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Abstract

In this paper, we consider combinatorial reinforce-
ment learning with preference feedback, where a
learning agent sequentially offers an action—an
assortment of multiple items—to a user, whose
preference feedback follows a multinomial lo-
gistic (MNL) model. This framework allows us
to model real-world scenarios, particularly those
involving long-term user engagement, such as
in recommender systems and online advertising.
However, this framework faces two main chal-
lenges: (1) the unknown value of each item, un-
like traditional MNL bandits that only address
single-step preference feedback, and (2) the dif-
ficulty of ensuring optimism while maintaining
tractable assortment selection in the combinatorial
action space with unknown values. In this paper,
we assume a contextual MNL preference model,
where the mean utilities are linear, and the value
of each item is approximated by a general func-
tion. We propose an algorithm, MNL-VQL, that
addresses these challenges, making it both com-
putationally and statistically efficient. As a spe-
cial case, for linear MDPs (with the MNL prefer-
ence feedback), we establish the first regret lower
bound in this framework and show that MNL-VQL
achieves nearly minimax-optimal regret. To the
best of our knowledge, this is the first work to
provide statistical guarantees in combinatorial RL
with preference feedback.

1. Introduction

We first formally state the concept of Combinatorial Re-
inforcement Learning (RL), which we refer to as a class
of RL problems where the action space is combinatorial,
meaning that the agent selects a combination or subset of
base actions from a set of possible base actions. Although
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some previous studies have addressed problems within this
setting—particularly in deep RL (Sunehag et al., 2015; He
et al., 2016; Swaminathan et al., 2017; Metz et al., 2017;
Ryu et al., 2019; Ie et al., 2019; Delarue et al., 2020; McIn-
erney et al., 2020; Vlassis et al., 2021; Chaudhari et al.,
2024), with less emphasis on theoretical RL—to the best
of our knowledge, it appears that no prior work has for-
mally and theoretically defined the concept of combinatorial
RL.! This framework is especially relevant for real-world
applications such as recommender systems and online adver-
tising, where multiple items (base actions) must be selected
simultaneously, such as a set of products to recommend or
advertisements to display. The challenge in combinatorial
RL lies in the exponentially large action space and the need
to efficiently optimize the agent’s action selection while
balancing exploration and exploitation (a challenge even
for single action selection), while considering the long-term
effects of these actions.

One of the most widely encountered settings in combinato-
rial RL is preference feedback over combinatorial actions,
commonly seen in streaming services, online retail, and sim-
ilar platforms. Despite the broad applicability of this setting,
theoretical studies have predominantly focused on the multi-
nomial logistic (MNL) bandit model (Rusmevichientong
et al., 2010; Sauré & Zeevi, 2013; Agrawal et al., 2017;
2019; Oh & Iyengar, 2019; 2021; Perivier & Goyal, 2022;
Agrawal et al., 2023; Zhang & Sugiyama, 2024; Lee & Oh,
2024). The MNL bandit framework focuses on assortment
(a set of items) selection by selecting subsets of items and
receiving feedback on chosen items, modeled by the MNL
model (McFadden, 1977). However, these studies take a
myopic approach, optimizing for immediate, known rewards
without considering the long-term impact on user behavior.

While MNL bandits have been widely studied, the myopic
approach is limiting in many real-world scenarios. For exam-
ple in recommender systems, incorporating the long-term
impact of recommendations opens the door to balancing
short-term engagement with long-term user satisfaction. For
instance, recommending junk product or content might lead
to high immediate reward but it can decrease user satis-
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faction over time due to fatigue. This trade-off between
immediate and long-term outcomes is not captured by tradi-
tional MNL bandit. See Appendix A for a more details.

On the empirical side, several studies have explored long-
term user engagement in recommendation systems, partic-
ularly using deep RL (Swaminathan et al., 2017; Ie et al.,
2019; Mclnerney et al., 2020; Vlassis et al., 2021; Chaud-
hari et al., 2024). However, there is a significant gap in
the theoretical understanding of combinatorial actions with
preference feedback, particularly within the RL framework.
To the best of our knowledge, no theoretical work has yet
explored this important problem setting.

In this paper, we aim to address this gap by rigorously
studying combinatorial RL with preference feedback and
developing a provably efficient algorithm that maximizes
long-term user engagement by incorporating state transi-
tions (e.g., historical behavior) into decision-making. We
consider a setting where the ()-function of an assortment
is decomposed into two components: the preference model
and the item values, inspired by Ie et al. (2019). Specifi-
cally, we focus on the contextual MNL preference model
with linear mean utilities (Agrawal & Goyal, 2013; Cheung
& Simchi-Levi, 2017; Agrawal et al., 2019; Oh & Iyen-
gar, 2019; 2021; Amani & Thrampoulidis, 2021; Perivier
& Goyal, 2022; Agrawal et al., 2023; Zhang & Sugiyama,
2024; Lee & Oh, 2024) and use general function approxima-
tion to estimate item values (Jiang et al., 2017; Wang et al.,
2020; Jin et al., 2021; Du et al., 2021; Foster et al., 2021;
Agarwal et al., 2023; Zhao et al., 2023). The key challenges
in this framework are: (1) the unknown long-term value
of each item due to the stochastic nature of rewards and
transitions, (2) the difficulty of selecting an assortment that
ensures optimism while considering tractable assortment
optimization in the combinatorial action space, given the
unknown values, and (3) achieving a tighter regret bound
(for MNL preference model) than simply summing over H
MNL bandit regrets.

Technical novelties. To tackle challenge (1), we estimate
the optimistic item values by employing point-wise opti-
mism under general function approximation (Agarwal et al.,
2023). Based on these optimistic item values (which incor-
porate uncertainty), we then select an assortment that en-
sures sufficient exploration and guarantees optimism. This
step is the most challenging part of our framework. Since
the true value of each item is unknown, directly applying
techniques from MNL bandits (which assume known true
values) is not feasible. Thus, to address challenge (2), we
propose a novel method to estimate the optimistic prefer-
ence model by carefully alternating between optimistic and
pessimistic utilities (for the preference model), using the
optimistic item values (Equation (7)). Additionally, proving
optimism (Lemma D.15) and other related results (Lem-

mas D.5, D.9, and D.13) requires fundamentally more so-
phisticated analytical techniques. Finally, we avoid naive
combinatorial enumeration when selecting the assortment
(Equation (8)) by reformulating the optimization problem
as a linear program (LP), inspired by Davis et al. (2013).
Finally, for challenge (3), instead of naively summing over
H MNL bandit regrets, we bound the regret of the MNL
preference model in terms of the sum of the variances of
value functions and apply the law of total variance (Latti-
more & Hutter, 2012; Gheshlaghi Azar et al., 2013). This
approach reduces MNL regret by a factor of v/H compared
to directly summing H MNL bandit regrets. Moreover, in
the special case of linear MDPs with preference feedback,
we achieve a nearly minimax-optimal regret.

Our main contributions are summarized as follows:

¢ We propose a MNL-VQL, which achieves a regret upper
bound of O (dvHK + v/dim(F)K H log | F|) while
maintaining computational efficiency (Theorem 5.1).
Here, H is the horizon length, K is the total number of
episodes, d is the feature dimension of the MNL pref-
erence model, and dim(F) is the generalized Eluder
dimension (see Definition 3.5) of the function class F.
To the best of our knowledge, this is the first theoretical
regret guarantee in combinatorial RL with preference
feedback.

* For the special case of linear MDPs (with preference
feedback), MNL-VQL obtains a regret upper bound of
O(dvVHK + d™/HK), where d'™ is the feature di-
mension of the linear MDPs (Theorem 5.2). Further-
more, we establish a matching regret lower bound of
Q(dvVHK +d™/HK), show the minimax-optimality
of our algorithm in linear MDPs (Theorem 5.3).

2. Related Work

MNL bandits. The MNL bandits were initially studied
in Rusmevichientong et al. (2010), followed by a line of
improvements (Filippi et al., 2010; Rusmevichientong et al.,
2010; Agrawal et al., 2017; Oh & Iyengar, 2019; Faury
et al., 2020; Abeille et al., 2021; Faury et al., 2022; Oh
& Iyengar, 2021; Perivier & Goyal, 2022; Agrawal et al.,
2023; Lee & Oh, 2024). In MNL bandits, the goal is to offer
an assortment that maximizes the expected rewards, which
are adaptively learned based on user preference feedback
from the offered assortment. However, there are no state
transitions, and it is assumed that the value of each item is
known, with the value of the outside option fixed at zero.
Our study extends this by not only estimating the MNL
model but also the long-term item values.

Combinatorial RL with preference feedback. Recently,
several studies have demonstrated the empirical success of
combinatorial RL with preference feedback (Swaminathan



Combinatorial Reinforcement Learning with Preference Feedback

etal., 2017; Ie et al., 2019; Mclnerney et al., 2020; Vlassis
et al., 2021; Chaudhari et al., 2024), where a set of items is
offered to a user, and (relative) choice feedback along with
a reward is received, leading to a transition to the next state.
However, theoretical results quantifying the benefits of such
methods are still few and far between. A closely related
work is cascading RL (Du et al., 2024), which also involves
selecting a set of items. However, in cascading RL, items
are offered to the user one by one, and the user decides
only whether to choose the currently offered item. As a
result, this framework does not capture relative preference
feedback across multiple items. Furthermore, in cascading
RL, the probability of choosing each item is independent of
the others, which is not the case in our framework.

Another related line of work is preference-based RL
(PbRL) (Akrour et al., 2012; Wirth et al., 2017; Christiano
et al., 2017; Ouyang et al., 2022; Saha et al., 2023; Zhu
et al., 2023; Zhan et al., 2023), where the policy is opti-
mized based on relative, rather than absolute, preference
feedback. However, our framework differs from PbRL in
that our goal is not to offer just a single item, but to offer
multiple items (a combinatorial base action).

RL with non-linear function approximation. With the
limitations of the linear models (e.g., as shown in Lee & Oh
(2023)), RL under non-linear function approximation has
gained attention (Jiang et al., 2017; Wang et al., 2020; Jin
etal., 2021; Du et al., 2021; Foster et al., 2021; Ishfaq et al.,
2021; Agarwal et al., 2023; Zhao et al., 2023) for model-
ing complex function spaces like neural networks. Among
these, Agarwal et al. (2023); Zhao et al. (2023) achieved
the best-known regret guarantees under general function
approximation by introducing the concept of generalized
Eluder dimension to handle weighted regression. Inspired
by their work, we estimate the value of items (referred to as
item-level Q-value) using general function approximation
in this paper.

3. Problem Setting
3.1. Combinatorial MDPs with Preference Feedback

In this paper, we consider a episodic combinatorial Markov
decision processes (MDPs) with preference feedback,
M(S, T, A, M {Pp} L APy L {3 H). Here, S
is the set of states. Each state s € S reflects the user’s
status, capturing both relatively static user features (e.g.,
demographics, interests) and relevant user history or past
behavior (e.g., past recommendations, items purchased or
clicked). Z := {a1,...,an,ap} is the ground set of items
(base actions), where a1, . .., ay are items and ag refers to
the “outside option”, meaning the user has chosen none of
the items from the offered set of items (referred to as an
“assortment” throughout the paper). It is included in every

assortment by default. A is the set of candidate assortments
that always include the outside option ag, contain at least
one item (other than ag), and have at most M items (includ-
il’lg ap), i.e., A= {A cT:ap€ A, 1< |A\{a0}| < M},
where A is an assortment. For any (s, A) € S x A, we
denote Py (als, A) as the probability of the user choosing
on item a € A (including the outside option agp). Further-
more, weletPy, : S xZ — Agandr, : SXxI xS —>R
characterize the transition kernel and instantaneous reward,
respectively, at a given horizon h € [H]. Throughout this
paper, we assume that Zthl rh(Sh, an, snt1) € [0, 1] for
all possible sequence (s1,a1,...,8m,am, Sg+1). H € Z4
is the length of each episode. A policy 7 : S — Ais a
mapping from the state space to the assortment space. Since
the optimal policy is non-stationary in an episodic MDP, we
use 7 to refer to the H-tuple {my }_ .

In each episode k € [K], an initial state s¥ is picked arbi-
trarily (e.g., a user arrives at the system). The agent then
follows a policy 7* starting from s%. At each step h € [H],
the agent observes the current state s],j (e.g., historical behav-
iors of the user) and offers an assortment A} = 7 (sF). The
user’s preference feedback af € A¥ is then observed, which
is drawn based on the choice probability Py, (-|s5, AF). Next,
the system transitions to the next state s, ~ Py, (-[s}, af)
and receives a reward r, (sf, af, s ). After H steps, the
episode terminates, and the agent proceeds to the next.

For any policy 7 = {m,}/_,, we define the value func-
tion of policy m, denoted as V," : & — R, as the
expected sum of rewards under the policy 7 until the
end of the episode when starting from s, = s, ie.,
Vii(s) == E [Z§=hrh/(sh/,ah/,sh1+1) |sp = s] . More-
over, we define the action-value function of policy m,
@y S x A — R, as the expected sum of rewards un-
der policy m, starting from step h until the end of the
episode after taking action A in state s; that is, QT (s, A) :=
E [Zf’:hrh'(sh’v ap’, Sh/+1) | Sp = S, A = A] . Further-
more, we define the item-level Q-value function (also called
the Q-value) @Z(s,a) = 2o Pu(s'ls,a)(rn(s,a,s") +
ViT,1(8")). Then, the Bellman equation for assortment RL
is denoted as follows:

Q7 (s, A)= > Pulals, A)Qy (s, a).

acA

Similarly, we define the optimal value function V;*(s) =
sup, V;7(s) and the optimal ()-value function as
Qr (s, A) = Yea Ph(als, A)Q) (s,a), where @ :=
Do Pr(ss,a)(rn(s,a,s") + Vi, ,(s)) is the item-level
optimal Q-value function. For any V : § — R and
h € [H], we define the item-level Bellman operator of
Vas TRV : 8§ x T — R, such that for all (s,a) € S x
T, ThV(s,a) := Eyp,(|s,a) [Tr(5,0,8") + V(') | s,a] .
The definition of value functions ensures that they satisfy
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the equation Q) (s,a) = TnVii1(s,a). We also define
the second moment item-level Bellman operator of V as
T2V : 8§ x T — R such that for all (s,a) € S x Z,

7—}1,2‘/(87 CL) = Es/~]}"h('|s,a) [(Th(& a, 3,> + V<SI))2 | s,a].

Our goal is to minimize the cumulative regret over K
episodes Regret(M, K) := Zszl Vi (k) — Ve (sh).

3.2. Multinomial Logistic Preference Model

In this paper, we make a structural assumption about the
MDP M, where the user’s choice probability {P}2
follows multinomial logistic (MNL) model (McFadden,
1977) parameterized by {60} }_,. We denote Py, (-|s, A; 0})
as equivalent to Py (+|s, A), explicitly showing the depen-
dence on the parameter 6;. Throughout the paper, we use
P (-|s, A) and Py, (-|s, A; 05;) interchangeably.
Assumption 3.1 (MNL preference model). Let there exist a
known feature map ¢ : S xZ — R% such that |¢(s, a)||2 <1,
and an unknown 6; € © for all h € [H]|, where © =
{6eR?:|0]2 < B=0O(1)}. Then, forany (s, A, H) €
S x A x [H], the probability of choosing any item ¢ € A
is defined as:

exp (gf)(s, a)TO}*L)

Prlals, A) = Prlals, A; 0F) = 5 oxp (0(s.0) 707"
a’eA ’ h

Here, without loss of generality, we assume that ¢(s, ap) =
0 forall s € S %, which implies that exp(¢é(s, ag) ' 0}) = 1.
Thus, the preference model can be equivalently expressed

.0*\ exp((ﬁ(s,a)—re;’;)
as Ph(a|57 Aa ah) - 1+Za’€A\{ao} cxp(qb(s,a’)TB,’;) .

Following the previous MNL bandits (Oh & Iyengar, 2021;
Perivier & Goyal, 2022; Zhang & Sugiyama, 2024; Lee &
Oh, 2024), we also introduce the following constant:

Definition 3.2 (Problem-dependent constant). There exist
k > 0 such that, for any A € A,a € A\{ap}, h € [H], we
have mingeg Pr(als, A, )Py (agls, 4, 0) > k.

A small x indicates a larger deviation from the linear model.
Note that 1/ can be exponentially large, so it is crucial to
avoid any dependency on 1/ in our regret bound.

3.3. Generalized Function Approximation for Q

We estimate the item-level Q-functions (referred to as Q-
values) using general function approximation. Specifically,
the agent is given a function class F := {F;,}/L |, where
each set F}, is composed of functions f;, : S x Z — [0, L],

By subtracting ¢(s, ag) from each ¢(s,a), where a € Z,
and defining ¢'(s,a) := ¢(s,a) — ¢(s, ap), we can ensure that
#'(s,a0) = 0. This implies that exp(¢'(s,ao)' ;) = 1. This
assumption is commonly made in contextual MNL bandits (Oh &
Iyengar, 2019; 2021; Perivier & Goyal, 2022; Agrawal et al., 2023;
Zhang & Sugiyama, 2024; Lee & Oh, 2024).

where L = O(1). Since no reward is collected in the (H +
1)™ steps, we set fzr11 = 0. We denote N as the maximal
size of function class, i.e., N = maXpe[ ] | Fr|. We assume
the completeness and realizability for F.

Assumption 3.3 (Completeness & Realizability). For each
he[H]andany V : S — [0, 1], we assume that Q;, € F,
and there exists f3, f; € Fy, such that, forall (s,a) € S x Z,
fh(S,(l) 2771‘/(5,(1), and f;L(s,a) 27712‘/(5,(1).
Remark 3.4. The completeness and realizability assump-
tions are standard in RL with general function approxima-
tion (Wang et al., 2021; Jin et al., 2021; Agarwal et al., 2023;
Zhao et al., 2023). Our assumption is the same as those
in Agarwal et al. (2023); Zhao et al. (2023), but stronger
than those in Wang et al. (2021); Jin et al. (2021), especially,
in terms of the second moment completeness. However,
this assumption is essential for using point-wise exploration
bonuses and achieving a tighter regret bound. Additionally,
it naturally holds for both tabular and linear MDPs.

To capture the complexity of exploration in the MDP,
we define the generalized Eluder dimension, which is a
weighted regression version of the original definition (Russo
& Van Roy, 2013).

Definition 3.5 (Generalized Eluder dimension, Agarwal
etal. 2023). Let p > 0, a sequence of state-item pairs Zj;, =
{z7}k_,, where 27 = (s7,a"), and a sequence of positive
numbers o}, = {o7}*_,. The generalized Eluder dimension
of a function class F : S x Z — [0, L] with respect to p
is defined as dim, i (F) = Xy ;. .05, dim(F,Z,0),

where

K 2 &

D% (2% Zi—1, 0%

dlm(]:, ZK70'K)Z: Z min (17 F (Z (0:)21 (0% 1)) .
k=1

_ (f1(z)—f2(2))?
= SUPyy,f, SHo GD-FGZ
T— o)

We write d,, := 7 ZhH=1 dim,, x (Fp) for simplicity.

D% (2% Zy—1,0k-1)

By Theorem 4.6 of Zhao et al. (2023), the generalized Eluder
dimension is upper bounded by the standard Eluder dimen-
sion (Russo & Van Roy, 2013) up to logarithmic terms.

4. Algorithm

In this section, we introduce an algorithm, which, to the best
of our knowledge, is the first to provide statistical guaran-
tees in combinatorial RL with preference feedback while
maintaining computational tractability. Step 1 involves on-
line parameter estimation for the MNL preference model,
proposed by Lee & Oh (2024). Steps 2, 3, and 4 implement
variance-weighted regression to tighten the regret bound, as
outlined in Agarwal et al. (2023). Step 5, which is our main
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contribution, ensures optimism in a computationally effi-
cient manner, even with uncertainty in item-level -values.
Step 6 introduces an exploration step that accounts for esti-
mation errors from the MNL preference model.

Step 1. Online parameter estimation for MNL (Line 6).
At episode k and horizon h, given the user’s choice feedback
cﬁ € A’fL, the response for each item a;, € AZ is defined as
yr(a;, ) = 1(c} = a;,,) € {0,1}. Therefore, the response
variable y£ = (yf(a0), yj(as,) - -yt (i), where | <
M — 1, is sampled from a multinomial distribution: y¥ ~
MNL{L, Py (aolsh, A% 67), ... P (ar]st, AL: 67)),
where the parameter 1 1ndlcates that y¥ is a single-trial
sample, i.e., y¥(ag) + Zlm:1 y¥(a;, ) = 1. Then, for any
(k,h) € [K] x [H], the multinomial logistic loss function
is defined as:

alsy, Af; ).

*th

aEA’C

) log Pp(

Inspired by Zhang & Sugiyama (2024); Lee & Oh (2024),
for all (k, h) € [K] x [H], we use the online mirror descent
algorithm to estimate the true parameter ; as follows:

Oyt € argmin(Vey(05), 0) o

6—06 ;D
om 10— of13,

where 7 = O(log M) is the step-size, Hf := Hf +
nV20k (0F), and HE := AT, + Y1 v%T(eTH).
Remark 4.1. The computation cost of the optimization prob-
lem in (1) is O(Md?), which dose not scale with k at all.

Then, with high probability, 8; lies within the following
confidence interval (Corollary D.2).

k.= {9 €0:[0 -6}y, <af - @(\/E)}. 2)

Step 2. Weighted regression and optimistic estimation
for ) (Line 7-9). Using the past dataset, we solve the
following (weighted) regression problem to fit 77LLV,ZC o

2
L Vif+1,1(52+1))

(e7)°

ket (fulstan) -
fh 1 € argmin

fne€Fn

)

3
where (57)? is a variance upper bound, i.e., (5F)% >
V[rn + ViF1 1 (sng1)lsk, ay], which will be specified later.
Then, an optimistic Q-value estimate at horizon h is de-
fined as ff | := f | +b};, where b}’ is the optimistic bonus.
The bonus is calculated as bf (s, a) =maxy, c 7, fr(s,a) —
mingy, e 7, fn(s, a). In general, this uncertainty bonus has a
high complexity, as the maximizing and minimizing func-
tions can differ arbitrarily for each (s,a) € S x Z. To

address this, we use a low-complexity bonus oracle B (Agar-
wal et al., 2023) that approximately dominates the value
obtained from the point-wise maximization over 3. With
the oracle B, we can efficiently calculate the bonus bf, with
an error of ¢,. Due to space constraints, we provide the

formal definition of 53 in Appendix B (Definition B.1).

Step 3. Overly optimistic/pessimistic estimation for @
(Line 10-13). For a sharp analysis of the convergence of
the optimistic estimate f}lf,p we define an overly optimistic
Q-value estimate fF ,, as well as an overly pessimistic Q-
value estimate fy _,. Similarly to f5 , they are calculated
by solving an unweighted regression problem (Line 10), and
by adding (or subtracting) a bonus function, which is the
output of the bonus oracle B (Line 12-13).

Step 4. Variance estimation (Line 14 and 21). To calculate
6’,3 introduced in (3), we first estimate the second moment
by solving the unweighted regression problem:

k—1

2\ 2
gk e argmin Y, (gn(sh, af) = (7 + Vil (5740)) ")
9h€Fn r—1

Then, denoting zF = (sF,a¥) for simplicity, we calculate
the estimated variance as follows (this is an informal de-
scription; for the precise formulation, see Equations (D.9)
and (D.10) in Appendix):

(oh)*~ k() — (& _a(=h) + Dk O (Vios NG )
FF ~ max {UZ, O(log NN,)
'(max{fh2 Zh) fh 2(Zh Qkh})} 4)

where Dt , = Dg,(2f;Zr—1,{17}%
D, (2F; Zi—1,04-1).

_1) and D7, =

Step 5. Efficient optimistic ()-value estimation based
on unknown item values (Line 15-16). In this step, we
address our main challenge: selecting an optimistic assort-
ment based on the optimistic Q-values, which incorporate
uncertainty, while ensuring computational tractability.

To introduce optimism and encourage exploration, we need
to solve the following optimization problem using the op-
timistic (or pessimistic) estimates of the Q-values, specifi-
cally fF ; for j =1, +2:

A% € argmaxmax Y PE(alsh. A:0)fF (55, a). (5)

Ae A OeCF A

where Cf is defined in (2). One naive approach to solving
the optimization problem in (5) is to add bonus terms to the
estimation for each assortment A and then enumerate all
A € Ato find the maximum. However, this approach results
in a computational cost of O(|Z|M).
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Algorithm 1 MNL-VQL, MNL Preference Model with Variance-weighted Item-level Q-Learning

Inputs: parameter space O, function class {Fn}H_ |, consistent bonus oracle B.
Parameters: {&, By 1, By 5, By } (k,n)e[H]x [K]> {Uk }he1» P> DODUS erTOT €3, ¥, 4.

Initialize: dataset DY = ¥ forall h € [H].

for episode k = 2,--- , K do

1:
2:
3:
4: Generate {D; }L_ | from initial state s} by random policy and set o} = &} = 2 forall h € [H].
5:
6

for horizonh = H,H —1,...,1do

/I CACULATE OPTIMISTIC AND OVERLY OPTIMISTIC, PESSIMISTIC @-VALUES

2

£ 3 k—1 T T T T
7: ff]f,l € argming, .z, 2., ﬁ (fh(simah) —Th— fo+1,1(5h+1)) .
8: bﬁ)l — B ({5;}5;%,272_1,]:;1, f}]f)l, ﬁ;’il,p, Eb) (see Definition B.1).
9: Update f}’f,l(‘v *) < min {ﬂfl(» )+ bfm('v s 1}~

2

£k 3 k—1 T T T C T >
10: ff]f,j € argming, c r, 2o <fh(8h7ah) —Th — fo+1,j(5h+1)) ,J=x2
1 Vo B({17}52], D Fu, fE 5, BF 5. 9.0 (see Definition B.1).
12: Update fl’fa(" *) < min {ﬂfz(» )+ lefi,l(" )+ bﬁz('v s 1}-
13: Update ff’f,—Q('a 1) < max {fllf,—Q('v )= bﬁ,Q('? s 0}-

9\ 2

N 1 k71 T T T T
14: ar e argming, .z >, <gh(sh,ah) — (rh + Vh],€+1,1(8h+1)) ) .

// ' UPDATE VALUES
15: Update Py . (-[-,-) by (7).
16: Update ng('a A) - ZaeA ,P}]f,j (CL|', A)f}]f,j('v CL) and Vhﬁj() < InaXgeA Qz’j('a A),.] =1,42.
17: end for
18: Receive initial state s
19: forh=1,2,...,H do
20: Offer A by (9) and receive ay, rf, and s§ ;.
21: Update Pﬁ — Dy U {sk,ak, vk, sk |} and update of and 5 by (4).
22: Update 02‘“ using online mirror descent (1).
23: end for
24: end for

To avoid this exponential computational cost, inspired
by Tran-Dinh et al. (2015), we use optimistic MNL
utilities instead of directly adding bonus terms to
Yaea Pr(alsy, A; 0F) f . (sy, a). However, unlike tradi-
tional MNL bandits (Oh & Iyengar, 2019; 2021; Lee &
Oh, 2024), simply using optimistic utilities does not always
guarantee optimism because of f,’f’ ; 1s not the true values. In
MNL bandits, the item values are known, and the value of
the outside option ay is fixed at zero. Therefore, increasing
the MNL utilities (using the optimistic utilities) lowers the
probability of choosing the outside option, which in turn
increases the expected value of the item values.

However, in our setting, using the optimistic utilities can
decrease the expected value of f}’i ;- To explain why: even
if the true value of the outside option, Q) (s,ag), is the
lowest, its estimated value, f,’f} j (s, ap), can be the highest—
ie., fri(s,a0) > fr;(s,a) for all a € T\{ao}—due to
uncertainty. In this case, increasing the MNL utilities results

in a decrease in the expected value of f,’f ;- This challenge

. . —* . .
arises from the unknown item values, (), which is one of
the main difficulties we face in our framework.

To tackle this problem, a more refined approach is required
to use the utility based on f}’f ;- Given the confidence inter-

val in (2), we define the optimistic utility D¥ (s, a) and the
pessimistic utility Ur (s, a) as:

aﬁ(sva) = ¢(57G)T02 + aI;LHQb(Sva)H(Hﬁ)*la

Th(s,) i= 6(5,0) 10 — ak6(5.0) | gy 2 (©)

We then use the optimistic utility when f ;(8,a0) is not

the highest estimate to calculate the optimistic choice prob-

abilities P ;. Formally, let If ; € {1,0} indicate whether
: k k

there exists a € T\{ao} such that f; ;(s,a) = f; (s, a0)
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I }’f ;= 1 if such an event occurs). Then, we define

exp (vh(s, a))

, if I,’j =1
Sk _ ] Daweacxp (v;’i(&a’) 7
Ph,j(a\s’A) = (eexp (U s,a)) )
- , otherwise.
D e €XP (vh(s, a’) )
@)

Equipped with 75,’f j»forany j =1, +2, we select the assort-
ments Ay ; as follows:

Ak € argmax Z Ph i a/|5h’ )f]—lij(sﬁa CL), (8)
AeA acA

—:Qk (k. A)

Here, Q’fl’j(sﬁ, A) = Yca P,]f’j(a|sfl, A)f}’f’j (s, a) is
the optimistic QQ-values. This construction can induce suf-
ficient exploration and guarantee optimism (Lemma D.15).
Furthermore, by using the optimistic (or pessimistic) util-
ities for each item, instead of calculating bonus terms for
each A € A, the optimization problem in (8) can be solved
efficiently (Davis et al., 2013).

Remark 4.2. The optimization problem in (8) can be trans-
formed into a linear programming (LP), making it solvable
in polynomial time with respect to |Z| (see Appendix C) .

Step 6. Exploration policy (Line 20). We then offer the
assortment A¥ to the user as follows:

Al i f (s an) = f o (shs an) — g,
Af = Vay € A}, 1, VW < h,
AF ., otherwise,

©))
where uy, is a carefully chosen threshold (see Table D.2 for
the exact value). When the optimistic sequence f;’f,1 and the

overly optimistic sequence f,’;2 diverge beyond a certain
threshold, we offer the assortment Aﬁ,z, which is selected
based on f}’f’2. This approach ensures that by occasionally
using f,’fz, the variance upper bound 6’5, estimated from
f,’fﬁz, does not become overly pessimistic.

5. Main Results
5.1. Non-linear Function Approximation for Q

Theorem 5.1 (Informal, Regret upper bound of MNL-VQL).
Let d, = %Zthl dim,, g (Fp) with v = \/1/KH, and
set uy, as in Equation (D.20). Suppose Assumptions 3.1
and 3.3 hold. Then, with probability at least 1 — 6, the

regret of MNL-VQL is upper-bounded by:

1
Regret(M, K) < dVHK + —d*H?
KR
(S
regret from MNL model

+\/d, HK log N + d,, H? log N log*(N'\3),

regret from general function approximation of Q

where d is the feature dimension of the MNL preference
model, N' = maxpe[ , and Ny is the size of the bonus
function class, i.e., Ny = |[W].

Discussion of Theorem 5.1. The proof is deferred to Ap-
pendix D. The first two terms arise from the regret of the
MNL preference model, while the other two terms come
from the regret associated with the general function approxi-
mation for item-level Q-values. When H = 1, reducing our
setting to MNL bandits (though not exactly the traditional
MNL bandits, as we consider a more general case where
item values are unknown and the value of the outside option
can be non-zero), the first two terms of our regret simplify
to O(dvK + Ld?). This matches the known minimax opti-
mal regret established by Lee & Oh (2024). Note that we
avoid the detrimental dependence on & in our leading term.
The last two terms of our regret, incurred from estimating
item-level (Q-values using general function approximation,
similar to Agarwal et al. (2023) and Zhao et al. (2023).

With respect to computational cost, by using the online
sensitivity sub-sampling method (Algorithm B.1), we can
efficiently implement the bonus oracle B with log [W| =
logN, = O (maxyeps dim,, x (Fr) log Nlog |S x I1).
Furthermore, we can avoid the exponential computational
cost required to solve the optimization in (8) (see Re-
mark 4.2). As aresult, our algorithm is both computationally
tractable and statistically efficient.

5.2. Technical Comparisons to Related Work

Comparison to Lee & Oh (2024). Our framework ad-
dresses a strictly more challenging problem than Lee &
Oh (2024) because we consider (1) multiple steps, (2) un-
known values, and (3) nonzero values for the outside op-
tion. The key challenge in tackling these three aspects
lies in ensuring optimism while maintaining computational
efficiency, which requires a fundamentally different ap-
proach—carefully leveraging optimistic and pessimistic util-
ities. Moreover, in Theorem 5.1, our regret analysis for
the MNL preference model goes beyond merely summing
over H MNL bandit regrets. Instead, we introduce a novel
regret decomposition, bound the regret in terms of the sum
of the variances of value functions, and apply the law of
total variance (Lattimore & Hutter, 2012; Gheshlaghi Azar
et al., 2013). As a result, we achieve a regret reduction by a
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factor of v/ H compared to directly summing over H MNL
bandit regrets.

Comparison to Agarwal et al. (2023). While the regret
analysis for general function approximation largely follows
the approach of Agarwal et al. (2023), several technical lem-
mas (e.g., Lemmas D.23 and D.24) and parameters (e.g., ux)
are revised to accommodate the estimation errors specific to
MNL models.

Overall, our results cannot be gleaned by simply piecing to-
gether prior techniques. Instead, they arise from an involved
analysis, leading to stronger theoretical guarantees in more
general and new combinatorial RL settings.

5.3. Linear MDPs with Preference Feedback

As a special case, we also consider linear MDPs (refer Defi-
nition E.1) with preference feedback. To show the depen-
dency on parameters, we denote the linear MDPs as M=+,
where Z* = ({67} {2, {w;}E,}. Note that the
bonus oracle can be easily implemented using the standard
elliptical bonus, which satisfies all the necessary properties
(refer Appendix E). The proof is deferred to Appendix E.

Theorem 5.2 (Informal, Regret upper bound for linear
MDPs). In linear MDPs, under the same conditions as
Theorem 5.1, with probability at least 1 — 0§, the regret of
MNL-VQL is upper-bounded by:

1
Regret (Mz-, K) < dVHK + ;dQHQ

+dlin\/ﬁ+ (dlin)6H5.

We also establish a matching lower bound by constructing
a novel multi-layered (linear) MDP (see Figure F.1) with a
preference feedback. The proof is deferred to Appendix F.

Theorem 5.3 (Informal, Regret lower bound for linear
MDPs). For any algorithm and sufficiently large K, there
exists an episodic linear MDP M= with MNL preference
feedback such that the worst-case expected regret is lower
bounded as follows:

sup E= [Regret (M=, )] = 0 (d\/HK + d”"\/HK) .

Discussion of Theorems 5.2 and 5.3. For sufficiently large
K,ie, K > (§(d2H3//<;2 +(dh“)10H9), the regret upper
bound for linear MDPs scales as O(dvHK + d'™/HK),
which matches the lower bound up to logarithmic factors.
Note that if we rescale the rewards to be 1/H in the lower
bounds of Zhou et al. (2021a) to align with our setting, their
regret bound matches the second term of our regret bound,
Q(d"™VHK). To the best of our knowledge, this is the
first theoretical result proving minimax-optimality in linear
MDPs with preference feedback.

6. Numerical Experiment

In this section, we empirically evaluate the performance
of our algorithm, MNL-VQL, in two settings: a synthetic
environment (Subsection 6.1) and a real-world dataset (Sub-
section 6.2).

We compare our algorithm against two baselines: Myopic
and LSVI-UCB (Jin et al., 2020). Myopic is a variant of
OFU-MNL+ (Lee & Oh, 2024) adapted for unknown rewards.
It selects assortments based only on immediate rewards,
ignoring long-term effects. LSVI-UCB (Jin et al., 2020)
treats each assortment as a single atomic action, requiring
enumeration of all possible assortments. We also include
the optimal policy (Optimal) as a reference.

6.1. Synthetic Environment

Setup. We consider an online shopping with budget environ-
ment (Figure G.1), modeled as a linear MDP with an MNL
preference model. Let S = {s1,...,s|s|} denote the set
of states and Z = {aq,...,an,ao} the set of items, where
ag represents the outside option (no purchase). Each state
s; € S corresponds to a user’s budget level, with larger
indices indicating a higher budget. The initial state is set to
the middle budget level, s[;s|/21- The transition probabilities
Py, rewards 7}, and preference model P, remain constant
across all time steps h € [H], so we omit the subscript /.

At state s;, the agent offers an assortment A € A with a
maximum size of M. The user either purchases an item
a; € A or does not (ag € A). If the user buys item a;, the
agent receives a reward 7(s;, a;) = (W + |J§|> /H and
the state transitions according to P(Smin(j+1,/s)) |55, @i) =
1 — £, and P(Syax(j—1,0)|5j,a;) = . If the user does
not buy anything (ao), the reward is 7(s;,ap) = 0, and
the state transitions as P(syin(j+1,s])|55, @0) = 1. For the
MNL preference model, the true parameter 8* € R and the
feature vector ¢(s,a) € R are randomly sampled from a
d-dimensional uniform distribution for each instance.

Results. Figure 1 demonstrates that our algorithm signifi-
cantly outperforms other baseline algorithms. Remarkably,
Myopic converges to a suboptimal solution, highlighting the
importance of accounting for long-term values. Moreover,
in Appendix Table G.1, we show that our algorithm is much
faster than others, especially when the total number of as-
sortments |.A| is large. Due to the extremely slow runtime of
LSVI-UCB, we could not include its performance results for
N = 20 and N = 40. For more details, see Appendix G.

6.2. Real-World MovieLens Experiment

Setup. The MovieLens dataset contains 25 million ratings
on a 5-star scale for 62,000 movies (base items a) provided
by 162,000 users (u). We define the state s as the number
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Figure 1: Synthetic experiment: Episodic returns averaged over 10 runs. Dotted lines indicate estimated returns for
incomplete runs due to excessive runtime. Shading denotes +1 standard deviation.
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Figure 2: MovieLens experiment: The dotted lines represent estimated (virtual) episodic returns for cases that could not be
run due to excessively long runtimes. Shaded regions represent +1 standard deviation.

of movies a user u has watched after entering the system,
denoted by s = (u,n), where n € {0,...,H — 1} is the
number of movies watched during the session. We interpret
the ratings as representing MNL utilities.

In each episode k, a user (uy) is randomly sampled and
arrives at the recommender system, initiating the state
sk = (ug,0). The agent offers a set of items with a maxi-
mum size of M. If the user clicks on an item, they receive a
reward of 1 and transition to the next state s&§ = (uy, 1). If
no item is clicked, the user receives no reward and remains
in the current state (s5 = s¥). In addition, certain junk
items—such as those with a provocative title and poster but
poor content—can cause users to leave the system immedi-
ately. This is modeled as a transition to an absorbing state,
where no further rewards are received and the state remains
unchanged regardless of future actions. We believe the pres-
ence of such junk items is quite natural and reflective of
real-world recommendation environments.

For our experiments, we use a subset of the dataset con-
taining 1.1 x 103 users and a varying number of movies,
N e {50,100, 200}. To construct MNL features, we fol-
low a similar experimental setup as in Li et al. (2019), em-
ploying low-rank matrix factorization. For linear MDP
features, we apply the same approach as used in our syn-

thetic data experiments. We set the parameters as follows:
K =10000,H = 3,M = 4,|S| = 100 = (H + 1) = 400
(including the absorbing state), d = 26 (MNL feature di-
mension), d™" = 204 (Linear MDP feature dimension),
N € {50,100,200} (number of base items) and |A| =
SM-E (YY) € {20875, 166750, 1333500}. The proportion
of junk items is set to 30%.

Results. Consistent with the synthetic experiment results,
Figure 2 shows that our algorithm substantially outperforms
the baseline methods on the real-world dataset. This demon-
strates the robustness of our approach and its practical effec-
tiveness in realistic settings.

7. Conclusion

In this work, we study combinatorial RL with prefer-
ence feedback, extending MNL bandit problems to account
for the influence of user states and state transitions in ap-
plications like recommendation systems. Under an MNL
preference model with linear utilities and general function
approximation for item values, we propose an efficient al-
gorithm, MNL-VQL, which, to the best of our knowledge,
provides the first statistical guarantee. As a special case, in
linear MDPs, we show the minimax-optimality of MNL-VQL
by establishing matching upper and lower bounds.
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Appendix

A. Illustrative Explanation for Combinatorial RL with Preference Feedback
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Figure A.1: Illustration of combinatorial RL with preference feedback.

In this section, we provide additional explanation of our framework, combinatorial RL with preference feedback, for better
clarity. In this framework, at each episode, as a user arrives at the system (starting in the initial state, e.g., high loyalty),
a learning agent selects an assortment A (a set of items) and offers it to the user (the first figure in Figure A.1). The user
then chooses an item from the assortment A (the second figure in Figure A.1). The agent receives a reward, along with
preference (or choice) feedback, and transitions to the next state (e.g., lower loyalty) (the last figure in Figure A.1). This
process repeats until the episode concludes.

The key advantage of this framework is its ability to capture the long-term value of choosing an item by considering state
transitions and avoiding myopic decisions. For instance, in Figure A.1, a user may choose a junk item that provides a high
immediate reward. However, repeatedly recommending such items can lead to user fatigue, resulting in a transition to a state
of lower satisfaction or loyalty to the system, ultimately leading to a lower cumulative reward.

We compare our framework with other related works.

vs MNL bandits. Our framework can be considered as a multi-step extension of MNL bandits (Rusmevichientong et al.,
2010; Sauré & Zeevi, 2013; Agrawal et al., 2017; 2019; Oh & Iyengar, 2019; 2021; Perivier & Goyal, 2022; Agrawal et al.,
2023; Zhang & Sugiyama, 2024; Lee & Oh, 2024). In MNL bandits, there are no state transitions; thus, in Figure F.1, the
user exits the system immediately after receiving a reward.

Another important difference is that, in MNL bandits, the value (reward) of choosing an item is assumed to be known,
and the value of choosing the outside option ag is always assumed to be zero. In contrast, in our framework, the value of
choosing an item is unknown due to the stochastic nature of rewards and transition probabilities. Additionally, we allow the
value of choosing the outside option a¢ to be non-zero.

vs Cascading RL. In cascading RL (Du et al., 2024), the agent also selects a set of items, and state transitions are taken into
account when making decisions. However, these items are offered to the user one by one, and the user decides whether to
choose the currently offered item.

Cascading RL fundamentally differs from our framework because the user does not compare multiple items at once, so it
does not involve relative preference feedback. Another key distinction is that in cascading RL, the probability of choosing
each item is independent of the others in the chosen set of items In contrast, in our MNL preference model, the choice
probability of an item is influenced by the other items in the assortment.

vs PbRL. In preference-based RL (PbRL) (Akrour et al., 2012; Wirth et al., 2017; Christiano et al., 2017; Ouyang et al.,
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2022; Saha et al., 2023; Zhu et al., 2023; Zhan et al., 2023), the agent learns not from explicit numerical rewards, but through
preferences as feedback. The user is presented with two (or sometimes multiple) items and chooses a preferred one.

In our framework, if we treat the reward signal generated by the user’s choice as a preference signal instead of a numerical
reward, we can learn the policy based on user preferences, similar to PbRL, without relying on explicit rewards. However,
our framework differs fundamentally from PbRL because our goal is not just to offer a single item, but multiple items—a
combinatorial (base) action—at each timestep.

B. Efficient Bonus Oracle 3 using Online-subsampling

The guarantees of Algorithm 1 rely on a consistent bonus oracle, 13, that satisfies Definition B.1.
Definition B.1 (Oracle B, Agarwal et al. 2023). For any (h,k) € [H] x [K], sequence of {57}*_]1 and dataset
Dk: 1

acle B({&h}i %,Dﬁ L Fu, fh,ﬂh, p, €,) outputs a bonus function by, (+) such that, for any z;, = (sp,ap) € S x Z, we
have

{(sh,ah,rh,shﬂ) = 1, function class Fj, with f;, € Fn, Bn, p > 0, error parameter ¢, > 0, the bonus or-

* by : 8 x T — Ry belongs to a bonus function class ¥V and denote NV, = |[W)|.

* b(zn) = maX{fh(Zh) fn(zn)l, fne Fr Zk ! ﬁ (fh(z;:) - f;’f(zﬁ))2<(5h)2}~

e bp(zn) < C- (th (s {203 ) A/ (BR) + o+ e Bh) with 0 < C' < oo.

Further we say the oracle B is consistent if for any k < k’ with consistent {57 }"~1 = {57}* -, Dyl < Dk - gk

non-decreasing in k for each h € [H]| and fh as defined in (3), it holds that B({oh}T 1,Dk L Fu, fhﬁh,p,eb) >
B({&h}i = Dk 1 F, f}’f,, ﬂ}’j/, p, €y) element-wise.

With the oracle B, we can efficiently calculate the optimistic (-value estimate f,’f with an error of €.

To implement this oracle, we use the online sensitivity sub-sampling approach described by Agarwal et al. (2023), which
builds on the original sensitivity sub-sampling method proposed by Kong et al. (2021) and Wang et al. (2020).

For completeness, we include the sub-sampling procedure in Algorithm B.1 and show its guarantees in Proposition B.3. Let
z = (s,a) € § x Z. We first define the weighted data set Z, where each element is (z, (%)), and introduce the weighted
sensitivity score as follows:

2
sensitivity () = min<{ sup 5’21(z) (f(z) = f'(2))
Z2,F v = 5
' 1.J’€7 min {ZZ,EZ =iy (F(2) = F1(2))°, M} 2

Now we introduce the sub-sampling procedure.

Algorithm B.1 Online Sensitivity Sub-sampling with Weights

1: Inputs: function class F, current sub-sampled dataset Z < 8 x T, new state-action pair s, a, parameter -y, threshold
v > 0, failure probability 4.

2: Parameter: 1 < C < o

3: Let p, be the smallest real number such that

1/p. is an integer and p, > min {1 C - sensitivity z »_ ,(2) - log(KN/é)} .

4: Independently add 1/p. copies of (z,5(z)) into Z with probability p. .
5: Return: Z.
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For the weighted dataset 27! = {(s},a}),5%}"Z1, we defined || f|

1 . .
k-1 - Zzezﬁ—l EQ—(Z)fQ(z), i.e., weighted sum

of {y-norm square. We denote 25_1 as the dataset sub-sampled from Z; . At every (k,h) € [K]| x [H], we call
Algorithm B.1 with the current sub-sampled dataset Z ,]f ~1 and the new state action-pair zﬁ = (sﬁ, afl) to generate the next

sub-sampled dataset 2,’? .

The following proposition shows that the distance of any two functions measured by the historical dataset Z ,’Z ~1is well
approximated by the subsamping dataset 2’5 ~1. Additionally, it shows that both the number of distinct elements in |2,A’}]f 1
and its the total size (counting repetitions) do not scale with poly(S).

Proposition B.2 (Guarantees of online sensitivity sub-sampling, Proposition 13 of Agarwal et al. 2023). Let z = (s, a) €
S X Z. When &(z) = v for any z, then with probability at least 1 — 0, it holds that

sup |f1(2) = f2(2)| < sup |f1(2) — fa(2)]
f17f11Hf1—f‘zH2Z}k<’Y2 f17f11\|f1—f2\|22’166102’72
< sup |f1(2) = f2(2)]-

f17f12\|f1*f2\|2,;ﬁ<104’72

Further, for any (k,h) € [K| x [H], the number of distinct elements in sub-sampled dataset Z} is always bounded by
O (log % - maxpe[p] dimy, i (F)) and the total size of Z) is bounded by O(K? /).

We can assert that the predictive differences between the functions are preserved up to constant factors, while requiring
significantly less data. Then, the size of the bonus class VV in Definition B.1 is bounded as follows:

Proposition B.3 (Implementing 13 using online-subsampling, Corollary 14 of Agarwal et al. 2023). There exists an algorithm
(see Algorithm B.1) such that, with probability at least 1 — 6, implements a consistent bonus oracle B with €, = 0 for all
(k,h) € [K] x [H], where

. KN, K|ISxI
log|W|<(’)<}r£[a§<]d1m,,7;((fh)-log 5 log ‘5 |)

C. Efficient combinatorial optimization

In this section, we explain how to solve the combinatorial optimization problem in (8), following the method outlined
in Davis et al. (2013); Ie et al. (2019).

To find an assortment A € 4 that maximizes the optimistic ()-value, a fundamental step in ()-learning and crucial for
inducing exploration, we must solve the following combinatorial optimization problem:

max épf,j<alsﬁ7A>fﬁ,j<sﬁ7a>, (C.1)

where 73;’3 j is the optimistic choice probability as defined in (7) (also in (D.17)), and f,’i j is the Q-value estimate (item-level
(Q-values) as defined in (D.15).

Fix (k,h,s, j) € [K] x [H] x § x {1,2, —2}. For simplicity, we will abbreviate these indices. Accordingly, we denote
W, = exp (ﬁﬁ(sﬁ,a)) or w, = exp (5ﬁ(sﬁ,a)), depending on the value of j. Additionally, let f, = f}’f’j(slﬁ,a) for
simplicity.

We can then express the optimization problem in (C.1) in terms of w as fractional mixed-integer program (MIP), with binary
variables z,, € {0, 1} for each item a € 7\{ao}, indicating whether a is included in the assortment A:

Wgq, fa + a a xawa]?a
max — 2aeT\fuo} (C.2)
Wqy + Za’EI\{ao} La'Wa
S.t. Z Te < M —1;
aeZ\{ao}

x4 € {0,1}, Va € T\{ao}.
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By Chen & Hausman (2000), the binary indicator in the MIP can be relaxed, resulting in the following fractional linear
program (LP):

Wy, ~a + LqWq ~a
max of 0 ZaEI\{ao} f (C.3)
W, + Za’EI\{ao} L' W/
st Y mg < M-
aeZ\{ao}

0<z, <1, YaeI\{ao}

Since this relaxed problem is a fractional linear program (LP), using the Charnes-Cooper method (Cooper et al., 1962), it
can be transformed into a (non-fractional) LP. To achieve this, we introduce additional variables:

1 Tq
Ya = .
Wq, + Zalel'\{ao} Tgq' W/ ’ Wq, + Za’EI\{aO} Tq Wq!

Then, we can obtain the following LP:

t =

max Z fawaya + fao Waqt (C4)
a€eZ\{ao}
S.t. Z Walq + Weot = 1;
a€Z\{ao}
Y <M -1t t=0.
a€Z\{ao}
The optimal solution (y;, ;- .-, ¥, ,t*) to this LP in (C.4) provides the optimal z; values for the fractional LP in (C.3) by

setting z, = y/t*. This, in ture, determines the optimal assortment in the original fractional MIP (Equation (C.2)) by
including any item where y;; > 0. Thus, the optimization problem is proven to be solvable in polynomial time.

D. Proof of Theorem 5.1

D.1. Notations and Preliminaries

In this subsection, for easy reference, we introduce notations and definitions used throughout the proof. The key notations
are summarized in Table D.1, and the specific parameter choices are listed in Table D.2.

Online parameter update and confidence interval for MNL preference model. We define the multinomial logistic loss
function at (k, h) € [K] x [H] as follows:

:(8) :=— " yk(a)log Py(alsy, Af; 6). (D.1)

k
acAy

To achieve constant-time parameter estimation, we use the online mirror descent algorithm to estimate the true parameter 6 :

1
Or ! € argmin(V ey (07),0) + %He — 0%, where ©® = {6 eR?: 6], < B}, (D.2)
[ZSC) h

where 7 = % log(M + 1) + B + 1 is the step-size parameter, and the related matrices are defined as:
k—1
HY = AL, + Y V26(0,7),
T=1
H} := Hj; +1V(;(67), (D.3)
where

V25 (0) = ) Pulalst, Af;0)é(sy, a)(sy,a)

aeA;"
Y

= 30 Y Pulalsh, AL 0)Pu(a|s}, AL 0)6(sh, a) (s a)T.

k 7 k
a€Ay a'eA}
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Table D.1: Summary of notations

Notation Meaning Remark
S, AT state space, action (assortment) space, item set
k,h k € [K] episode, h € [H + 1] horizon
r,’i, slf” Al,j , aﬁ reward, state, action and item at k, h
Th, Sk, An, ap random reward, state, action and item A
z shorthand for state-item pair (s, a)
Q:SxI—R item-level Q-value function
Tny T Bellman operator and second-moment operator
Dyt data set {(s, a},, v}, 8} 1) kol
Fh function class for horizon h € [H] Ass. 3.3
Flin linear function class for horizon h € [H] Eqn. E.1
Flin(e,) ec-cover of linear function class Fin
w bonus function class defined for bonus oracle B Def. B.1
€p error paremeter for bonus oracle
N maximal size of function class, i.e., max e[z | Fn|
M, size of bonus function class |[W)|
D_27-" (z; {z7 537 {UT}E-;}) 1= SUDg £, eF = ﬁﬁgz;g(f?:(ﬂ))zw p param.
dim, & (F) generalized Eluder dimension defined in Definition 3.5 v param.
dy = % ZZI=1 dim,, gk (F3,) (Definition 3.5) v param.
5(0) = Daeat y¥(a) log Py (alsk, AF; 0), loss for MNL model at k,h ~ Eqn. D.1
HY Hf = Mg+ Y0 V25001, = HE + V205 (0)), respectively  Eqn. D.3
Cr confidence interval for MNL model at k, h Eqn.D.5
I optimistic @ at k, h
fllf@ solution of fitting weighted regression at k, i Eqn. D.7
F ,]fvl version space of optimistic @ at k, h Eqn. D.8
IE 4o overly optimistic (pessimistic) Q at k, h
f,’f 42 solution of fitting unweighted regression at k, h Eqn. D.11
F ,’f 42 version space of overly optimistic (pessimistic) @ at k, h Eqn. D.12
g’; solution of fitting second-moment regression at k, h Eqgn. D.13
gr version space of second-moment estimates at k, b Eqn. D.14
&b event that {0} € Cf forall k > 1 and all h € [H]}
EF event that {'771Vh’f+1$j € ]-',’f’j for j =1,£2and T2V/F, € GF}  Ass.33
E<k joint event that ﬂljzl ﬂle &r
OF(sF,a), UF(sF, a) optimistic (pessimistic) utility defined in (6)
755 (als, A) optimistic choice probability defined in (7)
Qj (s, A) = DA 73,’f,j-(¢1|s7 A)fF (s a) for j = 1,+2
th](‘;) = MaXgeA Qﬁij(s,A) forj=1,£2
Aﬁ,‘j € argmax g4e g4 Muca ﬁffhj(a\sﬁ A)f,lfj(sﬁf7 a)forj=1,42
A’fl chosen assortment at k, h by assortment selection rule in (9)
QF (s, A), ViF(s) realized optimistic values determined by (D.18) Eqn. 9
hy random h when first taking action AZ@ atk,ie, AF = A’;2 Eqn. 9
Koy Koo disjoint subsets of [K | when hy, = H + 1 or hy, € [H] Eqn. 9
b’{b" j bonus term obtained in Line 8 and 11 using B Def. B.1

E]P’['lsﬁ’ aﬁ]7Vp[‘|SI}i7 aﬁ]
EP[.‘S§7A]}QL]

k k k k
]Esh_,_1~]P’h(-\sﬁ,aﬁ) ["S}N a’h,]? Vs;l+1~P;l(<\s§,aﬁ) ['|Sh,7 a‘h]

Eah,~79h (|s;‘l ,A’[,,) ['|5;€z7 Alfl]
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Table D.2: Summary of parameter choices

Notation Choice Remark
) de (0,1/(H? +15))
650/ ((K + 1)(H +1)
n % log(M + 1) + B + 1, step-size parameter for OMD Eqn.D.2
A 84+/2dn, regularization parameter
af O(V/dlog klog M), confidence radius of C} Eqn. D.6
€ error due to taking covering of function class
v V1/KH Def. 3.5
p 1 Def. 3.5
o(8) \/log N2(2 log(4LK/V)-(%5—2)(log(8L/1/2)+2)
«(6) 3\/log NNb(z1og(4LK/u)+2)(1og(8L/u2)+2)
N2 (K+1)(H+1)(2lo ALK 4 9)(log 8% +2)
fhe V(6yp+156) log o5 Dles 1Y),
confidence radius of F, 5,1 Eqn. D.8
0 \/2 log NNy (21og(18LK)+2)(log(18L)+2)
9
Bl o \/2(24L +21)(¢/(95))?, confidence radius of Fy ., Eqn. D.12
(6 \/2 log NN, (2 10g(32LK)+2)(10g(32L)+2)
3k \/8 11L + 9)("(6F))2, confidence radius of GF Eqn. D.14
5 2
(Jﬁ) min {4, ar(=k - (f,’f _ (z,’j)) Eqn. 4
+D%, (2 {=)5], (1452 (/\/ Bh) +P+2L\/ th +P> }
oy max {Uh, v,/ 2u(0 \/fh NE) fh ,(2h),
(1/ (6%) + u(5F) ) \/th (283 (=51, (o7} E )} Eqn. D.7
i C. ( log /\/KH (log NNbKH CHY2d, + \fHeb>
+dH5?1og K log M /log W) JVk for C > 0 Eqn. 9

By a standard online mirror descent formulation (Orabona, 2019), (D.2) can be solved using a single projected gradient step

through the following equivalent formula:

_ ~ -1 _
okl —oF g (H,’j) VIE(OF), and 08l e argmin 6 - 0
€

which enjoys a computational cost of only O(Md?), completely independent of k¥ (Mhammedi et al., 2019; Zhang &

Sugiyama, 2024; Lee & Oh, 2024).
We define the confidence interval at (k, h) € [K] x [H] as follows:

Chi={0c0:]0- 0}y <a

18
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where the radius of the confidence interval C }’f is as follows:

. 2v1 + 2k 1
o = 277(11-(310g(1+(M+1)k)+B+2)1 ( - )+2+\6fdn1 <1+k;;>+2>+4)\32

(D.6)

Then, we define the optimistic and pessimistic utility as follows:
Bh(5,) i= 6(5,0) T0F + af0(5,0) | gy 1 Th(5,0) 1= 05, )6 — a5, )] g1

Regression and confidence intervals for item-level functions. In this paper, we define N := maxpe[p |[Fn| as the
maximum size of the function classes F7, ..., Fg and A}, = |W| as the size of the bonus function class W.

For all (k,h) € [K] x [H], the weighted regression problem for fitting the optimistic item-level Q-functions, @, along with
the version space of these functions, is defined as:

2
fh 1 € argmin Z ) 3 (fu(shyah) =7 = Vil (sh41)) D.7)
)N — Uh
k 5 ko o) k)2
Fpii=A[fn€Fn: (fh Shyap,) — fh,l(sh»ah)> < (Br1) ¢ (D.8)

Let 28 = (s¥, aF). The parameters are as follows (for k > 2):
LI D i N & S
(Uh) :=min< 4, gy (zp) fh,72(zh)

+ D, (25 {zp )21 (17 HZ)) - (\/(B@Tp-#\/m) }, (D.9)

o} s max { o v VEOE) TEa o) — 7 G

2( o) + 5h> VDR G ot o) 1)}, (D.10)
2 ALK 8L
By = \/6[+156) og (K“)(H“)(?l‘;g L+ 2)(log 3 +2)

1)
(K +1)(H+1)’

(55 =

N?2(2log(4LK /v) + 2)(log(8L/v?) + 2)
o(0y) = \/

k )
5h

\/ NN, (2log(4LK Jv) + 2)(log(8L/v?) + 2)
J(6F) =3 o

For all (k,h) € [K] x [H], the unweighted regression for fitting overly optimistic and overly pessimistic item-level
@-functions, along with the version space of them, is defined as follows:

k-1
N2
¥ 5 € argmin 2 Fu(sqsaf) =15 = Vity w2 (sh41)) (D.11)
In€Fn —1
k—1 A ) ,
ff]f,iz = {fh €Fn: Z (fh(SZ,a;C) - f;’f,iz(SE,aZ)) < (5}’?,2) } . (D.12)
T=1
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We choose the parameters as follows:

B 5 = \[2(24L + 21)(/(5}))2,

NN, (210g(18LK) + 2)(log(18L) + 2)
) ’

1
(K+1)(H+1)

J(6F) == 4 [2log 5=

For all (k, h) € [K] x [H], the unweighted regression for fitting second-moment function values to item-level ()-functions,
and their version space, is as follows:

k—1

o 3 T T T T 2 2
gk e argmin 3, (gn(shap) = (v + Vs a(5701))”) (D.13)
(e J Ny S—
k-1 .
Gr = {gh €Fn: Z (gn(shoar) — an(sh,an))” < (BF) } . (D.14)
T=1

We choose the parameters as follows:

B o= /B(LLL + 9)((81))2,

NN, (21og(32LK) + 2)(log(32L) + 2)
5

1)
(K+1)(H+1)

(6F) := 1/ 2]og . oF =

Given the center of the constructed confidence intervals, f}f j for j = 1, +2, we define the optimistic, overly optimistic, and
overly pessimistic (Q-values as follows:

Sy = min { FE L) + BRG]
Tha(ey ) = min { o () + 265 1(,) + 0k o)1
f () = max { ff L5 ) = b o), 0} (D.15)
Good events. We define the following good events:
£ :={Vk > 1,Yhe[H]: 6} cC}}, (D.16)

E<k = ka=1 ﬂhH=1 557
gflf = 5}?,1 ﬂ 5}’?,2 ﬂ 5}’?,—2 ﬂ gflfa

where E,If,j = {’Evhk“’l € ]-"}’f’j} forj = 1,42, and 5‘5 = {’Th?V,fH)l € gﬁ}

Optimistic Q-values. For (k, h,s, A) € [K] x [H] x S x A and for j = 1, +2, we define the optimistic choice probability
as follows:

~k
S ex[;(vh((f’;?)) ok if 3a € Z\{ap} s-t. f,’f_j(s,a) > f,’fj(s,ao)
~ . awed €XP (Up (s, a ’ ’
Py jlals, A) := e;;p (6,’:(;:@)) (D.17)

Darea oxp (U5 (s, "))

, otherwise,

where
GE(S? a’) = ¢(Sa a’)TefIi + aﬁ“¢(8, a) H(Hﬁ)*l ) 1\52(87 a) = ¢(87 a’)TG}kL: - 0‘2H¢(37 a)H(Hﬁ)*l .
Next, we define the optimistic ()-values for j = 1, +2, each constructed using f}’f ; and ’ﬁ;f jt

Qll?t,j(&A) = Z ﬁﬁ,j(abaA)fi]f,j(S?aL Vhﬁj(s) = IE?%@Z,J(&A)
aceA
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For convenience, we also define the realized optimistic value functions at (k, h) € [K] x [H] as follows:

Qﬁ,l(&A) if Aﬁ = Aﬁ,h

k k
QF ,(s, A) otherwise, Vir(s) = X @hls: ). 0-18)

QZ(Sv A) = {

where AZ is the assortment offered to the user by the assortment selection rule in (9) (or equivalently in (D.19)). Therefore,
we write 75 (s¥) = argmax 4 4 Q¥ (sF, A).
Design of exploration policy. At each episode k, the agent collects data using both Alﬁ@ and Aflg, where A’,j’ ;€

Argmax gc 4 Mo a 75,’§7j(a|sﬁ, A)fF ;(si,a) for j = 1,2. Given a sequence of pre-specified {uy};_,, at episode k, the
agent select an assortment based on the following rule:

Ak‘ _ Az,l if fi]f’,l(S;CLHa'h') = fi]Lc’,Q(SZ’vah’) — Uk, Vah/ € A;CL/,l?v}l/ < h. (D ]9)
Af;’Q otherwise, '
where
log NV—IfSH . <log %{SKH -H52\/d, + \/EH65> + dH%/?log K log M 4 /1og W
up = O (D.20)

VE

We denote hy, € [H + 1] as the (random) horizon at which the agent first begins offering the assortment Aﬁg. More formally,
for h < hp, the assortment offered is Aﬁ = Aﬁ,l, and for h > hy, the assortment offered is Afl = Ai,? We then divide the
set of episodes [ K| into two disjoint subsets: &, and Koo, such that

Ko:={ke[K]:hy=H+1}, and Ko :={ke[K]: h < H}.

Later in the proof, we separately bound the regret for each case.

Other notations. Throughout the proof, we use z = (s,a), 2, = (sp,ap) and 2z = (sF, af) interchangeably. We

sometimes use Py, (-|s, A; 0}) instead of P, (|s, A) to explicitly indicate the dependence on the parameter 65 . For simplicity,
we denote Ep[-|sy, af] = B, p,(sk.at)[ 85 akl. Ve[lsh ai] = Vo, b, sk at)[[55: ak], and Ep[|sh, AF] =
E RIREARE

ap~Ph(-|sk,

D.2. Confidence Intervals and good events

In this subsection, we show that, given the construction of confidence intervals C ,]f and F, }’f ; for j =1, +2, the good events
£ and £k occurs with high probability.

Proposition D.1 (Online parameter confidence interval, Lemma 1 of Lee & Oh 2024). Let § € (0, 1). Under Assumption 3.1,
for the confidence interval defined in (2) with

2¢v/1+2
;—k) +2+ 7\6/6d7710g(

af = 277(11-(3log(1+(M+l)k;)+B+2)log( X

2
+16 <10g <2vl;2k)> > + %\/gdnlog (1 4 k;;) + 2) +AB?

1+k+1>+2> +4\B?

1/2

= O(Vdlogklog M),
n=3log(M+1)+ B+ 1land X = 84+/2dn, and for any h € [H], we have
Pr[Vk > 1,0} €Cr] = 1—6.
Now, we define the good event for the preference model £¢ as follows:
E%:={Vk>1,Yhe[H]:0}eC}.

Then, by applying proposition D.1 and using a union bound over h € [H], we obtain the following corollary:
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Corollary D.2 (Good event for MNL preference model). Under the same assumption and settings as in Proposition D.1,
for & € (0,1), with probability at least 1 — 6, the good event for the preference model £° happens, i.e., 0; € C}’f forallk > 1
and all h € [H).

The following proposition shows that 7, V/¥ jforj =1,42 and 7;,,2V,f+17l lie within their respective confidence intervals.

Proposition D.3 (Good event for general functions, Proposition 33 of Agarwal et al. 2023). Suppose Algorithm I uses
a consistent bonus oracle satisfying Definition B.1. Let § € (0,1/5). Then, with probability at least 1 — 50, the good
event Ecxx = (e, NI, EF happens, that is, TiViEa € Fiy iV 1o € Fi oy and TRV, | € Gji for all
(k,h) € [K] x [H]

D.3. Bound for MNL Preference Model
In this subsection, we provide proofs for several properties of the MNL preference model.

The following lemma presents both the optimistic and pessimistic utilities.
Lemma D4. Forany (k,h,s,a) € [K] x [H] x S x Z, let OF(s,a) := ¢(s,a)TOF + aF|¢(s,a) H(Hk)A and 0¥ (s, a) =
h
B(s,a)TOF — akF|o(s, (L)H(Hk)—l. Under the good event £9 defined in (D.16), it holds that
h

0 < F(s,a) — ¢(s,a)' 0} < QQQHQb(S,a)H(Hﬁ)—I,
and 0 < ¢(s,a)" 0} — 0X(s,a) < 2a2\|¢(s,a)H(Hk)_1

Proof of Lemma D.4. Conditioning on the good event £% holds, we have
0(5,0) 76 — 0(5,0) 03] < 1605 )| g+ |85 — 67 gy < ki [9(5,0) g+

where the first inequality holds by Holder’s inequality, and the last inequality holds by Corollary D.2. Therefore, it follows
that

65(8? a) - ¢(87G)T0; = ¢(57 a)TGZ - ¢(s7a)—r0; + aﬁ“¢<s?a)“(Hﬁ)71
< 20/; qu(& a)H(H;‘L)71

Furthermore, since ¢(s,a) 0% — ¢(s,a)T0; = —a¥ | ¢(s, a)||(Hk)71, we also get
h

?}Z(Sa Cl) - ¢(87 U’)TOZ = d)(sa a>T0;€L - ¢(S7 a’)TO;L + O‘ZHQS(&O’)H(HE)’I = 0.

The second statement directly follows from the results mentioned above. O

Lemma D.5 is useful for proving optimism (Lemma D.15) and bounding the approximation error of the optimistic Q
(Lemma D.20).

Lemma D.5. For all (k,h,s, A) € [K] x [H] x S x Aand any j € {1,2}, under the good event E° defined in (D.16),
there exists a subset A = A such that A € A and

max { Z ,Ph(a‘SvA)filf,j(s?a)v Z ﬁf,j'(a|svf4)fllf,j(57a)} < Z ﬁ}f,j(a|5af‘i)fi]f,j(sva)a

acA acA acA

where j' # j.

Proof of Lemma D.5. First, recall that, without loss of generality, we assumed that ¢(s, ag) = 0 for all s € S. Therefore,
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the true preference model and the optimistic preference model can be written as

exp ((b(s, a)THZ)
L+ 3 e\ fag) &P (0(s5,0)TO})’
exp (0 (s, a))
L+ Yarea(ag) &P (T (s, )
exp (T)’g(s, a))
1+ Za,eA\{ao} exp (6’;(5, a’))

Pr(als, A) =

if 3a € Z\{ao} s.t. f;f,j(s,a) > f,’ij(s,ao)

PF i(als, A) = (D.21)

, otherwise.

Fix s € S and A € A. We now present the proof by considering two cases: (i) f,’;j(s, ag) > ff’f,j (s,a) forall a € A and (ii)
Ja € A\{ap} such that fﬁj(s,ao) < f{f’j(&a).

Case (i) fy (s,a0) > fy ;(s,a) foralla € A.
We denote @ € argmax e a\(q0) f5 ; (5, a). Let A = {ag,@}. Since fF (s,a0) > fF (s, a) forall a € A and ay is always
included in A, removing any item a € A\{ag} from A increases the expected value of f}’f’ ;- Thus, we get

> Pulals, A)fF j(s,a) < > Pulals, A)ff ;(s,a)

acA acA
and 2 Phj (als, A)fhj s, a) Z Ph] (als, A)fh](s a). (D.22)
acA acA

By the definition of 73,’fj in (7), we use the pessimistic utility U¥(s,a) in this case. Since UF(s,a) < ¢(s,a)' 0} by
Lemma D.4, using this utility, UF (s, a), reduces the probability of selecting @ (compared to the true choice probability Py,).
Moreover, we know that f¥(s,ag) > f¥(s,a), we have

> Pulals, A) ff (s,a) < D PE(als, A) ff (s, a). (D.23)
acA acA
Furthermore, if P ; is constructed using the pessimistic utility Tf (s, a), then, Pk = Pk ;- However, if 75,%, is

constructed using the optimistic utility 9% (s, a), replacing f (s, a) with U (s, a) (which is equivalent to replacing 755 P
with Ph ) decreases the probability of choosing a, meaning increase the expected value of fh . Thus, we get
Z 73,” (als, A)fhj s, a) Z Phj (als, A)fhj(s a). (D.24)
acA acA

Combining (D.22), (D.23), and (D.24), we have

max { . Pulals, A)fh ;(s,a), ), 735,]-/(&|57A)ff,j(8’a)} < D Prilals, A fh (s, a).
acA acA acA

Case (i) 3a € A\{ao} such that f} ;(s,a0) < fF ;(s,a).

Let A = {A’ S A fyi(s,a) = f (s a0),Va € A’}. Note that | A| > 2 and a € A by definition of action space .A. By

selecting A instead of A, we exclude items with the small values of Ir j (s, a), thereby increasing the expected value of f}' i
i.e.,

Z’Ph als, A)fr (s, a) < ZP" als, A)fhj(s a)

aeA acA
and Z Ph] (als, A)fh] s,a) Z Ph7 (als, A)fh j(s,a). (D.25)
acA acA

By the definition of 75,}3] in (7), we use the optimistic utility ¥ (s, a) in this case. Since ¢(s,a)'0; < UF(s,a) by
Lemma D.4, this choice of utility increases the probability of choosing item a # fl\{ao} compared to the true Py,), implying
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that

Z w(als, A fhj s,a) Z Phj |3, A)fhj(s a). (D.26)

aeA acA

Moreover, if 755 ; is constructed using the pessimistic utility Uk (s, a), replacing UF (s, a) with UF (s, @) (which is equivalent
to replacing ’ﬁ;’f j with ’ﬁ;’f ;) increases the probability of choosing item a # fl\{ao}. However, if 75,71C j is constructed using
the optimistic utility 0 (s, a), we have 75’;7 = 7557]-,. To this end, we get

Z 77,” (als, A)fhj s, a) 2 Ph] (als, A)fh](s a). (D.27)

acA acA

Combining (D.25), (D.26), and (D.27), we have

max { 2. Pulals, A)fiij(s.a), ) ﬁf,j/(alsvfl)ff,j(s,a)} < Y, P jlals, A) R (s, a).

acA acA acA

This concludes the proof of Lemma D.5. O

Denote J(k, h) € {1, 2} as the chosen index of function f; ;]i ; at (k, h). Then, we show that the value estimates for the chosen
assortment, fy ;. (sy, a) for all a € A}, are greater than equal to Daeat Pr seny@lss ARV 5oy (5hs @)

Lemma D.6. For any (k,h) € [K]| x [H], let J(k,h) : K x [H] — {1, 2} be the one-to-one function that maps from
K x [H] to the index set {1,2} such that A¥ = Aﬁ J(khy € ATSMAX 4 4 Dige s Ph (k) (a|s’,fb,A)fh Ik h)(sh7 a). Then,
under the good event £° defined in (D.16), we have

fh (K, h)(slm Z Pl a|sh7Ah)fh I (k,h) (8’;27 a), Vae A}

aEA’c

Proof of Lemma D.6. By Lemma D.5, there exists a subset Ac AIZ and A € A such that

Z Ph(a|5ﬁaAﬁ)f}f,J(k,h)(Slﬁva) < Z P}]:,J(k,h) (a|SZ’A)f}]f,J(k,h)(5]i€wa)

aGA’fL acA

Z Ph J(k,h) ‘Sthh)chk:h)(sha a),

aEAk’

\Y

where the second inequality holds the assortment selection rule. Thus, it is sufficient to show that f}’f Ik h)(3113> a)
ZaeAk Ph J(k,h) (a|3h7Ak)fh J(k, h)(sh’ a) for all a € Aj.

We prove this by contradiction. Suppose there exists an item a € A’fl such that

ff]f,J(k,h)(SEaa) < Z ﬁf,J(k,h)(abEaAi)ff]f,J(k,h)(Sﬁva)-

k
acAy

If we remove item a from the assortment A’fl, it would result in higher value. This contradicts the optimality of A’fL. Hence,
we conclude

fh J(k, h)(sha Z Ph J(k, h)(a|5haAh)fh J(k, h)(’shv a),

aEAk

which completes the proof. O

Lemma D.7 is an elliptical potential lemma used for bounding the regret incurred from the MNL preference model
(Lemma D.10 and D.13).
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Lemma D.7 (Elliptical potential lemma, Lemma E.2 and H.3 of Lee & Oh 2024). Assume that \ = 2 and ¢(s,ag) = 0 for
all s € S. For any (k,h,a) € [K]| x [H] x T, we define ¢(sk,a) = ¢(sk,a) — Ea’~77h( sk, A 9k+1)[¢(8h7 a)). Then, for
Hﬁ defined in (D.3), and for any h € [H]|, the following statements hold true:

).

k
2 T 2 2 ﬁ
3% e {1967, 0 g1 1907, ) | < 2t (14 55

S

k
2, 2 Pulalsi, AT 077) Pu(aols, AT; 671) [9(57, ) [fyy, - < 2dlog (1+

T=1a€A]

S

k
2% 3 Pulol ATSO7) 36T )l -+ < 2o (1+
P (517)

Lemma D.8 is used to derive the tight bound for the second-order regret term of the MNL preference model (LemmaD.13).

Lemma D.8 (Lemma E.3 of Lee & Oh 2024). Let M € Z*. Define R : RM — R, such that for any v = (vy,...,vp) €

M Xp(Um XP(Um
RM, R(v) =3"_, %. Let py,(v) = %. Then, for all m € [M], we have

’ R < 3pm(v) lf m=mn,
omon| ~ | 2pm(V)pn(v) if m # n.

Lemma D.9 is crucial for deriving the x-improved bound for the MNL preference model (LemmaD.13), enabling the
analysis.

Lemma D.9 (Overly optimistic choice probability). We define

exp (0(s, @) 07 + 20£16(5. )| gy ) e
, Ifdae agf S.1.
e €xp (B(s,a’) T0*+2a [&(s, a)H 1
7§}Ifd(a|s7A) = < ! " (H5)” ) f;]f,j(&a) = f}]f7j(s7a'0)7 (D.28)
exp (0(s, )7 07, — 205105, )| g o
y otherwise.
Sureacxp (6(5,0)70; — 20 [6(5,0") | ) 1)

Let Aﬁ’j € argmax ge 4 D iue A ﬁﬁ’j(a\sﬁ, A)f,’fyj (sk,a), where j € {1,2}. Then, under the good event E°, for all (k, h, j) €
[K] x [H] x {1,2}, we have

Z P}]f,j(a|5;€uAi,j)f}]f,j(slfiva)< Z ﬁﬁ,j(a‘st?AfL,j)f;f,j(Si7a)'

K K
a,EAh’j G‘EAh,j

Proof of Lemma D.9. Fix (k,h,j) € [K] x [H] x {1,2}. We consider the two cases: (i) fhj(smao) > fh](sh, a) for all
a € T and (i) 3a € Z\{ao} such that f§ . (sy,a0) < f5 (), a).
Case (i) fhj(sh, ag) > fh](sh, a) foralla e Z.

Recall that, by the definition of Ph7 ; in (7), we use the pessimistic utility U% (s, a) to construct 735 ; in this case. Note that

the outside option ap must be included in the assortment, i.e., ag € Aﬁ. Moreover, under the event £7, by Lemma D .4, we
have

Bh(shoa) > 6(sh,a) 07— 20510(s5. )] g

Thus, since we assume, without loss of generality, that qS(s 5, ag) = 0 (refer (D.21)), using ”P,L instead of ”P; decreases
the probability of choosing any item a € A¥\{ag}. As a result, the expected value of ch increases, since fh_’] (s,a0) =
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f,’f’j (s,a) forall a € A¥. Formally, we have

Z P}If,j(a|55aAZ,j)ff]f,j(Slfiva)< Z ﬁﬁ,j(a‘slfL:AlfL,j)ff]f,j(siaa)'

k K
aEAh’j aEAh,j

Case (ii) Ja € Z\{ao} such that f}’f’j(sfl, ap) < f,lf’j (sk,a).
First, we show that for all @ € AF\{ao}, we have f}’f}j(s’fl,a) > ZGGAQJ_ ﬁf’j(abﬁ,AZ}j)f,’f’j (sk,a). Suppose that
there exists a € A¥\{ao} for which f}’f’j(sﬁ, a) < ZaeAﬁ‘j 755] (alsk, Aflyj)f;’f’j(s’,i, a). Then, removing item a from the

assortment Aﬁ results in the increase in the expected value of f,’f ;- Consequently, this contradicts the optimality of Aﬁ.
Hence, we get

fhj(shv 2 Ph]a‘|shaA )fi’f,j(sﬁva)v Va e A} r\{ao}-
aeA

On the other hand, recall that, by the definition of 75,? ; i (7), we use the pessimistic utility 77}"; (s, a) to construct 73’; ; in this
case. Furthermore, by Lemma D.4, we know that

GZ(SZ, a’) < ¢(S;€wa)—r0; + 2a2|‘¢(5£7a)“(H2)—1

If we increase UF (sF, a) to ¢(sF,a) "5 +2a% |(sk, a)| (r1£) forall a € AF\{ao}, the probability of choosing the outside

option decreases (because ¢(s¥,ap) = 0). In other words, the sum of probabilities of choosing a € AF\{a,} increases. Since
f}’fj (s a) = ZaeAk Ph J(a|sh, AF j)fh ](sh, a) for all a € AF\{ao}, the expected value of fh increases. Formally, we
get

2 73}’?,3‘(@|5’}37 Ai,j)f}lf,j(sﬁa a) < Z ,ﬁ}’:,j<a“9;€w"4£,j)fi]f,j(slf€u a).

k
aEAh,,j aeAh K

This concludes the proof. O

Lemma D.10 will be used to carefully bound the sum of bfm (Lemma D.23). Note that the following MNL bandit regret
improves upon the one proposed in (Oh & Iyengar, 2021) by a factor of 1/4/k, which can be exponentially large.

Lemma D.10 (Crude bound for MNL bandits). For any h € [H], j = {1,2, —2} and subset K € [ K|, under the good event
& defined in (D.16), we have

~ 1
> | X (Phjalsh, AR) = Palalsh, A7) £, (sho )| < © (wm - (log K)*2 log M) ,

keK |acAl Vv

where M is the maximum size of the assortment.

Proof of Lemma D.10. We denote M ;f as the size of the assortment at horizon h in episode k, i.e., MF M |A |. For any

k
j €{1,2,—2}, we define a function R; : RM: — R such that, for all v € RMr, R;(v) = Z%ﬁl eXP(U'")fh J(S’“a“").
1y 3 exp(vr)
For simplicity, we denote vh g (s,a) as the utility, which can represent either the optimistic utility 7 k(s,a) or the pessimistic

utility U (s, a), as determined by (7), depending on fy .. Let vf ;(s}) = (v%(s%,a)) € RM: and v} (sk) =
’ g TR et

k . _ . o
(qS(S p,a )TH*) b € RMn . Then, by the mean value theorem, there exists a vector UF j (s¥), which is a convex combination

of Uh,j (sh) and Uh(sﬁ), such that

O | 2 (Phjalsh, AR) = Patalsh, A1) 15y (sho )| = 3 |Ry (h ;(sh)) = R; (i (sh))|
kel aGA;CL kekC
= D[ VR (h,658) " (wh(5) — vi(sh)|.
kel
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Therefore, we get

3 VR (8,650) " (vh,(5) — vilsh)|
K

ke
=2 2 - (UM(SM _)) oo ni(shsa) — 6(sh,a)"6})
keK | ac Ak Za//EAk exp (Uh,j (SZ’ a//))

o bt ) At ) xw (ko) iy

)

2
acAk a’e Ak (Za/,eA;’: exp (@’57j(s§7 au)))
= 2| X Pulalsh, Af o 5(58) (vh (58 @) - o(sh @) 767)
keK | ac Ak

' (f’]f’j(sﬁ’a) B, (1o, apsoh () Lt (51 ) )
<9 P kogk. gk (g ko (ok N _ arok Tor
= Z Z h (a|5hv havh,j(sh)) (Uh,](shva) ¢(Shaa)) h|>

ke aeA’fL

(D.29)

where the inequality is from f;f . < 1. Recall that UZJ (s¥,a) can be either ¥ (s¥, a) or U¥(sk, a). Then, by Lemma D.4,

we have )(v,’j’j(sfb, a) — ¢(sk,a)T 07| < 2aF|o(sF, a)H(Hﬁ)fl. Hence, we can further bound the right-hand side of (D.29).

23 3 Pulalsh, Al o, (s5) |(0h (55 0) — olsh, ) " 07

keK ac Ak
1ol YY) Pu(alsh, AL o (51) 10065 0] g
keK ac Ak "
<4OthK Z Z Ph a|5h7Az7vh7] Z Z Ph ‘5h7A;€w’Uh]( Z))HQS(SI}?HQ)H%H?L)—l
ke ae Ak keK ac Ak
< dap V/IK] - Z > losk \|2 Hy)

k=1acA¥

,Ph a|s 7Ak70k+1)7) (a0|s ’Ak70k+l)
:404?\/@' Z Z Ph(a|sﬁ AZ 0k+1)73 ( ol sk Z AZ 0k+1)‘|¢( )H?H;j)’l

k=1 eAk

1 & ,
<4af+/IK] - ~- Z T Pu(alsh, Ak 0741 Pr(aolsh, AL 05F1) sk, HZEHH,I
k=1 EAk v
K 1 K
< 40lA\/IK] - ~ Zdlog 1 + ) (D.30)

where the first inequality holds because o), < - -+ < ahK , the second inequality follows from the Cauchy-Schwarz inequality,
the second-to-the last inequality holds due to the definition of «, and the last inequality holds by Lemma D.7.

Combining (D.29) and (D.30), and plugging in the value of o}, we derive that

S22 (P (alsk, A%) — Palalsh, A5)) ££ (55, 0) =0(jEdV|K|~<logK>3/2logM>.

kek aeA’fL
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Lemma D.11. For any (k,h) € [K]| x [H], 61,602 € CF, and wF(a) = 0, under the event £° defined in (D.16), we have

S [Pulalsk, 45 61) ~ Pualsh, A}: 01) wh(@) < 4ok maxwk (@) max [0(s}, o) |-
aedy, agAy,

aEA;C
)

Proof of Lemma D.11. By the mean value theorem, there exists & = (1 — ¢)0; + ¢05 for some ¢ € (0, 1) such that

. |Pulalsh, Aj:01) = Prlalsh, A 01)|w)i(a) = 3 [VPa(als);, A: )T (61 — 0)|w)(a)

aEAZ aeAﬁ
T

= D || Pulalsh, AF;€)6(sh a) — Pulalsy, A} €) Y, Puld|sh, AL:€)d(sh,a) | (61— 602)|w)(a)

aGA’}i a/eA""
< D) Palalsh, Al €)[é(sh, )T (01 — 82)|wii(a) + D Pulalsh, Al €)wh(a) D) Pald|sh, AL €)[é(sh,a)T (61 —

aEAfL aeAk aEA’c
< 2af Y Pulalsy, A%; €)|6(sh, 0l axs) -1 wh(a )+mixwh Y Pulalsy, A% €)[(sh, @) exg) -

acAF h acA¥

< 4ok k ko L

ay, an;ii,;wh(a) mex lp(sr, a)ll ax -
where the second-to-last inequality holds under the good event £? defined in (D.16). O

Lemma D.12 pertains to the law of total variance (Lattimore & Hutter, 2012; Gheshlaghi Azar et al., 2013) that the variance
of the value function is smaller than its magnitude by a factor v/ H.

Lemma D.12 (Total variance lemma, Lemma C.5 of Jin et al. 2018). Let f}’; ; € [0, 1]. Then, with probability at least 1 — 6,
we have

K H
> Z [Vifh 1(sy) = O (K + Hlog(1/5)) .
k=1h=1

Lemma D.13 is crucial for obtaining a x-independent regret in our leading term. While the proof is largely inspired by Lee
& Oh (2024), extending their result to our setting is non-trivial because the unknown item values f,{i ; add complexity to the

analysis. Moreover, thanks to Lemma D.12, we can obtain a tight bound by a factor of v/H, instead of naively summing
over H MNL bandit regrets.

Lemma D.13 (x-improved bound for MNL bandits). For any subset K € [K], let J(k,h) : K x [H] —

{1,2} be the one-to-one function that maps from K x [H| to the index set {1,2} such that A¥ = Aﬁ’J(kﬁ) €

Argmax 4 A D aeA ﬁﬁ,.](k,h)(ab;j’ A)f}’f",(k’h)(sfl’, a). Then, under the good event £° defined in (D.16), with probabil-
ity at least 1 — §, we have

H
Z 2 Z (Pflf,J(k,h)(aBﬁ’ AR) — Pr(alst, Aﬁ)) f}]f,J(k,h)(Si,a)

kel h=1 aeA;“L

1
=0 (d«/H|IC|(log K)3?log M + —d?H (log K )3 (log M)2) .
K
Proof of Lemma D.13. We begin by defining 735 j (als, A) as given in D.28. Then, by Lemma D.9, we have

Z Z Z (Ph J(k,h) a|sthh) Ph(a|sﬁ,A’,§)) fi’:,.](k,h)(siaa)
kek h

aeAk

H
< Z Z Z(PE,J(k,h)(a|SﬁvA§) —Ph(a|327142)> f}]f,J(k,h)(SZaa)-

keK h=1 ge Ak
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. . . . . . ~ k
We denote M as the size of the assortment at horizon / in episode k, i.e., M = | A¥|. We define a function R : RMr — R

kB M m) I K i,
such that for all v € RMn, R(v) = Y7, oply )f’;v’lj,f’“"‘)(g’ Bim)
1+Zl:’{ exp(vy)

For any (k,h) € K x [H] and all @ € Z, we denote v} (sF,a) as the utility, which can be either ¢(s5,a)" 0} +
20| p(s, a) H(H;i)—l or ¢(sF,a)T0; — 2aF|p(sk, a) H(H;j)’l determined deterministically based on the history up to
(k,h):

) Bk @) 07 + 20 16(s% )l g1+ 30 € T\{ao} 5t s (55 @) = S g (55 00)
k
h

k
ur(sp.a) = T+ k : : k k k k
o(si,a) 67 —2ah\|¢(sh,a)|\(H )t if Va € T\{ao} 1) 501y (Shs@) < f4 500 (Shs @0)-

>

Let vfi(sf) = (v (s}, a))aeAZ e RMx and v (sy) = (o(sf, a)TO,*L)aeAZ € RM+ . Thanks to exact second-order Taylor
expansion, we obtain that

H
Z Z Z (,P}]f,J(k,h) (G|SZ»AZ) - Ph(a|s§§, AZ)) f;’f,J(k,h)(SZa a)

keK h=1aecA¥
H
= 2, D, Rw(sh)) = R(viy(s}))
ke h=1
H _ 1 H T ~
= 2} > VR (si) " (vh(sh) = vi(sh)) + 3 Y, (Viish) = vii(sh) VAR (sh)) (vfi(sh) = vii(sh))
kel h=1 kel h=1
[€Y) (¢:)]

where Of (sf) = (0F(sF, a))aeAk e RMr is the convex combination of vF(s¥) and v} (sF).
h

We first bound the term (A) in (D.31).

DY VR (sE) T (vh(sk) — vi(sh))

H e k TB* k k
_ 2 ( Z e P(¢(sh7a) h) fh,J(k,h)(Shaa) (Uﬁ(sﬁ,a) —qS(s’,i,a)TB;)

aeAf Za”eAﬁ exp ((b(séc“ a”)TOZ,)
Ly g a0 ok o) (o) 0]

2
aeA’fL a’eA;i (Za”eA’ﬁ exp (¢(S];;, a”)TB}*L))

sk - o) )

H
= Z Z Pi (alsh, AR 05) 5 s,y (ks @)

: ((vﬁ(si,a) — (s, a)"05) — > Pu(a|sy, A 64) (vh(sh,a) — o(sk,d')6}) ) (D.32)

/ k
a’€Ay

We bound the right-hand side of (D.32) by examining two separate cases. For any fixed h € [H], let K(;) denote the set of
episodes where Case (i) holds, and IC(M) denote the set of episodes where Case (ii) holds. More formally, we define:

Ko = {ke K2 vf(sha) = o(s}, )70 + 2051 0(sk, @)l gy | (Case (i)

Ky = {k € K : o (sE,a) = d(sk, a)TOE — 20k p(s", a)H(Hﬁ)fl} . (Case (ii)
Case (i) For (k,h) € K x [H] such that vF(s¥, a) = ¢(sF,a) 705 + 2aF ¢ (sk, a)||(H,c)71.
h
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Denoting Eg[-] = Eyop, (o5, ak;0)[] and @k := maxye(s ok for simplicity, we get

H
3D VRS (vF(s) — vi(sh))

kE)C(” h=1
H
S Y20k X P (elsh A5 0) £ s o) (160650 g+~ Bog (10065 g ] )
keK (i) h=1 acAl h

H
<2 X N X P (elsh Ab0) S (10068 ) g 2 — Bog (16065 ] )

k?EK:(i) h=1 aeAﬁ

=205 ), iEe;[(fh 1 (582 @) = Bay | 5 5 (s 0)|) (10068 @)l gagy 1 — oy [ 16(K )| ggey 1 |) |

keK ;) h=1

H
< 20k Z ZEeﬁl(chkh)(shﬂ a) — Eeoy [ch(kh)(sim )]>¢(5ha a) — EG*[¢(3h7 ”'(H’;)‘ll’ (D.33)

keK (i) h=1

=0
where, in the first inequality, we use the fact that ahK is non-decreasing with respect to k, and by Lemma D.6, we have

3% P alsh 453 62) £ 15k (1606500 g+ — g (10065 ) gy 1] )

k
acAy

= 2 P (a|SZ’AZ;0;L) ||¢(527G)H(H5)—1 (f}]f,J(k,h)(SZ’a) - EG; [fllf,,](k,h)(sﬁva/)] )

k
acAy

=Zarcak Prl@IsE AR IR 5o,m) (sha)
= 0.
And the last inequality of Equation (D.33) holds because
H¢(SZ»G) H(Hzﬁ)—l - ]EG; [“QS(SZaa/)“(Hli)_l] < H¢(3§70)H (Hk)—l - ||E9; [¢(slﬁaal)] H(Hﬁ)—l
< 10(55 @) — Eoy [6(sF, ) gy

where the first inequality holds by Jensen’s inequality and the last inequality holds due to the fact that |a| = |[a—b + b| <
|a — b| + |b| for any vectors a, b € RY.

We further decompose the right-hand side of (D.33) as follows:

H
> ) Ee: [(f;’f,](k,h)(slﬁaa) —Eq; [ff,](k,h)(slfu a/)]) lé(sk, a) — Eeo: [¢(s, a)] H(Hﬁ)fl]

kE]C(,L) h=1

= Y X /P (el A 03) P (ol 451 05) (75 s 5k @) = Bog [ ££ sy (520 )
k‘EK(Z)h 1aeAk’
: ”(b(sfm a) - ]Ea:+1 [(b(sﬁa al)”(H’ﬁ)_l

H
33 % (VP alsh 45507) — /P sk 45057 ) /P (ol A 07)

k)G}C(i) h=1 aeAﬁ

: (f}]f,J(k,h)<827 a) — Ee; [ff]f,,l(k,h)(327 a/)]) H¢(5§a a)— ]Eg;jﬂ[(b(sia a/)]H(Hﬁ)—l

H

+ Z Z Z Ph a|5h’Ah’ )(f}]f,J(k,h)(sliiva)*]EG,: [fi]f,J(k,h)(sfma/)D

k)G}C(i) h=1 aeAk

(16055 @) = Ba [0k @)l g+ = 105k @) = Bgpa 05k, gy ) - (@34
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For simplicity, let ¢(sF, a) = ¢(sk,a) — Eor [(sf,a)] and(g(sh, a) = ¢(sk,a) — IEG;CH [¢(sF,a’)]. Now, we bound the

terms on the right-hand side of (D.34) individually. For the first term, with probability at least 1 — J, we get

Z Z Z \/Ph a|3k Ak 9*) Pn (a|3k Ak 0“1) (filf,J(k,h)(Slﬁva) —Eo; [fi’f,J(k,h)(SZaa/)]) ||$(527G)H(Hﬁ)*l

kE}C(l) h=1 (LGAk

2
< Z Z Z Ph (alsy, A}; 67) (fh J(k,h) (Sh7 a) — Eey [fllf,J(k,h)(S£7a/)])

kel h= 1a€Ak

=:[Vh’f},f,J(k,h)](S;i)

H
S P (alsh, AL 05 |35 0)l2,,

1
ke h=1 aeAﬁ ( h)

Z Z (Vi fr I(k, h)](Sh)\/2dH log (1 + K)
kek h=1

dA

dX

o W) \/QdH log <1 + K) (D.35)

where the first inequality follows from the Cauchy-Schwarz inequality, the second-to-last inequality holds by Lemma D.7,
and the last equality holds by Lemma D.12. Additionally, the second term in (D.34) can be bounded as follows:

H
Z Z <\/7)h ‘S}”AZ, \/Ph a|sh,A’fL,0k+l )\/,Ph a|sh,Ah,9*)
kel (;y h=1

(s (5ho0) = Bay [ 7 g (5h20)] ) 19055, )l g
i § [P (alsh A5 03) = o (alsh, 4F; 047 |
) h=1acAk \/Ph \sh,A’fL,O* +\/Ph a|sh,A§,0k+1

\ke% \/Ph a|3thﬁ,0*)H¢(5h’ )H(Hk)

i

2 |Ph ‘Sth ) Ph (a|sh7A 0£+1) ‘Hg(sfma)H(Hk)*l
IceIth 1aeAk "
H
< dak Z max H</) Shv )H(Hk) 1 max H¢ Sha )H(Hk)
kE)C(L)h 14
K H K H
<dary| 3} 3, max 9k )1 2 20 maxlo(eh o)l -
k=1h=1% k=1h=1 H;
4 K H K H
§ 7 K Z Z Z Ph G‘S}N h770k+1)‘|¢< H2 Z Z a'X H(b Sha H?Hk)—l
k=1h=1aecAk k=1h=1% h
8 K
< —agdH1 1+—, D.36
TR °g< +d)\> (D.36)

where the third inequity holds by Lemma D.11 and by the definition of ax = maxye[x) alf, the second-to-last inequality
holds by the definition of «, and the last inequality holds by Lemma D.7.
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Finally, we bound the last term in (D.34). Using the inequality |a| — |b| < |a — b| for any vectors a, b € R%, we have

H
SN S Pulalsh, Ak 07) (ff,ﬂk,h)(sﬁ,awze; [f,’:,m,m(s’z,aw]) 19k, @l g+ = 18( ) gy

k}GK:(i) h=1 aEA;CL

=0

H
D 20 2, Pulalsh, ARs65) | X (Pu(dlsh, ALs05) — P (dlsh, A3 6,71)) 6(sh, o)

kel h=1 ko re AR _
(i) acAy a’€Ay (HZ) 1

K H
< D0 D [Pu(alsk, AF; 65) — P (alsf, A 05| H¢(Slzi,a)\|(Hﬁ)—l

k=1h=1qecAk
<dag Z Z ma 19(s% @)y

axdH log (1 + ) , (D.37)
where the third inequity holds by Lemma D.11 and by the definition of & = maxye[sr) af and the last inequality holds by

Lemma D.7.
By plugging (D.35), (D.36), and (D.37) into (D.34), and ccombining the result with (D.33), we obtain

H
D D IVR ()T (vE(sE) — i (sh))

kelC(i) h=1

K 2 K
o < || + Hlog(1/5)) : QQK\/QdHlog <1 + d)\> + 3;édeHlog <1 + d)\>

N

=0 (d«/H|IC|(log K)3?log M + leHaog K)3(log M)2) : (D.38)
K

Now, we consider the second case to bound the term (A) in Equation (D.31).
Case (ii) For (k,h) € K x [H] such that vf(sk,a) = ¢(sF,a) "0} — QGZHQﬁ(Sﬁl,a)H(Hk)—I.
h
In this case, we know that £y’ ;. (s.a) < f ;¢ (85, ao) for all a € T\{ao}. This implies that | A} | = 2, since adding
any item a € Z\{ao} to the set {ao} always decreases the expected value of f}' J(k,p)- Furthermore, since we assume

#(s¥, ag) = 0 (which also implies v¥ (sF, ag) = 0), and denoting A¥ = {ao, a}}, we have:

SN VR@(sE)T (vE(sk) — vi(sh))

kel (s h=1

H
= Z Z 204277%» (dﬁ|s’,§,A Bh) fh J (k,h (Shvah)(W( Z)H(Hﬁ)—l — Pn (deIﬁ’AZ?BZ) [¢(5§»d£)|(Hﬁ)—l]>

kel iz h=1

H
< 20k Z Z Eo; l(fh J(k, h)(Sha a) — Eo; [fh J(k h)(8h7 )] ) |6(sh,a) Eo; [¢(s5, )]l (ng)—ll, (D.39)

kel (s h=1

where in the inequality, we use the definition @i = maxpe( g aff. The rest of the analysis is similar to that in Case (i).
Therefore, we derive

H
Y D VR (i) (vfi(sh) — vilsh) = O (dvmm(log K)*?log M + %dzHaog K)*(log M)Q) . (D.40)
kek(i4) h=1
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exp(@ﬁ (sﬁ ,a))

N bound the t B) in (D.31). Let p, (0F (sF)) = .
ow, we bound the term (B) in (D.31). Let p, (0y; (s},)) S CAP T

H
1 v (8y) — v (s ~'L_;hsh vy (sy,) — v (s
5 20 2 (VEGsh) = wilsh) | VER@E(sH)) (vh(sh) = wi(sh)
keK h=1
1 S k PR (Uh(sﬁ)) Eik 1 _ 1k NTpx
2 Z Z Z Uh Shv — @(sy,a) Oh) dada (Uh(shva) d(sp, a’) Oh)
keK h=1ac A} a’c A}
:1 < k(. k B k T*a2(vh(3]fi)) krok 1\ k NTpox
2 Z Z 2 (Uh(sh’a) ¢(Sh’a) Oh) dada’ (Uh(sh’a) d)(shaa) oh)

1 S k(K kT2 CR(OF(sE))
t3 Z (vr (55, a) — @(sp,,a) " 6}) T duca

H
<N N Juksha) — o(sk. a) 65| pa(©f (s5))par (DF(s)) [vE(sk. ') — ¢(sk, ') T}
kel h=1ae Ak o/cA®
a';éa
3 a 2
52 2 2 (Whlsh a) = (sha) 67) " pa (D3 (57)), (D.41)
keK h=1 aeA’fL

where the inequality holds by Lemma D.8 and fJ’? Teh) S 1. To bound the first term in (D.41), by applying the AM-GM
inequality, we get

a’#a
H
PRI I AT ¢(s1,a) " 03] pa (0 (53))par (05 (7)) [0 (55, ') — d(s7;, a') T 63
ke h=1 aEAk a GA’c
1 <l 2
<5 D00 D D (vh(sh.a) = é(sh, ) 6;) pa(OF (s5))par (OF (s1))
kek h=1 aEA;“L a’eAfL
1 <l 2
+ 3 > Pa(0h (55))Par (O (s1)) (V5 (5, a') — d(sy,a') " 6})
ke h=1 aeAE a’eA;i
a 2
=20 20 2 (Wh(sh a) = osh, ) 67) " pa(@f (sh))- (D42)
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Plugging (D.42) into (D.41), we have

H
5 Z Z vl(sh) = vi(sh)) | V2R(DE(s5)) (vh(sh) — vi(s}))
keIC =

H

NN pa(@f(sh) (vh(sk a) - 8k, a)T6;)”

kel h=1 “EAZ

OZK 2 Z Z Z Da ’Uh Sh Hd)(shv )H(Hk)

keK h=1 qe Ak

N | Ot

T

H 1
)" 25 20 maxo(sy, o) gyt = O (KdzHaog K)?* (log M)2> , (D.43)

kel h=1

where the last inequality holds by Lemma D.7.
Combining (D.38), (D.40) and (D.43), we obtain

H
300 (P s (alsh, AR) = Pulalsh, AD)) S s (shs @)

kel h=1 aeAﬁ

=0 (d«/H|IC|(log K)3?log M + 1d?Haog K)3(log M)2) .
K

This conclude the proof of Lemma D.13. O

D.4. Optimism
In this subsection, we prove the optimism of our value estimates th .

Lemma D.14 (Point-wise monotonicity, Lemma 31 of Agarwal et al. 2023). Suppose Algorithm I uses a consistent bonus
oracle satisfying Definition B.1. For any fixed (k,h) € [K] x [H], conditioning on events E<j,_1 [ (ﬂg:hé';’f,), for all
(sh,an) € S x I, we have

L Qy(sn.an) < fFy(sn,an);
2. ff]f,q(shaah) < @;(Sh,ah);

3. f7 o(sn,an) = max {EV,f’Jrl’l(sh,ah),f,’fyl(sh,ah)}, VT e [k].

Lemma D.15 (Optimism). Let V,f be the realized optimistic value function defined in (D.18). Suppose Algorithm 1
uses a consistent bonus oracle satisfying Definition B.1. On the even conditioning on the good event % (| E<k., for all

(k,h) € [K] x [H], we have

Vi (sh) = Vi (sh)-

Proof of Lemma D.15. We denote AF'* € argmax, >, Ph(alsk, A)Q; (s, a). If AF = Aj; |, by the definition of the
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optimal value function V,*, we have

Vi (sh) = max > Py (alsy;, A)Q (s}, a)

acA
= ), Pulalsh, 4@ (sh, a)
acAF*
< D Pulalsh, Ay [ (shsa)
ac AP
< Z 75}]:,1(“|327A§)fi]f,1(52»a)
acAk
< Z 73}’3,1(‘1‘32»AZJ)fi]f,l(SZ»a)
acAy |
= 212}(;4735,1(a|32714)f§,1(527a) = V,f(sﬁ),

where the first inequality holds by Lemma D.14, in the second inequality, we use the fact that, by Lemma D.5, there exists a
subset A¥ A,k;’* with A¥ € A such that the inequality holds, and the last inequality holds by the definition of Aﬁ,r

The case where A;j = A;j , can be proven using the same reasoning. O

D.S. Variances
In this subsection, we present properties related to variances.

Lemma D.16 (Upper bound of variance estimator, Lemma 34 of Agarwal et al. 2023). Let z¥ = (s§, aF). We denote
kE k] _ k ok k k1 _

Bel-[sh,ap] = E, ., <p,(|sk.ak) IS, ap) and Ve[|sp, ap] = Vi, (b, sk am) [ sk, a¥], where the expectation in only

taken over sp11 due to the model transition for shorthand. Suppose Algorithm I uses a consistent bonus oracle satisfying

Definition B.1. For any episode k = 2 conditioning on the good event E< i, the variance estimator J’}f satisfies

(02)2<V[rh+vhm<sh+1>\zh]+4(fh2< By fEo(20)

+4min{1 th(zhv{zh T= 17 ]-T} < m+4Lm>}

Lemma D.17 (Sum of variances, Corollary 50 of Agarwal et al. 2023). Let z = (s¥,ak). We denote Ep[-|sF,al] =

By inBr (s ab) e |sk,ak] and Vp[-|sF,ak] = Va1 ~Pu (-[sE ak) [-|s¥, a¥], where the expectation in only taken over sp1
due to the model transition for shorthand. When L = O(1), with probability at least 1 — 6, we have

K H
Z Z V[ + Vf+1,1(5h+1)|zﬁ]
k=1h=1

e k k 2 2 4 2KH
<O HZ Z fh2 Zh fh7—2(zh)) + K+ KH (5+H |ICO()‘ +H log T .

k=1h=1

D.6. Approximation Error of Optimistic, Overly Optimistic (Pessimistic) Q-values

In this section, we provide some inequalities for bounding the optimistic values, overly optimistic values, and overly
pessimistic values sequence, which are useful for the proofs in Subsection D.7.

Lemma D.18 (Approximation error of overly pessimistic Q). Suppose Algorithm I uses a consistent bonus oracle satisfying
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Definition B.1. Conditioning on the good event E<, for any (k, h) € [K]| x [H], it holds that

(fh -2 = Qi )(sh af) Z 3 (P al@lshy, Ak) = Pu(alshy, AR)) fi ook, @)
iH-laeA’C
—2 Z bﬁ,72(82/,ah/ Z Ch’ _92 + Z Ch' —92
h'=h =h+1 =h+1
where Gk, = B[V, = Vi) Ishopab | - (L, = VIO and G, =

P [ (2= Q0F) (shoan) | sh, AL | = (F 2 = Q) (s} ah).

Proof of Lemma D.18. Under the event £ i, we have

(fi]f, 2 Qh )(shaah)
= (fh,—Q - T;LVf+17_2)(s’fL,a’,j) + (EV}ZC-H,—Q Qn')(skap)

> —2by; (s, af) + B [(rn — ) + (V1,2 — Vik 1) (she1) |7, ak ]

= 2bh 2($h7 aﬁ) (Viﬁ-l - V;:rh)(shﬂ) + Ch+1 —2

= 2bh S(sh.ap) + (Qzﬂ,ﬂ - Qh+1)(sh+1vAh+1) + Ch+1,72

= Z (Ph+1,—2(a/‘5]ii+1vAlfl+1)fi]f+1,—2(5h+1va/) - Ph+1(a/|5];;+17AI;L-J—l)@Z:—l(Sﬁ-&-l’ a’))
a’e Ak

h+1
- Qbh 2(sha ah) + <h+1 —2

Z (P}L+1,—2(a ‘5h+17AZ+1) - 73h+1(a’|sﬁ+1,Aﬁ+1)> f;’f+17_2(s’fL+1,a’)

a EAh+1

ATk k k k k k k k
+ Ep [(fh+1,—2 - Qh+1) (841, ant1)|Sh 415 Ah+1] = 2bj, o(Spyap) + Chyr o

2 (Pthl ‘3h+1>Ah+1) Pr+1(a |5h+17Ah+1)) fflf+1,72(32+17a/)

a/€Af L,

k k (kK k ik
+ (fh+1,—2 Qh+1> (sh+1vah+1) 2bh,2(8haah) + Cht1,—2 T Cht1,—2
where the first inequality holds because ﬂLthH _o € Ff’f _o under the event E¢x and definition of bi 5, and the last
inequality holds since Vi¥,, (s 1) = Q1 o(sk 1, A1)
Hence, by recursion we obtain that

(f}’f,fz Qh Shaah Z Z (Ph' - |32'7Aﬁ') _Ph'(a/|52’7‘4§')) fh' - <5h' a’)

=h+1g eA"

_2th' Shi @) 2 Clir,—o + Z Ch’f'

h'=h =h+1 h'=h+1
O]

Lemma D.19 (Approximation error of overly optimistic Q). Suppose Algorithm 1 uses a consistent bonus oracle satisfying
Definition B.1. Conditioning on the good event E<, for any k € [K| and any h = hy, it holds that

(f;]f,z Qh Shaah Z Z(Ph’2 /\Sh' Ah’) ,Ph’(a'/|5]f€z/’AZ'))fh/ (Sh’ )

=h+la’eAr,

H
+ 2 Z blfb/71(sﬁl’ a/ﬁl) + 2 Z b}l?bl72(8f;//’ ah/ Z Ch’ 2 + Z Ch' 25
h'=h h'=h

=h+1 =h+1
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where Clﬁ,z = Ep I:(VhﬁZ - V}Zrk)(sh) | 8’2717@271] - (th,z - thc)(sg) and Cflfz =
P [(f}lf,z Qh ) (Shvah) | Shv i] - (fflf,z Qh ) (Sh’aﬁ)

Proof of Lemma D.19. Under the event E¢ i, at h > hy, we have

(fh2 )(s’ﬁ,aﬁ) (ff]fz 771Vh+1 2)(51137%) (771Vh+12 Qh )(Sh»ah)
<2 (Slfu af) + 2bh o(sh.ap) +E [(Vh+1 2 Vhﬂ+1)(sh+1)|3ha aﬁ]
= 2bh (sh.ap) + Qbh o(sh-ap) + (Vh¥172 szr+1)(8h+1) + Q]f+1,2
= (Slfu GE) + Qbh 2(8hva'h) (Qﬁ+1,2 - Qh+1)(81fi+17‘4§+1) + <§+1,2
- 2 (Phi1a@shans Af ) FE 12 (55h 1000 = Pra (@lsh 1, AL D@71 (b))
areAk

h+1

+ 2bh,1(8h7 ay) + 2b,ﬁ72(s’,§, aj) + Cﬁ+1,2

= 2 (Phera@lshin Ak ) = Pasa(@ ks Ak ) ) a5k, @)

a’€Af

+ Ep [(fh+1 2 Qh+1) (5h+1’ah+1)|sh+1a Ah+1] + 2bh 1(327%) + th 2(51137 ah) + Ch+1 2

Z (P}1§+1,2(a/|81;;+17A];:L+1) - 7Dh+1(a/|5§+17 Alii+1)) f}]f-‘rl,Q(S];:L-‘rl’ a’)

a EAh_'_1

ATk k k k k k k k k k Lk
+ (fh+1,2 - Qh+1) (Sht1s @hg1) + 205 1 (sp,ap) + 26y, o(sh, ap) + Chyr 0 + Gy

where the first inequality holds based on the assumption that 7,V,F.,, € JFf, and definition of by ,,
and the third eNquality holds because for h > hj, we know that A 41 € argmaxy QF H(sﬁ A =
argmax 4 e 4 PRy o(alsf 1, A)fF 1 5(sk 1, a) by the data collection policy in (9).

Therefore, by recursion we get

(fha = @) (shoaf) 2 3 (Bl ol sk, k) = oo (@[, Af) ) i alsh, o)

=h+1g EA’€

H
+2 Z 62,71(52/,a§/) +2 Z blfu,z(Sﬁ/aah/ Z Ch/z + Z Ch'

h'=h h'=h =h+1 =h+1

O

Lemma D.20 (Approximation error of optimistic Q)). Suppose Algorithm I uses a consistent bonus oracle satisfying
Definition B.1. Conditioning on the good event £° (\ E<, for any k € [K| and any h < hy, we have

(fflfl Qh )(Shaah)

hi—1

< 2D (Bhatalsh, Ak — Pu@Ish, AL)) f (s o)

h'=h+1q eA"

* 2 > (Pha(alsh, Af) = Purla|shi, AR)) S o(shr )

=hk a eA’c

hi—1

H
+2 Z bh’ L(shryagy) +2 Z bh’2 Shiy @) + Z (C}lf',l +C}lf/,1) + Z (G2 +Q’f/,2)7
h'=hy,

h'=h+1
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where

Gy =Ep (Vi) — Vﬂ")(sh) | sh v an 1] — (Viey = Vi) (sh),
Cf,l =Ep (fh 1= ) (Shaah | Sthh] (fh,l - Qh ) (Sma}]ﬁ),
Gz = Ee [(Vito = Vi) (sn) | sho1,ai_1] = (Vifa = Vi) (sh),
Gk =T | (fha— Q1) (shoan) | sk, Af] = (fo — Q") (k. ab).

Here, following the convention, we use the empty sum notation, i.e., Zi’:a z; =0, whenb < a

Proof of Lemma D.20. Under the event E¢ ¢, by Lemma D.14 it holds that f}lf,1 (s,a) <

Therefore, for h = hy, by Lemma D.19, we get
(f}’f1 Qh )(Sh,ah) (f}lf2 Qh )(Shva'h)

fio(s,a) forall (s,a) € S x T.

2 . (Pha(alsh, Af) = Purla'|sh, AR)) 1 o(sh, @)

=h+1gq EA"

+2 Z bk, (sk, ak) +2 2 bk/ (sk,,ak) 2 Ch,2+ Z Ch/
h'=h

h'=h =h+1

For h = hy, — 1, we have

=h+1

(filf,1 _@Zk)(slfiaaﬁ) ( h,1 Thv}ﬁd 1)(5];’@2) (Iﬁtvif+1 1 Qh )(Shvah)
< 2b§,1(5§7a§) +E [(Vi{cﬂ,l ) (Sh1) ) aﬁ]
< 2b’fl’1(s§,a2) +E[(Vi-{c+12 )(sh+1)|shvalli]
= 2b§¢1(32702) + (Vh+1 o — Vit )(32+ )+ Ch+1 2
= 2b1}§,1(32,a§) + (QZJA 0 — QpF)(s h+17Ah+1) + Ch+1 2

Sk k k k. \A™F .k
< Z (Ph+12( |5h+17Ah+1)fh+12(3h+1» )_Ph+1(al|sh+1aAh+1)th1(sh+17a,))

+ 2bh ((syaf) + Ch+1 2

k k k k k
= Z (Ph+1,2(a |3h+1vAh+1) - Ph+1(a/|sh+1vAh+1)) fh+1,2(3h+1»a/)

a/€A

STk k k k ko k k k
+Ep [(fh+1,2 - Qh+1) (She1>@h+1)|Sh11 Ah+1] + 2bp, 1 (8 ap) + Chy1 2

Sk k k k k k k
= Z (Ph+1,2(a/|5h+1w4h+1)—Ph+1(a/|5h+1af4h+1)) fh+1,2(5h+1>a/)

a’€Af

k
+ (fh+1,2 Qh+1) (5h+1a ah+1) + 2bh ((sk,ap) + Ch+1 2 T <h+1 2

(D.44)

(D.45)

where the first inequality holds based on the assumption that ’Tth’“H’1 e F ,’f,l and definition of bﬁ,p and the second

inequality holds because for any sp 1 € S, we have

V}f+1,1(5h+1) = Z Pi]f+1,1(a/|5h+1a Ah+1,1>f}]f+1,1(5h+17
a’€Ant1,1

< 2 P}’f+1,1<a/|3h+1a Ah+1,1)ff]f+1,2(3h+1,
a’'€Apt11

< Z Pf’f+1,2(a/|5h+1a Ah+1,1)fflf+1,2(3h+la

a’€Api1,1

< Z Pi]f+1,2(a/|5h+1aA§+1,2>f}]f+1,2(5h+17

o EAh+1 2
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where in the first equality, we denote Aj, 11,1 € argmax >}/ 4 75,’f+1’1 (d'|sh+1, zél)f}lfﬂ’1 ($h+1,a’), for the first inequality,
we use the fact that f}lf+1,1(s, a) < f,’f+172(s, a) (Lemma D.14), the second inequality holds for some fth,l < Ant1a
(Lemma D.5), and the last inequality follows from the definition of A’g +1,2- Moreover, the third equality of (D.45) holds
because for i + 1 = hy, we know that A} | = A, , by the data collection policy in (9).

Therefore, by recursion, we have

(f}]f,l Qh )(Shaah)
Z 3 (Pl al@lshy Aly) = Pur (@l AR ) S a(shs )

=h+1g EA}“
+ 2 Z bh’ Sh/ ah/ + 2 Z bh/ Sh/ ah/ Z Ch' 2 + Z Ch’ (D46)
h'=h h'=h+1 =h+1 =h+1

Finally, we consider the case where h < hj, — 1.

(fllf,1 —@Zk)(slﬁﬂ;i) (fflf,l 77LVh+1 1)(3§7ah) (77th+1 1 Qh )(Sh»ah)
< 2bli§,1(32,alfi) +E [(Vh+1 1 Vhﬂ+1)(3h+1)‘8h>a2]
= 2bﬁy1(s,’§,a’,§) + (Vh+1 1 Vhﬂ+1)(5h+1) + Ci1§+1,1
= 255,1(3276‘2) + (Qh+1 1 Qh+1)(3}l§+17‘4ﬁ+1) + Ci]f+1,1

—Tr
Z (Pthl 1(a |3h+17Ah+1)f}]:+1,1(sl]§+1’a/)_Ph+1(a/|5}l§+1aAz+1)thl(sﬁ+1v ))
a’e Ak

h+1

k k
+ 2bh,1(5h7 ap) +Chi1a

> (Phaaa(@lshon A1) = Prst (@b, Ah) ) S (554100

a’€Af

+ Ep [(fh+1,1 Qh+1) (5h+1vah+1)|sh+1a Ah+1] + 2bh L(sk,ap) + <h+1 1

Z (P§+1,1(a/|52+17A§+1) - Ph+1(a/|5§+la AZH)) fi]f+1,1(5]lfb+1»a/)

a EAh_'_1

+ (fh+1,1 - @hl-cu) (SZ-H’ alﬁ+1) + 2blﬁ,1(3ivalﬁ) + Q’f+1,1 + C}]f+1,1a
where the first inequality holds based on the assumption that ’Evff 11 € F }’11 and definition of b’,?hl and the third equality
holds because for i + 1 < hy, we have Ay | = A}, | by the data collection policy in (9).
Hence, by recursion we have

hr—1

-kl < X 3 (Pl (@/lsh, Af) = Ptk AR)) £ 1 (55 )

=h+1g eA’“

+ Z 3 (Ph otk Ab) = Ptk %)) i (ks a')

=hk a EA’”
hk—l .

+ 2 Z bh/ Sh/ ah/ +2 Z bh/ Sh/ G,Z/) + Z (C}’:’,l +<}]§’,1)

h'=h h/=hy h'=h+1

H .
+ D (o + ). (D.47)

h'=hy,
Combining (D.44), (D.46), and (D.47), we conclude the proof. O

39



Combinatorial Reinforcement Learning with Preference Feedback

D.7. Bounds on bonuses and |Ko,|

In this subsection, we provide proofs for the bounds on the sum of bonuses (Lemma D.21, Lemma D.22, and Lemma D.23)
as well as the bound on the size of o, (Lemma D.24).

Lemma D.21 (Crude bound on bh 1» Lemma 39 of Agarwal et al. 2023). Let zF = (sk,aF). Given b’fb71(~) < C-

(th (5 (72l (aT)r 1) (Bh 1) +p+ 655,’?)1), when p = 1,v < 1, it holds that for any subset K € [K], we

have

H
Z Z min {1 + L,bﬁyl(zﬁ)}

ke h=1

=0 < logNng . (\/Iogw -HA/d,|K| +1ng -d,H + |K|Heb>> .

2

Lemma D.22 (Crude bound on bh ,» Lemma 38 of Agarwal et al. 2023). Let z¥ = (s¥,a¥). Given bﬁ,Q(o) < C-

2
(D}-,L( Er gLt b ke L - (,8’;’2) +p+ ebﬂﬁl), when p = 1,v < 1, it holds that for any subset K € [K]|, we

H
DD min {1+ L, ,(2f)} = O <4/ NNZKH : (H«/d,,|l€| +d,H + |ICHeb>> .

ke h=1

have

Lemma D.23 (Fine-grained bound on bi,l)' Let 28 = (s§,a}). Recall that the bonus oracle B outputs a bonus function

such that by, , () < C - (th( (27121 (a7 )F -1 (Bh 1) +p+ fbﬁflf,1>~ When p = 1,v = 1/v/KH, § < (0,1/7)

and the event E< i holds, with probability at least 1 — 75, we have

K
Z Z mln{l + L,bf l(zh)}

NKH 1 ., 52 NN, K H NEH
(dHK log 5 ﬁdH v d,(log K) logM~logT' logT
3/2
( dyH"/? 1og NKH (logNNgKH> + lgN?H (KHeb+\/d KH36 )>

\/logN[(s(H logNNgKH N H | H2 Y w + H2[K,,|
ke,

Proof of Lemma D.23. By the definition of the oracle B (Definition B.1), we have
K H
K H 5
— k k
= (Z Zmln{l Dz, (25 {=n )izt (o} - (ﬂh)l) +p}+KH6b-rrkl&}LXﬁh’1>

k=1h=1

K H
log Z Z min {1, D, (2 {z7}521, {a}F21)} +KHeb>, (D.48)

where the last equality holds by the definition of 5;’?71-
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Now, we bound the summation terms

73 :{(k,h)e [K] x [H]:&f —2( o(0F) + u( 5h> w:)ﬂ (2F: {2p Yozt {or ),

<k7h) 7éIl}7

VUSRI o () — (o). (k) # T }
=op, (kh) # 11} ,.

I4={(k,h)e[K] x [H]: 5
Ty = {(k,h) e [K] x [H] : 7

F?r :*w

For the case of 71, we have

> win {16} (o) D, (o (11T o)) )

(k,h)eT:
H
< Y (@h) T DR (s ot o)) < ) dimy ke (Fr) = dH. (D.49)
(k,h)ET, h=1
For Z,, we use the Cauchy-Schwarz inequality to get
Z min{laa—}]i' (52) D]:h (Zh,{zh}'r 17{0} )}
(k,h)eZy
H
< V2 S0 (aF) D%, (e et oY) < | . dimy k (F) =+/d, H. (D.50)
(k,h)ETs h=1
For 73, we have
> min{méﬁ (o) D (ks Y o)) |
(k,h)EZs
< (80((5h) + ((5h)) - min {1, (6h) D}—h (zh, (2721 (G)" )}
(k, h)el'3
H KH) &
=0 (( + log NN”) > dim,,yK(]:h))
d
h=1
H KH
-0 (( + log NN;) dVH> : (D.51)
where the inequality holds because, by dividing both sides of 5 = ( o(8F) + 1(8F) ) \/D}-h (25 {27}k 5;}’;;%)

by A /6,’3 and rearranging terms, we get:

oh < (80(8%) + *(84)) D, (21: =712 21, ()7 21) -
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We also use the property that (6h) Dz, (28; {27221, {6}FZ1) < 1for (k,h) € Zs, which follows directly from the
definition of Z3.

For Z,, we have
2 min{l,&;’f-(ﬁﬁ) Dz, (21 =0 )21, o)z )}

< Z 5'5 ’ (55) Dg, (Zh’ {Zh}r 15 {o ﬁ;i)
(k,h)EZy

S5 VRO ) — fE o) - (o8) T D (ahs 1152 (o))

(k,h)eTy

NNKH | & &
<O [ 4/log f; ; Z:: — fF () N H |, (D.52)

where the last inequality holds by the Cauchy-Schwarz inequality together with the definition of (7).

Lastly, restricting on Zs, if the event E< i holds, we have

Z min{l,&;’i-(ﬁﬁ) D]:h(zh7{zh}7' 1,{0} )}

(k,h)eTs
S Z an - (o7) th(zhv{zh L {edo)
(k,h)EIE,
Z (05)2' Z (5;’3)_21733(%{% = 17{0 )
(k,h)ETs (k,h)ETs
<0 ZV [Th + Vg (sha1) | Zh] + (fh 2 (2) — fA, 2(Z}]§)) d,H
koh kh
+0 Zmln{l Dg, (zh,{zh eI b K Z1) }A/log NNbKH N/ d,H (D.53)
k,h

where the second inequality holds by the Cauchy-Schwarz inequality, the last inequality holds by Lemma D.16 and the
definition of Eluder dimension.

To further bound the first term on the right-hand side of (D.53), we apply Lemma D.17. Therefore, with probability at least
1 — 4, we have

Z min{l,&,’j-(&,ﬁ) D]:h(zhv{zh}-r R g b )}

(k,h)eZs

KH
<0 \/HZ (ff,z(%) fE 2(,zh)> + K+ KH26 + H2|Koo| + H'log? K Wy

KH
(\/ thZh fh—Q(Zh)> vd,H |+ 0O \/(dl,H+H\/duK) 1og%w/dl,[—[
k,h

KH
o(\/K+KH25+H2|/cm|+H41og — dH+\/HZ(fh2zh) Ih o)) N H
k,h

+0 (d,,H”q [log W) , (D.54)
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where the first inequality holds by the fact that

me{l D]:h(zh,{zh AERE b L D} <dH
k,h

Zmln{l th(zh,{zh Tk )} VK ZD zh,{zh Tk ) < Hyd, K,

and the last inequality holds by the AM-GM inequality such that
KH KH
H\/K -d, log% <K+ H2dylog%.
Combining Equation D.49, D.50, D.51, D.52, and D.54, we get

Z Z mln{l th(Zh,{Zh}r 17{‘7} )}

N

NN KH 5L
o log%"vduH' HZZ h2zh fh o(25)
k=1h=1

+0 (\/K+KH25+H2|/CQO| +H410g ‘\d,H +d,H""7 /1o NNZKH> (D.55)

Now, we bound the term };; (fh 228 — IR 2(zh)> For k € Koo, we have

H
Z Z (ff’:,2(zh) fh 2(22)) = O(VCOO‘H)-

Otherwise, for episodes k € K,, we know that it holds true that fh NE = fh (28) — uy, by (9). Therefore, under the event
E<k, we have

H

H
Z Z (fflf,2(zh fh -2 Zh Z Z fhl E79) f;]f,—2(zlﬁ)) +H Z Uk
ke, h=1

ke, h=1 keko

[
M=

(k= Q)R + @~ o)) + H Y w

ke,

x>
m
I
>
Il
—

N
M=
M=

. (Pl (@lsh, Al = Puo @[k AR ) o (shyoa)

+1 a’eA’;,

=
m
')
S
>
Il
—
.

M=
L= L

Z (7’55/7_2(a,|5}]§/, AZ/) — Ph/ (a/\slfw Ak/)> f}]f/7_2(51}i/7 a')

keKo h=1h'=h+1a'c A,
H
+2 Z me{1+L Z bh, (s, ak, }4—2 Z me{l—l—L Z bh, (sfs,af, }
keko h=1 kek, h=1
H
+ ) Z D (Cha by —Gha—Cha) +H Y w, (D.56)
keKo h=1h/=h+1 ke,

-

martingale difference sequences (MDSs)
where the second inequality holds by Lemma D.18 and D.20.
To further the right-hand side of (D.56), we apply Lemma D.10 (which holds with probability at least 1 — 24) to the first
and the second terms, Lemma D.21 to the third term, Lemma D.22 to the forth term, and we bound the fifth term using the
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Azuma-Hoeffding inequality (which holds with probability at least 1 — 46). As a result, absorbing the low-order terms, we

Z 2 (f;’fg(zh) fh 2(27}]?))

dH*VK - (log K)*? log M)

e A el

KH
+(’)< log% b+H4/KH10gT+|/Coo|H+HZ uk> (D.57)

kelCo

where the last inequality holds by the AM-GM inequality.
Plugging (D.57) to (D.55), we have

i i mln{ ,lj) th(zh,{zh iz 1,{0 )}

k=1h=1
<0 \/W d - <\/dH3(logK)3/210gM \/>—|—H2 Z uk>>
\F kel
3/4

+
G

(\/W i \/\/W b+H2\/m+|Km|H2)
+(’)<\/K+KH26+H4log KT Vd, H +d, H15\/W>

NN KH NN K
Vi S Ve + e (s o ) 2

( NNKH i J 170105 K <1og NJ\/ZKH) oy uk)

<0

S

+

KH
+O< NM’ Ny H - \/H?|Koo| + KHey + \/d, H - VK )
(’)( d,HK H7/2«/ (log K)*/?log M 1o NNZKH>
3/2
+0O|(d,H? KH~ logN'iNbKH
5 5
NNKH
+0 logTw/dl,H- H2 Y ug + /H?[Koo| | + KHey ++/d, KH3 |, (D.58)
ke,

where the second inequality holds by applying the AM-GM inequality and absorbing the lower-order terms.
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Finally, plugging (D.58) to (D.48), we derive that
K H
Z Z min {1 + L,bzl(zﬁ)}
k=1h=1

KH 1 KH KH
<0 (\/dVHK-logNa + ﬁdezx/dy(logK)‘?/2 1ogM-log% - A [log N})

KH KH\??
+O<dl,H7/2logN6 -(logNNb ) + 1ogN

{; H (KHeb + \/dl,KH?’(S))

1)
KH KH
\/logN(s logNNg “A/d,H - | |H? Z ug + A/ H?| Kool
kelCo
This concludes the proof of Lemma D.23. O

Lemma D.24 (Bounding size of KCy,). Suppose v < 1 and we set

. ( log AL . (10g ML L 520/, 4 VkHe,)  dH?(log )2 og My log NN;fH>
U = : )

+

Vk vk

for some large enough constant 0 < C' < oo, when the event E< i holds true, then with probability at least 1 — 26, it holds
that

K d, d*((log K)*/?1log M)*
Kool SO\ i Mrkm + 55 T 5 s 1 NKH (1 NNLEH
og 2443 w2dy, H - log 275 (log 254 )

Proof of Lemma D.24. By the definition of hy, for each k € Ky, we have fhk Q(Shk , ahk) fhk (shk , ahk) + ug, which
implies that

Z (fflfk,z *fi]fk,l)(uqﬁkaalﬁk) = Z g

kGKm, k'eK:oo
NKH NN KH Kool
>C - . M el /2 ., 1700 o
C ( log 3 (log 5 H>*7/d, Nire + | Koo Hep
NNbKH Kool
dH%?(log K)*/? log M . D.5
+ (log K)*/=log VK (D.59)

Furthermore, under the event ¢k, by Lemma D.14, it holds that f,’;l(sh, an) = Qp(sn,an) = Qp (sn,an) for all
(sh,an) € S x Z. Thus, we get

SR = D (skak ) < D (FF o — Qri)(sh, af)

k}G}COO ke}coo

H
Z Z Z (73}13’,2((1452/7142’,2)_'Ph’(a/‘sﬁuAZ/’Q)) £ o(shr,d)

keloo h'=hi+1q GAk

H H
+2 2 Z min{l+L,bk,71(s’,§,,a’,§,)}+2 2 Z 1nin{1+L,bk,72(sl,§,,alﬁ,)}+ Z 2 ((51’2—1—(.,’;’2)

keKoo h'=hy keKoo h'=hy keKoo h'=hi+1
1 2 KH
O (dH«/|}c00| - (log K)3?log M + —d*H ((log K)3?log M) + 1/ Koo | H log 5)
K
KH KH KH
+(9< logN 5 (\/logAWlls~H«/dV|’Coo|+logNW%-d,,H+|ICoo|Heb>> , (D.60)
14 14 14
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where in the first inequality, we note that Ai, = Aﬁ,,z for b’ = hy, the second inequality follows from D.19. And for the
third inequality, we apply Lemma D.13 to the first term, Lemma D.21 to the second term, Lemma D.22 to the third term.
Finally, we bound the last term using the Azuma-Hoeffding inequality with probability at least 1 — 24.

Thus, in order for the two inequalities D.59 and D.60 to hold simultaneously, the following condition must be satisfied:

o (9( { K (dm/logNKH 1ogNN"KH %d2((logK)3/2logM)2) VK })
00| S max .

H3log NNbKH H3/2\/log N,/\/;,KH (\/d log NKH log NNbKH + d(log K)3/2 log M)

Using the AM-GM inequality, we can further bound the second term inside the max operation.

(dl,\/logmlog NNz,KH %d2((10g K)S/Q log M)Q) . \/E

o
H3/2\/log%6KH <\/du log NVIEH log NA{ZSKH + d(log K )3/2 logM>
o K dyr/log NKH log /\/NbKH + ld2((10g K)3/2 log M)2
< -
H3 log NNeKH H3/2, [d, log NEH 1o NN H
2
K N dy N d?((log K)*?1log M)?
H3 log NNk H H s, g, log MEH |og NNLKH
K N dy N d*((log K)*/?1log M)*
H3log NA,[,Z’(;KH H? k2d,H3 - log NKH (logNNbKH)

where the second inequality also follow from the AM-GM inequality and the last inequality holds due to the fact that
(a +b)? < 2a? + 2b* for any a, b € R*. This concludes the proof. O

D.8. Proof of Theorem 5.1
Now, we are ready to provide the proof of Theorem 5.1. To start, we formally restate the thorem.

Theorem D.25 (Restatement of Theorem 5.1, Regret upper bound of MNL-VQL). Suppose Assumptions 3.1 and 3.3 hold. We
assume that we have the generalized Eluder dimension dim,, i (Fy,), for h € [H], as defined in Definition 3.5 with p = 1, and

access to a consistent bonus oracle B satisfying Definition B.1 with e, = O(1/KH). Let d,, = 4 ZhH=1 dim,, g (Fp) with

= \/1/KH, and set uy, = O(y/Iog N - (log NNy, - H2y/d,, + dH>?\/1og N N}) /N K). Then, for any § < 1/(H?+15),

with probability at least 1 — 0, the regret of MNL-VQL is upper-bounded by:

NKH
1

1
Regret(M, K) = O (d\/HK(log K)3?1log M + \/ d,HK -log + ;dzHQ (log K)?(log M)2>

KH KH\? KH
+(’)<dl,H5logN6 -<logNNg >+ IOgN’Ng'KHéb>,

where d is the feature dimension of the MNL preference model, N is the maximum size of the function class, i.e., N' =
maxpe(p) |[Fnl and Ny is the size of the bonus function class, i.e., Ny = [W)|.

Proof of Theorem 5.1. When the event £% () £< ¢ happens (with probability at least 1 — 25), we can bound the regret as
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follows:
K K K
Regret(M, K) = Z — V) ( Z — V™) ( Z ) (sk, AN

k=1 k=1 k=1
K

<O(1 Z ) (s%, AF)

= 0(1) + Z @QF— @) sk, Ah + > (QF—@QT*) (sh, AD), (D.61)
kel \{1} keloo\{1}

where the first inequality holds by Lemma D.15.
For k € K,\{1}, recall that QF (s, AF) = ZaleAz 73,?’1(@1|3,A’,2)f,’f$1(s£,a1) for all h € [H], as defined in (D.18).

Therefore, we have

(Qk M) (s’f,A’f) = 2 Pl 1 a1|sl,Ak)f1 1(3h7a1 Z Py a1|sl,A’“)Q1 (Slval)

aleAk a1€Ak
= 3 (Phi(aalsh, A%) = Puanlst, 4)) £ (55, 0)
aeA¥
+ Z Py (ay|sh, AY) (flkl Q7 )(Sl,al)
0.1614’1€
N 2 (ﬁf’lmﬂslf’Alf) - Pl(a1‘31f>A]1€>) fEa(shsar) + (ff1 Q& ) (s}, a1)
aleA’f

+Ep [(flkl Ql ) (517a1) | 51aAk] (ffl —@71%> (s’f,a).

Then, by applying Lemma D.20 with hy, = H + 1, we have

@) shah < Y (Ph 1 (anlsh, A%) = Pulanlsh, AR)) £ 1 (55, an)
h= 1ah€Ak
H H
+2 Z b1 (s, @) Z G+ Z Cirs (D.62)
h=1 h=2

where Cilf 1= Ep [(V}fl — V) (sn) | 5271’al}iq]_(viﬁ_vhﬂk)(si) and C}lf1 =Ep [(ff]f1 Qh ) (sk>an) | Sthk]
(£ = @) (shoab).

Now, we consider the case where k € Koo\{1}. In this cases, note that hy € [H]. Similar to the above analysis, by
Lemma D.20, we get

hr—1
(QF = Q) (b, At < X ) (Phi(anlsh, A%) = Palanlsh, A)) fh.1(shan)
h=1 a;.,eA""

Py Y (Phalanlsh, A%) — Pulanlsh, A%)) fi o(sh, an)

h=hk apeAl

hkl hkl

+22bh15hvah +22bh23h>ah ZCh1+ZCh1+ZCh2+ZCh27

h=hy h=hy h=hy
(D.63)

where C}’fz = Ep [(Vh o = Vi) (sn) | Sp_15 1] (V;ffz—Vh”)(Sﬁ) and Ci]fz =Ep [(ff]f2 Qh ) (sh>an) | 5h7Ak]
(7= Q") (s} ab).
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Plugging (D.62) and (D.63) into (D.61), and denoting J(k, h) :[K] x [H]— {1, 2} as the one-to-one function that maps
from [K] x [H] to the index set {1,2} such that A} = AZ)J(,”L) € argmax gc 4 D aea P’}f7](k7h) (alsk, A)f,’f)‘](k’h)(sﬁ, a),
we obtain that

Regret(M, K)

K H
Z 2 Z (Ph J(k,h) ah|3thh) Ph(ah|51;§w4§)) f}]f,J(k,h)(Sl]ivah)
k=2h=1a,eAk

H

K H
+22 Zmin{lJrL bhl sy,ap)} +2 Z Z min{1+L,b§72(sﬁ,aﬁ)}

=2 h=1 keoo h=hy
hi— K hg—
K
St S Sy Y <hz+2 > dha
h=1 k=2 h=2 k=2 h=hy =2 h=hy

Now, by applying the results from Lemma D.13 to bound the first term (which holds with probability at least 1 — 26),
Lemma D.23 for the second term (which holds with probability at least 1 — 7§), Lemma D.22 for the third term, and applying
the Azuma-Hoeffding inequality to the remaining terms (which holds with probability at least 1 — 44), we get

Regret(M, K)

o (d«/HK|(logK)3/2 log M + ldzH(log K)3(log M)2>
K

+0 d HK -lo gNKH idHW%/dy(logK)WlogM-1ogw- 1ogjﬂ
B N B b
3/2
+0 (dVH7/21 NEH <10gNNgKH> + log%- (KH€b+\/duKH35)>

KH KH
+0 (\/ngé log/\/"/\/fS ‘N d,H - |H? Z ug + A/ H2 Koo
kelkC,

\/log NN”KH H«/d |ICOO+|ICOU|Heb)>

1
dr/HK|(log K)*?log M + ;dQH(log K)3(log M)2>

KH 1 KH KH
+0 (\/clyHK-log'/\/(S + \/EdH7/2\/dV(logK)3/210gM-1ogjv'/vb- 1ogN>

] 0

3/2
dVH7/2logN[§H , (logNNgKH> +4/lo NNgKH (KHeb—ir\/d KH3§ )>

+0 \/log N;{H log NN;KH “A/d,H - |H? 2 ug |, (D.64)

where the second inequality holds by Lemma D.24 with probability at least 1 — 24, and use the fact that || H €b < KHe,

Now, we apply the AM-GM inequality to the term O (W dH"?\/d,(log K)*?1og M - log W y/log X ) thus
we get

log

(@) <\/1>dH7/2\/dl,(logK)‘g/2 log M - logw . N‘?H>
K

2
<O <1d2H2(log K)*(log M)? + d, H® <log NNZKH> 1o NdKH) : (D.65)
K
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Furthermore, by substituting the chosen values of u; and applying the AM-GM inequality, we get

KH KH
@) logN logNNb “Ad,H - |H? Z U

0 0 ke,
2
=0 (\/deK -log % + d*H*(log K)°*(log M)® + d, H” log NIEH . <log NNZKH> )

Then, by plugging (D.65) and (D.66) into (D.64), and setting § < H%_HE), we derive that

NKH

Regret(M,K) = O (d\/HK(log K)32log M + \/ d,HK -log

2
Lo <dy Holog NI;H . <10g NNSKH> 1 Jlog /\% K HQ,) ,

We conclude the proof of Theorem 5.1. O

+ 1d2H2(10g K)3(log M)2)
K

E. Proof of Theorem 5.2

In this section, we introduce several properties of linear function class. We formally define the linear MDP as follows:

Definition E.1 (Linear MDPs, Yang & Wang 2019; Jin et al. 2020). An MDP M is a linear MDP if we have a known feature
mapping ¢ : S x T — R?", and there exist d'™ unknown (signed) measures p; = (ug), e ugdlm)) over S and unknown
vector wj € R<", such that for any (s,a) € S x I, we have Pp,(-|s,a) = (¥(s,a), uy,(-)) and 74(s, a) = (Y(s,a), Wi ).

We assume that sup(, ,)es«7 [¥(s;a)|2 < 1, max{] X s |17, (5)|]2, [W} [2} < vd'in forall h € [H].

In this proof, to explicitly indicate the dependency on parameters, we denote the linear MDPs as Mg+ ,+ w+, Where
0" ={07} 1L, wr={pj i, and wr={w} }{L,.

We also assume that ZhH=1 Ty € [O, 1]. Proposition 2.3 of Jin et al. (2020) shows that linear MDPs satisfy Assumption 3.3
under the linear function class F }l‘“ defined as follows:

Fir = {W( ) wn) s wn e R Jwn s < 2Vdm ), forany he [H]. ED

For linear MDPs, let F; }Li"(ec) be an e.-cover of F }Li“ under the ¢, norm, so that

24/ dlin

C

log | Fy"(ec)| = O (d““ log ) =0 (d™M). (E.2)

Then, the definition of generalized Eluder dimension for the linear function class F, }Li“ can be expressed as:

Lemma E.2 (Lemma 3 of Agarwal et al. 2023). For the class F, ,Il"” defined in (E.1), letting F, ,lli’l(ec) be the e.-cover of F; ,If"
for some €. > 0, we have

. . , K ~
dim,, g (F}"(e)) < dimy, g (F") = O (d”” log (1 + v%)) = O0@d™).

The bonus oracle for linear MDPs can be easily instantiated using the standard elliptical bonus, and, as demonstrated in the
next lemma, satisfies all the required properties for a bonus oracle.
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Lemma E.3 (Bonus oracle B for linear MDPs, Lemma 7 of Agarwal et al. 2023). Given K, H € Z.., suppose all 3} < 3
and B is non-decreasing in k € [K)] for each h € [H]. For any k > 1, h € [H], variances {57 }"_, satisfying &7 > v for
some v > 0, dataset D}, ~" = {)(s},, a}), a}, 77, V(8] 1, af 1) YiZ1, function class Ff and fF € FF defined via weighted

regression in (3), and parameters p,e. > 0, let B({&g}ﬁﬂ,DfL*l,}f,f}lf,/B,ﬂp, €) = Hz/)(s,a)H(Ek)_m/ (55)2 +p,
h
where 3 = 51 + le;i ﬁzﬁ(sﬁ, al)y(sh,a})". For any choice of covering radius €. < v+/p/8K, the oracle

satisfies all the properties of Definition B.1 with
log Ny = log [W| = O ((d"'")2 log (1 + d”"\/dm/(pei))) — O ((d™)?) .

Theorem E.4 (Formal version of Theorem 5.2, Regret upper bound of MNL-VQL for linear MDPs). Under the same
conditions with Theorem 5.1, suppose that the underlying MDP has linear transition probabilities and rewards, so that the
function class for linear MDPs, .7:,[1"”, satisfies Assumption 3.3. Let .F,’f"(ec) be an €.-cover of]:,ll"” under U, norm. We set
p=1u, =0 ((d™>H? + d(d™)32H?)/VK), v = \/1/HK, &, = €. < 1/(8HK) and § < 1/(H? + 15). Then,
with probability at least 1 — 6, the cumulative regret of MNL-VQL, with bonus oracle defined in Lemma E.3, is upper-bounded
by

- 1 . .
Regret (Mg ;+ w+, K) = O ( dVHK + ~d*H? + d"VHK + (d"™)5H® )
K

regret from MNL model regret from linear MDPs

Proof of Theorem 5.2. We apply the above results to linear MDPs Mgs .+ w+ with function class F"(e.), h € [H], and
bonus oracle B. From (E.2), we know that " = O(d'™). Additionally, Lemma E.2 shows that d,, = O(d""). Therefore, by
combining these results with Theorem 5.1 and Lemma E.3, we can establish the upper regret bounds for linear MDPs.

_ A 1 4
Regret (Meg: v, K) = O (d\/HK + d"VHE + ~d*H? + (dl‘“)6H5),

where we set p = 1, up = @((dli“)3H5/2 +d(d™)*2H5?) VK, v = \/1/HK, &, = €. < 1/(8HK) and § <
1/(H? + 15). O

F. Proof of Theorem 5.3

In this section, we provide a regret lower bound for linear MDPs with preference model. We construct a hard in-
stance M(S,Z, A, M, {Pp YL {Py,}_ | {rf_,}, H), illustrated as in Figure F.1. This instance is based on an H + 1-
layered structure, where each layer is a variation of the hard-to-learn MDPs introduced in Zhou et al. (2021b).

Without loss of generality, we assume that d'™ > 6 and that d'™ — 5 is divisible by 2.> Let i € [H + 2] represent the layer
index. For each layer ¢ € [H + 2], there are H — i + 3 states, denoted as xZ@, . ,xg)ﬂ, where xg)w is the absorbing
state. Furthermore, there is a global absorbing state xy, which can only be reached at any state and horizon through the
user’s choice of the outside option ag (not choosing any item in the assortment). Thus, there are (H + 1)(H +2)/2 + 1
states in total in the set of states S. There are 2(¢"~5)/2 1 items, so the item set is 7 = {-1, 1}~(d“"*5)/2 v {ap}. The set

of candidate assortments follows the definition in Section 3,i.e., A = {A ST :ap€ A,1 < |A\{ao}| < M}.

F.1. Construction of linear transitions and rewards

At each episode k € [K], the agent starts from the fixed initial state as(ll). We define aj as an item such that aj €

AIGMAX o7 (o) (i @), Where iy, € {—A, A}(@"=D/2 with A = \/5/K /(4v/2) and § = 1/H.

If the state is ng) with ¢ € [H + 1] and h € [i, H + 1], and the user chooses the item a;, the agent remains in the same layer
HLH. The next state will be either 9:221 AH41 0T x(l_ll) +20 with probabilities
1 — (0 + {pp,a)) and ¢ + {py, @y, respectively. If the user chooses an item a # ag, a;, in the state :UEZ) withi e [H + 1]
and h € [i, H + 1], the agent obtains a reward of 4*/H and transitions to :z:,(fill ) 4100 22N | with probabilities

i and receives a reward of v*~1/H, where v =

31f d'™ — 5 is not divisible by 2, we can set d"" < d'" + 1 by adding zero padding.
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{Bn,aj),
r=1/H

8+ (pn, @)y
Zo r=v/H

Lr=0

Figure F.1: Inhomogeneous, hard-to-learn linear MDPs with MNL preference model. The solid line indicates the transition
caused by the user choosing the item aj; (with a reward of r, = v*~!/H), the dashed line shows the transition caused by the
user choosing any item a # aj, ag (with a reward of r, = v*/H), and the dotted line represents the transition caused by the
user choosing the outside option a, (with a reward of r;, = 0). The blue solid line indicates a transition from the absorbing
state back to itself, caused by the user choosing any item (with a reward of r, = v*~!/H), and the red dotted line indicates
a transition from the global absorbing state back to itself, caused by the user choosing any item (with a reward of rj, = 0).

1— (6 +{pn,ay)and § + {up, ay, respectively. If the user does not choose any item, i.e., chooses the outside option ag, in

the state x(z) withi e [H + 1] and h € [i, H + 1], the agent will deterministically transition to the global absorbing state
and receive no reward.

If the agent is in any of the absorbing states—x(f? 4o fori € [H + 2]-the agent will remain in the same state and receive a

reward of v/~ ! /H, regardless of which item (including the outside option) the user chooses.

Formally, we construct transition probabilities P, (s'|s, a) = {(s, a), pu} (s')), with

,Ba’,0,0,0,0, I)T, o\ a=atie[H+1],heli,H+1];
0,0,a,6a7,0,0, 25)7, — 2\ a#ay,agic[H+1],heliH+1];
0,07,0,07,0,1,0)7, s=a\),a=agic[H+1],hei,H+1];
0,07,0,07, 12,0,77;)1 s=a\ ,ie[H+2],

»
|

»
|

(a
P(s,a) = E (1)
(
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and
<1a —10,0,0,0,0)T, &' =2l
(£, 8 0 0,v2,0,0)T, s =2l
i i+1
H* (S,) = (0 s T 7 uﬁh 707070)T7 8/ = xglrl); (FZ)
h 0.0 @ 0.0,0)7 ;. (i+2AH+2),
( ’a’ s Yy ) ) S _l‘H+2 )
(0,070, 0 0,1,0)T, s’ = xo;
(0,07,0,0,0,0,0) T, otherwise,

where we denote 0 € R(4"~5)/2 a5 the zero vector of dimension (d™ — 5)/2, and set v = HIL as the discount factor
for transitioning to the next layer. Additionally, we choose § = 1/H, p; € {—A, A}4"=5)/2 with A = \/5/K/(43/2),
a=+/1/(2+ A (d" —5)),and B = \/A/(2 + A - (d'» —5)).

And the parameter vectors for the linear rewards 5, (s, a) = (¢ (s, a), w}, ) are as follows:

w} = (0,07,0,0,0,0,v2/H)T,
which ensures that the reward function satisfies:
~~1/H, s=z£),a—ah,z€[H+ 1],h e [i, H + 1];
vi/H, s—a:,(l),a;«éah,ao,ze[H—i—l],he[i,H—i—l];
0, s—zz),a—ao,ze[HJr 1),h€e[i, H+1];
vi=1/H, s=:105q)+2,26[H+2]7

Ty (s,a) =

where 0 < v < H’il is the discount factor for transitioning to the next layer.

This parameter setting satisfies the boundedness assumption of linear MDPs (refer Definition E.1). First, we show that

I (s, a)2 < 1:

[v(s,a)|3 < a® + 5 6%+ 5= 1, (the first and second cases of (F.1)),

I (s, a)l5 =1, (the third case of (F.1)),
1 1

I (s,a)3 < 5 + 5= 1, (the fourth case of (F.1)),

Moreover, since d™™ > 6 and K > 13(d"™ — 5)?/H, we ensure that max {| >, ,.q ptn(s) ]2, [W} |2} < Vd'in:

Z ln (s

seS

2
2(1-0)*+28%  |pal
= 2 + 52 +3
<2(2+A-(d™=5)) +2A-(d™—5)(2+ A (d"™—5))

< (2+42A-(d™—5)) < d,
2
el

and w5 < -5 < d™

F.2. Construction of MNL preference model

Inspired by the lower bound proposed in Lee & Oh (2024), we construct an adversarial setting for the MNL preference
model.

We assume that d > 2 and that d — 1 is divisible by 4 (without loss of generality). Let € € (0 ) be a small

1

 (d=1)/d—1
positive parameter. Throughout the proof, we set € = 4/ 1 4‘170? 7" (HIJ;UZ, for some C' > 0. For every subset W < [d — 1],
we define the corresponding parameter 8y € R4~! as [Byy]; = e forall j € W, and [@y]; = O for all j ¢ W.
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Next, for any h € [H], we define the parameter set as:
0;, € © := {(Byy,—log H)" : W € Wg_1ya}
— (0%~ log H)T - W < [d— 1], |W| = (d - 1)/4},
where Wj; denotes the class of all subsets of [d — 1] of size k.
The feature vector ¢(s, a) is invariant across the state s. For each U € W(a-1)/4, we define vectors zy € R41 as follows:
[2v]; =1/V/d—1 forjeU; [z];=0 forj¢U.
Let Z := {2y : U € W(4_1)/4}. We define the function Z : T — Z, so that Z(a) € Z. Then, the feature vector ¢(s, a) is

constructed as follows:
7 T 0 T .
P(s,a) = ( (a)r7 e ta
(0,1)", a = ag,

where 0 € R~!, Forall V e Vs and (s,a) € S x Z, it can be verified that 8y and ¢(s, a) satisfy the boundedness in
Assumption 3.1 as follows:

lo(s,a)2 </(d—1)-1/(d—1) =1,
1052 < A/(d— 1) + (—log H)? < v2log H =: B.

Let aj, (defined in the previous subsection) also have the maximum utility, i.e., aj, € argmax 7, (a,}<05, ¢(s,a)) (note
that ¢(-, -) is identical for all s € S).

F.3. Proof of Theorem 5.3

A good policy is one that quickly reaches the state xg) +o While remaining in the lower layers (i.e., with lower 7). Recall

that the item a; has the highest utility and, therefore, the highest choice probability. It also has the best chance of quickly
reaching the state x%) o While staying within the same layer. In other words, a good policy encourages the user to frequently
select the item &}, € argmax e (a,}{Hh, &) = ArGMAX e\ (a01<0}, ¢(5,a)). Note that aj, is unique due to the way the

action space and transition probabilities are constructed.

We formally restate Theorem 5.3 as follows.

Theorem F.1 (Restatement of Theorem 5.3, Regret lower bound for linear MDPs with preference feedback). Suppose
thatd > 2, d"™ > 6, H > 3, and K > max{C - (d"™ — 5)?H(H + 1)%,C" - (d — 1)*(1 + H)/H} for some constant
C,C" > 0. Then, for any algorithm, there exists an episodic linear MDP Mg, w with MNL preference feedback such that
the worst-case expected regret is lower bounded as follows:

sup Eg_uw [Regret (Mg, v, K)] = Q (d\/HK + d”"\/HK) .

0,u,w

Proof of Theorem 5.3. Fix 0 and p so that we can omit the parameter dependency of IP and P throughout the proof. Based
on the construction of the hard instance M discussed in the previous subsections, the following lemma shows that the
optimal assortment at horizon h € [H] is {ag, a} }.

Lemma F.2. Forany h € [H], we have A} = {ag,aj} }.

Furthermore, we can bound the expected value of @* for any assortment as follows:

Lemma F.3. For any (A,i,h) € A x [H] x [H], let a() € argmaxaeA\{ao}¢($S),a)T0,*L, fls) = {égf)7a0}, and

égj) € argmaXae A\ {ag} @Z (*T;j)a a). Forany a’ # ag, we define

Qh (xh ) ah7 a )
(1) (i (3)

i _ i—1
{ - +Ph(zh+1‘xh ,ah)Vh”H( h-)k— )+Ph(xH+2|x2),a’)+7 a =a
it

- i—1 i i+2), (i H—h)y'!
+Ph($h+1‘xh ) Vil (@ (11) + Pr(z ;112 |~”C§L)val)%a a' #a
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Then, for any policy 7, if K > 4(d"™ — 5)2H(H + 1)2, we have

N Pulalel, Q5 (), a) < Pu@ |2, AV)Gr (x) aj, ay)).

acA

Now, we are ready to provide the proof of Theorem 5.3.

For any h € [H] and any A), € A, let &), € argmaxuea,\(ao} ¢(m§f),a)T0;;. We also denote A, = {a;, a0} and
aj, € argMaXye 4\ (a,} @Z (zp,a). Recall that the index ¢ can be omitted for a;, because the transition and choice probabilities
( )

(1 ) . given a € I The change in layer 7 only affects the scaling of rewards, and consequently

are identical across all z;,
the Q-values, but the item that maximizes Q(x h ,a) remains the same across layers.
By applying Lemma F.3, the value of policy 7 in state xgl) can be bounded as follows:

2Dy = 3 PiaatV, 40)Q] (@, a) < Py(ar e, A)PF (21, a1, a). (F3)

acAq

Moreover, according to Lemma F.2, the optimal assortment for horizon h € [H] is A} = {a, a},}. Thus, the optimal value

function in state xgl) can be written as follows:

Vi) = 3 Pulale”, ADQ1 (a1 a) = Pu(aflal’, ADQ (21", a}).

acAj

where the last equality holds because @;(93;:)7 ap) = 0. We denote s 4o can be either xg)w or xglg, depending on

whether the item (for transition) is aj or any a # aj, ag. Then, we have
(Vi = V) @) = Pi(ajlal?, ADQ (), a}) — Pr(@lel, A1) Q7 (21", af, a1)
= (Pu(ailaf”, 4D = Pr(@rlal”, A1) Q) o1, ap)
+ Py (51|$§1)7x‘11) Q1($§1)731) @g(l«gl), aj,ap)
~ (Piaifel”, A} — Pr(arfal, A1) Q1 (et ap)

. - (1 . L (H-1
+7>1<a1|x§”,A1><H+P1< D, ai)V3 (50) + ol oo, a) T

1 H-1
- (H B (@1, aD)VF (@) + By (sl an) D ))
= (Pu(ailat”, A1) = Pr(@rl2l, A1) Q1 a1, ap)
+ Pt AP (5" |} ab) (V5 — Vi) (a5”)

~ b _ H-1
+ Pi(@ el Ay) (Pi(a)olel” al) = Pasaialef”,a0) % (F4)

where the first inequality holds by (F.3). Note that, by construction, for any h € [H], we have

(D ey _ H—-h+1
Qn(zy,”, ay) g

1 it
Pa(@nlz;”, An) = VH+1 1+H

]P’;L(xh+1|x§3), ar) =1—06—(d™—5)A,
Pr (2, ol ay) — Pr(smialzl”,an) = (d™ = 5)A — (un, ap). (E5)
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Hence, by plugging (F.5) into (F.4) and applying recursion, we get
* Us 1
(Vi = Vi) ()
H

> (Ph (ap ), A7) - 7’h(é’th|ﬂ”§3)»A"))

H-h+1 ( H >h1_(<1_5_(dlin_5)A))h_l

= H H+1
i H—h H \" ‘ 1
+Z (@ =5)a - <m“ah>)H'<H+1> (=6 - (@™ -5)a)"
H h
Z (gﬂ) (1= @ - 5)a)" (F6)

Furthermore, since H > 3 and 3(d"™™ — 5)A < § = 1/H, we have

J2i h H H+1 3
> > =
H+1 H+1 10

(1=56—(d"—5)A))"" > (1—46)H > - (F7)

Therefore, by substituting (F.7) into (F.6), and considering the terms where h > H /2, we obtain

H/2 H
* T 1 * * = A 1
V=) @) = 55 Y (Palailat”, A4} = Pt A0) + o

2

~

]

(@™ = 5)A = {pn, an))

T
N =

1

M‘H

nM% ﬁ

Z( ah|$}1) Ap) — 7Dh(ah|$} Ah)) %

MNL bandit regret

(IE?IX (o, @) — (p, ah>> . (F8)

linear bandit regret

On the right-hand side of (F.8), the first term corresponds to an MNL bandit problem. Recall that [A¥ | = |4,| = 2 and, by
construction, we have

exp ((/5(36511), ah)TB;)
1/H + exp (olal)).23)76;)

exp (6(a1!, 8,)76; )
1/H + exp (Qs(xﬁl”, ah)Te,;) ‘

Plag|zl), A3) =  Pu(an)alV, Ay) =

Hence, this corresponds to an MNL bandit problem with a maximum assortment size of M = 2, where the attraction
parameter for the outside option (the constant in the denominator) is 1/H.

Furthermore, the second term on the right-hand side of (F.8) represents a linear bandit problem. To sum up, the learning
problem is not harder than minimizing the regret on Q(H /2) MNL and linear bandit problems.

To bound each term of (F.8), we introduce the following propositions:

Proposition F.4 (Regret lower bound of MNL bandits, Lee & Oh 2024). Let vy denote the attraction parameter for the
outisde option. Let d be divisible by 4. Suppose K > C - d*M /(M — 1) for some constant C' > 0. Then, in the uniform
reward setting (where rewards are identical) with the reward for the outside option being zero, for any policy and the MNL
preference model parameterized by 0, there exists a worst-case problem instance such that the worst-case expected regret is
lower bounded as follows:

M
sup g [MNLBanditRegret(6, K)] = © <U:1(M—1) VK )

Proposition F.5 (Lemma C.8 in Zhou et al. 2021a). Fix 0 < § < 1/3. Consider the linear bandit problem parameterized
with a vector p € {—A, A} and action set T = {—1,1}?. And the reward distribution for taking action a € T is a Bernoulli

distribution denoted as B(§ + {, a)). Let K be the number of time steps playing this bandit problem. Assume K > d*/(26)
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and A = \/5/K /(4v/2). Then, for any bandit algorithm B, there exists p such that the expected pseudo-regret of B over K
steps is lower bounded as follows:

dVKé
8vV2

where the expectation is with respect to the reward distribution that depends on L.

E, [LinearBanditRegret(p, K)| >

Now, by using Proposition F.4 and F.5, we can bound the regret as follows:

H/2

K
1 ) 5
sup Eg . w [Regret (Mg, w, K)] > — Z sup Eg Z (Ph ah\x JAL) — Ph(ah\xg),Ah))
0.p,w 20,7 o k=1
1 H/2 K
T30 Z SipEu lZ (E§%<Nhaa> - <Nh75h>>]
h=1 k=1
-0 (d\/HK + d““\/HK) :
where, in the last equality, we use vg = 1/H, M = 2, and § = 1/H. This concludes the proof of Theorem 5.3. O

F.4. Proof of Lemmas for Theorem 5.3

F.4.1. PROOF OF LEMMA F.2

(2)

Proof of Lemma F.2. For any i € [H|, we can write the optimal Q-value in state 2, at horizon h € [H] as follows:

i—1 i i) H—h)~'" .
[ B Vi) - Bl @) S e = e
* ? _ g i+1 7 i+1 7 H—h)~* *
Qnlxy’sa) = < 5 + Paley S le) @) Vi (1) + Palely D o) ) B —, a = aj, a;
Oa a = ag.

First, we show that for any (¢, h) € [H] x [H], we have

Qn( xh ,a Z Pr(a |m,z) A*)Qh(xh ,a'), Vae Aj;\{ap}. (F9)

a’e Ay

We prove this by contradiction. Suppose there exists a € A} such that Qh(xh ,a) < D Ar P (a’ \x A,*l)@;(ng), a’).

In that case, removing the item a from the assortment A7 results in a higher expected value of Q - This contradicts the
optimality of A7 . Therefore, (F.9) must hold.

By the definition of Qh(mh ,a), for any a € 7\{aj }, we have

i—1 i—1

—% i Y i 1 +2 (H - h)7
ey a) < T+ Pl ) Vi (f)) + By ) )
vt By G o D) @) () ey H = Rh)y!

<

+ Ph(iﬂéll%), ap) Vi (my00) + Pu(ayy, olm,”, a))
H H
= a;(xl(zl)va;;)v

where the first inequality holds since V7, (xﬁfrll ) <V +1 (acglil) and the second inequality holds due to the fact that

i H—h)y""" +2)
Vh*+1(35§:3r1) <! ;q)’y and IP>h(x§ér+2 |xh ;a) < Ph($H+2|xh ;ay).
Since @Z(xy), aj ) has the highest value among all items, the optimal assortment A} should include aj. Thus, we have
aj,ag € Aj. In other words, when A} = {aj,ao}, the condition in (F.9) is satisfied. Thus, we begin with A} = {a;,ao}
and check if there exist an item a # aj, ay that can increase the expected value of @;L To this end, for A7 = {a},ag}, we
get

3 Pu@lay), A)Q () &) = Pulaplal’, A5)Qn () a) = 4@ (x), ap), (F.10)

’ *
a’e A}
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where the equality holds since Q h (x 5 > ao) = 0, and the inequality holds by the definition of ~:

= H = 1 min minmin min b (¢(S a)TO;L)
TT1vH T 1/H + 1S helH] s€S AeAacA\{ao} 1/H + exp (¢(s,a)! 0})

exp (0(a}) a7) 707 )
h 1/H + exp <¢(x§zl),a;;)T0}*l>

= Pu(ag|z\?, A7), (E11)

Here, we rely on the fact that the sigmoid function is monotonically increasing to establish the inequalities.

On the other hand, for any item a # aj , ag, we have

Qule’) = % + Pulas T ol a) Vi (D) + B (273 | m%
< % + Balaf 1 ) ) Vi () + Bl 2, >%W
< % + P ( h+1|xh sap) Vi (z ;::11)) +]P’h(ch+2|ggh 7ah)<H_Th>7i
< P zh+1|xh ’ah)v’“fl(xgﬂ)rl) + Py (xH+2|xh 7ah)W>
=70 (el ), (E12)

where the second inequality holds because V* +1($Ezl++1l )) < LW Ph(x%i?u;f), a) < ]P’h(a: Y +2|xh ,ar), and the

second equality follows from the fact that yV}*, (ac}w)rl) =Via (:r;f 1 ') by construction.

Combining (F.10) and (F.12), when A7 = {a}, ao}, for any item a # a},, ag, we get

N Pu@lzy, 43)Qn ), a) = Q) (2, a).

a’e A}
Since @Z(wﬁf), a) for a # aj, ag is not gieater than the expected value of Q,, for Ay, adding any item a # aj,ap to A;
does not increase the expected value of ). This confirms the optimality of Aj. [

F.4.2. PROOF OF LEMMA F.3

(@)

Proof of Lemma F.3. For any i € [H|, we can write the Q-value for the policy 7 in state ;" at horizon h € [H] as follows:

- i H—h)y" ! *

S + ]Pjh(JUthﬂJj )Vh+1(x§w)rl) + Ph($H+2|$ a)(T)'v“, a=ap;
Qp (), a) = F + Py, (xhzrll)kc )Vh“+1(xglzi11)) + Ph(xg:?mh , )%, a = aj,ag;

0, a = ayp.

We provide a proof by considering the following cases:
Case (i) aj € A.
Recall that, by (F.11), we have

g ew(o6l)a)76)
1+ H 1/H + exp (¢(m§f)7a;)T0;>

Y= (F.13)
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By multiplying @Z (argf) ,ay.a’) on both sides of (F.13), we get

. exp (00 a1)76;) Q11 2 )
7- Qi) < () ar)Tor
1/H + exp (gb(xh aj) Hh)

s e (o)76;) |y Qnal ana) (1VH +exp (6l a7)767))

acA\{a},ap}

N

Y e (o )76;) |exp (6()”, 1) 6} ) QR(af a2

acA\{a} ,ao}

= exp(gb(mﬁf),a};)TH,*L)—i- Z 'y-exp( xh, TO*) xh,ah, a')

acA\{a} a0}

: (1/H + exp ((b(xg),a;)—r@;))

< (18 +exp (o), ai)T0;) + Y exp (o)) 76;) |exp (), a7) 07
aEA\{a,*L,ao}

Qfi(; &, a)
€xp (¢(x§L) aZ)TOZ) é (9353) aj,a’) JrZaEA\{a;’L,ao}eXp (‘z’(wh ; )Teh) ’YQh(f'fgf)vahva)
1/H + Y a4\ {ag} €XP ((Z)(a:h , )TO*)

exp <¢(9L‘§1), ah)T0*> Q”(mh), ay,a’)
< )

=

@ (F.14)
1/H + exp (¢(xh ,ah)TO,*L)
On the other hand, by the definition of @Z (a:ﬁf), ay,a’), for any a’ # aj, ag, we have
i—1 i
~ Y i * T 2 H—h vy
Vil aha) =7 (T Palolilel? ab) Vi (effh) + Palalii el ) =T )
'7 T i+1 i+2 (H - h)’Yi
H + P (xh+1|ach ’ah)Vh-rl(x;LJ;)) + Py (xHj- )| a’) H
'Y T 7 i 2 (H - h)7i+1
> o+ Bl el VT () + Py ) ) —
= Qn (), ), (F.15)

where the second equality holds since YV, | (355121) =V, (a:ﬁfjll )) and the inequality holds because, for K > 4(d'" —

5)2H(H + 1)2, the following inequality holds:

T i+1 i+2 (H*h)"YHl
B (0 ) 2 VT () 00) + P )
™ it+1 i+2) (i (H—h)’}’i
< Pu(ealey ap) Vi (27)) + Pa(e ) ) al) g
i 4 i i * ™ i+2 (H_h) i i
= (Bu(ef o) ) = Pu(efl), lo) i) Vil < Buli3 o)) ) == (v =),

Specifically, if the upper bound of the left-hand side is less than or equal to the lower bound of the right-hand side, the

inequality holds. To demonstrate this, we have:

(H —h)
H )

(Ph(xh+1|xh ,a') = Pp(x h+1|17h 7ah)) Vitip <2(d™ =5)A - (F.16)
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) i H+1
and, since " = (HLH) > (HLH> > 13—0, we get

Pu(e el a) T (0 = 01) > (5 - (@7 - 5y) Tt - )

H
> (1 - (d““—5)A> H-h) 3 _1 (E17)

H H 10 H+1
Combining (F.16) and (F.17), and rearranging the terms, we get
3 ) - 3
10(H +1)/) ~ 10H(H +1)’
which holds when K > 4(d"™ — 5)2H (H + 1)2. This explains how the inequality in (F.15) is satisfied.

Let ég) € argmaXae 4, \{ao} @Z<$§:)7 a) = aj. Note that ég) is unique due to the way the action space and transition

(d"™ —5)A - (2 +

probabilities are constructed. Then, by combining (F.14) and (F.15), and using the fact that G,: (ng), ag) = 0, we obtain that

3 Putalzy, )G (2 2) < Y Pulalel?, G (), &)

acA acA
o (e 707) Q5 )
1/H + exp (qb(xEL) aﬁ)ﬁ%)
MaXae A\{ao} €XP (¢>(x§f g a)TO*) Qp (), a3,a,))
1/H 4 maxac 4\ (a,} €XP ((b(xh , )TB*)

)

where the first inequality holds since ég) is the action that maximizes the Q-value. The second inequality follows from (F.14)

and (F.15), and from the fact that Q) (xﬁf), égf)) Q, (xﬁf), ay) = @h (ng), aj, ég)) Finally, the last equality holds by the
definition of aj.

Case (ii) a; ¢ A.
Again, by (F.11), for any A € A, we have

v < min P (¢(xh ’ )Te*)

ac\loo) 1/H + exp (0(ef,2) 767 )

MAXae A\ {a} €XP <¢(Ih ) )TG*)
1/H + maXae A\ {q0} €XD <¢(xh , )TH*)

MaXae A\ {ay} €XP (¢($hi »a)TGZ) 1/H + Y ac a\fao} ©XP (¢($§f)v a)TGZ)
1/H + MaXae 4\ (ag) €XD (¢(z§j>, a)Te;) e A\ fan) XD (¢(x§j>, a)To,;)
where the second inequality holds since the sigmoid function is a monotonically increasing function.

We denote ég) € argMaXae 4\ {ao} QZ(mS), a). Then, multiplying @;{(wg ,an, ah- ) (note that a ( )

sides and rearranging terms, we get
Sue oy o0 (0021, 2)70;) 7 Q7(af”, a, af)
/H + X ac A\ (ag} €XP (qﬁ(:c;:), a)ﬂ%)
maXaeA\{ao} €XP ((b(ﬂ?;j), a)TO*) @Z (th ,a;, 5;}))
<
(4)
T,

1/H + maXae 4\ (a0} €XP (¢( ’ )TG*)

<

<

bl

# ajy,ap) on both
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Recall that for any a’ # aj,, ag, we have y - @Z(zgj), a;,a’) > Qh(:ch ,a’) by (F.15). Thus, we get

2. Pulalz), )@y (). a) < 3 Pulalz;, A)Qy () a)”)
acA acA
< Y Pulalef’, Ay - Q7 (ol a8
acA

maXaeA\{ag} exp ((;5(',1";;)7 a)T0*> @w (xgy,i)’ a;(z’ fi;;))
< )
1/H + maxXae A\ {q,} €XP (¢($h J )TG*)

This concludes the proof of Lemma F.3. O

G. Numerical Experiments

14 i i i

= o 03531

P BN -7
- ~—e- M

Z‘s.

Figure G.1: The “online shopping with budget” environment with |S| = 5. Each state represents the user’s budget level
of 1,2,3,4, or 5. The solid line indicates the transition when the user purchases an actual item a; (with a reward of
(/100N + j/|S|) /H), and the dashed line shows the transition when the user does not purchase any item (with a reward of
0). The initial state is s3.

In this section, we empirically evaluate the performance of our algorithm, MNL-VQL, in linear MDPs. We consider an online
shopping with budget (refer Figure G.1) environment under linear MDPs and an MNL user preference model. We denote
the set of states as S = {s1,..., 55|} and the set of items as Z = {a1, ..., an,ao} (ap denotes the outside option). Each
state s; € S corresponds to a user’s budget level, where a larger index j indicates a higher budget (e.g., s 5| represents the
state with the largest budget). The initial state is set to the medium budget state sj|5|/2]. Furthermore, we let the transition
probabilities Py, rewards 4, and preference model P}, be the same for all k € [H], and thus we omit the subscript h.

At state s;, the agent offers an assortment A € A with a maximum size of M. The user then either purchases an item a; € A
or opts not to buy anything, represented by the outside option ay € A. Then, the reward is defined as follows:

* If the user purchases an item a; € A, the reward is: 7(s;,a;) = (1061\1 + ﬁ) /H.
* If the user does not buy anything (ay), the reward is: 7(s;, ag) = 0.

The reward can be regarded as the user’s rating of the purchased item. It is reasonable to assume that, at higher budget
states, users tend to be more generous in their ratings, leading to higher ratings (rewards). And the transition probability is
defined as follows:

e If the user purchases an item a; € A, the transition probability is:
i i
P(Smin(j+1,s)l85,ai) =1 — N’ and P(8max(j—1,0)|55,@i) = N
« If the user does not buy anything (ag), the transition probability is:
P(Smin(j+1,|5\)|sjaa0) =1

If the user does purchase an item, the budget level decreases with a certain probability that depends on the chosen item.
Conversely, if the user does not purchase any item (a), the budget level increases deterministically.
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Myoptic LSVI-UCB | MNL-VQL (ours)

N =10, |A| =637 0.089 s 0.136 s 0.463 s
N =20,|A| = 21,699 0.097 s 4.861 s 0.526 s
N =40,|A| = 760,098 | 0.113s 453.641 s 0.620 s

Table G.1: Average runtime (seconds) per episode for M = 6.

We construct the feature map (s, a) (for linear MDPs) using SVD. Specifically, the transition kernel P(-|-, -) € RISIIZIIS|
has at most |S| singular values, and the reward vector 7(-, -) € RISIIZl has one singular value. Consequently, the feature map
(s, a) € R%in lies in a space of dimension |S| + 1, i.e., djip, = |S| + 1.

For MNL preference model, the true parameter 8* € R9, and the feature ¢(s,a) € R? (for MNL preference model) are
randomly sampled from a d-dimensional uniform distribution in each instance.

We set K = 30000, H = 5, M = 6,|S| = 5,d = 5 (feature dimension for MNL preference model), d'" = ¢ (feature
dimension for linear MDP), N € {10,20,40} (the number of items), and [.A| = 32,_" (V) € {637,21699, 760098} (the
number of assortments). Moreover, for simplicity, we set 5,’3 = 1 in our algorithm. As a result, we use unweighted regression

to estimate the (Q-values.

We compare our algorithm with two baselines: Myopic and LSVI-UCB (Jin et al., 2020). Myopic is a variant of
OFU-MNL+ (Lee & Oh, 2024) adapted for unknown rewards. It is a myopic algorithm that selects assortments based
only on immediate rewards, ignoring state transitions. LSVI-UCB (Jin et al., 2020) treats each assortment as a single, atomic
(holistic) action, requiring enumeration of all possible assortments. To demonstrate the effectiveness of our approach, we
also include the performance of the optimal policy (Optimal) to highlight that our algorithm is converging toward optimality.
We run the algorithms on 10 independent instances and report the episodic return across all episodes.

Figure 1 demonstrates that our algorithm significantly outperforms other baseline algorithms. And Table G.1 shows that
our algorithm maintains robust runtime performance even as the total number of assortments |.4| increases. Although
the runtime of Myopic is approximately 5.3 times faster than ours, its performance is substantially worse, converging
to a suboptimal solution. This underscores a key limitation of the myopic strategy—it can completely fail in certain
environments, highlighting the importance of accounting for long-term outcomes. Additionally, the runtime of LSVI-UCB
increases exponentially as N grows, because it requires enumerating all possible assortments. Due to the extremely slow
runtime of LSVI-UCB, we did not include its performance results for N = 20 and N = 40. Instead, for these cases, we used
dotted lines to represent the average episodic return observed for N = 10. Even for the smaller case of N = 10, LSVI-UCB
demonstrated the worst performance. Based on this observation, we suspect that its performance is unlikely to improve as N
increases.
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