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ABSTRACT

Quantization and pruning are widely used to reduce the inference costs of deep neural
networks. In this work, we propose a framework to train deep neural networks using
novel methods for uniform quantization and unstructured pruning on both the features and
weights. We demonstrate that our method delivers an increased performance per memory
footprint over existing state-of-the-art solutions. Using our framework, we empirically
evaluate the prune-then-quantize paradigm and independence assumption across a wide
range of computer vision tasks and observe the non-commutativity of quantization and
pruning when applied to both features and weights.

1 INTRODUCTION

The performance of deep neural networks (DNNs) has been shown to scale with the size of both the training
dataset and model architecture (Hestness et al., 2017); however, the resources required to deploy large
networks for inference can be prohibitive as they often exceed the budgets of mobile or edge devices (Han
et al., 2015; Gale et al., 2019). To minimize the cost of inference, quantization and pruning are widely
used techniques that reduce compute and memory requirements by respectively limiting the precision of and
removing elements from the computation graph of DNNs.

In this work, we propose a framework to apply novel methods for uniform quantization and unstructured
pruning to both the features and weights of DNNs. The majority of state-of-the-art techniques for quantization-
aware training calculate gradients using the straight-through estimator (STE), which is notoriously sensitive
to weight initialization (Yin et al., 2019; Gholami et al., 2021). To account for this, we propose a modification
we refer to as delayed quantization, in which we postpone the STE-based calculations to later training stages.
When extended to generative adversarial networks (GANs) trained on image-to-image translation tasks, we
observe a long-tailed distribution of features similar to the weight distribution observed by Wang et al. (2019).
To minimize the impact of outliers, we introduce another modification we refer to as saturated quantization,
in which we clip the feature values to pre-defined quantiles determined from the training distribution. Finally,
we extend the unstructured weight sparsity technique proposed by Zhu & Gupta (2017) to the feature space.
To our knowledge, we are the first to thoroughly evaluate the impact of unstructured feature pruning.

Quantization and pruning techniques are often considered to be independent problems (Paupamah et al.,
2020; Liang et al., 2021); however, recent work has begun to study the application of both quantization
and pruning in a unified scope (Han et al., 2015; Zhao et al., 2019b; Yu et al., 2020; van Baalen et al.,
2020). In this work, we aim to more deeply understand the relationship between these optimizations and, in
doing so, address two key problems: (1) quantization and pruning techniques are often analyzed over either
discriminative or generative tasks, rarely both; (2) frameworks for joint quantization and pruning default to a
"prune-then-quantize" paradigm without exploring the alternative.
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Beyond simply reducing the storage required to run inference, our goal is to develop a method to jointly apply
both uniform quantization and unstructured pruning to both the features and weights of DNNs during training.
To this end, we introduce modifications on top of state-of-the-art quantization and pruning techniques that
improve performance across a wide range of discriminative and generative tasks. In doing so, we observe
a non-commutative nature when quantization and pruning are applied to both the features and weights of
DNNs. Based on these results, we state the non-commutativity hypothesis.

The Non-Commutativity Hypothesis. For a given deep neural network trained for a specific task, there
exists an order in which pruning and quantization may be applied to optimize network performance.

Contributions.

1. We propose a framework to train deep neural networks using novel methods for uniform quantization
and unstructured pruning on both the features and weights (Section 3).

2. We demonstrate the non-commutative nature of of quantization and pruning when applied to both
the features and weights of deep neural networks (Section 4.1).

3. We show that our method delivers the best network performance per memory footprint across a
wide range of discriminative and generative computer vision tasks when compared to existing
state-of-the-art solutions (Section 4.2).

The code for the algorithms introduced in this paper can be found at https://github.com/anonymous308/qsparse,
as discussed further in Appendix A.

2 PRELIMINARIES

2.1 QUANTIZATION

Quantization is the procedure of representing a high-precision input by a discrete set of values with reduction
in precision. Uniform quantization refers to the case when the ordered sequence of the discrete set has a
constant step size (Pearlman, 1995), on top of which supports efficient implementation of matrix multiplication
(Jacob et al., 2018).

Let N be the total number of bits used for quantization, thus the size of the discrete set will be 2N , and d be
the number of decimal bits (i.e., the bits used to represent fractions to the right of the decimal), x be the input,
then uniform quantization can be written as Qu(x, d) in Eq. 1.

Qu(x, d) = clip(bx× 2dc,−2N , 2N − 1)/2d (1)

To calculate gradients of uniform quantization operation, straight-through estimator (Hinton et al., 2012),
as shown in Eq. 2, is usually applied for backward computation because of its superior performance on
convergence speed (Hubara et al., 2017).

∂Loss

∂x
= clip(

∂Loss

∂Qu(x, d)
,−2N−d, 2N−d − 1) (2)

For existing work on joint quantization and pruning, (Yu et al., 2020) only supports to prune and quantize
weights, (van Baalen et al., 2020; Wang et al., 2020b) propose gradient-based methods to learn mixed
precisions and sparsity ratios but are incapable to provide direct control over target precision and sparsity,
(Wang et al., 2020a) applies neural architecture search (NAS) to discover efficient networks with existing
quantization and pruning methods and is complementary with our work. None of the above methods support
unstructured feature pruning.
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2.2 UNSTRUCTURED PRUNING

Pruning is called structured if it imposes structures over the topology of weights or features. Wang &
Zhu (2020) design a structured pruning method for weights and features by pruning weights in a specific
channel-wise manner. However, structured sparsity provides a trade-off between accuracy and implementation
feasibility because unstructured weight sparsity is difficult to efficiently utilize on contemporary GPUs (Gray
et al., 2017). In this work, we focus on unstructured pruning because it is most flexible and produces higher
compression ratio (Liu et al., 2018), and unstructured feature sparsity has the potential to provide an inherently
better trade-off than unstructured and structured weight sparsity as we will discuss next.

Magnitude-based weight pruning. Magnitude-based weight pruning uses weight magnitude as a proxy to
represent weight importance and set least important weights to zero following a sparsification schedule. Zhu
& Gupta (2017) propose to maintain a binary mask Mw,s for each w, which allows for masked weights to
reactivate during training. Let s denote sparsity measured as the percentage of zero-valued elements in a
tensor, (i, j) be row and column indices, the unstructured pruning operation can be written as Pu(w, s) in
Eq. 3. Mw,s is calculated in Eq. 4.

Pu(w, s) = w ◦Mw,s (3)

Mw,s(i, j) =

{
1 |w(i, j)| ≥ quantile(|w|, s)
0 otherwise

quantile(x, a) = a-th quantile of x
(4)

Sparsity s is controlled and updated by a sparsification schedule at time steps: tp + i∆tp, i ∈ {1, 2, .., , n},
where (tp,∆tp, n) are hyper parameters of the sparsification schedule and represent (starting step, frequency,
steps) of pruning.

Unstructured Feature Pruning. Due to the prevalence of rectified activation functions, DNN features are
inherently sparse (Glorot et al., 2011; Xu et al., 2015). Except that the sparse pattern is not pre-determined but
depends on each input, thus making it difficult to utilize during inference. In this work, we refer unstructured
feature sparsity to a subset of neurons gets removed from a neural network, whose corresponding computations
can skipped, and feature maps can be stored with fewer memory. Hu et al. (2016) applies post-training
unstructured pruning to remove neurons by taking advantage of existing feature sparse pattern caused by
ReLU activation. Contrary to their methods, we propose to apply unstructured pruning on features during
training with an introduced sparsity instead of only leveraging existing sparse pattern, and we study this
problem in the context of quantization and weight pruning.

Compared to unstructured and structured weight sparsity, unstructured feature sparsity is more promising
at providing large memory reduction since feature is usually more dominant in memory consumption than
weight in DNNs (Jha et al.). Meanwhile, removed neurons can be skipped during computation because they
will always returns zero, and skipping a single output convolution feature value can save an entire dot product
(Dumoulin & Visin, 2016).

3 FRAMEWORK

Our framework consists of a quantization method and a pruning method. The joint pipeline is shown in
Fig. 1. As the uniform quantization is symmetric around the origin, we place pruning structurally before the
quantization method.

3.1 QUANTIZATION METHOD

We make two enhancements on top of the STE-based quantization in Section 2.1, as explained below.
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Figure 1: An example of applying joint pruning and quantization of both weight and feature on a convolution
layer.

(a) MobileNet Acc
Baseline 92.60
Q8(w, f) 92.52

(b) ResNet101 mAP
Baseline 74.47
Q8(w, f) 74.25

(c) ESPCN PSNR
Baseline 32.84
Q8(w, f) 32.68

(d) Pix2Pix FID
Baseline 119.9
Q8(w, f) 118.5

Table 2: Evaluation of delayed quantization on more tasks. Experiment settings and notation are explained in Section 4.

Delayed Quantization. We start by training the original full-precision network, then calculate the optimal
decimal bits (d∗) by minimizing the quantization error after a given number of steps (tq). Let xt to be the
quantization input at time t, which can be either feature or weight, our delayed quantization can be written as
Qd(xt) in Eq. 5.

Qd(xt) =

{
xt t < tq
Qu(xt, d

∗) t ≥ tq where d∗ = argmind |Qu(xtq , d)− xtq |2
(5)

Quantization Method Top-1 Acc
Baseline 92.6
Qd(xt) 92.52
Qu(xt, N − 1) 75.83
Qu(xt, d

∗) 18.35

Table 1: Quantization-aware training without
special initialization. Delayed Quantitation
(Qd) vs Uniform Quantization (Qu).

In Table 1, we compare our delayed quantization against uni-
form quantization in Eq. 1 on CIFAR10 with MobileNetV2.
Both Qu(xt, N − 1) and Qu(xt, d

∗) apply STE-based quan-
tization since the start of training, while Qd(xt) delays the
quantization according to Eq. 5. Xavior initialization (Glorot
& Bengio, 2010) is used in all of the four experiments, which
is usually the default initialization method for full precision
networks. It can be clearly seen that our method provides
nearly no loss in accuracy, while Qu(xt, N − 1) which sets
decimal bit to N − 1 according to Jacob et al. (2018), fails
to converge properly without a carefully designed weight
initialization.

Moreover, if we take the optimal decimal bits d∗ from a trained network of Qd(xt) and retrain a new network
from scratch with Qu(xt, d

∗), the network fails to converge as shown by the last entry in Table 1. This
indicates that the feature and weight distribution of neural networks undergo large shifts during training, and
these large shifts may not be easily done with quantized weights and features. This distribution shift supports
the favor of our delayed quantization approach because our method does not limit the network capacity of
shifting its weight and feature distribution before tq, thereby become less prone to shallow local minimums.
Contrary to previous work (Jacob et al., 2018; Bhalgat et al., 2020) which uses floating point auxiliary weights
for simulated quantization or finds clever weight initialization, we argue our method is simpler, more efficient
for implementation and possibly more robust.

By thorough experiments in Table. 2, we show that our method achieves superior performance while
accommodating initialization and training dynamics of various tasks and network structures.

Saturated Quantization. When calculating d∗ in Eq. 5, we find the quantization error minimization can
be biased from outliers of features in tasks like CycleGAN. In Fig. 2, it can be seen clearly the feature
distribution of CycleGAN is much more long-tailed than that of MobileNetV2 for CIFAR10 classification.
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Figure 2: Feature distribution of Cycle-
GAN, and MobileNetV2 for image clas-
sification, which displays a long-tailed
nature.

Source Baseline P0.5(w, f )→ Q8(w), Q12(f ) P0.5(w, f )→ Q8(w), Q12(f )

but no Saturation

Figure 3: Generated images from CycleGAN, which can suffer
from underpresentation of quantization because of outliers in
features, as shown in the fourth image (rightmost).

These long tails will result in underestimation of d∗ and thereby underpresentation of network features. The
fourth image in Fig. 3 shows that the negative effect of underpresentation which collapses the generative
quality entirely. This underpresentation issue still persists even if these long-tailed values are quantized in the
logarithmic domain (Wang et al., 2019).

Contrary to (Wang et al., 2019), which designs a GAN-specific quantization method with the EM algorithm,
we discover that the underpresentation issue can be simply and effectively moderated by clipping the outliers
in the linear domain. Specifically, before computing the mean square quantization error as in Eq. 5, we protect
quantization from outliers by clipping xtq with a saturation function Sa(x, ql, qu) defined in Eq. 6, where
hyper parameters ql, qu ∈ [0, 100], ql < qu are indexes of quantiles of xtq to denote minimum and maximum
range after saturation.

Sa(x, ql, qu) = clip(x, quantile(x, ql), quantile(x, qu)) (6)

With Eq. 6, we rewrite our quantization method in Eq. 7.

Quantize(xt) =

{
xt t < tq
Qu(xt, d

∗) t ≥ tq where d∗ = argmind |Qu(xtq , d)− Sa(xtq , ql, qu)|2
(7)

As shown by comparing third and fourth image in Fig. 3, the generative quality can be greatly preserved by
saturated quantization. Although we find that the saturated quantization only becomes useful when quantizing
the CycleGAN during our experiments, we argue this modification is simple and can be used as an add-on for
our method, and therefore is easier to generalize to more scenarios.

3.2 PRUNING METHOD
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Figure 4: Evaluation of window size T
for unstructured feature pruning

We adopt the magnitude-based weight pruning method in Section 2.2
and extend it to prune features by maintaining a binary mask Mfl,s for
each feature map fl and prune fl as in Eq. 3. Zero values in Mfl,s mean
the corresponding neurons are removed.

Contrary to weight which is fixed during inference, feature map of
a DNN shows different activated regions for each input (Zhou et al.,
2016). Therefore, in order to approximate the expected activation
pattern without over sacrificing training efficiency, we introduce a
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sliding window for unstructured feature pruning. Specifically, let ft denote an input feature map at time t, T
denote the size of sliding window, s denote the target sparsity, (i, j) be row and column indices, instead of
calculating the binary mask as in Eq. 4, we write Mft,s in Eq. 8.

Mft,s(i, j) =

{
1
∑T−1

n=0 |ft−n(i, j)| ≥ quantile(
∑T−1

n=0 |ft−n|, s)
0 otherwise

(8)

In Fig. 4, we evaluate the effect of window size T against PNSR of a super resolution network (ESPCN) in
Set5. A clear positive correlation can be observed between PSNR and window size T . It is also interesting
to see that the benefit of increasing window size T quickly saturates as T reaches 16. Not only it indicates
that we can estimate the expected activation pattern by using Eq. 8, it also aligns with the observation from
(Hanin & Rolnick, 2019) that deep relu neural networks empirically show a much fewer activation patterns
than their theoretical limit, which corresponds to a severe underuse of neural network potential expressivity
but also serves as a supporting evidence for the feasibility of feature pruning.

4 EMPIRICAL ANALYSIS

In this section, we empirically evaluate the non-commutativity hypothesis with our framework, compare our
method against existing ones, and demonstrate that it supports a wide range of computer vision tasks.

We conduct experiments on (a) image classification with MobileNetV2 (Sandler et al., 2018) on Cifar10
(Krizhevsky et al., 2009), (b) Faster RCNN (Ren et al., 2015) object detection with ResNet101 (He et al.,
2016) on Pascal VOC (Everingham et al., 2010), (c) super resolution with ESPCN (Shi et al., 2016) on
Set5 (Bevilacqua et al., 2012), (d) generative adversarial networks, include Pix2Pix (Isola et al., 2017) on
facades, and CycleGAN (Zhu et al., 2017) on horse2zebra. We implement each task on top of existing
popular open-source implementations. We maintain hyper-parameters and weight initialization identical to
the original settings except for training epochs and when to apply quantization & pruning. More details about
experiment setups are available in appendix B.

For each task, we consider different combinations and orders of pruning and quantization, and we introduce a
notation to describe each configuration succinctly. For example, P0.5(w) → Q8(w, f) means to first prune
50% weight then quantize weight and feature with 8bit, the same rule applies for others.

To fairly compare various pruning and quantization configurations under a unified scope, we introduce
a metric we refer to as performance density (PD). We define the performance density of a model as its
domain-specific performance (e.g., accuracy, PSNR, mAP) divided by the size of both parameters and feature
maps. The detailed definition and unit of PD of each task can be found in Appendix B. We will continue to
discuss performance density in Section 4.2.

4.1 NON-COMMUTATIVITY HYPOTHESIS

We start by assessing the previous "prune-then-quantize" paradigm (Han et al., 2015; Zhao et al., 2019b; Yu
et al., 2020) and independence assumption (Paupamah et al., 2020; Liang et al., 2021) between quantization
and pruning. In Table 3, we experiment the orders of P0.5(w) and Q8(w, f) over experiments (a), (b) and (c).
Note that there could have many combinations over different quantization and pruning setups, but we choose
the above ones to isolate the order of these two operations.

We find these existing ideas hold for some cases but not all, which actually softens their strengths. The
P0.5(w) → Q8(w, f) performs significantly better than Q8(w, f) → P0.5(w) for (a), which means they are
not independent. However, in (c) the order of P0.5(w) and Q8(w, f) does not make major difference and the
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(a) MobileNetV2 Top-1 Acc PD
Baseline 92.60 0.31
P0.5(w)→ Q8(w, f) 92.23 1.43
Q8(w, f)→ P0.5(w) 85.94 1.33

(b) ResNet101 mAP PD
Baseline 74.47 0.33
P0.5(w)→ Q8(w, f) 74.44 0.71
Q8(w, f)→ P0.5(w) 74.13 0.71

(c) ESPCN PSNR PD
Baseline 32.84 6.22
P0.5(w)→ Q8(w, f) 32.51 8.36
Q8(w, f)→ P0.5(w) 32.54 8.37

Table 3: Empirical analysis of "prune-then-quantize" paradigm and independence assumption. Pruning and quantization
are clearly not independent in (a), while "prune-then-quantize" may not be strictly required in (b), (c).

(a) MobileNetV2 Top-1 Acc PD
Baseline 92.60 0.31
P0.5(w, f)→ Q8(w, f) 91.44 2.49
Q8(w, f)→ P0.5(w, f) 86.84 2.36

(b) ResNet101 mAP PD
Baseline 74.47 0.33
P0.5(w, f)→ Q8(w, f) 73 0.86
Q8(w, f)→ P0.5(w, f) 70.13 0.82

(c) ESPCN PSNR PD
Baseline 32.84 6.22
P0.5(w, f)→ Q8(w, f) 31.03 8.34
Q8(w, f)→ P0.5(w, f) 31.66 8.51

Table 4: Switching the optimal order of pruning and quantization results in large performance degradation, which
empirically follows the non-commutativity hypothesis. The optimal order for each task is in bold text.

difference in (b) also appears to be marginal, which indicates that these two operations are exchangeable and
"prune-then-quantize" may not be strictly required.

We apply unstructured pruning on features, and results are available in Table 4. Comparing Table 3 and 4, it
can be seen that feature pruning is able to provide much higher performance density by reducing memory
footprint while maintaining a similar level of accuracy to their weight pruning only counterpart. More
importantly, it empirically shows that there exists an optimal order between quantization and pruning for
each setting, and this optimal order varies among tasks. Changing the order can result in significantly large
accuracy degradation, which we conclude as the non-commutativity hypothesis.

Moreover, in Table 6 from Section 4.3, it shows that even Pix2Pix and CycleGAN meet the hypothesis,
where the difference between P (w, f)→ Q(w, f) and Q(w, f)→ P (w, f) is considerably larger than the
difference between P (w)→ Q(w, f) and Q(w, f)→ P (w).

4.2 COMPARING AGAINST EXISTING METHODS

We compare against existing pruning and quantization methods with various network structures in image
classification task on Cifar10. Results are available in Table 5, where “W/F Bits” denotes the averaged number
of bits used to quantize weights or features, and “W/F Sparsity” represents the averaged sparsity in weights or
features.

From Table 5, we can see that our method is the most comprehensive one by supporting both quantization
and pruning over both weight and feature. Our method achieves the smallest memory footprint and highest
performance density without special adjustment on bitwidth or sparsity. Contrary to methods like (Yang et al.,
2020; van Baalen et al., 2020) which obtains an averaged bitwidth and sparsity, our method provides direct
control over targeted bitwidth and sparsity, which can be more useful for practical scenarios.

Furthermore, we argue performance density provides a holistic view to existing pruning and quantization
methods and neural architectures. For example, in Table 5, DenseNet-76 has the smallest size of weight by
both 2-bit weight quantization and pruning (Achterhold et al., 2018), but its feature size is disproportionately
large comparing to weight. On the contrary, the VGG16 network is commonly known as a classical neural
architecture and has many redundant parameters. Therefore, pruning on VGG16 may not seem to be as
impressive as in DenseNet. However, the feature size of VGG16-C is almost one tenth of that of DenseNet76.
By pruning 95% of weight, (Dettmers & Zettlemoyer, 2019) achieves a much better performance density
using VGG16-C than DenseNet76 in (Achterhold et al., 2018). By introducing performance density in
addition to traditional metrics, we become less prone to misconceptions.
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Method Network W Bits F Bits W Sparsity F Sparsity Baseline Acc Accuracy Weight (Mb) Feature (Mb) PD (Acc/Mb)

(Choi et al., 2016) ResNet-32 8 – 77.8% – 92.58 92.64 (+0.06) 37.80 131.07 0.55

(Achterhold et al., 2018) DenseNet-76 2 – 54% – 92.19 91.17 (-1.02) 0.68 282.53 0.32

(Liu et al., 2018)

VGG-19 – – 80% – 93.5 93.52 (+0.02) 128.26 38.80 0.56
PreResNet-110 – – 30% – 95.04 95.06 (+0.02) 952.03 619.71 0.06
DenseNet-100 – – 30% – 95.24 95.21 (-0.03) 27.11 426.74 0.21

(Zhao et al., 2019a) DenseNet-40 – – 59.67% – 94.11 93.16 (-0.95) 3.23 114.87 0.79

(Xiao & Wang, 2019) VGG-16 – – 79% – 93.4 91.5 (-1.9) 98.97 35.39 0.68

(Dettmers & Zettlemoyer, 2019)
VGG16-C – – 95% – 93.51 93 (-0.51) 23.57 35.39 1.58
WRN-22-8 – – 95% – 95.74 95.07 (-0.67) 27.46 230.69 0.37

(Yang et al., 2020) ResNet-20 1.9 – 54% – 91.29 91.15 (-0.14) 9.77 78.64 1.03

(van Baalen et al., 2020) VGG-7 4.75 5.4 – – 93.05 93.23 (+0.18) 43.85 3.27 1.98

(Paupamah et al., 2020) MobileNet 8 8 – – 91.31 90.59 (-0.72) 25.74 13.17 2.33

(Choi et al., 2020) ResNet-32 8 – 87.5% – 92.58 92.57 (-0.01) 21.28 131.07 0.61

Ours MobileNetV2 8 8 50% – 92.60 92.23 (-0.37) 9.19 55.20 1.43
8 8 50% 50% 91.44 (-1.16) 9.19 27.60 2.49

Table 5: Comparisons with previous pruning and quantization methods on image classification with Cifar10.
Our method is able to deliver the smallest memory footprint (weight + feature) and best performance density
and is far more versatile.

Input Groundtruth Baseline P0.5(w)→ Q8(w, f) Q8(w, f)→ P0.5(w, f) P0.5(w, f)→ Q8(w, f)

Figure 5: Examples of generated images from Pix2Pix.

Moreover, from Table 5, we observe that the ratio between sizes of feature and weight is much higher in
modern network structures like MobileNet, ResNet, and especially DenseNet. On the contrary, this ratio
becomes much smaller for classical network structures like VGG16. Based on these observations, we can
deduce that the marginal benefit of only applying weight pruning is likely to become smaller, and unstructured
feature pruning could be a promising direction as we have argued in Section 2.2.

4.3 GENERATIVE ADVERSARIAL NETWORKS

In the field of computer vision, the majority of existing works studying quantization and pruning techniques
primarily focus on discriminative tasks (e.g., image classification or object detection) rather than generative
tasks (e.g., image-to-image translation). However, recent studies have shown impressive results when
applying these techniques to generative adversarial networks (GANs). Wang et al. (2019) proposes a
weight quantization scheme for GANs. Zhou et al. (2020) uses sparse regularization to improve generative
quality. Here, we show our method enables to jointly quantize and prune on Pix2Pix (Isola et al., 2017) and
CycleGAN (Zhu et al., 2017), whose selected generated samples are demonstrated in Fig. 5 and Fig. 6, and
Fréchet inception distance (FID) (Heusel et al., 2017) are shown in Table 6.

We observe the non-commutativity hypothesis to hold as well in these scenario in Table 6. It can also be visually
seen from Fig. 5 and 6 that Q8(w, f)→ P0.5(w, f) generates higher quality images than P0.5(w, f)→ Q8(w, f).
We provide more samples in the supplementary.

Moreover, comparing Q12(w, f)→ P0.5(w, f) and P0.5(w)→ Q12(w, f) in the CycleGAN table, it is clear
that feature pruning provides a significant margin on performance density because it directly reduces the large
memory consumption of features in CycleGAN, while it brings smaller benefits to Pix2Pix because Pix2Pix

8



Under review as a conference paper at ICLR 2022

Source Baseline P0.5(w)→ Q12(w, f) P0.5(w, f)→ Q12(w, f) Q12(w, f)→ P0.5(w, f) P0.5(w)→ Q8(w, f)

Figure 6: Examples of generated images from CycleGANs.

Pix2Pix FID PD
Baseline 119.9 3.67
P0.5(w)→ Q8(w, f) 127.1 22.51
Q8(w, f)→ P0.5(w) 123.5 23.16
P0.5(w, f)→ Q8(w, f) 154.8 22.37
Q8(w, f)→ P0.5(w, f) 135.0 25.66

CycleGAN FID PD
Baseline 67.1 3.28
P0.5(w)→ Q12(w, f) 81.8 11.22
Q12(w, f)→ P0.5(w) 83.72 10.96
P0.5(w, f)→ Q12(w, f) 100.4 16.67
Q12(w, f)→ P0.5(w, f) 89.35 18.73

Table 6: Fréchet Inception Distance (FID) of generated samples from Pix2Pix and CycleGAN to real images (smaller is
better). The reciprocal of FID is used as domain-specific metric to calculate performance density.

uses a different network structure which has smaller feature maps. Moreover, we experimentally find the
quantization of feature of CycleGAN needs more bitwidth to deliver good generative results.

5 LIMITATION AND FUTURE WORK

We only evaluate our framework and findings on computer vision tasks with a limited set of neural architectures
and smaller datasets. In future work, we intend to try more network structures and larger datasets, e.g.
ImageNet (Russakovsky et al., 2015), and tasks not limited to computer vision.

Our empirical analysis does not go deep enough to explain the cause of the non-commutativity. We only
assess the non-commutativity hypothesis with our framework, and the conclusions drawn upon may not
be representative enough to generalize to more scenarios. In future work, we intend to study in networks
and tasks with more analytical feasibility to draw insights on explaining the formation conditions of this
non-commutativity phenomenon and improve understanding of the nature of unstructured feature pruning.

Our unstructured feature pruning method maintains an individual binary mask for each feature map. However,
as discussed in Section 3.2, neural networks have many but not an infinite amount of different activation
patterns. In future work, we intend to explore the possibility of allowing a many-to-one mapping from binary
masks to feature maps and allow the mapping to be dynamically conditioned on the input, which we believe
could provide another degree of freedom to the trade-off between model accuracy and inference efficiency.

6 CONCLUSION

We propose a framework using novel methods for uniform quantization and unstructured pruning on both the
features and weights. Unlike previous work which mostly focus on weight pruning and analysis over either
discriminative or generative tasks, we extend unstructured weight pruning to the feature space and thoroughly
evaluate impact of applying unstructured feature pruning and demonstrate superior performance over a wide
range of discriminative and generative tasks. Using our framework, we assess the "prune-then-quantize"
paradigm and independence assumption between quantization and pruning, and empirically discover that
there exists an order in which pruning and quantization may be applied to optimize network performance for
a given DNN in a specific task, which we conclude as non-commutativity hypothesis.
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A SOFTWARE LIBRARY

We release our method in a pytorch-based python library named qsparse. In Listing 1, we demonstrate
how to use our method through qsparse to quantize and prune the weight and feature of a convolution
layer in pytorch.

Due to the simplicity of our method, we are able to implement the software interface with a novel design.
The majority of existing model compression python library only provide a minimal set of quantized or pruned
layers or modules isolated from other floating-point modules e.g. QuantiConv2d from (Pappalardo), which
means they do not have enough flexibility to support a wide range of neural network specifications (Coelho Jr
et al., 2020; Qat). To improve the library flexibility, we propose a creative technique which directly transforms
the weight attribute of the input layer into a pruned or quantized version during runtime. This is to say, our
library is layer-agnostic and can work with any pytorch modules, as long as their parameters can be accessed
from the weight attribute, which is the convention of pytorch standard library (Paszke et al., 2019).

import torch.nn as nn
from qsparse import prune, quantize

# feature pruning and quantization
nn.Sequential(

nn.Conv2d(10, 30, 3),
prune(0.5, start=1000, interval=100, repetition=3),
quantize(bits=8, timeout=2000) # `timeout` is `quantize step` in Alg. 1

)

# weight pruning and quantization (layers other than `Conv2d` work as well)
qpconv = quantize(prune(nn.Conv2d(10, 30, 3), 0.5), 8)

Listing 1: Examples of our software interface for quantization and pruning on both weights and features

B EXPERIMENT SETUP

We implement our experiments by applying minimal code changes with our library in Appendix A on top of
existing popular open-source implementations. We will release all experiment source code as examples for
our library. We keep all hyper parameters identical to each original implementation except training epochs
and the ones introduced by our method, namely:

• tq: The number of epochs to delay quantization, used in Eq. 7. Here we write tqw, tqf to denote tq
for weight and feature.

• qu, ql: The indexes of quantiles to denote minimum and maximum range for saturated quantization,
used in Eq. 7.

• tp,∆tp, n: Sparsification schedule, explained in Section 2.2. We use the same schedule for both
weight and feature pruning.

• T : The window size for unstructured feature pruning in Eq. 8.
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B.1 IMAGE CLASSIFICATION ON CIFAR10

We conduct experiments of this task using (kua, 2021). We use MobileNetV2 for all experiments in this task.
For quantization, we quantize all the weights and feature maps including network input to 8 bit. We do not
quantize the bias because bias is usually stored and computed with high precision during on-device inference
(Jacob et al., 2018). For pruning, we prune all weights and feature maps except the first and last layers.

For hyper parameters, we set training epoch to 250, qu to 0, ql to 1, and T to 2048 in each experiment.

• For P0.5(∗) → Q8(∗), tqw, tqa are set to 230, 235, and sparsification schedule tp,∆tp, n are set to
100, 15, 4.

• For Q8(∗) → P0.5(∗), tqw, tqa are set to 160, 170, and sparsification schedule tp,∆tp, n are set to
180, 15, 4.

• For Q8(∗), tqw, tqa are is set to 230, 240.

Performance density (PD) for this task is calculated as “Accuracy ÷ size of weight and feature combined”,
whose unit is Accuracy/Mb. The size of feature is calculated based on input size of (3, 32, 32).

B.2 SUPER RESOLUTION ON SET5

We conduct experiments of this task using (yjn, 2019). We use ESPCN for all experiments and train ESPCN
using 91-image (Yang et al., 2010). Similar to Appendix B.1, we quantize the entire network with 8 bit and
skip the pruning for first and last layer.

For hyper parameters, we set training epoch to 200, qu to 0, ql to 1, and T to 16 in each experiment.

• For P0.5(∗) → Q8(∗), tqw, tqa are set to 160, 170, and sparsification schedule tp,∆tp, n are set to
140, 5, 4.

• For Q8(∗) → P0.5(∗), tqw, tqa are set to 140, 150, and sparsification schedule tp,∆tp, n are set to
155, 5, 4.

• For Q8(∗), tqw, tqa are is set to 140, 150.

ESPCN is a fully convolutional network which is trained to upsample image patches of size (17, 17) to (48,
48). During testing, ESPCN is used to upsample images of size (170, 170) to (480, 480). Because of this size
mismatch between training and testing, the binary mask Mft,s from unstructured feature pruning in Eq. 8
learned during training cannot be directly applied for testing. To solve this issue, we replicate the Mft,s along
height and width axis for each feature map to match the testing size requirements.

Performance density (PD) for this task is calculated as “PSNR ÷ log(size of weight and feature combined)”,
whose unit is set to PSNR/log(Mb). The reason we use log here is that PSNR is a logarithmic domain metric.
The size of feature is calculated based on input size of (1, 170, 170).

B.3 OBJECTION DETECTION ON PASCAL VOC

We conduct experiments of this task using (Yang et al., 2017). We use Faster RCNN with ResNet101 as
backbone for all experiments. The ResNet101 is pretrained on ImageNet dataset (Russakovsky et al., 2015).
We follow a similar quantization and pruning scheme to Appendix B.1 but we do not prune or quantize for
the first 3 residual blocks because they are instructed to be frozen by the original paper (Ren et al., 2015). We
also freeze all pre-trained batch normalization layers. However, these limitations can be overcome with group
normalization or synchronized batch normalization according to (He et al., 2019). Thus, we do not regard this
as our limitation.
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For hyper parameters, we set training epoch to 9, qu to 0, ql to 1, and T to 32 in each experiment.

• For P0.5(∗) → Q8(∗), tqw, tqa are set to 7.2, 7.5, and sparsification schedule tp,∆tp, n are set to
3, 0.5, 4.

• For Q8(∗) → P0.5(∗), tqw, tqa are set to 5.2, 5.5, and sparsification schedule tp,∆tp, n are set to
5.7, 0.5, 4.

• For Q8(∗), tqw, tqa are set to 5.2, 5.5.

Since the image sizes are different between each batch during Faster RCNN training, it is impossible to
obtain a fixed binary mask Mft,s on features of convolution layers. Thus, we apply channel-wise pruning on
convolution feature.

Performance density (PD) for this task is calculated as “mAP ÷ size of weight and feature combined”, whose
unit is set to mAP/Gb. The size of feature is calculated based on input size of (3, 480, 720).

B.4 PIX2PIX ON FACADES AND CYCLEGAN ON HORSE2ZEBRA

We conduct experiments of these two tasks using (Isola et al., 2017; Zhu et al., 2017). Both Pix2Pix and
CycleGAN applies networks with encoder-decoder structure, while the Pix2Pix uses UNet (Ronneberger
et al., 2015) and CycleGAN uses a variant of ResNet with deconvolution layers. The quantization and pruning
scheme is similar to Appendix B.1, but we use 12bit quantization for CycleGAN features. For pruning, in
addition to skipping first and last layer, the second layer and last second layer of CycleGAN, and the most
inner layer in UNet of Pix2Pix are also skipped for both weight and feature pruning.

For hyper parameters, we set qu to 0 and ql to 1 in each Pix2Pix experiment and qu to 0.0001 and ql to 0.9999
in each CycleGAN experiment. Other hyper parameters are equal between Pix2Pix and CycleGAN. We set
training epoch to 300, T to 128.

• For P0.5(∗) → Q8(∗), tqw, tqa are set to 280, 290, and sparsification schedule tp,∆tp, n are set to
100, 15, 4.

• For Q8(∗) → P0.5(∗), tqw, tqa are set to 110, 120, and sparsification schedule tp,∆tp, n are set to
130, 15, 4. T is set to 128.

• For Q8(∗), tqw, tqa are set to 110, 120.

Performance density (PD) for this task is calculated as “1 / FID ÷ size of weight and feature combined”,
whose unit is set to 1/(FID*bit). The size of feature is calculated based on input size of (3, 256, 256).
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