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Abstract

Monitoring chemical processes is essential to prevent catastrophic failures, optimize
costs and profits, and ensure the safety of employees and the environment. A key
component of modern monitoring systems is the automated detection of anomalies
in sensor data over time, called time series, enabling partial automation of plant
operation and adding additional layers of supervision to crucial components. The
development of anomaly detection methods in this domain is challenging, since
real chemical process data are usually proprietary, and simulated data are generally
not a sufficient replacement. In this paper, we present NoBOOM, the first collection
of datasets for anomaly detection in real-world chemical process data, including
labeled data from a running process at our industry partner BASF SE — one
of the world’s leading chemical companies — and several chemical processes
run in laboratory-scale and pilot-scale plants. While we are not able to share
every detail about the industrial process, for the laboratory- and pilot-scale plants,
we provide comprehensive information on plant configuration, process operation,
and, in particular, anomaly events, enabling a differentiated analysis of anomaly
detection methods. To demonstrate the complexity of the benchmark, we analyze
the data with regard to common issues of time-series anomaly detection (TSAD)
benchmarks, including potential triviality and bias.

Code: https://github.com/wagner-d/noboom

Dataset: https://www.kaggle.com/datasets/faebs94/noboom-anomaly-detection-in- chemical—processeﬂ

*These authors contributed equally to this work.
'We provide the data via DOI, Kaggle, and a private server. For details and links, please refer to appendix
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1 Introduction

The chemical industry lies at the heart of the global economy, producing essential components used in
countless products. From pharmaceutical and hygiene products to clothing, from tar to gasoline, from
tires and seats to almost any other part of the car—manufactured chemicals are needed everywhere.
Chemical plants manufacture a wide range of products to meet the demands of an ever-evolving
global market.

Despite their importance to modern life, chemical plants pose significant risks. Small anomalies, if
undetected, can quickly escalate into catastrophic events [20, 28| [32] that threaten lives, endanger the
environment, and cause huge economic losses. It is of paramount importance to detect anomalies
as early and precisely as possible so that their causes can be addressed in time to prevent escalation.
Chemical plants produce much more data than a human operator could consistently monitor.

Consequently, most modern plants rely on control systems to assist human operators in monitoring
the ongoing process and detecting anomalies. Most control systems rely on simple anomaly detection
methods and do not use modern developments in Machine Learning (ML). This gap is largely due
to the lack of publicly available data to develop ML methods and to explore and test new ideas in a
safe environment. Publishing industrial process data is laborious and, when done by companies, risks
exposing sensitive operational details to competitors. Furthermore, industrial processes are usually
run at single optimized operation points, and failures are actively avoided, making the available in-
house data rather uninformative and unsuitable for developing powerful anomaly detection methods.
Consequently, ML-based anomaly detection methods are often not a viable option for companies.

For decades, the Tennessee Eastman Process (TEP) dataset [8] has been the primary publicly available
source of chemical process data. However, it contains no real measurements but simulated data from
a hypothetical process, which is too well-behaved to truly represent real chemical process data. To
evaluate anomaly detection methods on the TEP [13]], anomalies are artificially induced by adjusting
the simulation [26]. However, because of the lack of real chemical process data and the simplification
of the TEP, it is still an open question how these results translate to real chemical processes.

To anchor anomaly detection research in a widely applicable context, we focus on distillation—one of
the most fundamental separation processes in chemical engineering. Distillation is scalable, operates
in both batch and continuous modes, and is governed by well-understood physical principles. Its
ubiquity and structure make it an ideal candidate for benchmarking anomaly detection methods.
Yet, no public dataset currently provides real sensor data from an operating distillation process with
labeled anomalies.

Creating realistic datasets for anomaly detection in chemical processes, however, remains extremely
challenging for two main reasons. First, collecting real-world data is resource-intensive: processes
must run for long periods under expert supervision, and inducing meaningful anomalies without
compromising safety is difficult. Sensors must be carefully placed to generate rich multivariate time-
series data. Second, even when data is available, designing a meaningful benchmark is difficult. Many
existing TSAD datasets use oversimplified signals, trivial anomalies, or imprecise labels—failing to
capture the complexity of real-world industrial behavior. As a result, progress in developing robust
methods has been significantly hindered.

To fill this gap, we introduce NoBOOM, the first collection of real-world chemical process datasets for
multivariate time-series anomaly detection, featuring detailed anomaly annotations. Our benchmark
integrates both industrial and academic sources: labeled data from a large-scale industrial process at
our industry partner BASF SE and from multiple laboratory-scale plants. Where possible, we provide
extensive documentation on configuration, operational conditions, and anomaly events, facilitating
robust and reproducible evaluation of detection methods.

The main contributions of this paper are:

* We introduce NoBoom—a diverse suite of six real-world multivariate time-series datasets
for anomaly detection in operating chemical plants, including the first publicly available
dataset of its kind derived from a major industrial partner.

* We introduce a new evaluation protocol that leverages richer label information to enable
more nuanced assessments of TSAD methods.

* We assess the data complexity through a set of simple baselines.
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Figure 1: Timeline of major chemical plant accidents, from the Seveso dioxin release (July 1976) to
the TPC Group explosion (November 2019). The figure highlights key incidents caused by preventable
equipment failures or safety lapses and shows their dates, types, and locations to emphasize how
recurring issues in maintenance, human decisions, and process safety have led to major industrial
disasters.

2 BOOM: The Risk of Industrial Anomalies

Anomalies in chemical plants can lead to the unexpected release of hazardous material or even
explosions. Without immediate intervention or preventive measures, such deviations can escalate
into dangerous, sometimes fatal, incidents (see Figure[T). While major accidents, especially those
involving fatalities, are usually investigated thoroughly and publicly reported, many smaller incidents
and near misses remain inaccessible to the public.

Figure 2] illustrates sensor data from a laboratory distillation plant, where timely intervention by an
attentive operator prevented a catastrophic failure. A malfunctioning cooling system caused the plant
to empty unexpectedly. Within minutes, excessive heat accumulated inside the apparatus, damaging
the reboiler vessel and wiring throughout the setup. By chance, the operator noticed smoke escaping
from the plant and managed to cut the power, just in time to prevent a major fire. The incident caused
equipment damage in the thousands but no injuries; a fire, however, would have resulted in millions
and endangered many people.

This example demonstrates that anomalies in chemical processes can be extremely dangerous. While
such events can never be fully avoided, their risks can be mitigated through precise, robust, and
reliable anomaly detection methods. To develop such methods, we need realistic and challenging
benchmark datasets.

3 The NoBOOM Datasets

The NoBOOM benchmark contains six datasets, each comprising both fault-free and anomalous data
from real operating plants. Distillation is the most widely used unit operation, accounting for about
90-95% of separations in the chemical industry [|6, [21]]. Its applications span petroleum refineries,
chemical production, food processing [29], and pharmaceutical manufacturing [6]. The process
exploits differences in volatility by heating a mixture in a reboiler: volatile components vaporize
and rise, while heavier ones remain in the liquid. The vapor is condensed, partially fed back into
the distillation column as reflux, and the remainder is extracted as a product rich in more volatile
components.

To construct a representative benchmark, we conducted distillation experiments across different
operation modes and plant configurations. We collected five datasets from two laboratory plants that
allow controlled injection of artificial anomalies, while one dataset originates from a multi-stage
industrial process operating under real conditions. For artificially induced anomalies, we provide
labels that distinguish three different phases, reflecting the injection of the cause of the anomaly,
the effect, and the recovery after removal of the anomaly cause from the system. The distillation-
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Figure 2: Critical temperature escalation in a batch-distillation process, with temperatures rising
sharply over time (red-shaded area). Reliable anomaly detection is essential to prevent such hazardous
developments in chemical plants. Shown are process temperatures (black) and heater actuator signals
(orange) during a near-miss incident caused by a malfunctioning cooling system. About two hours
into the process, uncontrolled heat buildup began and escalated rapidly, as highlighted by the red
region. The plant was shut down roughly 30 minutes later, narrowly avoiding severe damage.

experiment datasets include machine-readable, ontology-based metadata [39] describing anomaly
causes and the sensors that observed them ]

3.1 The Laboratory Distillation Plants

Chemical plants can generally be operated in two modes: batch and continuous. In batch mode, a
certain amount of the initial mixture is fed into the plant. Then, the process is started by heating
the mixture until it starts to boil. During batch distillation, the product is drawn successively from
the plant. Thus, the state of the process is ever changing, with varying temperatures and mixture
compositions, making the process inherently dynamic and fault detection challenging. In continuous
mode, the plant is fed continuously, reaching a steady state where sensor readings fluctuate minimally,
while both condensated vapor from the top of the column and liquid from the reboiler vessel at the
bottom of the column are withdrawn. The plant is usually kept in a steady state of operation for
long periods of time. Both modes of operation meet specific needs and are therefore widely used in
industry.

3.1.1 The Batch-Distillation Plant

We collected two datasets in the laboratory-scale batch-distillation plant comprising measurements
from 18 sensors for temperature, pressure, fluxes, and levelﬁ We provide detailed information on
setup and operation, as well as actuator data of the plant in accompanying work [3], making all
sensor data fully explainable and traceable. The data is sampled at 1 Hz to capture the fast-changing
dynamics.

Anomalies arose naturally in the process, or were induced artificially. Thereby, time frame and
frequency of anomaly induction did not follow a strict scheme to reflect the lack of a-priori knowledge
on anomalies in real chemical processes. The nature of the introduced anomalies is inspired by faults
and errors prevalent in accidents in industrial plants [20].

We excluded startup and shutdown phases of the process from the datasets, as their behavior differs
significantly from regular operation. The datasets cover two ternary systems: acetone + methanol +
1-butanol (abm) and 1-butanol + 2-propanol + water (bpw). Sensor readings are provided in raw form,
with all modifications and processing steps documented in the accompanying work mentioned above.

*We provide further information on the anomaly metadata in Appendix
3We provide further information on each sensor in the batch-distillation plant in Appendix



3.1.2 The Continuous Distillation Plant

We collected three datasets from a pilot-scale continuous distillation plant with a processing capacity
of 5 tonnes per year. Data was sampled every 30 seconds, sufficient to capture relevant dynamics.
The plant is equipped with a multitude of sensors (up to 34) and actuators, depending on the scenario
and plant configuration. [ﬂ Detailed information on setup, operation, and actuator data is provided in
accompanying work [24].

The datasets reflect three distinct configurations: (i) a single column distilling water (wat), (ii)
two connected columns separating n-butanol + water (but), and (iii) a reactive system involving
water + formaldehyde + polyoxymethylene ethers (OME) + methanol (ome) [9]. Experiments with
water span approximately 30 cumulative days. Experiments with n-butanol and water generally last
about 10 hours, with some extending overnight. Experiments of the third type also typically ran for
around 10 hours, occasionally spanning overnight periods. Anomalies occurred both naturally and
through artificial injection, aligned with fault scenarios reported by Kister [20]. The experiments
with n-butanol + water and OME result in a higher anomaly density due to their heteroazeotropic and
reactive nature, as well as the increased process complexity. These configurations reflect realistic
industrial conditions, providing a more rigorous testbed than datasets containing isolated, rare faults.

In addition to their technical complexity, the studied chemical systems have practical relevance: n-
butanol is a widely studied biofuel with industrial applications [17,[14}31], and OME is a promising
alternative to fossil fuels [4]. The dataset thus provides not only technical but also practical value for
industrial anomaly detection.

3.2 The Continuous Multi-Stage Industrial Plant

The industrial dataset (ind) was provided by our partner BASF SE and consists of long-term sensor
data from a confidential, multi-stage production process. It was collected over several months
of regular plant operation, reflecting a real-world industrial environment under typical business
constraints. This long-term, non-experimental setting provides valuable insight into operational
variability and naturally occurring anomalies, beyond short-term or lab-based datasets. In total, the
dataset comprises measurements from 244 distinct sensors, covering flow rate (F), liquid level (L),
pressure (P), and temperature (T). Explicit measurement units and sampling frequencies are omitted
due to confidentiality, sensor types are encoded in the feature names.

Anomalies in the dataset occurred naturally during production and were labeled retrospectively by
domain experts from the partner organization. These labels are based on observed effects in the time-
series data and corroborating plant operation records. The anomalies have different causes—including
sensor faults and process disturbances—mirroring the complexity and heterogeneity of real-world
industrial failures. To preserve confidentiality, the order of sensors within each type has been
randomized, and no metadata about specific anomaly events are disclosed. However, the time-series
data itself remains unaltered and fully authentic.

The dataset spans eight uninterrupted production runs across several months. Since anomaly timing
was not controlled experimentally, we selected the longest segments of stable operation within each
run as a potential normal-data subset for semi-supervised training. To prevent temporal leakage, the
process manager of the industrial plant provided suggestions for reasonable time frames in which
most long-term effects should be resolved. These initial estimates were checked by other in-house
domain experts, including the plant operator. We conservatively extended these suggested intervals
by doubling the initial estimate. We also excluded startup and shutdown phases, as their transient
dynamics differ significantly from steady-state behavior.

3.3 Dataset Structure and Labeling

The NoBOOM benchmark provides a suite of real-world multivariate time-series datasets designed to
evaluate anomaly detection methods in chemical process monitoring. Each dataset consists of labeled
sensor readings from industrial or academic plants, covering both normal and faulty operations. We
now formalize the structure of these datasets and the labeling conventions used.

*We provide further information on each sensor in the continuous distillation plant in Appendix @



Table 1: NoBOOM contains six high-dimensional datasets of varying size and complexity, from
large-scale industrial data with millions of time points and hundreds of sensors to laboratory-scale
experimental data with a higher anomaly density.

mode | system | features | time series | time steps | anomalies (#/ %)
train 28 189444 -
bpw 63 395712 77121%
batch test 18 0
abm train 8 30216 -
test 16 69558 13/24%
wat train 20 15 57284 -
a test 11 37250 20/25%
train 7 2390 -
cont but | ot 34 8 4082 24/41%
train 20 5 2447 -
OMe | test 3 986 4/36%
. train 8 215841 -
e 16 1842436 361/ 17 %

A time series is a finite sequence z: [n] — R? for some d € N. Each sample is labeled with an
integer: typically O (normal) or 1 (anomalous). For induced anomalies, we provide a three-phase
label scheme:

1: Cause of anomaly injected; no visible effects
2: Anomaly present and recognized by operator
3: Cause of anomaly removed; effects still visible

For binary TSAD tasks, we collapse all non-zero labels into a single "anomalous" class. Labels thus
form a 1D time series aligned with the inputs. Each dataset contains semantically related time series
and labels. Fault-free sequences are used for training; anomalous ones for testing. Two datasets
contain over 200k time steps—suitable for deep methods—while two are smaller (<3k), ideal for
shallow models. For a detailed summary, see Table[T] Though the anomaly density may conflict with
TSAD assumptions [33]], it reflects real plant behavior and the diversity of possible anomalies. All
datasets except the industry one include machine-readable metadata on anomaly causes.

Together, these datasets form the foundation of the NoBOOM benchmark, which defines a realistic
anomaly detection task and an evaluation protocol, as detailed in the next section.

4 The NoBOOM Benchmark

The NoBOOM benchmark builds on the previously described datasets by defining a realistic anomaly
detection task and a corresponding evaluation protocol. This section formalizes how models interact
with the data and how their performance is assessed.

4.1 The Task and Evaluation Protocol

To facilitate competitive evaluations, we now discuss the goals of anomaly detection in the NoBOOM
datasets. An anomaly detection algorithm a: « — {0, 1} predicts the label for the next step of a given
time series x of length m € N. By predicting the label for the next time step of every prefix in a time
series, we obtain a time series of prediction of the same length as the data and the labels. Different
algorithms produce different predictions. To evaluate and compare the performance of different
algorithms, we generally define a metric that compares the ground-truth labels with the predictions. A
good metric should produce higher values for predictions that align closer with the desired behavior
of a method. Thus, we first discuss the requirements of good methods for our application.

First and foremost, detecting anomalies is the most important aspect, which is not necessarily
guaranteed to be reflected by common metrics [[L1} 22} [18} [7]. Second, the earlier an anomaly is
detected, the better. Third, false alarms—anomalous predictions where the ground-truth is normal—
erode the users trust in the method and should be avoided. These requirements are provably satisfied



by the ALARM score [34ﬂ The ALARM score satisfies several essential properties vital to our
setting. It ranks methods that detect anomalies too early (if first predictions are earlier than any
indication in the labels) below methods that detect anomalies during the actual labels. Since we can
pinpoint the start of each anomaly precisely for each anomalous event, no effects should be present in
the data earlier, making such predictions impossible. Conversely, the labels for the end of anomaly
windows are generous to mitigate any lingering effects. The ALARM score ranks predictions of
anomalies for more extended periods higher than predictions that allocate false positives elsewhere.
Additionally, the ALARM score favors earlier prediction for individual anomalies. Earlier predictions
provide more time to respond, which can be crucial for resolving complex causes of anomalies. The
ALARM score has one tunable parameter, the false alarm tolerance. This parameter reflects how
many false alarms (predicted anomalies where there are none in the data) are tolerable by the system
per true alarm. Since in our setting, an operator needs to manually investigate each alarm, whether
false or not, false alarms can quickly degrade trust. With enough false alarms, an anomaly detector
would be decommissioned promptly. Therefore, we recommend a false alarm tolerance of two.

In addition to the main evaluation metric, we highlight several supporting metrics that provide
additional insights into the performance of each method. Particularly interesting is the percentage of
detected anomalies, which is captured by the event-wise recall [10]]. That might include anomalies
that are detected before an operator detected the anomaly or after it had already been fixed. Of
particular interest to our setting is the comparison to human perception. If an anomaly detector
consistently predicts anomalies first in phase 3, that anomaly detector would only raise an alarm once
the anomaly’s cause is removed. To do so in the first place would still require a human operator
to detect and fix the anomaly, limiting the potential application of the anomaly detector. The late
detection frequency (LDF) captures the fraction of anomalies detected late, i.e., the fraction of
anomalies where the algorithm performed worse than the operator, but still detected at least some
effects. On the other hand, we can consider anomalies detected earlier than a human operator could.
Similar to late alarms, we can consider early alarms, i.e., those first raised in phase 1, before the
operator notices the anomaly. The early detection frequency (EDF) captures the fraction of anomalies
detected faster than the expert. Methods with a high EDF consistently outperform a human operator.
While not necessary, this is a strong indicator of their integrability into automated or assisted operation.
An anomaly detector that only detects anomalies late is mostly useless for practical applications.
Particularly interesting for operators is the average alarm frequency (AAF) measuring the consistency
of predictions. The average alarm frequency (AAF) captures the expected number of alarms for
detected anomalies. Without knowledge of the true labels, each alarm might indicate a different
anomaly. An operator fixing an anomaly in the plant might not be able to identify whether an alarm
is redundant or caused by another problem in the plant. Although none of the supplementary metrics
satisfy our requirements on their own, they can provide additional insight into each methods behavior,
providing a more complete picture of its capabilities. E]Next, we analyze the dataset to verify that
NoBOOM presents a non-trivial challenge.

4.2 Assessing Task Difficulty in NoBOOM

A dataset is generally considered trivial if the anomaly detection task can be solved by simple methods
[35] that often do not require explicit training. If such a method can solve the task presented by
the dataset almost perfectly, there is no need to investigate and develop complex ML methods. To
assess the inherent difficulty and complexity of the NoBOOM datasets, we evaluate a set of simple
baselines that detect anomalies based on deviations from the local mean, optionally after computing
the first-order difference between adjacent time steps [35]]. The results, summarized in Table[7} reveal
that these baselines fall significantly short of ideal behavior in all datasets. This is evident not only in
their ALARM scores—which, while not directly comparable across datasets, still indicate relative
underperformance—but also in key operational metrics such as Average Alarm Frequency (AAF)
and Early Detection Frequency (EDF). These findings suggest that NoBOOM presents a non-trivial
challenge and offers meaningful opportunities for advancing robust TSAD methodsm

Learning algorithms are especially adept at exploiting existing biases, such as positional biases of
anomalies [35]]. Figure 3|shows the distribution of relative positions of anomalies in each time series

>We provide more Details in Appendix@
We provide formal definitions of each metric in Appendix
"We provide additional experiments with more baselines in appendix



Table 2: This table reports the results of simple baseline methods applied to all NoBOOM datasets.
The ALARM scores are normalized to the maximum range. The consistently sub-optimal performance
across all metrics highlights the complexity and non-triviality of the benchmark.

dataset ALARM Recepent AAF EDF LDF
batch bpw | 0.05 0.04 1.0 0.33 0.67
batch abm | 0.22 0.54 1.86 0.57 0.43
cont wat 0.05 0.05 1.0 0.0 1.0
cont but 0.16 0.29 1.0 0.29 0.71
cont ome 0.07 0.5 16.5 0.0 1.0
cont ind 0.0 0.54 1 1 0
(a) batch bpw (b) batch abm (c) continuous wat
(d) continuous but (e) continuous ome (f) continuous ind

Figure 3: These plots show histogram over the relative positions of anomalies in each individual time
series. The distribution of relative positions reveal no clear exploitable bias.

of all NoBOOM datasets. The results confirm no obvious exploitable bias in all datasets. Another
potential issue unique to time-series data is the length of anomalies. ML algorithms usually cut a
time series into manageable windows providing the context for predictions. If the length of these
windows is too small, long anomalies might completely eclipse a window resulting in no normal
context for predictions. Thus, overly long anomalies often distort the reported results, especially
when combined with certain evaluation protocols [33]]. Figure ] shows the lengths of anomalies
found in the NoBOOM datasets. Most anomalies across the entire dataset are relatively short with
only a few exceptions, which can easily be isolated. Lastly, we verify the distributional stability of the
normal samples between the training set and the test set. We generally assume that the normal data
are sampled from the same distribution in the training and the test set. This fundamental assumption
can easily be violated in real applications where anomalies can have lasting effects. In the controlled
plants, we have full control over the anomalies and clear expectations for their effects, reflected in
the close alignment of mean and standard deviation between training and test set for all datasets (see

Figure [5).
5 Related Work

Chemical Process Datasets Industrial data are generally sparse in the public domain, since publi-
cation usually involves the risk of revealing company secrets. Therefore, the only publicly available
chemical process data does not contain real process data but simulated data for a hypothetical process,
the Tennessee Eastman Process (TEP) [8], which has been used to generate an anomaly detection
benchmark [26]]. To induce an anomaly, one of 21 predefined fault scenarios derived from the original
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Figure 4: Histograms of anomaly lengths for each dataset. With only few notable exceptions, the vast
majority of anomalies in NoBOOM are short compared to the total length of each dataset.
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Figure 5: These plots show mean and standard deviation for each feature of every training and test
set in NoBOOM next to each other, revealing no obvious significant differences in distribution that
would hinder generalization. Due to the large number of features, we provide details on the remaining
ind dataset in Appendix [F}

TEP description is introduced. Anomalies can be, for example, sensor failures, valve leaks, pump
faults, or changes in reaction kinetics. The data results range from step changes and sensor freezing to
slow drifts. To mimic real-world behavior, anomalies start after random or fixed delayed time points.
Multiple runs per fault type are provided to capture variability in anomalies [26]. Several papers have
evaluated anomaly detection algorithms in TEP [[13} 136} 23| |37]], with inconclusive results.

Multivariate Time-Series Anomaly Detection Datasets Anomaly Detection in multivariate time
series has received much attention in recent years. Among the most popular datasets for comparative
benchmarking are SWaT [12]], WADI [2], SMAP and MSL [[15], SMD [30]], and Exathlon [[16]]. Most



timeseries datasets, both univariate [35] and multivariate [33], have been criticized for not fully
capturing the complexities of the anomaly detection problem for effective benchmarking.

Time-Series Anomaly Detection Evaluation Many protocols and metrics have been proposed
to evaluate time series anomaly detection methods [33]]. Most evaluation metrics for TSAD are
point-wise or point-adjusted metrics that are naturally invariant under permutation of predictions
(38 7 1114 (194 [15L 250 1), 194 [111 27, 15]]. Since we put great emphasis on the temporal ordering of
predictions, these metrics are unsuited for our task. The metric outlined in Appendix |E]is based on
verifiable guarantees, which largely reflect the requirements of chemical plant operation, reinforcing
the strong requirements for safety and robustness.

6 Discussion and Conclusion

In this paper, we present NoBOOM, a collection of six datasets ranging from laboratory-scale to full
industrial operation. These datasets pose realistic challenges for time-series anomaly detection across
varying operational modes, process complexities, and anomaly types. Inspired by real industrial
accidents [20], the controlled settings reflect critical failure modes, while the inclusion of a long-
running industrial dataset marks an important step towards bridging research and practice. Together,
NoBOOM offers a comprehensive benchmark for evaluating TSAD methods in chemical process
monitoring.

Limitations Despite its breadth, NoBOOM has several limitations. The relatively high anomaly
density deviates from the classical AD setting, where anomalies are rare. While faults can be safely
injected in controlled settings, extreme failures (e.g., explosions) cannot be simulated due to safety
constraints. Laboratory-scale plants also cannot fully capture the complexity of industrial systems.
This underscores the importance of the industrial dataset, which offers long-term production data.
However, due to confidentiality restrictions, it lacks detailed annotations and documentation, limiting
interpretability. These challenges reflect a broader issue: industrial data remains difficult to access
and share.

Future Directions The NoBOOM benchmark holds strong potential to advance ML for chemical
processes. Beyond binary labels, it includes phase annotations that support the development of
early-detection methods. In related work [3]], additional modalities, such as tabular, audio and image,
collected during distillation experiments are publicly released. This enables multimodal anomaly
detection and root-cause analysis. The inclusion of actuator data further enables the exploration of
causal dynamics and supports research in anomaly traceback, explainability, and process control.

Conclusion In this work, we introduced NoBOOM, a benchmark suite designed to advance time-
series anomaly detection (TSAD) in chemical process monitoring. By providing the first publicly
available collection of real-world multivariate datasets from both laboratory-scale and industrial
distillation plants, NoBOOM addresses critical gaps in the field—offering realistic, complex, and
well-annotated data that reflects the true challenges of industrial anomaly detection. Through detailed
metadata, phase-wise anomaly labels, and diverse operational modes, our benchmark enables both
principled evaluation and the development of early, reliable, and interpretable detection methods.
NoBOOM provides a foundation for the TSAD community to develop robust, practically deployable
solutions that enhance the safety and efficiency of chemical production.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the Abstract and Section [T} we announce the release of NoBOOM, a
benchmark consisting of six real-world datasets from different chemical processes. This
includes, for the first time, a dataset from an industrial partner, making real industrial process
data publicly available. The other five datasets originate from laboratory and pilot plants
that were specifically built and operated over extended periods for this purpose. In Section
[l we provide detailed descriptions of the data acquisition process, the plant setups, and the
nature of the recorded anomalies. Furthermore, we introduce a new evaluation protocol for
time-series anomaly detection methods with enriched label information, which we explain
in Subsection 3.3]through the detailed multi-phase labeling scheme applied to the distillation
datasets. Finally, in Section[d.2] we analyze the complexity and benchmarking challenges
posed by these anomalies to support our final contribution.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Section [6] we openly discuss the limitations of our benchmark. These
include the high anomaly density, which deviates from typical real-world distributions, and
the safety constraints that prevent us from simulating severe incidents such as explosions.
We also highlight that laboratory and pilot plants, while offering detailed control, cannot
fully replicate the complexity of industrial-scale systems. Additionally, we point out that
the industrial dataset, although highly valuable, comes with confidentiality restrictions that
limit the availability of detailed anomaly labels and process context. This underlines the
broader challenge of limited publicly accessible industrial data and emphasizes the need for
more open, well-documented real-world datasets to further advance research in industrial
anomaly detection.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work focuses on the collection, description, and benchmarking of real-
world datasets for time-series anomaly detection. It does not include theoretical contributions,
formal assumptions, or mathematical proofs. The value of our contribution lies in the
provision of high-quality empirical data and benchmarking protocols rather than in new
theoretical developments.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose all relevant details required to reproduce the dataset construc-
tion, data acquisition, and labeling process for the five laboratory and pilot plant datasets.
Section [3|describes the plant setups, sensor configurations, data collection procedures, and
anomaly labeling schemes in detail. The released datasets include raw sensor data, metadata,
and detailed labels for these experiments, making them fully reproducible and verifiable.
For the industrial dataset, confidentiality restrictions prevent us from disclosing full process
details or the specific nature of the anomalies. However, the raw sensor data, anonymized
sensor labels, and anomaly labels are fully included in the release and can be analyzed
without restrictions. While the root causes of anomalies remain undisclosed, the data itself
is complete, allowing other researchers to fully reproduce our analysis on this dataset.

Guidelines:

* The answer NA means that the paper does not include experiments.

» If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets are publicly available under the CC-BY-SA 4.0 license. We provide
access to the raw sensor data, metadata, and labels for all six datasets. For the five laboratory
and pilot plant datasets, we additionally provide detailed descriptions of the plant setups and
anomaly causes in the paper and supplemental materials. For the industrial dataset, although
certain process details and anomaly causes remain confidential, the full dataset—including
anonymized sensor data and labeled anomaly intervals—is openly accessible, too. This
allows researchers to use the data and reproduce our reported analyses. Usage instructions
and dataset descriptions are included both in the repository and in the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the experimental setups in Section 3] covering both laboratory
and industrial data collection. For each dataset, we provide information on the plant
configuration, sensor types, number of time steps, sampling frequencies, and the labeling
strategy. The details about training and test splits, including the distinction between normal
and anomalous segments, are presented in Subsection[3.3]and Table[I] Additional sensor
descriptions are provided in Appendix [E]} This level of detail enables readers to understand
the datasets and how they are structured for anomaly detection experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Subsection 4.2|and Table[/} we report results of simple baseline methods
across multiple runs, including averages and standard deviations for several metrics such as
ALARM, event-wise recall, and average alarm frequency (AAF). These results reflect the
variability in performance and provide insights into the reliability and consistency of the
baselines. We clearly state which metrics are used and report statistical variations to support
the assessment of dataset complexity.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

17



8.

10.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The hardware and server properties are listed in Appendix [F] Our work
focuses on dataset creation and benchmarking with simple, lightweight baseline methods
that require minimal computational resources. We do not perform large-scale model training
or computationally intensive experiments. Therefore, extensive compute infrastructure is
not required for the results presented in this paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We comply with the NeurIPS Code of Ethics. All data was collected in
controlled laboratory environments or in collaboration with an industrial partner, without
involving human subjects or personal data. We ensured that the publicly released datasets
respect confidentiality agreements and do not disclose sensitive or proprietary information
beyond what has been explicitly authorized for public release. Our work aims to support
safety and reliability in industrial operations, which aligns with ethical principles of societal
benefit.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Section [6} we discuss the potential positive impacts of NoBOOM, including
enabling the development of more robust and safer anomaly detection methods for chemical
processes, which could help prevent industrial accidents and improve environmental and
worker safety. We do not foresee direct negative societal impacts or obvious misuse risks, as
the data is technical, anonymized, and process-specific. However, we highlight the general
importance of transparency and further real-world data availability to advance industrial
safety research.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of models or datasets with a high
risk of misuse. The released data consists of anonymized sensor readings from chemical
process operations without any personal, security-relevant, or ethically sensitive information.
No additional safeguards beyond anonymization and confidentiality agreements with the
industrial partner were necessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example, by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite all external datasets and references used in our work in
Section[5] The NoBOOM dataset itself is released under the CC-BY-SA 4.0 license, which
is clearly specified on the dataset page. No external datasets or proprietary models are
repackaged or redistributed. All other referenced benchmarks (such as TEP) are only used
for comparison and are properly credited with their original sources and licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The NoBOOM datasets introduced in this paper are documented with descrip-
tions of the data acquisition process, sensor setups, anomaly labeling schemes, and data
structure in Section [3]and the supplemental materials. The datasets include metadata and
usage instructions and are released under the CC-BY-SA 4.0 license. No human subject
data is involved, and all data is anonymized where necessary to comply with confidentiality
agreements.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve any crowdsourcing or research with human subjects.
All data originates from technical sensor measurements of chemical processes in labora-
tory and industrial environments, without human interaction or data collection involving
participants.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve human subjects or personal data and therefore
does not require IRB approval or equivalent ethical review. All data consists solely of
technical process measurements from chemical plants.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigor, or originality of the research, the declaration is not required.

Answer: [NA]

Justification: We did not use any large language models (LLMs) as part of the core method-
ology, data processing, or scientific contributions of this work. LLMs were used only for
occasional language refinement, which does not impact the scientific validity or originality
of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Accessing the data

We provide a digital object identifier for version 1.0.0 of the data introduced in this paper (https
//doi.org/10.26204/data/13). This version of the data was used for all experiments presented in
this paper. Note, the two optional files FeatureOverview_Batch.csv containing additional information

non

about the features use ";" instead of "," to separate values.

In the future, we will extend the datasets with more experiments of existing processes and with
additional processes. We provide all major and minor versions of all datasets, and additional
information on a private server (http://data.forb5359.de/).

Additionally, we provide major versions of the data on kaggle (https://www.kaggle.com/
datasets/faebs94/noboom-anomaly-detection-in-chemical-processes). Note, that this
version contains all individual datasets and the auto-generated croissant file will also include all
datasets.
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B Metadata of Anomalies

To create anomalous process data, we deliberately introduced controlled perturbations in the operating
plant. These changes interrupt normal operation and cause sensor readings to deviate from expected
values. We refer to any such sensor-recorded deviation as an anomaly. In addition to the experimental
data, the datasets therefore includes structured metadata describing each labeled anomaly. To
provide a standardized, semantically grounded representation, these metadata are formalized using an
ontology. Semantic Web Technologies (SWTs) [39]], with ontologies as a core component, offer a
framework for capturing and organizing such knowledge in a uniform, machine-interpretable way. A
detailed description of the metadata can be found in [3]].

Each perturbation, referred to here as a failure, was initiated at a defined time, maintained for a set
duration, and then cleared by restoring the plant to normal operation. The database also includes a
few experiments in which the failure remained active until the end of the run. In addition, unintended
anomalies occurred in some experiments; both cases are described in the metadata. The following
overview lists the different failure modes for the batch-distillation and the continuous distillation
plants. Hereby, a failure alters the normal function of the system and manifests as a specific failure
mode.

B.1 Metadata for the Batch-Distillation Plant

The faults introduced during experiments at the batch distillation plant can be grouped as follows: (i)
setpoint changes of actuators (e.g., heaters, thermostats, pumps, or automatic valves), (ii) compro-
mised sensor data (e.g., added noise, drift, or flatline), and (iii) addition to or removal of substances
from the plant (e.g., foaming agents or nitrogen). Details about failure modes and their affected plant
components are summarized in Table

TableF3|: Overview of induced failure modes and their affected components for the batch-distillation
plant

Failure Mode Affected Component
Main heat input to reboiler vessel (VO01) H701
Increased/Reduced heat input to upper section of reboiler vessel (VO01) H702
Increased/Reduced heat input to column sections 1-3 (C001-C003) H704, H706, H708
Increased/Reduced condenser cooling capacity (HE001, HE002) TCU1
Increased/Reduced cooling-water supply AV716
Increased/Decreased vacuum line throttling TV1
Increased/Decreased reflux ratio P701, P702
Decreased liquid level in buffer vessel (V002) PDI702
Leaking into system (inert gas ingress, air ingress, condensed distillate) HV001-HV004, HV009
Leaking out of system (reflux egress) HV004

. . . . PDI701, PDI702, T703,
Compromised sensor output (drift, noise, flatline) T705, T709, T711, T712
Contamination with foaming agent V001
Reboiler residue loss (material outflow) HVO009

8Further details will be provided in the accompanying work [3].
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B.2 Metadata for the Continuous Distillation Plant

Details about failure modes for the continuous distillation plant are summarized in Table [

Table ﬁ: Overview of induced failure modes and its affected components for the continuous distillation
plant

Failure Mode Affected Component
Bottoms pipeline clogging M103, A103
Feed pipeline clogging M101, A101

Reduced liquid in bottom vessel (B103) M103, A103
Reduced liquid in distillate vessel (B102) M102, A102

System mass balance unsatisfied M101, A101
PDIC101, PDIC201, PIC101, PIC201
Unreliable noisy sensor output T101, T108, T110, T112, T114
T208, T210, T212
Unstable head pressure sensor PIC101
Unstable level in reboiler PDIC101, PDIC201, M101
Unstable temperature sensor T106, T108

Further details will be provided in the accompanying work [24]].
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C Description of Sensors in the Batch-Distillation Plant

A network of sensors, each identified by its data-stream name, ensures continuous monitoring of
critical points in the batch distillation plant. Temperature sensors measure the temperature of the
secondary heating jackets (T702, T704, T706, T708) that temper the column walls, as well as the
primary heating jacket (T701) that supplies the main heat for evaporation. Additional temperature
sensors detect the fluid temperature in the reboiler vessel VOO1 (T703) and at successive points
along the column (T705, T709, T711, T712). Flow meters quantify the cooling-water feed (FY1702),
the withdrawn distillate (FT703), and the reflux stream returned to the top of the column (FT704).
Pressure is measured at the column head (PY23). Two differential-pressure sensors determine the
liquid level in buffer vessel V002 (PDI702) and the pressure drop across the column (PDI701). Two
level switches (LS701, LS702) provide binary wet/dry indications for the reboiler and buffer vessels,
respectively. Table [5|summarizes each sensor’s data-stream name, measured physical phenomenon
and unit, a time-series property indicating whether the value is expected to vary during operation or
remain approximately stationary, and the specific part of the plant monitored by the sensor. A more
detailed discussion of the plant setup and its instrumentation will be provided in the accompanying
work [3]].

Table 5: List of sensor parameters for the batch distillation plant.

Sensor  Measured Time-Series

Name Phenomenon Unit Property Monitored Part of Plant
FT703  Flow rate kgh™! dynamic Distillate stream
FT704  Flow rate kgh™! dynamic Reflux stream
FYI702 Flow rate pulses per stationary Cooling medium stream
second (pps)

. Liquid presence (0 = dry, 1 = wet
LS701  Level - stationary in (Eebo ill)er vessel( V001 Y )
LS702 Level - stationary !ﬁ%‘iﬁe?rs:?g]e\%;zdry’ 1=wet)
PDI701 P.ressure mbar dynamic Pressure drop across column

difference
PDI702 P.ressure mbar stationary Liquid level in buffer vessel V002
difference

PY23 Pressure mbar stationary Top of column
T701 Temperature °C dynamic ?e/:[la)t)rillgfiteesrsg7\(l)(l)001f
T702 Temperature °C dynamic iﬁg ?{e?e\litsge?zf(g)%) {) f
T706 Temperature °C dynamic Heater H706 for column section 1
T704 Temperature °C dynamic Heater H704 for column section 2
T708 Temperature  °C dynamic Heater H708 for column section 3
T703 Temperature  °C dynamic Residue in reboiler vessel V001
T705 Temperature  °C dynamic Fluid in column section 3
T709 Temperature ~ °C dynamic Fluid beneath column section 1
T711 Temperature  °C dynamic Fluid between column sections 1 and 2
T712 Temperature ~ °C dynamic Fluid between column sections 2 and 3
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D Description of Sensors in Continuous Distillation Plant

Flow rates of feed, bottom product, distillate and intermediate streams from the decanter are measured
using weighing scales (for e.g., A101, M101). Differential pressure indicators (e.g., PDIC101) are
located in the reboiler and distillate buffer tanks, in order to maintain the liquid levels, and they
are used according to the plant configuration and the chemical system. Pressure indicators are
placed at the column head (e.g., PIC101) to measure the operating pressure within the column.
Temperature sensors (e.g., T101) are strategically placed in essential points within the column: the
reboiler, the base of each section, and the top of the column. Further detailed discussion of the plant,
sensors, manufacturers, process configurations, instrumentation diagram, and control strategies will
be provided in the accompanying work [24].

Table 6: List of sensors in the continuous distillation plant data.

iensor Measured Unit Monitored Part of Plant

ame Phenomenon

Al101 Mass kg Feed tank

A102 Mass kg Distillate buffer tank B102 column 1

A103 Mass kg Bottom product tank B103 column 1

A106 Mass kg Upper phase buffer tank B106 from decanter
A107 Mass kg Lower phase buffer tank B107 from decanter
A203 Mass kg Bottom product tank B203 column 2

M101 Flow rate kgh™! Feed tank

M102 Flow rate kgh™! Distillate buffer tank B102 column 1

M103 Flow rate kgh™! Bottom product tank B103 column 1

M106 Flow rate kg h~!  Upper phase buffer tank B106 from decanter
M107 Flow rate kgh™' Lower phase buffer tank B107 from decanter
M203 Flow rate kgh~! Bottom product tank B203 column 2
PDIC101 Pressure difference  mbar Reboiler column 1

PDIC102 Pressure difference  mbar Reboiler column 1

PDIC201 Pressure difference mbar Reboiler column 2

PDIC202 Pressure difference mbar Reboiler column 2

PDIC103 Pressure difference  mbar Distillate buffer tank B102

PIC101 Pressure mbar Top of column 1

PIC201 Pressure mbar Top of column 2

R Reflux ratio gg~!  Reflux ratio at top of column 1

T101 Temperature °C Reboiler column 1

T102 Temperature °C Bottom of section C101

T104 Temperature °C Bottom of section C102

T106 Temperature °C Bottom of section C103

T108 Temperature °C Bottom of section C104

T110 Temperature °C Bottom of section C105

T112 Temperature °C Bottom of section C106

T114 Temperature °C Below condenser

T201 Temperature °C Reboiler column 2

T202 Temperature °C Bottom of section C201

T204 Temperature °C Bottom of section C202

T206 Temperature °C Bottom of section C203

T208 Temperature °C Bottom of section C204

T210 Temperature °C Bottom of section C205

T212 Temperature °C Bottom of section C206
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E Evaluation Metrics

In this section we present the formal definitions of the metrics used for the evaluation of anomaly
detection methods on NoBOOM.

The ALARM score is defined as

1+ 3 pa(i)27?
S

Z : \[} (Pa)l
aebapg) 2 ITAWp )|+ 3IBA(p, 9)| + 5ILAD, 9)] 1

—(1—

DA, 9] : RPN
where o(z) = (1 +e7%)71, EA(s,g9) = {A € Li(s1)|I € Ip1(g > 0) A (g > 0)a surjective},
LA(s, g) = {A € Ii(s1)|I € Iio(g > 0) A (g > 0) 4 surjective}, TA(s, g) = {A € Li(s)|ga =
OANPA" € LA(s,g) UEA(s,9): A C A’},and DA(s,g) = {A € I,(g > 0)|3A4, € Il(sﬂ): AsN
A# DA (min Ay € AV gimin A, min a) = 0)} with I,(s) = {[l,u] C s71(v) | sp =vAB[Lu] €
[[,4] C s~ (v): S(i.a) = v} and Ly (s) = {[1, b]U[b+1, u] C s {u, v})|[l,b] € L(s)A[b+1,u] €
I,(s)}.

The event-wise recall is defined as

|IDA(p, g)|+

)

{Wel(g): Wnp~ " (1)#£0}| J1(g) >0

Recalleyent(g,p) = [11(9)I
evem‘(g ) {0 ,|Il(g)| 0

The average alarm frequency (AAF) is defined as

b [T1 (pw )]
M WeTL(9): Iy (1)]>0 {W e Li(g): | 71(1)| >0} >0
F(p,9) = { Ttwehio): b >0} v pW1
, W € Li(g): oy (D] > 0} = 0

The early detection frequency (EDF) is defined as

= (g5, =1 (D>0)
WEI(9): [Py, (1)[>0

. —1
[(Wen(e): py (>0} W Lig): |pW1(1)| > 03 >0
0 W e Li(g): py (1)) > 0} =0

EDF(p,g) =

The late detection frequency (LDF) is defined as
= 119y, —1({1,21)]=0)

WelL(9): Ipy} (1)]>0

-
Welio): oy D1>0)] W & Llg): Ipi (1)1 > O} >0
0 W € Li(g): Ipw (D] >0} =0

LDF(p,g) =
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F Experimental Details

For all our experiments, we use Python 3. 1 with PyTorch 2. and CUDA 12.8 We run all our
experiments on an NVIDIA DGX Cluster of 2 CPUs, 40 Cores, and 512 GB of memory.

We evaluate simple baselines of the form
score(xy) = (X140 — Tomw—1 > Mean(T1.y — Tomp—1) + € - Std(T1.0 — Tomw—1) + D)
and
score(ry) = (abs(x1. — Tow—1) > mean(abs(x1. —Tow—1)) +¢- std(abs(x1.m — Tomw—1)) +b)

introduced in [35] for varying values of w, ¢, and b for every time series in each dataset. mean and
std compute mean and standard deviation over time of a time series window, and abs computes
the absolute value element-wise. We test with and without using the mean, ¢ € {1, 2, 3,4}, on the
time series and first order difference, with and without the absolute value, and for a window size in
{5,10,25,50}. We present the results in table[7]

Additionally, we evaluate several established shallow baselines. We evaluate k-means for k &€
{1, 10, 25,50} and window sizes in {5, 10, 25, 50}. We evaluate EIF with 200 and 500 trees, sample
sizes 256 and 512, window sizes 10 and 50, and with no and zero extension levels.

Finally, we provide results for LSTM-AE with hidden dimensions [50], [50, 50], [50, 50, 50], and
[50, 50, 50, 50], window size 10 and 50, and learning rates 0.001 and 0.0001. For the LSTM-P we
evaluate hidden dimensions [30, 30] and [50, 50], size of the linear layer [40] and [20, 20], window
sized 10 and 50, predictions horizons 3 and 10, and learning rates 0.001 and 0.0001.

For each method we train and evaluate all parameter configurations and compute the ALARM score.
For the best performing model, we compute the other metrics. To obtain the predictions from the
anomaly scores, we perform a line search with 100 thresholds above the fraction of anomalies in each
dataset.

Table 7: Evaluation of additional simple baselines. The ALARM scores are normalized to the
maximum range.

dataset method ALARM Recepent AAF EDF LDF
kmeans 0.05 0.1 1.01 0.19 0.81
EIF 0.03 0.03 1.9 0.47 0.53
batch bpw | LSTM-AE | 0.11 0.13 1.23 0.01 0.99
LSTM-P 0.05 0.12 6.89 0.0 1.0
kmeans 0.32 0.51 1.01 0.01 0.99
EIF 0.23 0.36 1.33 0.02 0.98
batch abm | LSTM-AE | 0.55 0.64 1.14 0.01 0.99
LSTM-p 0.32 1.0 3.31 0.08 0.92
kmeans 0.0 0.0 0.0 0.0 0.0
EIF 0.0 0.0 0.0 0.0 0.0
cont wat LSTM-AE | 0.0 0.0 0.0 0.0 0.0
LSTM-P 0.0 0.0 0.0 0.0 0.0
kmeans 0.18 0.5 1.04 0.2 0.8
EIF 0.19 0.37 2.68 0.21 0.79
cont but LSTM-AE | 0.14 0.58 1.57 0.2 0.8
LSTM-P 0.0 0.0 0.0 0.0 0.0
kmeans 0.34 0.5 1.2 0.0 1.0
EIF 0.25 0.36 1.75 0.0 1.0
cont ome LSTM-AE | 0.16 0.18 1.5 0.0 1.0
LSTM-P 0.73 1.0 1.25 0.0 1.0

https://python.org
https://pytorch.org
https://docs.nvidia.com/cuda/archive/12.8.0/
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G Additional Evaluations
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Figure 6: Distribution differences between training and test set in the industry process reveal no
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