLM3D
method is reduced, our NLRT still maintains optimality, with
PNSR values of 1.05% and 2.32% higher than the second
best PRINLM3D for both plots, respectively. Therefore, on the
whole, the quality of NLRT after denoising is more competitive
than the other compared methods.

C. Discussion

1) Parameter Analysis: As discussed above, the 3D image
patches with same size are grouped into multiple groups accord-
ing to their similarity. However, the actual value of the number
of the groups K is not sure at first. Therefore, it is necessary
and important to find the best value of K. In addition, the value
of λ also has an important influence on the grouping process.
Table IV show that the experiments based on different values of
K or λ which are under fixed conditions obtain different PSNR
values. The experiment was carried out on the brainweb data
and the real data. The experimental settings were the same as
before, with 5% Rician noise added. As shown in Table IV,
λ takes 0.01 and the group number K is taken from 6 to 96 at
intervals of 10. Our model has the highest PSNR experimentally
obtained on the brain map and the real database if K is 16. As
the value of K increases, the value of PSNR decreases gradually.
The main reason is that if the value of K is small, the information
of the formed four-dimensional matrix is not enough, and if the
value of K is too large, the number of clusters becomes dense
and the similarity of 3D image blocks between different clusters
also becomes higher, so that the data features are redundant
which will becomes serious with the bigger K and affect the
experimental effect. In Table IV, we fixed the K value to the
optimal value 16. Similarly, both databases obtained the highest
PSNR when λ = 0.01, that is, the best denoising performance.
And Fig. 4 shows the PSNR curves with the changing values of
K and λ.

Authorized licensed use limited to: University of Sydney. Downloaded on November 13,2024 at 09:04:43 UTC from IEEE Xplore.  Restrictions apply. 



604 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 21, NO. 4, JULY/AUGUST 2024

TABLE IV
PSNR VALUES BASED ON DIFFERENT K AND λ ON BRAINWEB DATA AND REAL DATA

Fig. 4. PSNR curves as a function of parameters K and λ for our NLRT method. (a) Number of groups K. (b) Regularization parameter λ.

TABLE V
REGARDING THE NLRT WITH NO LOW-RANK CONSTRAINTS ON THE PDW DATASET FOR THE ABLATION EXPERIMENTS, THE BEST RESULTS ARE MARKED IN RED

2) Ablation Experiment: The non-local low-rank tensor
transformation constraint has the advantage of strong learning
ability. In order to determine the effectiveness of the denoising
strategy, we conducted ablation experiments on the image pairs
in the TDw data set, and compared the results. This part of
verification includes no LTTR constraint model and our pro-
posed NLRT model. From the qualitative results in Table V,
it can be seen that NLRT performs best in three indicators
(i.e. PSNR, SSIM and MSE), and is the best when σ(%) = 1.
Therefore, it is necessary to carry out appropriate low-rank
constraints on the 4-dimensional tensor to achieve the purpose

of denoising while preserving the image contour and feature
information.

V. CONCLUSION

The NLRT algorithm proposed in this paper combines the
low-rank constraint information obtained from tensor training
with MRI 3D image data to form a 4-dimensional tensor feature
expression, and uses the ADMM method to optimize the solu-
tion. Due to the good performance of the low-rank constraint,
NLRT can preserve the complete image contours with more
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detailed textures while denoising. To verify the effectiveness
of NLRT, three classical datasets are used in the experimental
part to compare with four methods, and collectively, our method
is highly competitive in terms of image quality after denoising.
However, the manual modification in the parameter adjustment
of Rician noise limits the flexibility of the method, which can
be adjusted in an adaptive way to make further improvements in
efficiency in the future.
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