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ABSTRACT

The coverage and composition of the pretraining data corpus significantly im-
pacts the generalization ability of large language models. Conventionally, the
pretraining corpus is composed of various source domains (e.g. CommonCrawl,
Wikipedia, Github etc.) according to certain sampling probabilities (domain
weights). However, current methods lack a principled way to optimize domain
weights for ultimate goal for generalization. We propose DOmain reweighting
with Generalization Estimation (DOGE), where we reweigh the sampling proba-
bility from each domain based on its contribution to the final generalization ob-
jective assessed by a gradient-based generalization estimation function. First,
we train a small-scale proxy model with a min-max optimization to obtain the
reweighted domain weights. At each step, the domain weights are updated to
maximize the overall generalization gain by mirror descent. Finally we use the
obtained domain weights to train a larger scale full-size language model. On
SlimPajama-6B dataset, with universal generalization objective, DOGE achieves
better average perplexity and zero-shot reasoning accuracy. On out-of-domain
generalization tasks, DOGE reduces perplexity on the target domain by a large
margin. We further apply a parameter-selection scheme which improves the effi-
ciency of generalization estimation.

1 INTRODUCTION

Pretrained Large Language Models (LLMs) demonstrate impressive generalization abilities, mak-
ing them the workhorse of today’s NLP research and many practical use cases (Devlin et al., 2019;
Brown et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023a;b). They are trained on very
large text corpora collected from various source domains and can be quickly fine-tuned to many
specific downstream tasks. The composition of a pretraining corpus often depend on the accessi-
bility of each data sources, while not necessarily the optimal for training the model. For example,
72.56% tokens of RedPajama (Together Computer, 2023) are sampled from CommonCrawl, while
only 4.65% are from GitHub. While recent research has demonstrated that the quantity and qual-
ity of the pre-training corpus could substantially affect model’s effectiveness (Kaplan et al., 2020;
Hoffmann et al., 2022; Longpre et al., 2023), there are in contrast relatively few explorations into
how its composition from various source domains could contribute to the generalization ability of
the language model (Lee et al., 2023; Hashimoto, 2021; Xie et al., 2023a). The domain weights
adopted by current state-of-the-art LLMs are mostly determined by heuristics (Gao et al., 2020) or
tuned according to a series of downstream tasks (Du et al., 2022), which can be sub-optimal and
costly.

Recently, Xie et al. (2023a) proposed a learnability-based domain reweighting framework DOREMI,
which settles domain weights using two small-scale auxiliary models: first, a reference model is
"well-trained" using uniform domain weights; next, a second auxiliary model—referred to as proxy
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model—is trained from scratch with the objective to find domain weights that minimize the worst-
case excess loss, i.e. the per-domain loss gap between the proxy model and the well-trained ref-
erence model. They interpret the excess loss as an estimation for the remaining learnability of a
given domain at each training step—a large gap indicating the proxy model can further learn to
model the associated domain. Despite the encouraging empirical results of DOREMI, optimizing
domain weights to maximize the overall learnability summed across all domains (i) creates a strong
dependency on the well-trained model whose capacity can strongly influence the overall accuracy
and requires appropriate tuning, and (ii) creates a dissonance between the ideal goal of minimizing
the average validation loss across domains and the employed objective which seeks to simply mimic
the well-trained model.

To mitigate these issues, we propose DOmain reweighting with Generalization Estimation (DOGE),
which finds optimal domain weights by explicitly optimizing for best generalization to a given set
of domains. We follow the two-stage process of DOREMI which consists of first obtaining domain
weights using proxy models, and, in the second stage, using those weights to train a final larger
model. In contrast to DOREMI, our objective does not require any well-trained model, instead
allowing us to only rely on a single small-scale auxiliary model. At timestep t of the first stage when
training the proxy model, we look for the mixture of domains that will greedily minimize the average
loss across all domains at the next step t + 1. As we derive how to update the domain weights to
achieve that goal, we find a reformulation of the problem with an intuitive interpretation and links
to influence functions (Pruthi et al., 2020). In essence, our method can be summarized as follow:

A data domain should receive a large weight if (i) it contributes to the learning of
other domains or (ii) if it is difficult to learn.

During the optimization of the proxy model, we also leverage recent insights on influence function
(Yeh et al., 2022) to improve our method by filtering out parameters with large cancellation effect.
This has the additional effect of improving the computational complexity of DOGE. Finally, the
domain weights averaged over all steps are taken as the domain-wise sampling weights to train a
full-size language model. A visual overview of the DOGE method is shown in Fig. 1.

Contributions. We summarize our contributions as follows:

• We introduce and rigorously derive DOGE from the explicit objective of generalizing to a
specific set of domains.

• We empirically show how our method outperforms strong baselines including DOREMI in
terms of (i) average perplexity on the target domains, and (ii) reasoning capabilities.

Step 1

Train proxy model for a 
small number of iterations to 
measure cancellation effects

List of parameters with low 
cancellation effect

Domain weights

Re-init and train proxy 
model to find domain 

weights

Full-size LM training 
sampling according to domain 

weights
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arxiv
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c4
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Figure 1: Summary of DOGE . Our method consists of three steps. Step 1 identifies the
parameters of the proxy model with low cancellation effect. Those parameters are more reliable to
use in influence estimation based on gradients (Yeh et al., 2022). Step 2 is the heart of our method.
We learn domain weights which maximize the generalization of the proxy model to a pre-defined
mixture of domains. This mixture can be the training data mixture Dtrain or containing domains
absent from Dtrain. Finally, in Step 3, we use the computed domain weights to train a large LM.

2 DOMAIN REWEIGHTING WITH GENERALIZATION ESTIMATION

In this section, we motivate and derive DOGE, for the goal of re-weighting training domains
Dtrain ≜ {D1, . . . , Dk} to improve the model’s generalization to a given set of domains. We distin-
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guish two scenarios for generalization: (1) Universal generalization, where the ultimate objective is
to minimize the validation loss across all training domains D1 to Dk; as well as (2) Out-of-domain
generalization where we aim at minimizing the validation loss on a specific Dood domain, with
Dood /∈ Dtrain. The later case is especially relevant when considering generalization to specific
domains which are too small to have a significant impact when used during pretraining.

Setup & notation. Let Dtrain ≜ {D1, . . . , Dk} be a large corpus split into k domains according
to meta-attributes (e.g. source, topic). We aim to find domain weights α ∈ ∆k ⊂ Rk as a probability
distribution over the probability simplex. The final data mixture used to train the full-size language
model is constructed by first sampling a domain according to the domain-wise distribution α, fol-
lowed by uniformly sampling an instance of that domain. This leads to the sample-wise distribution
Pα ≜

∑k
i=1 αi · unif(Di). In the following, we will describe how to optimize α guided by training

a proxy model of parameters θ on Dtrain. For a domain Di we denote by li(θ) the next token pre-
diction loss of the proxy model on a minibatch sampled from domain Di. Let l̄(θ) ≜ 1

k

∑
i∈[k] li(θ)

be the average loss. Let |D| refer to the number of samples in D.

Universal generalization. In the case of universal generalization, our goal is to minimize l̄(θ).
This posit that all k given training domains have the same importance. As a point of comparison,
note that the classical loss used to train large language models is l̃(θ) =

∑
i∈[k]

|Di|
|Dtrain| li(θ) which

favors larger domains. One naive approach could consist in re-weighting samples by the inverse of
the sampling probability: l̄(θ) =

∑
i∈[k] α̃i

|Di|
|Dtrain| li(θ) with α̃i =

|Dtrain|
|Di| , however, this approach

ignores everything of the complex interactions between the model weights θ and the nature of the
domains which can (i) overlap and (ii) be more or less challenging to learn. In practice, this naive
approach does not fare well when compared to other methods (see § 3).

We instead propose to tie the learning of domain weights α ∈ ∆k to the tuning of the proxy model
parameters θ:

θ(t+1) ≜ θ(t) − η(t)
∑
i∈[k]

α
(t)
i ∇li(θ

(t)), with α(t) ∈ ∆k, (1)

where η(t) is the step size and ∇li(θ(t)) is the stochastic gradient for samples of Di at time-step t.
This yields a bi-level optimization problem where the weights θ(t) are updated according to the
training update (1) and α(t) is updated for a fixed θ(t). The update of the domain weights α(t) can
be derived as follows. At time-step t, we can write our objective as follow:

α
(t)
⋆ = argmin

α∈∆k

l̄(θ(t+1)) = argmin
α∈∆k

∑
i∈[k]

[li(θ
(t+1))− li(θ

(t))]

≈ argmin
α∈∆k

∑
i∈[k]

⟨∇li(θ(t)),θ(t+1) − θ(t)⟩

= argmin
α∈∆k

∑
i∈[k]

⟨∇li(θ(t)),−η(t)
∑
j∈[k]

αj∇lj(θ(t))⟩ (2)

Let W (t)
j ≜ ⟨∇lj(θ(t)),

∑
i∈[k]∇li(θ(t))⟩ be the generalization estimation function on the jth do-

main. Intuitively, this quantity measures the alignment of the learning tasks across domains: a
high W

(t)
j means learning Dj will also contribute to learning other domains. We write W(t) =

[W
(t)
1 , . . . ,W

(t)
k ] ∈ Rk for the score vector regrouping all generalization estimation functions. We

can rewrite (2) simply as:
α

(t)
⋆ = argmin

α∈∆k

−η(t)α⊤W(t) (3)

While a closed-form solution exist for α(t)
⋆ , we find that it is too sensitive to noisy gradients. For the

sake of stability, we instead only partially solve (3) using a single step of mirror descent (Nemirovski
& Yudin, 1983; Beck & Teboulle, 2003) with a Bregman divergence DΨ(α∥α(t−1)) with Ψ(α) =∑

i αi log(αi):
α(t) = argmin

α∈∆k

−η(t)α⊤W(t) + µDΨ(α∥α(t−1)) (4)

3



2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

This yields the following multiplicative weights update rule, see e.g. (Beck & Teboulle, 2003):

α(t) =
α̂(t)∑

i∈[k] α̂
(t)
i

, with α̂(t) = α(t−1) ⊙ exp
(η(t)W(t)

µ

)
(5)

The final algorithm is summarized in Alg. 1, at each time-step t, we alternate updating α(t) and θ(t).

Algorithm 1 DOGE Domain Reweighting (for Universal Generalization).

1: Input: Domain data splits D1, . . . , Dk, Proxy model weights θ(0), Hyperparameters: number
of training steps T , batch size b, step size η(t), Bregman coefficient µ.

2: Initialize proxy weights θ(0)

3: Initialize proxy domain weights α(0) = 1
k1

4: for t ∈ [T ] do
5: Uniformly sample minibatch B(t) = {B(t)

1 , . . . , B
(t)
k } of size b

6: Obtain ∇li(θ(t), B
(t)
i ) for i ∈ [k] −→ (Forward/Backward pass)

7: ComputeW(t). Update domain weights according to Eq. (5):
8: α̂(t) ← α(t−1) ⊙ exp(η(t)W(t)/µ)

9: α(t) ← α̂(t)/

k∑
i=1

α̂
(t)
i

10: Update θ(t+1) = θ(t) − η(t)
∑

i∈[k] α
(t)
i ∇li(θ(t), B

(t)
i )

11: Return Domain weights ᾱ = 1
T

∑T
t=1 α

(t)

Out-of-domain generalization. In the out-of-domain generalization scenario we want to general-
ize to a Dood domain that is not part of Dtrain. In that instance the above derivation still holds with
only minor modifications: (i) we are now considering our objective to be lood(θ) instead of l̄(θ), and
(ii) we now have W

(t)
j ≜ ⟨∇lj(θ(t)),∇lood(θ(t))⟩, for clarity we call W(t)

ood = [W
(t)
1 , . . . ,W

(t)
k ].

The update of α(t) is the same as in (5) replacingW(t) withW(t)
ood. The associated algorithm can be

seen in Alg. 2, where all differences with Alg. 1 are colored in blue.

Algorithm 2 DOGE Domain Reweighting (for Out-of-domain Generalization).

1: Input: Training domain data splits D1, . . . , Dk, OOD domain Dood, Proxy model weights θ(0),
Hyperparameters: number of training steps T , batch size b, step size η(t), Bregman coefficient
µ.

2: Initialize proxy weights θ(0)

3: Initialize proxy domain weights α(0) = 1
k1

4: for t ∈ [T ] do
5: Uniformly sample minibatch B(t) = {B(t)

1 , . . . , B
(t)
k }∪{B

(t)
ood} of size b

6: Obtain ∇li(θ(t), B
(t)
i ) for i ∈ [k] and ∇lood(θ(t), B

(t)
ood) −→ (Forward/Backward pass)

7: ComputeW(t)
ood. Update domain weights according to Eq. (5):

8: α̂(t) ← α(t−1) ⊙ exp(η(t)W(t)
ood/µ)

9: α(t) ← α̂(t)/

k∑
i=1

α̂
(t)
i

10: Update θ(t+1) = θ(t) − η(t)
∑

i∈[k] α
(t)
i ∇li(θ(t), B

(t)
i )

11: Return Domain weights ᾱ = 1
T

∑T
t=1 α

(t)

Link betweenW(t) and influence functions. Following Pruthi et al. (2020), given samples from
a source and target domain Bs ∼ Ds and Bt ∼ Dt, the influence of Ds on Dt can be estimated by
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I(Bs, Bt) = ⟨∇ls(θ),∇lt(θ)⟩. Now observing the definition of W (t)
j :

W
(t)
j ≜ ⟨∇lj(θ(t)),

∑
i∈[k]

∇li(θ(t))⟩ = ⟨∇lj(θ(t)),
∑

i∈[k],i̸=j

∇li(θ(t))⟩

︸ ︷︷ ︸
out-of-domain influence

+∥∇lj(θ(t))∥22 (6)

Thus the first term in (6) estimates the sum of influences from all the other k− 1 domains on the jth
domain, while the second term denotes the magnitude of the gradient from domain Dj . Intuitively,
a domain should be up-weighted when (i) it contributes to the learning of other domains (high out-
of-domain influence), or (ii) when the domain itself has not been learnt enough (high magnitude of
gradient for this domain). Those two mechanisms are precisely what Equ. (3) expresses.

Cancellation effect. Yeh et al. (2022) have shown how a cancellation effect can diminish the dis-
criminative power of gradient-based influence scores. The cancellation effect refers to parameters of
the models not evolving much during training—the gradients they receive over the training process
cancel each other—while nonetheless receiving large gradients on individual samples. Those pa-
rameters have little influence when considering large volumes of data, but can poison the influence
scores when computed over small minibatches. Thus, computingW(t) with the entire gradient risks
being dominated by these malicious large gradients and lose its distinguish power. Following Yeh
et al. (2022), we quantify the cancellation effect of each parameter, and drop those parameters from
the gradient when they have a high cancellation effect. To measure the cancellation effect, we train
another model—identical to the proxy model—on a small number of steps (e.g. 1000), and evaluate
the cancellation effect for each module (e.g. linear, layer norm, etc.).

Summary of DOGE. We hereby summarize the three steps of our method, as seen in Fig. 1:

1. We train a proxy model on a small number of steps to measure the cancellation coefficient
of each parameter or layer.

2. We re-initialize the proxy model and and train on Dtrain following Alg. 1 or Alg. 2. When
computingW(t) orW(t)

ood, we only consider parts of the gradients with a low cancellation
effect. We obtain a domain weight distribution ᾱ ∈ ∆k.

3. Finally we train the full size model by sampling Dtrain according to Pᾱ ≜
∑k

i=1 ᾱi ·
unif(Di)

3 DOGE IMPROVES GENERALIZATION ABILITY

In this section, we showcase how DOGE improves the model’s performances in both the universal
generalization and domain-specific generalization settings. We compare domain weights returned by
DOGE and DOREMI as well as their evolution during the training of the proxy model. In the case
of universal generalization, we show how DOGE can outperform other methods on downstream
tasks as well as in terms of average perplexity. In the case of out-of-domain generalization, we
visualize domain weights from DOGE and observe a significant improvement in perplexity on the
Dood domain.

Training setup. We experiment on a 6B subset1 from SlimPajama (Soboleva et al., 2023), which
include 7 domains. We train a small 82M decoder-only transformer (Vaswani et al., 2023) LM as
the proxy model for domain reweighting. The updated domain weights are further applied to train
the base model of 124M parameters. All models are trained from scratch with batch size of 70, and
maximum token length of 512. The vocabulary size of the tokenizer is 50304.

DOGE-full & DOGE-ps. To show the impact of filtering parameters according to the cancellation
effect, we consider two version of DOGE. DOGE-full computes the generalization estimation score
using the full model gradients, without any filtering, while DOGE-ps (parameter selection) only
selects the 10 parameter matrices (corresponding to 20.9% of the full gradient) with the lowest
cancellation effect when updating α. When no specification is given DOGE refers to DOGE-ps.

1https://huggingface.co/datasets/DKYoon/SlimPajama-6B
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(a) DoReMi (82M) (b)    DoGE (82M)
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Figure 2: Domain weights evolution when training a (82M parameters) proxy model for
DOREMI (left) and DOGE-ps (right). In (a), the domain weights from DOREMI oscillate greatly
during training while tend to converge to uniform in the end. In contrast, DOGE (b) shows clear
phase transitions during the training process: in earlier stage, DOGE upweights easier domains
(Github and Stackexchange) while up-weighing CC and Wikipedia in the late stage, which is con-
sidered more diverse and harder to learn.
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(b) Out-of-domain Generalization

Figure 3: Domain weights for universal and out-of-domain generalization. In (a), we compare
uniform domain weights with those obtained by DOREMI and DOGE. We see how DOGE seem
to upweights significantly the common-crawl (cc) domain. In (b) we show DOGE domain weights
for out-of-domain generalization. Those domain weights obtained by training on various training
mixtures consisting of all the training domains except for one which is used as target (Dood) domain.
Each row represents a distribution returned by Alg. 2. The target domain is not used during training
and hence is marked by a red cross. The weight distributions look very coherent, e.g. to generalize to
GitHub, DOGE upweights stackexchange which contains a significant fraction of code. Similarly,
to generalize to cc, the c4 domain—which also consists in web data—is upweighted. The proxy
models used posses 82M parameters.

3.1 UNIVERSAL GENERALIZATION

In the case of universal generalization, we aim to improve the model’s generalization across all do-
mains present in the training set. We measure the average perplexity across all domains and the exact
match accuracy on the LAMBADA word prediction task Paperno et al. (2016). Moreover, we probe
the reasoning abilities of the various models on a series of zero-shot reasoning tasks: SciQ (Welbl
et al., 2017), WiC (Pilehvar & Camacho-Collados, 2019), WinoGrande (Sakaguchi et al., 2019),
OpenbookQA (Mihaylov et al., 2018) and COPA (Gordon et al., 2012). We compare our proposed
algorithm to (i) a random baseline with uniform domain weights; and (ii) DOREMI (Xie et al.,
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Figure 4: Average perplexity across domains when training the final model. For both DOREMI
and DOGE, we first obtain domain weights using a 82M proxy model, and subsequently use those
domain weights to train a 124M base model (82M → 124M). The "baseline" model consists in
a 124M model trained using uniform domain weights. DOGE-full computes the generalization
estimation function W(t) using the gradients w.r.t. all the parameters, while DOGE-ps uses only
a subset of 10 parameter matrices selected according to their cancellation effect (see § 2). Both
DOGE-ps and DOGE-full outperform the uniform baseline and DOREMI.

2023a). For the later, we use the same batch size, context length and vocabulary size as for DOGE,
while taking all other DOREMI-specific parameters from (Xie et al., 2023a).

Evolution of domain weights. Figure 2 shows the domain weights evolution during the training of
the proxy model. When applying DOREMI, the domain weights change drastically at the beginning
of training, while gradually converging to uniform along the training. In comparison, DOGE shows a
clear phase transition in different stages of training: in the early stage, DOGE upweights GitHub and
Stackexchange while gradually upweighing CC and Wikipedia in the later phase of training. This
aligns with the intuition of curriculum learning that the model would first learn from easy knowledge
(Github/Stackexchange) while moving on to more challenging and diverse ones (CC/Wikipedia) in
a later phase.

Final domain weights used. In Fig. 3.a we show the final domain weights adopted by different
methods. For DOGE and DOREMI, those are obtained by averaging the α distributions obtained
while training the proxy model (see returned ᾱ in Alg. 1 and Alg. 2).

Assessment on language modeling and reasoning ability. In both Fig. 4 and Table 1, we see
DOGE’s average perplexity on the held-out set is better than those of baseline methods. DOGE-full
improves the average domain perplexity the most, while both DOGE-ps and DOGE-full outperform
both the uniform baseline and DOREMI. This demonstrates our method’s ability to better learn the
training domains Dtrain. Moreover, accuracies on reasoning tasks in Tab.2 as well as on LAMBADA
in Tab. 1 show DOGE outperforming the baselines.

Table 1: Universal generalization results. We compare DOGE with DOREMI and uniform sam-
pling of domains on three metrics: (i) the average perplexity across domains showing how well
different methods fit the training domains, (ii) the LAMBADA and exact match average accuracies
on reasoning tasks. DOGE outperforms other methods on those three metrics. The detailed scores
used in the computation of the average reasoning accuracy are shown in Table 2.

Avg. pplx (↓) LAMBADA Acc.2 (↑) Avg. Reasoning Acc. (↑)
Baseline (124M) 34.47 0.33 39.46
DoReMi (82M->124M) 33.47 0.41 38.40
DOGE-full (82M->124M) 31.02 0.47 39.24
DOGE-ps (82M->124M) 32.42 0.43 40.00
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Table 2: Exact-match accuracies for zero-shot reasoning tasks. Overall DOGE improve down-
stream performance over the baselines.

Baseline (124M) DoReMi (82M->124M) DOGE-full (82M->124M) DOGE-ps (82M->124M)

SciQ 25.40 21.10 24.50 23.90
WiC 50.00 50.00 50.47 50.00
COPA 58.00 56.00 56.00 61.00
WinoGrande 50.51 50.28 51.22 51.30
OpenbookQA 13.40 14.60 14.00 13.80

Average 39.46 38.40 39.24 40.00

3.2 OUT-OF-DOMAIN GENERALIZATION

Perplexities on domains outside of Dtrain. For out-of-domain generalization, we experiment
with setting each of the domains in SlimPajama as the target domain, while using the remaining six
domains as training set Dtrain. We run the proxy model (82M) for 10000 steps and then train the
base model (82/124M) for 10000 steps. To improve efficiency, we select 10 parameter matrices
with the least cancellation effect to compute the generalization estimation Wood. We evaluate the
perplexity on the target domain on the heldout test set and show the results in Table 3.

Visualizing domain affinities. By setting each domains as the target domain, we can take a glance
at the inter-domain affinities and dependencies through the domain weights of remaining training
domains. Fig. 3.b shows how DOGE can up-weight domains close to Dood. For instance, in order to
generalize to Dood = GitHub, DOGE naturally decides to give a large weight to the stackexchange
domain, which is known to contain a lot of samples for various programming languages. With the
domain weights from DOGE, DOGE’s 82M model outperforms the 124M baseline model trained
with uniform domain weights by a large margin across all target domains except for Wikipedia.

Table 3: Out-of-Domain generalization results. Perplexity (↓) on the target domain while train-
ing on the remaining 6 domains. DOGE significantly outperforms the uniform averaging baseline,
demonstrating its ability to select which domain to upweight given its similarity to the target domain.
Domain weights can be seen in Fig. 3.b.

Baseline (82M) DOGE (82M→ 82M) Baseline (124M) DOGE (82M→ 124M)

Arxiv 20.011 18.578 18.595 17.351
Book 81.129 69.810 75.042 64.225
C4 95.371 77.900 89.162 72.015
CommonCrawl 90.861 75.156 84.752 69.517
Github 7.334 6.131 6.956 5.726
StackExchange 18.622 16.628 17.407 15.436
Wikipedia 50.866 51.381 48.701 46.889

4 DISCUSSION AND LIMITATIONS

Poor adaptability to training phases. Recent research shows that language models demonstrate
similar learning patterns as children, and acquire linguistic skills in a systematic order (Evanson
et al., 2023). Thus, the language model requires distinct data mixtures in various training phases.
While the domain weights evolution of DOGE (Fig. 2) seem to possess such learning phases—
upweighing different domains at different times—a fixed set of domain weights is applied through-
out the whole training process of the base model, which fails to adapt to different learning phases.
How to detect the various phase transitions and design a more adaptive reweighting algorithm is an
interesting future direction.

Vulnerability to the noisy domain. Our generalization estimation function is largely dependent
on the gradient: a domain with a larger magnitude of gradient would have higher scores even when
its alignment with other domains is poor. Thus, noisy domains are likely upweighed solely due to
their high gradient magnitude.
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In-domain variances and fine-grained clusters. Despite web-scraped data collection (e.g. Com-
monCrawl, C4) containing diverse textual content with various attributes, both DOGE and DOREMI
assign a single weight on all samples within one domain. We believe applying reweighting on
more fine-grained domains could help to detect in-domain variances and distinguish among sub-
populations within one diverse domain.

5 RELATED WORK

Data Selection for Language Modeling. Many works show how a rigorously selected training
corpus can effectively improve downstream performance with fewer training tokens. On the Com-
monCrawl dataset, Marion et al. (2023) achieve better test-set perplexity by applying perplexity-
based pruning, using only 30% of the tokens compared to the no-pruning baseline. Gunasekar et al.
(2023) and Li et al. (2023) trained a 1.3B model PHI-1 using a corpus of 7B text-book quality code
data, outperforming previous models trained on an approximately 15× larger standard code dataset,
illustrating the potential of high-quality data for code generation. Longpre et al. (2023) discover a
trade-off between a model’s toxic generalization behavior and its generalization ability by applying
quality control with various thresholds.

Meanwhile, practitioners are exploring effective data selection methodologies to improve the train-
ing efficiency of LLM. However, due to the large size of pretraining datasets and the complexity of
language modeling tasks, most traditional data selection methods fail to be applicable due to scala-
bility issues. Classifier-based data filtering techniques are commonly used to construct a pretraining
corpus (Gao et al., 2020; Penedo et al., 2023). Everaert & Potts (2023) propose GIO to select a train-
ing set that minimizes the KL-divergence to the target distribution, yet their experiments are limited
to relatively small datasets (≈ 10M tokens) due to high computation costs. By reducing the high-
dimensional feature space into an n-gram-featured subspace, (Xie et al., 2023b) present a scalable
importance resampling method which selects a subset aligning with a specific target distribution.
Despite the improved scalability, the n-gram features may not be able to represent sophisticated se-
mantics in the training corpus. Moreover, their methods require access to the downstream tasks as
the target distribution, which is hard to apply in the general LM pretraining.

Domain Reweighting for LLM Pretraining. Compared to instance-wise data selection, domain
reweighting aims to sample from various data groups. It is considered a more scalable method for
language model pretraining. DOREMI(Xie et al., 2023a)—already described in § 1—is a good ex-
ample of such methods. Chen et al. (2023) propose to build an online resampling curriculum by
exploiting the dependency relationship among skills, where each domain can be considered as one
skill. The relationship among N skills can be represented by a directed skill graph. However, con-
structing this ordered skill graph requires training ofO(N2) models, which reduces its applicability
to general language model pretraining.

6 CONCLUSION

We introduced DOGE, a gradient-based domain reweighting framework, which finds the optimal do-
main weights tailored to various generalization objectives. Our experiments show DOGE is able to
improve LLM’s universal and out-of-domain generalization ability in terms of perplexity and zero-
shot reasoning accuracy. Scaling-up experiments with larger models and datasets is an important
future direction.
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