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Abstract

We propose a diffusion model designed to generate point-based shape representations with
correspondences. Traditional statistical shape models have considered point correspon-
dences extensively, but current deep learning methods do not take them into account, fo-
cusing on unordered point clouds instead. Current deep generative models for point clouds
do not address generating shapes with point correspondences between generated shapes.
This work aims to formulate a diffusion model that is capable of generating realistic point-
based shape representations, which preserve point correspondences that are present in the
training data. Using shape representation data with correspondences derived from Open
Access Series of Imaging Studies 3 (OASIS-3), we demonstrate that our correspondence-
preserving model effectively generates point-based hippocampal shape representations that
are highly realistic compared to existing methods. We further demonstrate the applications
of our generative model by downstream tasks, such as conditional generation of healthy and
AD subjects and predicting morphological changes of disease progression by counterfactual
generation.
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1. Introduction

Recent advances in generative models have demonstrated great capabilities in the biomedical
domain (Khader et al., 2023; Gu et al., 2023; Jin et al., 2024; Pinaya et al., 2022; Fontanella
et al., 2023). These methods have the ability to generate different modalities of biomedical
images with high levels of realism. Generative models hold the promise to address many
issues in medical imaging, including data augmentation of small sample imaging studies
to improve model training (Khader et al., 2023), aiding in the interpretability of machine
learning models (Jin et al., 2024), and counterfactual reasoning (Gu et al., 2023).

However, most of the generative models proposed in the biomedical domain focus on
image generation. Less attention has been paid to generative models of anatomical shapes.
Analysis of anatomical shapes has long been an important factor in understanding biological
processes behind development, aging, and disease progression. For example, Alzheimer’s
disease (AD) is characterized by atrophy in brain structures, particularly the hippocampus.
As shown in Figure 1 on the right, point-based shape representations enable quantification
of localized morphological changes between the hippocampi of healthy controls and AD
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Figure 1: Left: We visualize points at certain indices with blue/orange/green dots respec-
tively. Point-based shape representations of hippocampi maintain correspon-
dences across subjects, with indices reflecting certain anatomical locations; Right:
Morphological changes from healthy control to AD. Purple areas show atrophy
in most hippocampal substructures.

patients, whereas volumetric information is less precise and will overlook localized morpho-
logical changes. Point correspondences between individual shapes are essential for localizing
specific morphological differences in anatomy.

Traditional statistical models have long considered correspondences extensively (left of
Figure 1), but to the best of our knowledge, no deep generative models have taken corre-
spondences into account. Point cloud generation methods in the computer vision literature
(Luo et al., 2021; Zeng et al., 2022) typically consider the point cloud generation process as
sampling independently from a point distribution. Luo et al. (2021) use a diffusion model to
generate point clouds that are conditioned with a shape latent, which is in turn generated
by a normalizing flow. Zeng et al. (2022) propose to use a latent diffusion model with a
hierarchical latent space. The sampled latent codes are decoded into a dense point cloud
using the trained decoder. Because points within a point cloud are sampled independently,
the generated shapes do not have any notion of point correspondences across them. This
paradigm is useful when generating common objects like chairs or planes, where correspon-
dence is not important, and we do not need to localize morphological differences.

Motivated by the need for shape correspondences in biomedical applications, we pro-
pose a correspondence-preserving diffusion model for point-based shape representations.
The backbone of the diffusion model uses a shared linear weights at each layer, modeled
after PointNet (Qi et al., 2017). Unlike PointNet, however, we do not desire permutation
invariance, as this would destroy the desired point correspondences. Therefore, we add
a module in our network to learn correspondence embeddings. Furthermore, to model the
spatial relationships among points, we include a masked attention mechanism to share infor-
mation between neighboring points. We compare our model to the most recent point cloud
generative models, and demonstrate the advantages of explicitly modeling correspondences
in a shape generation model, using hippocampus data from the OASIS-3 (LaMontagne
et al., 2019) dataset.
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2. Correspondence-Preserving Diffusion Model

We formulate a denoising diffusion probabilistic model (Ho et al., 2020) that converts a
noisy point cloud to a meaningful hippocampus representation with correspondences.

... ...

Figure 2: The forward process (lower) and generation process (upper) of the point-based
shape representation diffusion model.

2.1. Problem Formulation

Previous deep learning based methods for generating point clouds typically do not consider
the ordering of points or correspondences. As demonstrated in the shape analysis litera-
ture (e.g., Cates et al. (2017); Zhu et al. (2024)), however, correspondences in point-based
shape representations can reveal important anatomical information and enable morpholog-
ical analysis. Motivated by this, we consider a point representation of a shape to be an

ordered list of N points, X(0) = (x
(0)
1 , . . . , x

(0)
N ), x

(0)
i ∈ R3. A denoising diffusion probabilis-

tic model (Ho et al., 2020) samples from a distribution of data, p(X(0)), as the limit of a
reverse diffusion process.

As shown in Figure 2, the diffusion model for point-based shape representations can be
divided into two processes. In the forward process, Gaussian noise is gradually added to the
point positions, and the original shape diffuses into a noisy cloud of points, with a Markov
diffusion kernel, defined as

q(X(t)|X(t−1)) = N (X(t)|
√

1− βtX(t−1), βtI). (1)

Model hyperparameters β1, ..., βT , referred to as the variance schedule (Ho et al., 2020),
control the rates at which noise is added.

The generation process is the reverse of the forward process. It learns denoising transi-
tions pθ(X

(t−1)|X(t)) = N (X(t−1)|µθ(X(t), t), βtI) through a neural network. During train-
ing, we use a neural network εθ parameterized by θ to predict the noise ε that is added to
the input X(0). The training objective is to minimize the L2 loss:

L(θ) = Et,X(0),ε‖ε− εθ(X
(t), t)‖2, (2)

where t is the diffusion timestep.
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Figure 3: Left: A noisy point set X(t) is passed through RFT blocks, and then injected
correspondence embeddings. Masked attention is used in the bottleneck; Right:
the RFT block contains shared linear weights, scale shift, and activation.

2.2. Model Architecture

In this section, we delve into the implementation details of our model. Typically, the
backbone of diffusion models is implemented using attention U-Net (Oktay et al., 2018).
However, the convolutional blocks that are used in such architectures for images are not
suitable for point-based shape representations.

Inspired by PointNet (Qi et al., 2017), we propose a U-Net-like architecture with shared
linear weights instead of convolutional layers. The architecture is visualized in Figure 3.
The input is a noisy point cloud at randomly sampled timestep t. At each level, the input is
passed through a row-wise feature transformation (RFT) block. We expand the dimension
of the points in the encoder of the model with the correspondence embeddings injected.

Previous literature on point clouds does not consider or purposely ignores the ordering
of points and correspondences. Inspired by positional embeddings in transformers (Vaswani
et al., 2017), we introduce correspondence embeddings to encode the index of points. We
further demonstrate the effectiveness of it in our ablation study in Section 3.3. Traditionally,
sinusoidal positional embeddings are used in transformers to mark the position of tokens in
sentences or images. However, these modalities have a natural ordering in them, whereas
the ordering in point-based shape representations does not reflect their spatial correlation.
Two points adjacent in index might be far apart spatially. Thus, we propose using learned
correspondence embeddings, which are more suitable for our scenario. Instead of being
fixed like sinusoidal embeddings, correspondence embeddings are learned during training.
They are a set of parameters added to the activations in a middle layer, and are updated
during training. They act as conditions that we add to the intermediate activations for
each point. Suppose the intermediate activations A = {y1, ..., yN} ∈ RN×z, where N is the
number of points and z is the dimension for each point y. The correspondence embedding
E = {e1, ..., eN} is also of shape N × z. And for point yi ∈ Rz(i = 1...N), the result y′i after
adding the correspondence embedding is obtained by y′i = yi + ei.
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MMD ↓ Coverage↑ Density

CD EMD L2 CD EMD L2 CD EMD L2

Luo et al. (2021) 4.06 1.78 15.07 0.0027 0.0064 5.4 ×10−4 4.6×10−4 0.0038 7.72 ×10−5

Zeng et al. (2022) 2.42 1.34 14.26 0.17 0.078 0.0016 0.097 0.048 0.0045
PCA 2.94 1.36 1.37 0.16 0.12 0.12 1.54 1.75 1.73

Ours 2.52 1.19 1.19 0.36 0.22 0.22 0.37 0.19 0.19

Ablation 35.11 6.18 7.95 0.003 0.003 0.003 0.04 0.05 0.03
Real data 1.42 0.81 0.82 0.98 0.99 0.99 0.96 0.97 0.97

Table 1: Quantitative comparison for point cloud generation. MMD: lower the better, cov-
erage: higher the better, density: the closer to 1 the better. CD, EMD and L2
distances are used as the distance measure.

At the bottleneck of the model, the output is passed through a masked self attention
layer. The mask for the self attention is generated by selecting the nearest 50 neighbors
for each point in the mean shape representation. The masked self attention layer shares
the information from the neighboring points with each point, in order to model the spatial
relationship. In the decoder of the network, the number of features is gradually reduced at
each layer. Skip connections are added between corresponding dimension expanding and
reducing RFT blocks.

3. Experiments

In this section, we present the dataset and the baseline models used to evaluate our method.
Additionally, we outline the metrics adopted for point cloud generation and discuss the
corresponding results.

3.1. Dataset

The dataset for our experiments comes from OASIS-3 (LaMontagne et al., 2019), which
is a compilation of imaging data that consists of participants with dementia and healthy
controls. We include 208 AD dementia and 717 healthy control participants. We used
ShapeWorks (Cates et al., 2017) to build 512-point shape models for each left and right
hippocampus, similar to the process in Zhu et al. (2024).

We perform a 5-fold stratified cross-validation on our dataset based on participants.
Each training and test set contains 740 and 185 subjects respectively. We use both the left
and flipped right hippocampus as inputs to our diffusion models. Each input shape consists
of 512 points.

3.2. Baselines

We choose to use principal component analysis (PCA), and two diffusion-based methods by
Luo et al. (2021) and Zeng et al. (2022) as baseline methods for comparison to our approach.
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For PCA, each shape in the training set is flattened, and the top 128 principal compo-
nents are selected to capture key variations with minimal information loss. During genera-
tion, a random 128-dimensional Gaussian noise vector is sampled and transformed back into
data space by reversing PCA. On average, these components explain 99.8% of the variance
across the 5-fold cross-validation datasets.

Point cloud generation methods in the computer vision literature (Luo et al., 2021;
Zeng et al., 2022) typically consider the point cloud generation process as sampling inde-
pendently from a point distribution. To the best of our knowledge, no method has taken
point correspondences into account. To ensure a fair and meaningful comparison, we use
two diffusion-based baselines by Luo et al. (2021) and Zeng et al. (2022) to generate hip-
pocampus point clouds. These methods have proven to be state-of-the-art in this domain.
While other methods exist, such as GAN-based and normalizing-flow-based ones (Achliop-
tas et al., 2018; Yang et al., 2019). Luo et al. (2021) and Zeng et al. (2022) achieve better
performance in the experiments in terms of fidelity and diversity. The generation process of
Luo et al. (2021) can be considered as sampling from a point distribution, and their method
does not consider correspondences between points. The architecture of Zeng et al. (2022)
is a latent diffusion model with a hierarchical latent space. The sampled latent codes are
then decoded into a dense point cloud using the trained decoder.

3.3. Ablation: Importance of Correspondence Embeddings

Using correspondence embeddings might seem redundant when the training data already
have correspondence through the ordering of the points. One would think that minimizing
the L2 loss alone should keep the generated point-based shape representations in correspon-
dence with each other because L2 distance compares points at the same index. However,
our following ablation study showed that in practice, relying on point ordering and L2 loss
is not as effective as our proposed approach.

To evaluate the impact of the correspondence embeddings in our proposed model, we
conduct an ablation study by removing this component. Table 1 summarizes the perfor-
mance of the ablation model. It shows that the ablation model struggles to generate points
at correct anatomical locations without the assistance of the correspondence embeddings.

3.4. Quantitative results

In this section, we will first introduce the metrics that are commonly used for evaluating
generated point clouds, followed by the results for each method. Many metrics for evaluating
the quality of point cloud generative models have been proposed and used in previous
literature (Luo et al., 2021; Zeng et al., 2022). We use the minimum matching distance
(MMD), the coverage score, and the density score. Consider a set of real point clouds
and a set of generated point clouds. The MMD is calculated as the average of the distance
between each real point cloud and its nearest generated point cloud. It measures the fidelity
of the generated point clouds. Smaller MMD means higher fidelity. Alternatively, one study
has proposed using coverage and density to better handle outliers in the data distribution
(Naeem et al., 2020). We use the density and coverage in Naeem et al. (2020) with k = 7.
These two metrics fit a k-nearest-neighbor ball to each point in the real dataset. Coverage
is defined as the proportion of balls that contain the generated samples. Density is defined
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Figure 4: Visualization of the real and generated hippocampal point clouds.

as the total number of generated samples within all balls divided by kM where M is the
number of generated samples. High density means more generated samples are located
in densely populated regions. The expected values of both metrics between two identical
distributions approach 1 as the sample size grows.

Each of these metrics relies on an underlying distance metric between two point clouds.
In prior studies, point clouds are unordered, and the distances are defined using permutation-
invariant metrics like Chamfer Distance (CD) or Earth Mover’s Distance (EMD) (Achlioptas
et al., 2018). We include these two distances to ensure fair and reasonable comparison. In
order to take correspondences into consideration, we also calculate the metrics using L2

distance in addition to CD and EMD. We recognize that Luo et al. (2021) and Zeng et al.
(2022) are not designed to generate point clouds with correspondences, and their perfor-
mance under L2 distance is expected to be poor. Still, we explicitly include the L2 distance
in order to highlight their limitations. The metrics are summarized in Table 1.

We also include the metrics computed between two disjoint real datasets at the bottom
of the table for reference. For MMD, our model outperforms other baselines under EMD
and L2 distances. Luo et al. (2021) and Zeng et al. (2022) have very large MMD under
L2 since the generated samples do not maintain correspondences. Our model outperforms
other baselines under all distances for coverage. As for density, PCA has a higher than 1
score, which indicates low diversity in generated samples as reflected in the low coverage
score. Our model strikes a good balance between coverage and density compared to other
methods.

3.5. Qualitative results

We visualize the samples generated by different methods to qualitatively assess the per-
formance of these methods. Additionally, we also showcase that our method is able to
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Figure 5: Correspondence between test data and samples from different methods.
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Figure 6: Left: Group difference from healthy to AD. Comparison between real and con-
ditional samples by our method; Right: Original shape representations and their
counterfactual. We visualize the change from healthy to AD (orange is atrophy).

generate point-based shape representations with correspondences. Furthermore, we visual-
ize the healthy-to-AD morphological changes to demonstrate that our conditional generative
model captures morphological characteristics between classes.

Generated samples. We visualize the generated hippocampal point clouds in Figure 4.
Samples generated by Luo et al. (2021) and Zeng et al. (2022) typically contain more noise.
PCA tends to have less smooth surfaces, and the samples lack diversity. Compared to other
methods, hippocampal point clouds generated by our method exhibit more diversity, and
are smoother than other methods.

Correspondence preserving. To demonstrate the correspondence preserving prop-
erty of our method, we first obtain a color map based on the mean test data. The color
of each point in the mean test data point cloud is determined by its spatial location, as
shown in the leftmost figure in Figure 5. We then reuse this colormap to plot samples from
different methods. PCA and our methods maintain the correspondence with the test data
as the color pattern did not change. However, Luo et al. (2021) and Zeng et al. (2022) failed
to capture the correspondences.

Downstream task. Point clouds with correspondences can be used to visualize local-
ized morphological changes that cannot be captured by just using volume information, as
demonstrated in Zhu et al. (2024), and it’s important to maintain the correspondence in
order to facilitate this task. To showcase that our model is able to 1) preserve the cor-
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respondences and 2) capture the morphological characteristics of healthy and AD groups,
we condition our model on class label, and generate the same number of healthy and AD
subjects as the training set. We visualize the group mean difference from the healthy group
to the AD group in Figure 6 on the left. The patterns look visually similar, showing the
potential of our model for modeling fine, localized morphological changes.

Besides, we also perform AD counterfactual generation on healthy samples. On the right
of Figure 6, we visualize original healthy samples in the first column, and counterfactual
AD samples guided by a trained healthy-AD classifier and similarity to the original samples
in the second column. The changes from healthy to AD counterfactual sample are shown
in the third column. Orange indicates atrophy from healthy to AD, which is in conformity
with the disease progression.

4. Discussion

In this work, we introduced a novel approach for generating point-based shape representa-
tions with correspondences. Through extensive experiments, we demonstrated its effective-
ness in generating shape representations with high fidelity and diversity, and we show its
applicability across other anatomical structures.

By providing both qualitative and quantitative insights, we hope this study contributes
to the advancement of shape analysis in brain studies. Our preliminary experiments show
that the conditioned model is able to capture subtle class differences, and class-guided
counterfactual generation produces meaningful shape changes. We would like to apply our
method and develop these idea in the future. Additionally, our method currently works in
a supervised way with correspondences sorted out. It would be interesting to see how the
model performs when we inject noise in the training data. We plan to explore injecting
noise and developing a more robust version of the model as part of our future work.

References

P Achlioptas et al. Learning Representations and Generative Models for 3D Point Clouds.
In International Conference on Machine Learning, pages 40–49, 2018.

J Cates et al. ShapeWorks: Particle-Based Shape Correspondence and Visualization Soft-
ware. In Statistical Shape and Deformation Analysis, pages 257–298. 2017.

Alessandro Fontanella et al. Diffusion models for counterfactual generation and anomaly
detection in brain images. arXiv preprint arXiv:2308.02062, 2023.

Y Gu et al. Counterfactual Biomedical Image Generation by Instruction-Learning from
Multimodal Patient Journeys. arXiv preprint arXiv:2310.10765, 2023.

J Ho et al. Denoising Diffusion Probabilistic Models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020.

Y Jin et al. Measuring Feature Dependency of Neural Networks by Collapsing Feature
Dimensions in The Data Manifold. In 2024 IEEE International Symposium on Biomedical
Imaging (ISBI), 2024.

9



Point-Based Shape Representation Generation

F Khader et al. Medical Diffusion: Denoising Diffusion Probabilistic Models for 3D Medical
Image Generation. Scientific Reports, 13(1):7303, 2023.

P LaMontagne et al. OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset
for Normal Aging and Alzheimer Disease. MedRxiv, pages 2019–12, 2019.

S Luo et al. Diffusion Probabilistic Models for 3D Point Cloud Generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2837–
2845, 2021.

M Naeem et al. Reliable Fidelity and Diversity Metrics for Generative Models. In Interna-
tional Conference on Machine Learning, pages 7176–7185, 2020.

O Oktay et al. Attention U-Net: Learning Where to Look for the Pancreas. In Medical
Imaging with Deep Learning, 2018.

Walter HL Pinaya et al. Brain imaging generation with latent diffusion models. In MICCAI
Workshop on Deep Generative Models, pages 117–126. Springer, 2022.

C Qi et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 652–660, 2017.

Ashish Vaswani et al. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

G Yang et al. Pointflow: 3d point cloud generation with continuous normalizing flows. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 4541–
4550, 2019.

X Zeng et al. LION: Latent Point Diffusion Models for 3D Shape Generation. In Advances
in Neural Information Processing Systems, volume 35, pages 10021–10039, 2022.

S Zhu et al. Quantifying Hippocampal Shape Asymmetry in Alzheimer’s Disease Using
Optimal Shape Correspondences. In 2024 IEEE International Symposium on Biomedical
Imaging (ISBI), 2024.

10



Point-Based Shape Representation Generation

Figure 7: Comparison between real amygdalas (top) and generated amygdalas (bottom).

(Luo et al., 2021) (Zeng et al., 2022) PCA Our method

Number of parameters 3,879,832 22,402,731 196,608 290,883
Training batch size 64 16 1480 64
GPU peak memory 4394.44 MB 15,611.83 MB - 9306.46 MB
Training epoches 5,000 5,000 1 5000
Training time 107.37 mins ∼ 36 h 10.72 s 84.80 mins
Sampling time 25.51s 17.5 mins 0.02s 38.74s

Table 2: Training details and performance measures.

Appendix A. Amygdala Experiment

To demonstrate the generalizability of our method across different datasets and data col-
lected by different organizations, we conduct experiments on a different anatomical structure
and dataset.

We adopt amygdala dataset from National Alzheimer’s Coordinating Center (NACC).
We also use different numbers of points for the dataset, with 256 points for amygdala. The
model architecture is kept the same except for the number of points.

We visualize the original data and generated samples in Figure 7.

Appendix B. Hippocampus Experiment Details

We list the hippocampus experiment details in Table 2. We train our model and the
baselines on a single Nvidia A100 GPU with 80 GB memory. Zeng et al. (2022) has the
most parameters and is the most time-consuming to train. Our model has relatively few
parameters compared to other deep learning based methods, and the training time is the
shortest. Our method strikes a good balance between computational demand and generation
quality.

Appendix C. Model Hyperparameter

We explore the effects of model hyperparameters on the performance, specifically the vari-
ance schedule and the number of neighbors to include in the masked attention operation
(kNN). We use the same set of metrics as our evaluation criteria.
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MMD ↓ Coverage↑ Density

CD EMD L2 CD EMD L2 CD EMD L2

scaled linear beta schedule 2.52 1.19 1.19 0.36 0.22 0.22 0.37 0.19 0.19
sigmoid beta schedule 3.18 1.13 1.15 0.62 0.44 0.45 0.64 0.23 0.23

kNN=10 3.61 1.41 1.42 0.16 0.01 0.01 0.19 0.003 0.002
kNN=50 2.52 1.19 1.19 0.36 0.22 0.22 0.37 0.19 0.19
kNN=100 3.28 1.26 1.26 0.22 0.16 0.17 0.29 0.26 0.26

Real data 1.42 0.81 0.82 0.98 0.99 0.99 0.96 0.97 0.97

Table 3: Quantitative comparison for different hyperparameters.

Healthy accuracy AD accuracy F1 score

Real test data 95.8% 63.4% 0.71
Conditionally generated data 97.9% 53.7% 0.67

Table 4: Downstream task quantitative results.

As shown in Table 3, we experiment with different variance schedules. The sigmoid
beta schedule seems to perform better than the linear beta schedule, except for MMD
under CD. We also experiment with the cosine schedule, but the results were less than ideal
and excluded it from the analysis. We think it’s because the default end beta value for the
cosine schedule is close to 1, which is too big. Thus, we recommend setting the end beta
value to a very small number. We used 0.0205 in our case.

Besides, we also investigated how kNN affects the performance. When setting it to 10,
we have very poor coverage and density compared to 50 and 100, meaning the generated
shapes are not very realistic or lack diversity. When kNN equals 50, we seem to get the
best result. In conclusion, we recommend sigmoid beta schedule, and setting kNN to 50.

Appendix D. Quantitative Analysis of Downstream Task

In order to measure the performance of the downstream tasks quantitatively, we train a
classifier with the training data, and perform classification on both the test data and the
conditionally generated data. We keep the size of the test dataset and the conditionally
generated dataset to be the same, with the same number of subjects for each label.

The results are shown in Figure 8 and Table 4. We visualize their confusion matrices,
and list the accuracies and F1 scores. Based on these results, we think the conditionally
generated dataset is able to capture the class differences.
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Figure 8: We visualize the confusion matrices for both real test dataset and the generated
dataset.
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