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It Takes Two: On the Seamlessness between Reward and Policy Model in RLHF

Anonymous Authors1

Abstract

Reinforcement Learning from Human Feedback
(RLHF) involves training policy models (PMs)
and reward models (RMs) to align language mod-
els with human preferences. Instead of focus-
ing solely on PMs and RMs independently, we
propose to examine their interactions during fine-
tuning, introducing the concept of seamlessness.
Our study starts with observing the saturation
phenomenon, where continual improvements in
RM and PM do not translate into RLHF progress.
Our analysis shows that RMs fail to assign proper
scores to PM responses, resulting in a 35% mis-
match rate with human preferences, highlighting
a significant discrepancy between PM and RM. To
measure seamlessness between PM and RM with-
out human effort, we propose an automatic metric,
SEAM. SEAM quantifies the discrepancies be-
tween PM and RM judgments induced by data
samples. We validate the effectiveness of SEAM
in data selection and model augmentation. Our
experiments demonstrate that (1) using SEAM-
filtered data for RL training improves RLHF per-
formance by 4.5%, and (2) SEAM-guided model
augmentation results in a 4% performance im-
provement over standard augmentation methods.

1. Introduction
Reinforcement learning from human feedback (RLHF) has
emerged as a popular technique to optimize and align a lan-
guage model with human preferences (Stiennon et al., 2020;
Nakano et al., 2021; Menick et al., 2022; Glaese et al., 2022;
Ouyang et al., 2022; Touvron et al., 2023; Achiam et al.,
2023; Bai et al., 2023; Rafailov et al., 2024). RLHF provides
a natural solution for optimizing non-differentiable, scalar
objectives for language models and has been the centerpiece
of recent state-of-the-art large language models (LLMs) (Lu
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et al., 2022; Hejna III & Sadigh, 2023; Go et al., 2023;
Korbak et al., 2023; Achiam et al., 2023; OpenAI, 2023).
In RLHF, a reward model (RM) generates scalar rewards
for a policy model (PM) generated outputs as supervision
signals during reinforcement learning. Since policy gradient
methods (Schulman et al., 2017) optimize based on such
signal, the PM and RM inevitably dictate the behavior of the
resultant RLHF model. As such, the properties of RMs (or
PMs) and their impact on RLHF models have become points
of interest for the community (Gao et al., 2023; Zhu et al.,
2023; Dong et al., 2023; Gao et al., 2023; Shen et al., 2023).
Unlike prior work that examines the individual capabilities
of each model, in this work, we introduce and explore the
concept of seamlessness between the PM and RM, focusing
on their interactions.

Our study begins with the observation of a saturation phe-
nomenon in the RLHF process (§2): beyond a certain thresh-
old, improvements in the quality of the RM and PM do not
translate into increased RLHF performance (Figure 4). To
understand this phenomenon, we explore whether the RM
can assign appropriate scalar rewards to responses r gen-
erated by the PM prompted by instruction I . This inquiry
addresses the seamlessness between the RM and PM. Al-
though the RM performs well on standard preference bench-
marks, it struggles to evaluate PM-generated responses ef-
fectively. This is demonstrated by a 35% mismatch rate
between reward scores and human preferences, indicating a
significant, persistent discrepancy between the RM and PM
as reflected in the reinforcement learning (RL) training data.
This discrepancy does not diminish even as the PM and
RM are individually optimized according to their respective
evaluation paradigms, thus disrupting their seamlessness.
Remarkably, when we remove instructions from the RL
dataset that contribute to this discrepancy and re-conduct
RLHF, we observe an improvement in RLHF performance.
This outcome suggests that enhancing the seamlessness be-
tween PM and RM benefits the overall RLHF process.

Based on these findings, we define the seamlessness be-
tween the PM and RM as detailed in §4 and introduce
an automated estimation method, SEAM, available in
three computational variants: SEAMAdv, SEAMContrast, and
SEAMGPT. Such methods remove the reliance on manual
effort traditionally required for measuring seamlessness. Es-
sentially, SEAM evaluates the risk associated with each
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data sample when employed in RLHF processes, consid-
ering the specifics of the given PM and RM. Additionally,
we give two experimental scenarios to demonstrate how
SEAM can be effectively utilized to improve the real-world
RLHF process. (1) Data Selection: We compute the SEAM
score for each sample and exclude those with low scores
for RL training data selection. This strategy underscores
a “less is more” phenomenon (Zhou et al., 2024), whereby
RLHF performance is enhanced when using this filtered
dataset compared to the unfiltered dataset. Additionally,
removing low-score samples helps mitigate the “saturation
phenomenon”. (2) Model augmentation: During RLHF, we
explore the PM and RM failure modes and subsequently
strengthen them based on identified weaknesses. We calcu-
late the SEAM score for each data sample throughout the
RL training phase. Samples exhibiting low SEAM scores
are then selected as targets for data augmentation to enhance
the capabilities of the PM and RM specifically for these chal-
lenging samples. The results show that the SEAM score
effectively functions as a diagnostic metric within the RLHF
framework. The primary contributions are three-fold:

• We shift focus from the individual capacities of the RM
and PM to explore their interplay and a noted saturation
phenomenon in RM/PM quality. Our analysis identifies a
discrepancy between RM and PM that cannot be resolved
merely by scaling up.

• We conceptualize the seamlessness between PM and RM
and introduce SEAM, an automatic estimation method
that quantifies the seamlessness between PM and RM in a
data-centric manner.

• We empirically design two experimental scenarios to
demonstrate how SEAM can be leveraged to improve
RLHF training: (1) Data selection and (2) Model augmen-
tation. Our results validate the effectiveness of SEAM
under such scenarios.

2. The Saturation Phenomenon Reflected in
RLHF Quality

In this section, we conduct experiments to investigate the
relationship between the RLHF outcomes and the quality of
PM/RM. Further details on implementation and setup are
provided in Appendix E.

Results. We show the correlation between the in-domain
performance (QPM and QRM ) of RLHF models and the
quality of RMs and PMs, as illustrated in Figure 5. Our
primary observation is that while the quality of RMs and
PMs generally positively correlates with the in-domain per-
formance of RLHF models, a saturation effect is evident.
Beyond a certain quality threshold, additional RM or PM
quality improvements yield no further enhancements in the
in-domain performance of RLHF models.

7.5 5.0 2.5 0.0 2.5 5.0 7.5
Reward Preference

Reward Preference v.s. Human Preference

Agreement
Mismatch
Human Prefer Response A
Human Prefer Response B

Figure 1. Agreement between reward and human preference is
evaluated by comparing two responses (A and B) from two differ-
ent policy models. The blue points indicate agreement between
the reward and human preferences, while the red points represent
mismatches. However, the results show that the RM fails to assign
a proper score to the generation from PM.

3. Analyzing the Origin of Saturation
Phenomenon

3.1. Discrepancy between RM and PM during RL
training

During the RL training stage, the PM is prompted by in-
structions from the RL dataset Drl to generate responses ri.
The RM then evaluates these responses, which assigns re-
ward scores to guide the RL training process. Our empirical
analysis reveals two key findings (Figure 6), given a high-
quality PM and RM: (1) the RM can effectively discriminate
between golden and suboptimal responses of instructions
within Drl, and (2) the PM can generate high-quality re-
sponses to instructions from Drl. Thus, we investigate the
RM’s capacity to evaluate the PM’s responses to Drl since
there might be a distribution shift between the responses
generated from PM and those in the dataset.

Directly evaluating the RM capability to accurately assign
scores to responses generated by the PM conditioned on an
instruction Ii has significant challenges since the standard
reward modeling cast the preference regression problem
into a classification problem. To address this, we employ a
comparative analysis. We select two PMs of differing quali-
ties (ranked 1 and 5 in previous experiments §2) and prompt
each PM with instructions from the dataset Drl (we sample a
total of 1,000 instructions). We collect the responses and or-
ganize them into pairs for evaluation. Each pair of responses
is evaluated by two methods: (1) human judgment and (2)
RM evaluation using the rank 1 RM from §2 to determine if
even our best RM faces issues. To investigate the matching
degree between RM and human preferences, we present
pairs of responses (A and B) from the two PMs to human

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2024

annotators without revealing the originating model. Human
annotators are asked to annotate their preference between
the two options. Similarly, we determine RM preferences
based on their assigned reward scores.

The results, as shown in Figure 1, reveal a mismatch rate of
approximately 40%, showing that the RM has some inabil-
ity to accurately assign scores that reflect the true quality
of responses generated by the PM. Also, we can observe a
discrepancy between PM and RM - the RM can not well
judge the quality of the responses generated from PM. This
discrepancy can introduce noise into the RL training process,
leading to the accumulation of incorrect gradients during RL
optimization. Besides, we show that such discrepancies can
not be resolved by scaling up the model (Appendix D). Con-
sequently, a natural strategy to enhance the RLHF process
is removing instructions from Drl that exhibit discrepancies
between the RM and PM. This approach aims to reduce the
noise in the RL training procedure, potentially improving
overall model performance.

3.2. Less Can Be More: A Case Study of Data Selection
for RL Training

Full Data Filtered Data
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Figure 2. Compared to the
RLHF performance of the
full dataset, filter low-
SEAM data further im-
proves RLHF (3 random
seeds).

Based on the insights from
§3.1, we remove instructions
that lead to discrepancies be-
tween the PM and RM. We
then use this refined dataset
for RL training and compare
its performance against that
achieved using the full Drl

dataset. As per the experi-
mental settings described in
§3.1, we employ both models
at rank= 1 for RL training.
The results, presented in Fig-
ure 2, demonstrate a statistically significant improvement in
RLHF performance (p<0.05) after removing data that causes
discrepancies between the PM and RM. This case study il-
lustrates a ‘less is more’ phenomenon in RL training data:
removing data that causes the discrepancy between PM and
RM can enhance overall RLHF performance. However, this
selective data filtering process is challenging to general-
ize due to its dependence on human annotation. Currently,
there is no formal concept to characterize such data-driven
discrepancies. Consequently, we will discuss these in §4.

4. SEAM: An Automatic Estimation for
Seamlessness

As shown in §3, removing data that leads to discrepancies
between the PM and the RM improves RLHF performance.
Currently, our approach depends on manual human assess-
ments to determine the alignment between the PM and RM

for specific datasets, a process that hinders full automation.
This section first explores the concept of ‘seamlessness’ in
RL training data. Then, we propose SEAM, an automated
method designed to quantify the seamlessness of each data
point, potentially enabling a more efficient and systematic
tool to enhance RLHF training.

4.1. Concept of the Seamlessness

Generally, our concept of ‘seamlessness’ is proportional to
the PM likelihood of a data point that causes discrepancies
between the policy and the reward model. Therefore, seam-
lessness includes not only the probability of misjudgment
by the reward model but also the generative distribution of
the policy model when conditioned on given data. The for-
mal definition of seamlessness is provided in Definition 1.
Considering that it is implausible to iterate the space of all
responses r, we provide a discretization form for seamless-
ness in Equation 2.

Definition 1. (Definition of Seamlessness) Given an in-
struction I ∈ Drl, a reward model Rθ and a policy model
πSFT . We denote the distribution of the response r from
πSFT as Pr(·|I, πSFT ), we also denote the data distribu-
tion that hacks Rθ as Ph(·|Rθ), which means the data
that leads to reward misjudgement. Then, the seamless-
ness of the instruction I is defined as follows:

S(I,Rθ, π
SFT ) =

∫
r∼Ph

Pr

(
r | I, πSFT

)
·ϵ(r,Rθ) dPh

(1)
where ϵ(r,Rθ) denotes the magnitude of RM misjudge-
ment.

Since the term defined in Definition 1 is intractable, we
propose SEAM, an estimation for the seamlessness between
RM and PM reflected through data. Following the notations
in Definition 1, we define a sample set X that contains N
samples ri ∼ Ph(·|Rθ) to represent the hacking distribution.
Then, we present the discretization form of the seamlessness
as follows:

SEAM(I,Rθ, π
SFT ) =

∑
ri∈X

Pr

(
ri | I, πSFT

)
· ϵ(ri, Rθ)

In fact, our analyses in §3 use a similar method to Equa-
tion 2 to quantify the seamlessness between PM and RM.
But under the formulation in §3, the ϵ(ri, Rθ) refers to the
mismatch degree between reward and human preferences,
which inevitably incorporate the human efforts.4.2. Automatic Estimation for Seamlessness

A significant practical challenge in our previous method
of measuring seamlessness is the difficulty in automating
the process. In this part, we introduce several automated
estimation methods designed to quantify the seamlessness
of data. Specifically, we propose three variants based on
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Figure 3. RLHF performance when using SEAM to filter 20%
of the RL dataset Drl. After filtering out the low-SEAM data,
we observe an improvement in RLHF performance compared to
using the full Drl. The effectiveness of the three SEAM variants
is ranked as follows: GPT > Contrast > Adv. Specifically, we
also observe that randomly removing 20% RL data does not bring
statistically significant performance changes.

their corresponding designs to construct the sample set X
(Equation 2): SEAMContrast, SEAMGPT, SEAMAdv.

SEAMContrast In the SEAMContrast method, we imple-
ment the ‘Contrast Instruction’ strategy (Shen et al., 2023)
to automatically construct the sample set X . Specifically,
for each instruction and its golden response pair (I, r) in
the dataset Drl, we retrieve 30 semantically relevant but dis-
tinct instructions I∗, along with their corresponding golden
responses r∗, from a large SFT dataset (each pair in this
dataset comprises an instruction and its golden response).
We then use r∗ to form new pairs, assessing whether the re-
ward model can effectively distinguish between the quality
of the original pair I◦r and the newly constructed pair I◦r∗.
It is guaranteed that the quality of I ◦ r is superior to I ◦ r∗,
providing a reliable ground truth for evaluating RM per-
formance. We define the magnitude of RM misjudgments,
ϵ(ri, Rθ), as follows:

ϵ(ri, Rθ) = max {Rθ(I ◦ r∗)−Rθ(I ◦ r), 0} (2)

SEAMGPT In the SEAMGPT method, we use GPT-4
(Achiam et al., 2023) to construct the sample set X . Specifi-
cally, for each instruction and its golden response pair (I, r)
in the dataset Drl, we prompt GPT-4 to produce worse-
quality responses r∗. Similarly, we use r∗ to form new
pairs, assessing whether the reward model can effectively
distinguish between the quality of the original pair I ◦ r and
the newly constructed pair I ◦ r∗. We reuse the magnitude
defined in Equation 2.

SEAMAdv We use the adversarial attack to generate ad-
versarial sentences that construct the sample set X . Specifi-

cally, for each instruction and its golden response pair (I, r)
in the dataset Drl, we use adversarial attacks (Ren et al.,
2019) to produce responses r∗ that hacks the reward model,
such that Rθ(I ◦ r∗) > Rθ(I ◦ r). Similarly, we follow the
misjudgment term defined in Equation 2.

Length penalty term We introduce the operation to re-
move length bias. This operation targets the bias intro-
duced by the length of response r, primarily affected by
the exponential decrease in probability with increasing se-
quence length. To mitigate this, we implement a length
normalization operation on the log probability of the re-

sponse. This is formally represented as
logPr(ri|I,πSFT )

len(ri)
,

where logPr(ri | I, πSFT ) denotes the logarithm of the
probability that the policy model assigns to generating the
response ri given the instruction I .

5. SEAM for RL Training Data Selection
In this section, we employ three SEAM variants as indica-
tors to filter RL training data and evaluate the corresponding
effectiveness. The setup is deferred to Appendix E.

The results are presented in Figure 3, showcasing perfor-
mance based on the top-5 RMs and PMs, where the satura-
tion phenomenon occurs (§2). The key observations are as
follows: (1) Training on SEAM-filtered RL data further im-
proves RLHF performance: Compared to RLHF on the full
Drl, conducting RL training on the filtered Drl enhances
RLHF performance. This finding empirically validates that
data with low SEAM values negatively impacts the RL train-
ing stage in RLHF. Additionally, randomly removing the
same amount of RL training data does not yield benefits, in-
dicating that the effectiveness of SEAM is not merely due to
a reduction in data size. (2) Training on SEAMGPT-filtered
RL data alleviates the saturation phenomenon: We observe
that as the quality of RM (PM) increases, conducting RLHF
on the data filtered by SEAMGPT continues to improve per-
formance to a certain extent. Compared to the case of full
data training, the saturation phenomenon is mitigated by
filtering data with low SEAMGPT values.

6. Conclusion
In this paper, we explored the concept of seamlessness be-
tween policy and reward models within RLHF, uncovering
discrepancies between the models as reflected in the data.
We introduced SEAM, an automated method to quantify
this seamlessness, demonstrating its practical benefits for
improving RLHF outcomes. Our findings emphasize the
critical interplay between policy and reward models, con-
tributing to a deeper understanding of RLHF dynamics. We
hope our insights will guide future research toward develop-
ing more effective and nuanced RLHF strategies.
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A. Preliminaries: A three-stage paradigm for
RLHF

A RLHF practice includes three stages: policy modeling,
reward modeling, and RL training, which involve three
benchmarks: an SFT dataset Dp, a preference benchmark
Dr, and an RL dataset Drl.

Policy model. Following the setup (Ouyang et al., 2022),
we obtain the policy model (PM) by supervised fine-tuning
(SFT) the base version of LLM. Given an SFT dataset Dp,
each instance in the dataset consists of an instruction and
its golden response. Then, we train the LLM on Dp with
language modeling loss to obtain the PM: πSFT.

Reward model. Following the conventional
setup (Ouyang et al., 2022), we are given a dataset
of human preferences Dr. Each instance in this dataset
(Ii, r

+
i , r

−
i ) is comprised of an instruction prompt Ii, a

pair of responses r+i , r
−
i where r+i is preferred over r−i

by humans. On this labeled data, RM Rθ is trained to
assign a higher scalar reward to human-preferred r+i over
non-preferred r−i in the context of Ii. This can be achieved
by minimizing the ranking loss L, where σ is the sigmoid
function and Ii ◦ r+i is the concatenation of Ii and r+i .

L(θ) = −E(Ii,r+i ,r−i )∼Dh

[
log

(
σ
(
Rθ(Ii ◦ r+i

)
−Rθ

(
Ii ◦ r−i )

))]
.

(3)

Reinforcement Learning. The last stage of RLHF is re-
inforcement learning. Specifically, a per-token KL penalty
from the SFT model at each token is used to mitigate over-
optimization of the reward model, and the value function is
initialized from the RM. We maximize the following com-
bined objective function J (ϕ) in RL training based on PPO
algorithm (Schulman et al., 2017; Ouyang et al., 2022), RL
training dataset Drl and pre-training dataset Dpre:

J (ϕ) = E(I,r)∼D
πRL
ϕ

[
Rθ(I ◦ r)− β log

(
πRL
ϕ (r | I)/πSFT(r | I)

)]
where πRL

ϕ is the learned RL policy parameterized by ϕ

initialized from a pretrained supervised trained model πSFT.
The first term encourages the policy πRL

ϕ to generate re-
sponses that have higher reward scores. The second term
represents a per-token KL reward controlled by coefficient
β between πRL

ϕ and πSFT to mitigate over-optimization
toward the reward.

B. Related Work and Background
RLHF in Language Models. In earlier studies, reinforce-
ment learning (RL) has been applied across various domains,
such as machine translation (Sokolov et al., 2016; Kreutzer
et al., 2018; Nguyen et al., 2017), dialogue generation (Li
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① Saturation Phenomenon
Continual improvements of reward model (RM)/ policy model 

(PM) quality don’t translate into RLHF performance.

rA: “In the era 
of LLM, RLHF 

prevails in…”

rP: “RLHF is a 
technique to 

align ……”

IA: “What is RLHF 
in the domain 

of LLM?”

IA: “What is RLHF 
in the domain 

of LLM?”

② Seamlessness
Seamlessness measures the discrepancies between policy and 

reward models

   Instruction Policy Response

   Instruction Gold Response

RM

Human

RM

Human

We introduce an automatic method for estimating the 
Seamlessness between PM and RM. 

GPT-4 Contrast 
Instruction

③ SEAM

 r

r  r*

rr

Adversarial 
Attack

RM
 r*  r*

We verify the effectiveness of SEAM under (1) data 
selection and (2) model diagnosis

Data selection

④ SEAM application

Model augmentation

Full data

SEAM 
filtered data

General 
Augmentation

Augmentation 
guided by SEAM

Not 
Match

Match

Figure 4. We introduce the concept of Seamlessness to measure the discrepancies between reward and policy models as supported by
human evaluation. To automate measuring the Seamlessness, we propose SEAM, an automated method for estimating seamlessness
between PM and RM. We validate its effectiveness through two experimental settings: data selection and augmentation.

et al., 2016; Yi et al., 2019; Keneshloo et al., 2019), and
text generation (Li et al., 2018; Ziegler et al., 2019; Shi
et al., 2018; Stiennon et al., 2020), often employing mod-
eling reward as automatic evaluation metrics like BLEU
(Papineni et al., 2002) or using simulated feedback (Nguyen
et al., 2017; Keneshloo et al., 2019). While integrating
RL and language models has been extensively explored,
significant advancements in RLHF with LLMs for general
language tasks have only recently emerged (Ouyang et al.,
2022; Touvron et al., 2023; Achiam et al., 2023; Bai et al.,
2023; Rafailov et al., 2024). In RLHF, human feedback is
collected to train a reward model, which then serves as a
surrogate for human feedback during the training process,
providing scalar evaluative feedback to the policy model
(see detailed background of RLHF in Appendix A). In
RLHF, RL algorithms (e.g., PPO (Schulman et al., 2017))
are particularly suitable for training PM and RM.

Reward Hacking. In RLHF, a critical issue closely related
to our research is “reward hacking”, as identified in prior
studies (Askell et al., 2021; Pan et al., 2021; Skalse et al.,
2022; Shen et al., 2023). This phenomenon arises from dis-
crepancies between the reward model (RM) and actual
human preferences (Gao et al., 2023; Lambert & Calandra,
2023). Although optimizing towards maximizing the re-
wards may initially appear beneficial, it ultimately leads the
trained policy to exploit loopholes in the RM, securing high
rewards without achieving the intended objectives. This de-
grades performance, complicates the selection of effective
checkpoints, and may produce outputs that do not genuinely

reflect human preferences (Singhal et al., 2023). Such mis-
alignments increase tendencies towards sycophancy (Perez
et al., 2023), reinforcing social biases (Santurkar et al., 2023;
Ziems et al., 2024) and pose safety risks (Ngo et al., 2022;
Carlini et al., 2024; Shen et al., 2024). A key distinction of
our work is its focus on the discrepancies between RM
and PM, which we term ‘seamlessness’, as opposed to the
traditional focus on discrepancies between reward models
and human values.

C. A Sanity Check on PM and RM
We hypothesize that the observed saturation phenomenon
may be due to the capacity of RM or PM can not be trans-
ferred to data used in other stages (e.g., the policy model can
generate high-quality responses towards SFT instructions
but fails to respond to the RL instructions). Thus, we con-
ducted a sanity check on both models to answer the follow-
ing two questions: (1) Q1: whether the RM consistently dis-
tinguishes between better and worse responses as per the in-
structions used in SFT and RL training and (2) Q2: whether
the PM sustains its generation quality with instructions from
the RL dataset. We prepare the SFT dataset Dp, the prefer-
ence benchmark Dr, and the RL dataset Drl. Specifically,
the PM and RM were trained on the train splits of Dp and
Dr, respectively. We then employed cross-validation tech-
niques to assess the PM’s performance across the test split of
the preference and RL datasets. Similarly, we tested the RM
on the test split of the SFT and RL datasets. Experimental
details are deferred to Appendix E.
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Figure 5. We examine the relation between the RLHF performance and the quality of PMs and RMs, measured by Pin and Ain,
respectively. We can see a “saturation phenomeno”: the continual improvements of RM/PM do not translate into RLHF improvements.

The results are shown in Figure 6. We trained five models
each for the PM and RM, subsequently performing cross-
validation. The key observation is that the performance
of both PM and RM remains consistent across various in-
domain datasets. This consistency indicates that PM and
RM do not have significant generalization issues under our
experimental setup. Besides, it also answers our two ques-
tions: (1) Given a well-trained PM that performs well on
the evaluation set of Dp, it can also respond with similar
quality to the instructions in Drl; (2) Given a well-trained
RM that performs well on the evaluation set of Dr, it can
also perform similarly well on distinguishing the golden and
worse response in Dp and Drl.

D. The discrepancy does not vanish as scaling
up

As demonstrated in §3.1, there is a notable discrepancy
between the PM and RM: the RM fails to appropriately
assign reward scores to responses generated by the PM. In
this section, we explore the impact of scaling the base model
on these discrepancies by reanalyzing the data discussed in

SFT ( p) Preference ( r) RL ( rl)

PM
RM

100% 97% 96%

98% 100% 98%

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Figure 6. Cross-validation of PM and RM quality using differ-
ent datasets(3 random seeds). The performance of RM and PM
remains consistent across benchmarks. (e.g., on Drl, the PM
achieves 96% of its performance on Dp.)
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Model Match Rate PM performance RM performance

LLaMa2-7B 60.5% 66.1 5.24
LLaMa2-13B 60.7% 66.9 5.30
LLaMa2-70B 60.4% 67.6 5.35

Table 1. The scaling tendency of our base model for training PM and RM, from 7B to 70B. We observe that the performance of PM and
RM improves as the model scales up but find the match rate toward human preference remains nearly the same.

§3.1. The findings, presented in Table 1, reveal that while
the capacities of the PM and RM improve with an increase
in the size of the base model (LLaMa2), the preference
matching rate remains nearly consistent across different
model scales. These results confirm that merely scaling up
the model size does not address the underlying discrepancy
between the RM and PM.

E. Implementation details of RLHF
Experimental Setup. We follow the experimental config-
uration of StackLLaMa (Beeching et al., 2023) due to the
proven success of its PPO and data settings for RLHF. Our
framework employs the LLaMa2-7B model as the base
model for both the reward and policy models. To explore
the effects of the quality of RM and PM, we change the
volume of training data, enabling us to produce a spectrum
of model strengths for both PM and RM. We develop ten
variants each for RMs and PMs. Each pairing of PM and
RM is then subjected to the RLHF technique, resulting in
hundreds of unique RLHF models.

Quality Metrics. We employ two metrics1 to assess the
quality of the PM and RM: QPM (PM quality) and QRM

(RM quality). In our experiments on StackExchange, QPM

measures how well the policy model generates answers to
StackExchange questions. We use 1000 samples from the
StackExchange test split, with responses generated by the
LLM evaluated by GPT-4 on a scale from 1 (worst) to 10
(best), similar to the MT-Bench scale. On the other hand,
QRM evaluates the accuracy of the reward model in predict-
ing human preferences on the StackExchange preference
benchmark test split. Additional details are provided in
Appendix E.

E.1. Training details

• Standard fine-tuning (SFT): The base model chosen is
LLaMa2-7B. We created 10 PMs of increasing quality
by varying the training data amounts at 50, 100, 250,
500, 800, 1500, 2500, 5000, and 10000, plus a baseline
pretrained model without SFT. The configuration employed

1We do not use the KL divergence between the outputs from
the reference and policy models, as there is no clear correlation
between model quality and such KL divergence.

includes the AdamW (Kingma & Ba, 2014) optimizer with
a learning rate of 1e-4, 10 warmup steps, and training
facilitated by LoRA.

• Reward model (RM): Training of the RM utilized
the SFT model as the base model. Depending on the SFT
model’s quality rank, StackExchange pairwise preference
data of subset 50, 100, 500, 2500, 5000, 10000, 20000,
50000, and 100000 were employed to train 9 RMs. With
an additional pretrained model replaced with a randomly
initialized classifier head, in total we create 10 RMs with
increasing accuracy. Training employed LoRA, with
AdamW optimizer and learning rate 2e-5.

• Reinforcement learning with PPO: PPO is used for
each PM-RM pairing, generating hundreds of unique RLHF
models. The RL prompts are from the StackExchange
question dataset and remain consistent across all RLHF
implementations. The SFT model served as the reference
model, utilizing the reward scores from the RM as
supervision. All PPO training has the configuration of
LoRA with a learning rate of 1.4e-5, a batch size of 32, and
200 PPO steps.

Prompt 1. (Prompt used in RLHF/PM evaluation)

[System]

Please act as an impartial judge and evaluate the quality
of the response provided by an AI assistant to the user
question displayed below. Your evaluation should con-
sider factors such as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of the response. Begin
your evaluation by providing a short explanation. Be as
objective as possible. After providing your explanation,
please rate the response on a scale of 1 to 10 by strictly
following this format: "[[rating]]", for example: "Rating:
[[5]]".

[Question]
{question}

[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]
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E.2. Evaluation details

For the evaluation details, we detail the setup of the gener-
ator (i.e., PM and RLHF model) and classifier (i.e., RM),
respectively.

• Reward model: the reward model is evaluated on the cor-
responding test split of the preference benchmark based
on accuracy (i.e., whether the RM can distinguish the
better and worse response in the context of the given in-
struction.)

• Policy and RLHF model: we follow the general principle
of MT-Bench (Zheng et al., 2023). Specifically, we use
their instruction (Prompt 1) to prompt GPT-4 for measur-
ing the quality of the responses from the policy and RLHF
models. GPT-4 will assign a quality score, ranging from
0 to 10, to measure the quality of the response.

E.3. Sanity check setup

In the sanity check for the capacity of the RM and PM, our
primary objective is to verify that both models maintain
comparable performance across different stages of the train-
ing process. Specifically, we aim to ensure that: (1) the
RM consistently distinguishes between better and worse re-
sponses as per the instructions used in SFT and RL training;
(2) the PM sustains its generation quality with instructions
from the RL training dataset.

To achieve this, we utilize the Stack-Exchange dataset’s
three segments (SFT, Preference, RL), dividing each into
train, dev, and test splits. For the RM, the data distri-
bution is 100,000/20,000/20,000, and for the PM, it is
20,000/2,000/2,000. We prepare the dataset in a format
where each instruction is paired with a corresponding high-
quality answer and a lower-quality candidate, ensuring the
data’s compatibility for training both the RM and PM. The
training configurations adhere to the setup described in Ap-
pendix E.

E.4. Experimental setup in RL data selection

Since this is a data-centric experiment, we follow the previ-
ous RLHF setup outlined in Appendix E. For SEAMContrast,
we utilize SimCSE (Gao et al., 2021) as the embedding
model to retrieve the top 30 instructions from a Stack-
Exchange dataset containing over 1 million instruction-
response pairs, with cosine similarity values in the interval
[0.8, 0.9]. For SEAMGPT, we select GPT-4-0613 to gener-
ate 30 lower-quality responses using the prompt shown in
Prompt 2. For SEAMAdv, we employ TextAttack (Morris
et al., 2020) to perform adversarial attacks on the reward
model. For each instruction, we generate 30 adversarial
responses.

For the models, we reuse the policy model and reward model

checkpoints from §2 to calculate each SEAM variant across
the RL dataset. Subsequently, we filter out 20% of the RL
dataset based on the value of each SEAM variant, respec-
tively. We then compare the RLHF performance using the
full and filtered datasets based on the evaluation paradigm
used in §2. Specifically, we add a baseline (LLaMa) that
uses the perplexity computed by LLaMa2-7B and filters the
high perplexity data.

F. Implementation details of SEAM
F.1. Prompt used in SEAMGPT

We use GPT-4 to generate worse-quality responses in
SEAMGPT, based on the prompt detailed in Prompt 2.

Prompt 2. (Prompt used in SEAMGPT)

[System]

Using the question and its correct answer provided be-
low, generate 30 distinct answers that are of lower qual-
ity. Each response should include one or more of the
following characteristics: factual inaccuracies, misunder-
standings of the core question, irrelevant information, or
grammatical errors. The answers should vary in their mis-
takes to cover a range of common errors seen in similar
topics. Format the responses as separate paragraphs for
each answer.

[Question]
{question}

[Answer]
{answer}

[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

F.2. Cases of SEAMAdv

We employed several adversarial attack strategies to chal-
lenge the integrity of the reward model (RM). Specifically,
for each instruction along with its corresponding better re-
sponse r+ and worse response r−, these adversarial attacks
introduce a perturbation α to r−. The goal is for r− + α
to receive a higher reward score than r+, thereby compro-
mising the RM. The attacks we utilized include GA (Wang
et al., 2019), Bert-Attack (Li et al., 2020), PWWS (Ren et al.,
2019), KATG (Shen et al., 2022), and TextFooler (Jin et al.,
2020). However, a common limitation of these methods
is that they tend to produce sentences with extremely low
likelihood according to the policy model. Below, we present
some examples illustrating the discrepancies between the
original responses and those generated by the adversarial
attacks.
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F.3. Setup of SEAMContrast

Using a human preference dataset, we have divided it into
training, development, and testing sets. The reward model is
trained on the training set and ceases training once it attains
optimal performance on the development set. Subsequently,
it is evaluated on the test set. Our CONTRAST INSTRUC-
TIONS are built upon the test set in each benchmark. We
establish a similarity threshold range to ensure the retrieved
instruction differs from the original one ([0.8, 0.9]). Only
instructions falling within this similarity range are retrieved.

F.4. Human evaluation

Since we aim to compute the degree of match between the
reward outputs and human preferences, we enlist multiple
human annotators to assess the quality of responses to Stack
Exchange questions. Each annotator is kept unaware of the
model that generated the responses, and then they are asked
to give the index of the response with better quality based
on tools like search engines. Since the evaluation relates to
Stack Exchange, each annotator has expertise in computer
science.

G. SEAM for RLHF Model Augmentation
This section demonstrates how SEAM can augment models
that target to increase seamlessness between PM and RM.

G.1. Experimental Setup

We maintain our previous RLHF setup and use the same
implementation of SEAM. The key difference between this
experiment and the one in §5 is that, after computing SEAM
for the RL dataset, we augment the PM and RM by adding
the data augmented based on such low-SEAM data points
in Drl, rather than filtering them.

For each SEAM variant, we select the lowest 20% of the
data based on their SEAM scores and generate augmented
data to enhance the RM and PM. Specifically, for each
low-SEAM instruction Ii and its corresponding golden re-
sponse ri, we apply the ’Contrast Instruction’ strategy (Shen
et al., 2023) to create five augmented data samples for each
instruction-response pair. These samples are then added
to the training set of the PM. Similarly, we use the same
method for the RM to generate five augmented preference
data samples for each low-SEAM instruction Ii, which are
incorporated into the RM’s training data. We assess the
RLHF performance using the augmented PM and RM. To
ensure a fair comparison, we add two baselines: (1) Ran-
dom: we randomly select 20% of Drl and apply the same
augmentation method. The RLHF performance of the PM
and RM augmented by both SEAM and random selection
is then evaluated. (2) Full Aug: For each data sample in Drl,
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Figure 7. Performance comparison between model augmentation
w/ and w/o SEAM. ‘Original’ means RLHF with no model aug-
mentation.

we apply augmentation methods based on all of them, and
add the augmented data to train PM and RM.

G.2. Results

As shown in Figure 7, the results illustrate the effective-
ness of using SEAM to guide model augmentation. Aug-
menting the PM and RM with data specifically selected by
SEAM demonstrates greater benefits than augmentations
using randomly selected RL data and achieves comparable
performance towards Full Aug. This indicates that the RL
data chosen by SEAM is closely related to the weaknesses
of the RM and PM combination during RLHF. Addressing
these specific weaknesses through targeted data augmenta-
tion effectively improves the identified issues. Overall, this
validates that SEAM can serve as a signal to improve RM
and PM in terms of their brittleness during RLHF.

H. Extra Analysis of low-SEAM data
H.1. The effects of the filtering rate

We vary the filter rate as follows
{10%, 20%, 30%, 40%, 60%, 80%}, and re-conduct
the experiments in §5 with the rank 1 PM and RM. The
results, as shown in Figure 8, demonstrate the relationship
between the filter rate of data samples and the in-domain
RLHF performance across various thresholds. Notably,
increasing the filter rate initially enhances RLHF per-
formance, with a peak observed at approximately 40%.
Beyond this threshold, further increases in the filter rate
result in a gradual decline in performance. This trend
indicates an optimal range for filtering out low-seam
score samples to maximize RLHF effectiveness, thereby
illustrating the critical trade-off between data quantity and
quality. Based on this observation, we set the filtering rate
as 20%.

In general, the performance of the three SEAM variants is
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Effects of filter rate

Figure 8. The effects of filter rate in RL data selection.

SEAM ATTACK LIKELIHOOD

SEAMGPT - -1.81
SEAMContrast - -3.07

SEAMAdv

GA (Wang et al., 2019) -9.32
BA (Li et al., 2020) -9.17

PWWS (Ren et al., 2019) -9.87

Table 2. Per-sentence log-likelihood (with length penalty) from the
top-ranked PM (rank 1) for sentences in the sample set X (Equa-
tion 2) computed using the three estimation variants of SEAM.
The sentences created by SEAMAdv exhibit significantly lower
likelihoods, indicating their unnaturalness.

ranked as follows: GPT > Contrast > Adv. In this section,
we analyze the limitations of these variants through case
studies and a straightforward analysis. Under the setup
in Equation 2, a low likelihood indicates that, given the
instruction I , the PM is unlikely to generate the response
r∗ ∈ X , leading to issues in estimating seamlessness.

For SEAMAdv, we found that the adversarial sentences gen-
erated for estimating SEAM have a much lower likelihood
in the PM compared to the other two methods, as shown in
Table 2. Compared to the other two variants, the sentences
generated by SEAMAdv are significantly less likely to be
sampled from the PM. Although such adversarial sentences
can consistently hack the RM, they do not represent the
PM’s natural outputs, indicating a lack of representative-
ness. This is because adversarial attacks tend to introduce
non-coherent perturbations to the response r, significantly
impacting fluency. We present typical cases in Appendix F.
For SEAMContrast, a similar low-likelihood problem exists,
although it is less severe than with SEAMAdv.

H.2. The overlap rate between low-SEAM data on
different combinations.

Following the previous setup, we examine the overlap rate of
the 20% low-SEAM data across three model combinations:
(1) rank 5 PM with rank 5 RM, (2) rank 3 PM with rank 3

RM, and (3) rank 1 PM with rank 1 RM. We aim to assess
whether the low-SEAM data varies significantly among
different model pairings. The results, illustrated in Table 3,
reveal that the overlap rate between model combinations is
generally high, exceeding 60%. Notably, the overlap rate
increases as the differences between the models decrease.

Model Combo rank = 1 rank = 3 rank = 5

rank = 1 -
rank = 3 72% -
rank = 5 64% 69% -

Table 3. The overlap rate between the 20% low-SEAM data on
different model combinations, where a rank of 1 denotes using the
rank 1 PM and rank 1 RM in the combination.

I. Broader Impact
Improved Human Model Alignment: Integrating SEAM
into RLHF techniques enhances the alignment between ma-
chine outputs and human values, leading to AI systems that
are more ethical and responsive to user needs. This im-
provement is critical for increasing trust and encouraging
the adoption of AI technologies across diverse sectors.

Increased Efficiency and Accessibility: Refining interac-
tions between policy and reward models optimizes the train-
ing processes and reduces the computational resources re-
quired, making AI technologies more accessible and af-
fordable. This democratization of AI could lead to broader
innovation and application.

Misuse in Content Generation: The enhancements that im-
prove model quality and user experience can also be ex-
ploited to create misleading information. Such misuse may
pose risks of spreading misinformation and violating pri-
vacy.
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Figure 9. Case comparisons between the original and adversarial responses generated by text attacks. The differences are highlighted in
RED. 14


