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Abstract

In this paper, we consider combinatorial reinforce-
ment learning with preference feedback, where a
learning agent sequentially offers an action—an
assortment of multiple items—to a user, whose
preference feedback follows a multinomial lo-
gistic (MNL) model. This framework allows us
to model real-world scenarios, particularly those
involving long-term user engagement, such as
in recommender systems and online advertising.
However, this framework faces two main chal-
lenges: (1) the unknown value of each item, un-
like traditional MNL bandits that only address
single-step preference feedback, and (2) the dif-
ficulty of ensuring optimism while maintaining
tractable assortment selection in the combinatorial
action space with unknown values. In this paper,
we assume a contextual MNL preference model,
where the mean utilities are linear, and the value
of each item is approximated by a general func-
tion. We propose an algorithm, MNL-VQL, that
addresses these challenges, making it both com-
putationally and statistically efficient. As a spe-
cial case, for linear MDPs (with the MNL prefer-
ence feedback), we establish the first regret lower
bound in this framework and show that MNL-VQL
achieves nearly minimax-optimal regret. To the
best of our knowledge, this is the first work to
provide statistical guarantees in combinatorial RL
with preference feedback.

1. Introduction
We first formally state the concept of Combinatorial Re-
inforcement Learning (RL), which we refer to as a class
of RL problems where the action space is combinatorial,
meaning that the agent selects a combination or subset of
base actions from a set of possible base actions. Although
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some previous studies have addressed problems within this
setting—particularly in deep RL (Sunehag et al., 2015; He
et al., 2016; Swaminathan et al., 2017; Metz et al., 2017;
Ryu et al., 2019; Ie et al., 2019; Delarue et al., 2020; McIn-
erney et al., 2020; Vlassis et al., 2021; Chaudhari et al.,
2024), with less emphasis on theoretical RL—to the best
of our knowledge, it appears that no prior work has for-
mally and theoretically defined the concept of combinatorial
RL.1 This framework is especially relevant for real-world
applications such as recommender systems and online adver-
tising, where multiple items (base actions) must be selected
simultaneously, such as a set of products to recommend or
advertisements to display. The challenge in combinatorial
RL lies in the exponentially large action space and the need
to efficiently optimize the agent’s action selection while
balancing exploration and exploitation (a challenge even
for single action selection), while considering the long-term
effects of these actions.

One of the most widely encountered settings in combinato-
rial RL is preference feedback over combinatorial actions,
commonly seen in streaming services, online retail, and sim-
ilar platforms. Despite the broad applicability of this setting,
theoretical studies have predominantly focused on the multi-
nomial logistic (MNL) bandit model (Rusmevichientong
et al., 2010; Sauré & Zeevi, 2013; Agrawal et al., 2017;
2019; Oh & Iyengar, 2019; 2021; Perivier & Goyal, 2022;
Agrawal et al., 2023; Zhang & Sugiyama, 2024; Lee & Oh,
2024). The MNL bandit framework focuses on assortment
(a set of items) selection by selecting subsets of items and
receiving feedback on chosen items, modeled by the MNL
model (McFadden, 1977). However, these studies take a
myopic approach, optimizing for immediate, known rewards
without considering the long-term impact on user behavior.

While MNL bandits have been widely studied, the myopic
approach is limiting in many real-world scenarios. For exam-
ple in recommender systems, incorporating the long-term
impact of recommendations opens the door to balancing
short-term engagement with long-term user satisfaction. For
instance, recommending junk product or content might lead
to high immediate reward but it can decrease user satis-

1Surprisingly, this is in contrast to the rich theoretical literature
in combinatorial bandits (Chen et al., 2013; Kveton et al., 2015b;a;
Combes et al., 2015), which extend the multi-armed bandits.
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faction over time due to fatigue. This trade-off between
immediate and long-term outcomes is not captured by tradi-
tional MNL bandit. See Appendix A for a more details.

On the empirical side, several studies have explored long-
term user engagement in recommendation systems, partic-
ularly using deep RL (Swaminathan et al., 2017; Ie et al.,
2019; McInerney et al., 2020; Vlassis et al., 2021; Chaud-
hari et al., 2024). However, there is a significant gap in
the theoretical understanding of combinatorial actions with
preference feedback, particularly within the RL framework.
To the best of our knowledge, no theoretical work has yet
explored this important problem setting.

In this paper, we aim to address this gap by rigorously
studying combinatorial RL with preference feedback and
developing a provably efficient algorithm that maximizes
long-term user engagement by incorporating state transi-
tions (e.g., historical behavior) into decision-making. We
consider a setting where the Q-function of an assortment
is decomposed into two components: the preference model
and the item values, inspired by Ie et al. (2019). Specifi-
cally, we focus on the contextual MNL preference model
with linear mean utilities (Agrawal & Goyal, 2013; Cheung
& Simchi-Levi, 2017; Agrawal et al., 2019; Oh & Iyen-
gar, 2019; 2021; Amani & Thrampoulidis, 2021; Perivier
& Goyal, 2022; Agrawal et al., 2023; Zhang & Sugiyama,
2024; Lee & Oh, 2024) and use general function approxima-
tion to estimate item values (Jiang et al., 2017; Wang et al.,
2020; Jin et al., 2021; Du et al., 2021; Foster et al., 2021;
Agarwal et al., 2023; Zhao et al., 2023). The key challenges
in this framework are: (1) the unknown long-term value
of each item due to the stochastic nature of rewards and
transitions, (2) the difficulty of selecting an assortment that
ensures optimism while considering tractable assortment
optimization in the combinatorial action space, given the
unknown values, and (3) achieving a tighter regret bound
(for MNL preference model) than simply summing over H
MNL bandit regrets.

Technical novelties. To tackle challenge (1), we estimate
the optimistic item values by employing point-wise opti-
mism under general function approximation (Agarwal et al.,
2023). Based on these optimistic item values (which incor-
porate uncertainty), we then select an assortment that en-
sures sufficient exploration and guarantees optimism. This
step is the most challenging part of our framework. Since
the true value of each item is unknown, directly applying
techniques from MNL bandits (which assume known true
values) is not feasible. Thus, to address challenge (2), we
propose a novel method to estimate the optimistic prefer-
ence model by carefully alternating between optimistic and
pessimistic utilities (for the preference model), using the
optimistic item values (Equation (7)). Additionally, proving
optimism (Lemma D.15) and other related results (Lem-

mas D.5, D.9, and D.13) requires fundamentally more so-
phisticated analytical techniques. Finally, we avoid naive
combinatorial enumeration when selecting the assortment
(Equation (8)) by reformulating the optimization problem
as a linear program (LP), inspired by Davis et al. (2013).
Finally, for challenge (3), instead of naively summing over
H MNL bandit regrets, we bound the regret of the MNL
preference model in terms of the sum of the variances of
value functions and apply the law of total variance (Latti-
more & Hutter, 2012; Gheshlaghi Azar et al., 2013). This
approach reduces MNL regret by a factor of

?
H compared

to directly summing H MNL bandit regrets. Moreover, in
the special case of linear MDPs with preference feedback,
we achieve a nearly minimax-optimal regret.

Our main contributions are summarized as follows:

• We propose a MNL-VQL, which achieves a regret upper
bound of Õ

`

d
?
HK `

?
dimpFqKH log |F |

˘

while
maintaining computational efficiency (Theorem 5.1).
Here, H is the horizon length, K is the total number of
episodes, d is the feature dimension of the MNL pref-
erence model, and dimpFq is the generalized Eluder
dimension (see Definition 3.5) of the function class F .
To the best of our knowledge, this is the first theoretical
regret guarantee in combinatorial RL with preference
feedback.

• For the special case of linear MDPs (with preference
feedback), MNL-VQL obtains a regret upper bound of
Õpd

?
HK ` dlin

?
HKq, where dlin is the feature di-

mension of the linear MDPs (Theorem 5.2). Further-
more, we establish a matching regret lower bound of
Ωpd

?
HK`dlin

?
HKq, show the minimax-optimality

of our algorithm in linear MDPs (Theorem 5.3).

2. Related Work
MNL bandits. The MNL bandits were initially studied
in Rusmevichientong et al. (2010), followed by a line of
improvements (Filippi et al., 2010; Rusmevichientong et al.,
2010; Agrawal et al., 2017; Oh & Iyengar, 2019; Faury
et al., 2020; Abeille et al., 2021; Faury et al., 2022; Oh
& Iyengar, 2021; Perivier & Goyal, 2022; Agrawal et al.,
2023; Lee & Oh, 2024). In MNL bandits, the goal is to offer
an assortment that maximizes the expected rewards, which
are adaptively learned based on user preference feedback
from the offered assortment. However, there are no state
transitions, and it is assumed that the value of each item is
known, with the value of the outside option fixed at zero.
Our study extends this by not only estimating the MNL
model but also the long-term item values.

Combinatorial RL with preference feedback. Recently,
several studies have demonstrated the empirical success of
combinatorial RL with preference feedback (Swaminathan
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et al., 2017; Ie et al., 2019; McInerney et al., 2020; Vlassis
et al., 2021; Chaudhari et al., 2024), where a set of items is
offered to a user, and (relative) choice feedback along with
a reward is received, leading to a transition to the next state.
However, theoretical results quantifying the benefits of such
methods are still few and far between. A closely related
work is cascading RL (Du et al., 2024), which also involves
selecting a set of items. However, in cascading RL, items
are offered to the user one by one, and the user decides
only whether to choose the currently offered item. As a
result, this framework does not capture relative preference
feedback across multiple items. Furthermore, in cascading
RL, the probability of choosing each item is independent of
the others, which is not the case in our framework.

Another related line of work is preference-based RL
(PbRL) (Akrour et al., 2012; Wirth et al., 2017; Christiano
et al., 2017; Ouyang et al., 2022; Saha et al., 2023; Zhu
et al., 2023; Zhan et al., 2023), where the policy is opti-
mized based on relative, rather than absolute, preference
feedback. However, our framework differs from PbRL in
that our goal is not to offer just a single item, but to offer
multiple items (a combinatorial base action).

RL with non-linear function approximation. With the
limitations of the linear models (e.g., as shown in Lee & Oh
(2023)), RL under non-linear function approximation has
gained attention (Jiang et al., 2017; Wang et al., 2020; Jin
et al., 2021; Du et al., 2021; Foster et al., 2021; Ishfaq et al.,
2021; Agarwal et al., 2023; Zhao et al., 2023) for model-
ing complex function spaces like neural networks. Among
these, Agarwal et al. (2023); Zhao et al. (2023) achieved
the best-known regret guarantees under general function
approximation by introducing the concept of generalized
Eluder dimension to handle weighted regression. Inspired
by their work, we estimate the value of items (referred to as
item-level Q-value) using general function approximation
in this paper.

3. Problem Setting
3.1. Combinatorial MDPs with Preference Feedback

In this paper, we consider a episodic combinatorial Markov
decision processes (MDPs) with preference feedback,
MpS, I,A,M, tPhuHh“1, tPhuHh“1, trhuHh“1, Hq. Here, S
is the set of states. Each state s P S reflects the user’s
status, capturing both relatively static user features (e.g.,
demographics, interests) and relevant user history or past
behavior (e.g., past recommendations, items purchased or
clicked). I :“ ta1, . . . , aN , a0u is the ground set of items
(base actions), where a1, . . . , aN are items and a0 refers to
the “outside option”, meaning the user has chosen none of
the items from the offered set of items (referred to as an
“assortment” throughout the paper). It is included in every

assortment by default. A is the set of candidate assortments
that always include the outside option a0, contain at least
one item (other than a0), and have at most M items (includ-
ing a0), i.e., A “ tA Ď I : a0 P A, 1 ď |Azta0u| ď Mu,
where A is an assortment. For any ps,Aq P S ˆ A, we
denote Phpa|s,Aq as the probability of the user choosing
on item a P A (including the outside option a0). Further-
more, we let Ph : S ˆ I Ñ ∆S and rh : S ˆ I ˆ S Ñ R
characterize the transition kernel and instantaneous reward,
respectively, at a given horizon h P rHs. Throughout this
paper, we assume that

řH
h“1 rhpsh, ah, sh`1q P r0, 1s for

all possible sequence ps1, a1, . . . , sH , aH , sH`1q. H P Z`

is the length of each episode. A policy π : S Ñ A is a
mapping from the state space to the assortment space. Since
the optimal policy is non-stationary in an episodic MDP, we
use π to refer to the H-tuple tπhuHh“1.

In each episode k P rKs, an initial state sk1 is picked arbi-
trarily (e.g., a user arrives at the system). The agent then
follows a policy πk starting from sk1 . At each step h P rHs,
the agent observes the current state skh (e.g., historical behav-
iors of the user) and offers an assortmentAk

h “ πk
hpskhq. The

user’s preference feedback akh P Ak
h is then observed, which

is drawn based on the choice probability Php¨|skh, A
k
hq. Next,

the system transitions to the next state skh`1 „ Php¨|skh, a
k
hq

and receives a reward rhpskh, a
k
h, s

k
h`1q. After H steps, the

episode terminates, and the agent proceeds to the next.

For any policy π “ tπhuHh“1, we define the value func-
tion of policy π, denoted as V π

h : S Ñ R, as the
expected sum of rewards under the policy π until the
end of the episode when starting from sh “ s, i.e.,
V π
h psq :“ E

”

řH
h1“hrh1 psh1 , ah1 , sh1`1q |sh “ s

ı

. More-
over, we define the action-value function of policy π,
Qπ

h : S ˆ A Ñ R, as the expected sum of rewards un-
der policy π, starting from step h until the end of the
episode after taking action A in state s; that is, Qπ

hps,Aq :“

E
”

řH
h1“hrh1 psh1 , ah1 , sh1`1q |sh “ s,Ah “ A

ı

. Further-
more, we define the item-level Q-value function (also called
the Q-value) Q

π

hps, aq :“
ř

s1 Phps1|s, aqprhps, a, s1q `

V π
h`1ps1qq. Then, the Bellman equation for assortment RL

is denoted as follows:

Qπ
hps,Aq“

ÿ

aPA

Phpa|s,AqQ
π

hps, aq.

Similarly, we define the optimal value function V ‹
h psq “

supπ V
π
h psq and the optimal Q-value function as

Q‹
hps,Aq “

ř

aPA Phpa|s,AqQ
‹

hps, aq, where Q
‹

:“
ř

s1 Phps1|s, aqprhps, a, s1q ` V ‹
h`1ps1qq is the item-level

optimal Q-value function. For any V : S Ñ R and
h P rHs, we define the item-level Bellman operator of
V as ThV : S ˆ I Ñ R, such that for all ps, aq P S ˆ

I, ThV ps, aq :“ Es1„Php¨|s,aq rrhps, a, s1q ` V ps1q | s, as .
The definition of value functions ensures that they satisfy
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the equation Q
‹

hps, aq “ ThV ‹
h`1ps, aq. We also define

the second moment item-level Bellman operator of V as
T 2
h V : S ˆ I Ñ R such that for all ps, aq P S ˆ I,

T 2
h V ps, aq :“ Es1„Php¨|s,aqrprhps, a, s1q ` V ps1qq

2
| s, as.

Our goal is to minimize the cumulative regret over K
episodes RegretpM,Kq :“

řK
k“1 V

‹
1 psk1q ´ V πk

1 psk1q.

3.2. Multinomial Logistic Preference Model

In this paper, we make a structural assumption about the
MDP M, where the user’s choice probability tPhuHh“1

follows multinomial logistic (MNL) model (McFadden,
1977) parameterized by tθ‹

huHh“1. We denote Php¨|s,A;θ‹
hq

as equivalent to Php¨|s,Aq, explicitly showing the depen-
dence on the parameter θ‹

h. Throughout the paper, we use
Php¨|s,Aq and Php¨|s,A;θ‹

hq interchangeably.

Assumption 3.1 (MNL preference model). Let there exist a
known feature map ϕ : SˆI Ñ Rd such that }ϕps, aq}2 ď1,
and an unknown θ‹

h P Θ for all h P rHs, where Θ “
␣

θ P Rd : }θ}2 ď B “ Op1q
(

. Then, for any ps,A,Hq P

S ˆ A ˆ rHs, the probability of choosing any item a P A
is defined as:

Phpa|s,Aq “ Phpa|s,A;θ‹
hq “

exp
`

ϕps, aqJθ‹
h

˘

ř

a1PA exp pϕps, a1qJθ‹
hq
.

Here, without loss of generality, we assume that ϕps, a0q “

0 for all s P S 2 , which implies that exppϕps, a0qJθ‹
hq “ 1.

Thus, the preference model can be equivalently expressed

as Phpa|s,A;θ‹
hq “

exppϕps,aq
Jθ‹

hq

1`
ř

a1PAzta0u exppϕps,a1qJθ‹
hq

.

Following the previous MNL bandits (Oh & Iyengar, 2021;
Perivier & Goyal, 2022; Zhang & Sugiyama, 2024; Lee &
Oh, 2024), we also introduce the following constant:

Definition 3.2 (Problem-dependent constant). There exist
κ ą 0 such that, for any A P A, a P Azta0u, h P rHs, we
have minθPΘ Phpa|s,A,θqPhpa0|s,A,θq ě κ.

A small κ indicates a larger deviation from the linear model.
Note that 1{κ can be exponentially large, so it is crucial to
avoid any dependency on 1{κ in our regret bound.

3.3. Generalized Function Approximation for Q

We estimate the item-level Q-functions (referred to as Q-
values) using general function approximation. Specifically,
the agent is given a function class F :“ tFhuHh“1, where
each set Fh is composed of functions fh : S ˆ I Ñ r0, Ls,

2By subtracting ϕps, a0q from each ϕps, aq, where a P I,
and defining ϕ1

ps, aq :“ ϕps, aq ´ ϕps, a0q, we can ensure that
ϕ1

ps, a0q “ 0. This implies that exppϕ1
ps, a0q

Jθ‹
hq “ 1. This

assumption is commonly made in contextual MNL bandits (Oh &
Iyengar, 2019; 2021; Perivier & Goyal, 2022; Agrawal et al., 2023;
Zhang & Sugiyama, 2024; Lee & Oh, 2024).

where L “ Op1q. Since no reward is collected in the pH `

1qth steps, we set fH`1 “ 0. We denote N as the maximal
size of function class, i.e., N “ maxhPrHs |Fh|. We assume
the completeness and realizability for F .

Assumption 3.3 (Completeness & Realizability). For each
h P rHs and any V : S Ñ r0, 1s, we assume that Q

‹

h P Fh,
and there exists fh, f 1

h P Fh such that, for all ps, aq P SˆI ,

fhps, aq “ ThV ps, aq, and f 1
hps, aq “ T 2

h V ps, aq.

Remark 3.4. The completeness and realizability assump-
tions are standard in RL with general function approxima-
tion (Wang et al., 2021; Jin et al., 2021; Agarwal et al., 2023;
Zhao et al., 2023). Our assumption is the same as those
in Agarwal et al. (2023); Zhao et al. (2023), but stronger
than those in Wang et al. (2021); Jin et al. (2021), especially,
in terms of the second moment completeness. However,
this assumption is essential for using point-wise exploration
bonuses and achieving a tighter regret bound. Additionally,
it naturally holds for both tabular and linear MDPs.

To capture the complexity of exploration in the MDP,
we define the generalized Eluder dimension, which is a
weighted regression version of the original definition (Russo
& Van Roy, 2013).

Definition 3.5 (Generalized Eluder dimension, Agarwal
et al. 2023). Let ρ ą 0, a sequence of state-item pairs Zk “

tzτukτ“1, where zτ “ psτ , aτ q, and a sequence of positive
numbers σk “ tστukτ“1. The generalized Eluder dimension
of a function class F : S ˆ I Ñ r0, Ls with respect to ρ
is defined as dimν,KpFq :“

ř

ZK ,σK :σěν dimpF ,Z,σq,
where

dimpF ,ZK ,σKq :“
K
ÿ

k“1

min

˜

1,
D2

F
`

zk;Zk´1,σk´1

˘

pσkq2

¸

.

D2
F
`

zk;Zk´1,σk´1

˘

“ supf1,f2
pf1pzq´f2pzqq

2

řk´1
τ“1

pf1pzτ q´f2pzτ qq2

pστ q2
`ρ

.

We write dν :“ 1
H

řH
h“1 dimν,KpFhq for simplicity.

By Theorem 4.6 of Zhao et al. (2023), the generalized Eluder
dimension is upper bounded by the standard Eluder dimen-
sion (Russo & Van Roy, 2013) up to logarithmic terms.

4. Algorithm
In this section, we introduce an algorithm, which, to the best
of our knowledge, is the first to provide statistical guaran-
tees in combinatorial RL with preference feedback while
maintaining computational tractability. Step 1 involves on-
line parameter estimation for the MNL preference model,
proposed by Lee & Oh (2024). Steps 2, 3, and 4 implement
variance-weighted regression to tighten the regret bound, as
outlined in Agarwal et al. (2023). Step 5, which is our main
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contribution, ensures optimism in a computationally effi-
cient manner, even with uncertainty in item-level Q-values.
Step 6 introduces an exploration step that accounts for esti-
mation errors from the MNL preference model.

Step 1. Online parameter estimation for MNL (Line 6).
At episode k and horizon h, given the user’s choice feedback
ckh P Ak

h, the response for each item aim P Ak
h is defined as

ykhpaimq :“ 1pckh “ aimq P t0, 1u. Therefore, the response
variable yk

h :“ pykhpa0q, ykhpai1q, . . . ykhpailqq, where l ď

M ´ 1, is sampled from a multinomial distribution: yk
h „

MNLt1,Phpa0|skh, A
k
h;θ

‹
hq, . . . ,Phpal|s

k
h, A

k
h;θ

‹
hqu,

where the parameter 1 indicates that yk
h is a single-trial

sample, i.e., ykhpa0q `
řl

m“1 y
k
hpaimq “ 1. Then, for any

pk, hq P rKs ˆ rHs, the multinomial logistic loss function
is defined as:

ℓkhpθq :“ ´
ÿ

aPAk
h

ykhpaq logPhpa|skh, A
k
h;θq.

Inspired by Zhang & Sugiyama (2024); Lee & Oh (2024),
for all pk, hq P rKs ˆ rHs, we use the online mirror descent
algorithm to estimate the true parameter θ‹

h as follows:

θk`1
h P argmin

θPΘ
x∇ℓkhpθk

hq,θy `
1

2η
}θ ´ θk

h}2
H̃k

h

, (1)

where η “ OplogMq is the step-size, H̃k
h :“ Hk

h `

η∇2ℓkhpθk
hq, and Hk

h :“ λId `
řk´1

τ“1 ∇2ℓτhpθτ`1
h q.

Remark 4.1. The computation cost of the optimization prob-
lem in (1) is OpMd3q, which dose not scale with k at all.

Then, with high probability, θ‹
h lies within the following

confidence interval (Corollary D.2).

Ck
h :“

!

θ P Θ :
›

›θ ´ θk
h

›

›

Hk
h

ď αk
h “ Õp

?
dq

)

. (2)

Step 2. Weighted regression and optimistic estimation
for Q (Line 7-9). Using the past dataset, we solve the
following (weighted) regression problem to fit ThV k

h`1:

f̂kh,1 P argmin
fhPFh

k´1
ÿ

τ“1

´

fhpsτh, a
τ
hq ´ rτh ´ V k

h`1,1psτh`1q

¯2

pσ̄τ
hq

2 ,

(3)

where pσ̄k
hq2 is a variance upper bound, i.e., pσ̄k

hq2 ě

Vrrh ` V k
h`1,1psh`1q|skh, a

k
hs, which will be specified later.

Then, an optimistic Q-value estimate at horizon h is de-
fined as fkh,1 :“ f̂kh,1`bkh, where bkh is the optimistic bonus.
The bonus is calculated as bkhps, aq“maxfhPFh

fhps, aq ´

minfhPFh
fhps, aq. In general, this uncertainty bonus has a

high complexity, as the maximizing and minimizing func-
tions can differ arbitrarily for each ps, aq P S ˆ I. To

address this, we use a low-complexity bonus oracle B (Agar-
wal et al., 2023) that approximately dominates the value
obtained from the point-wise maximization over Fh. With
the oracle B, we can efficiently calculate the bonus bkh, with
an error of ϵb. Due to space constraints, we provide the
formal definition of B in Appendix B (Definition B.1).

Step 3. Overly optimistic/pessimistic estimation for Q
(Line 10-13). For a sharp analysis of the convergence of
the optimistic estimate fkh,1, we define an overly optimistic
Q-value estimate fkh,2, as well as an overly pessimistic Q-
value estimate fkh,´2. Similarly to fkh,1, they are calculated
by solving an unweighted regression problem (Line 10), and
by adding (or subtracting) a bonus function, which is the
output of the bonus oracle B (Line 12-13).

Step 4. Variance estimation (Line 14 and 21). To calculate
σ̄k
h introduced in (3), we first estimate the second moment

by solving the unweighted regression problem:

ĝkh P argmin
ghPFh

k´1
ÿ

τ“1

´

ghpsτh, a
τ
hq ´

`

rτh ` V k
h`1,1psτh`1q

˘2
¯2

.

Then, denoting zkh “ pskh, a
k
hq for simplicity, we calculate

the estimated variance as follows (this is an informal de-
scription; for the precise formulation, see Equations (D.9)
and (D.10) in Appendix):

`

σk
h

˘2
» ĝkhpzkhq ´

´

f̂kh,´2pzkhq

¯2

` D1
k,h ¨ O

´

a

logNNb

¯

σ̄k
h » max

"

σk
h,OplogNNbq

¨

ˆ

max
␣

fkh,2pzkhq ´ fkh,´2pzkhq,Dσ
k,h

(

˙*

, (4)

where D1
k,h “ DFh

`

zkh;Zk´1, t1
τu

k´1
τ“1

˘

and Dσ
k,h “

DFh

`

zkh;Zk´1,σk´1

˘

.

Step 5. Efficient optimistic Q-value estimation based
on unknown item values (Line 15-16). In this step, we
address our main challenge: selecting an optimistic assort-
ment based on the optimistic Q-values, which incorporate
uncertainty, while ensuring computational tractability.

To introduce optimism and encourage exploration, we need
to solve the following optimization problem using the op-
timistic (or pessimistic) estimates of the Q-values, specifi-
cally fkh,j for j “ 1,˘2:

Ak
h,j P argmax

APA
max
θPCk

h

ÿ

aPA

Pk
hpa|skh, A;θqfkh,jpskh, aq, (5)

where Ck
h is defined in (2). One naive approach to solving

the optimization problem in (5) is to add bonus terms to the
estimation for each assortment A and then enumerate all
A P A to find the maximum. However, this approach results
in a computational cost of Op|I|M q.
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Algorithm 1 MNL-VQL, MNL Preference Model with Variance-weighted Item-level Q-Learning

1: Inputs: parameter space Θ, function class tFhuHh“1, consistent bonus oracle B.
2: Parameters: tαk

h, β
k
h,1, β

k
h,2, β̄

k
hupk,hqPrHsˆrKs, tukuKk“1, ρ, bonus error ϵb, ν, δ.

3: Initialize: dataset D0
h “ H for all h P rHs.

4: Generate tD1
huHh“1 from initial state s11 by random policy and set σ1

h “ σ̄1
h “ 2 for all h P rHs.

5: for episode k “ 2, ¨ ¨ ¨ ,K do
6: for horizon h “ H,H ´ 1, . . . , 1 do

// CACULATE OPTIMISTIC AND OVERLY OPTIMISTIC, PESSIMISTIC Q-VALUES

7: f̂kh,1 P argminfhPFh

řk´1
τ“1

1
pσ̄τ

hq2

´

fhpsτh, a
τ
hq ´ rτh ´ V k

h`1,1psτh`1q

¯2

.

8: bkh,1 Ð B
´

tσ̄τ
hu

k´1
τ“1,D

k´1
h ,Fh, f̂

k
h,1, β

k
h,1, ρ, ϵb

¯

(see Definition B.1).

9: Update fkh,1p¨, ¨q Ð min
!

f̂kh,1p¨, ¨q ` bkh,1p¨, ¨q, 1
)

.

10: f̂kh,j P argminfhPFh

řk´1
τ“1

´

fhpsτh, a
τ
hq ´ rτh ´ V k

h`1,jpsτh`1q

¯2

, j “ ˘2.

11: bkh,2 Ð B
´

t1τu
k´1
τ“1,D

k´1
h ,Fh, f̂

k
h,2, β

k
h,2, ρ, ϵb

¯

(see Definition B.1).

12: Update fkh,2p¨, ¨q Ð min
!

f̂kh,2p¨, ¨q ` 2bkh,1p¨, ¨q ` bkh,2p¨, ¨q, 1
)

.

13: Update fkh,´2p¨, ¨q Ð max
!

f̂kh,´2p¨, ¨q ´ bkh,2p¨, ¨q, 0
)

.

14: ĝkh P argminghPFh

řk´1
τ“1

ˆ

ghpsτh, a
τ
hq ´

´

rτh ` V k
h`1,1psτh`1q

¯2
˙2

.

// UPDATE VALUES
15: Update rPk

h,jp¨|¨, ¨q by (7).
16: Update Qk

h,jp¨, Aq Ð
ř

aPA
rPk
h,jpa|¨, Aqfkh,jp¨, aq and V k

h,jp¨q Ð maxAPAQ
k
h,jp¨, Aq, j “ 1,˘2.

17: end for
18: Receive initial state sk1 .
19: for h “ 1, 2, . . . ,H do
20: Offer Ak

h by (9) and receive akh, rkh, and skh`1.
21: Update Dk

h Ð Dk´1
h Y tskh, a

k
h, r

k
h, s

k
h`1u and update σk

h and σ̄k
h by (4).

22: Update θ̂k`1
h using online mirror descent (1).

23: end for
24: end for

To avoid this exponential computational cost, inspired
by Tran-Dinh et al. (2015), we use optimistic MNL
utilities instead of directly adding bonus terms to
ř

aPA Pk
hpa|skh, A;θ

k
hqfkh,jpskh, aq. However, unlike tradi-

tional MNL bandits (Oh & Iyengar, 2019; 2021; Lee &
Oh, 2024), simply using optimistic utilities does not always
guarantee optimism because of fkh,j is not the true values. In
MNL bandits, the item values are known, and the value of
the outside option a0 is fixed at zero. Therefore, increasing
the MNL utilities (using the optimistic utilities) lowers the
probability of choosing the outside option, which in turn
increases the expected value of the item values.

However, in our setting, using the optimistic utilities can
decrease the expected value of fkh,j . To explain why: even
if the true value of the outside option, Q

‹

hps, a0q, is the
lowest, its estimated value, fkh,jps, a0q, can be the highest—
i.e., fkh,jps, a0q ą fkh,jps, aq for all a P Izta0u—due to
uncertainty. In this case, increasing the MNL utilities results

in a decrease in the expected value of fkh,j . This challenge
arises from the unknown item values, Q

‹

h, which is one of
the main difficulties we face in our framework.

To tackle this problem, a more refined approach is required
to use the utility based on fkh,j . Given the confidence inter-
val in (2), we define the optimistic utility rυkhps, aq and the
pessimistic utility qυkhps, aq as:

rυkhps, aq :“ ϕps, aqJθk
h ` αk

h}ϕps, aq}
pHk

hq
´1 ,

qυkhps, aq :“ ϕps, aqJθk
h ´ αk

h}ϕps, aq}
pHk

hq
´1 . (6)

We then use the optimistic utility when fkh,jps, a0q is not
the highest estimate to calculate the optimistic choice prob-
abilities rPk

h,j . Formally, let Ikh,j P t1, 0u indicate whether
there exists a P Izta0u such that fkh,jps, aq ě fkh,jps, a0q

6
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(Ikh,j “ 1 if such an event occurs). Then, we define

rPk
h,jpa|s,Aq :“

$

’

’

’

&

’

’

’

%

exp
`

rυkhps, aq
˘

ř

a1PA exp
`

rυkhps, a1q
˘ , if Ikh,j “ 1

exp
`

qυkhps, aq
˘

ř

a1PA exp
`

qυkhps, a1q
˘ , otherwise.

(7)

Equipped with rPk
h,j , for any j “ 1,˘2, we select the assort-

ments Ak
h,j as follows:

Ak
h,j P argmax

APA

ÿ

aPA

rPk
h,jpa|skh, Aqfkh,jpskh, aq

loooooooooooooooomoooooooooooooooon

“:Qk
h,jpskh,Aq

, (8)

Here, Qk
h,jpskh, Aq :“

ř

aPA
rPk
h,jpa|skh, Aqfkh,jpskh, aq is

the optimistic Q-values. This construction can induce suf-
ficient exploration and guarantee optimism (Lemma D.15).
Furthermore, by using the optimistic (or pessimistic) util-
ities for each item, instead of calculating bonus terms for
each A P A, the optimization problem in (8) can be solved
efficiently (Davis et al., 2013).

Remark 4.2. The optimization problem in (8) can be trans-
formed into a linear programming (LP), making it solvable
in polynomial time with respect to |I| (see Appendix C) .

Step 6. Exploration policy (Line 20). We then offer the
assortment Ak

h to the user as follows:

Ak
h “

$

’

&

’

%

Ak
h,1 if fkh1,1pskh1 , ah1 q ě fkh1,2pskh1 , ah1 q ´ uk,

@ah1 P Ak
h1,1,@h

1 ď h,

Ak
h,2 otherwise,

(9)
where uk is a carefully chosen threshold (see Table D.2 for
the exact value). When the optimistic sequence fkh,1 and the
overly optimistic sequence fkh,2 diverge beyond a certain
threshold, we offer the assortment Ak

h,2, which is selected
based on fkh,2. This approach ensures that by occasionally
using fkh,2, the variance upper bound σ̄k

h, estimated from
fkh,2, does not become overly pessimistic.

5. Main Results
5.1. Non-linear Function Approximation for Q

Theorem 5.1 (Informal, Regret upper bound of MNL-VQL).
Let dν “ 1

H

řH
h“1 dimν,KpFhq with ν “

a

1{KH , and
set uk as in Equation (D.20). Suppose Assumptions 3.1
and 3.3 hold. Then, with probability at least 1 ´ δ, the

regret of MNL-VQL is upper-bounded by:

RegretpM,Kq À d
?
HK `

1

κ
d2H2

loooooooooomoooooooooon

regret from MNL model

`
a

dνHK logN ` dνH
5 logN log2pNNbq

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

regret from general function approximation of Q

,

where d is the feature dimension of the MNL preference
model, N “ maxhPrHs |Fh|, and Nb is the size of the bonus
function class, i.e., Nb “ |W|.

Discussion of Theorem 5.1. The proof is deferred to Ap-
pendix D. The first two terms arise from the regret of the
MNL preference model, while the other two terms come
from the regret associated with the general function approxi-
mation for item-level Q-values. When H “ 1, reducing our
setting to MNL bandits (though not exactly the traditional
MNL bandits, as we consider a more general case where
item values are unknown and the value of the outside option
can be non-zero), the first two terms of our regret simplify
to Õpd

?
K ` 1

κd
2q. This matches the known minimax opti-

mal regret established by Lee & Oh (2024). Note that we
avoid the detrimental dependence on κ in our leading term.
The last two terms of our regret, incurred from estimating
item-level Q-values using general function approximation,
similar to Agarwal et al. (2023) and Zhao et al. (2023).

With respect to computational cost, by using the online
sensitivity sub-sampling method (Algorithm B.1), we can
efficiently implement the bonus oracle B with log |W| “

logNb “ Õ
`

maxhPrHs dimν,KpFhq logN log |S ˆ I|
˘

.
Furthermore, we can avoid the exponential computational
cost required to solve the optimization in (8) (see Re-
mark 4.2). As a result, our algorithm is both computationally
tractable and statistically efficient.

5.2. Technical Comparisons to Related Work

Comparison to Lee & Oh (2024). Our framework ad-
dresses a strictly more challenging problem than Lee &
Oh (2024) because we consider (1) multiple steps, (2) un-
known values, and (3) nonzero values for the outside op-
tion. The key challenge in tackling these three aspects
lies in ensuring optimism while maintaining computational
efficiency, which requires a fundamentally different ap-
proach—carefully leveraging optimistic and pessimistic util-
ities. Moreover, in Theorem 5.1, our regret analysis for
the MNL preference model goes beyond merely summing
over H MNL bandit regrets. Instead, we introduce a novel
regret decomposition, bound the regret in terms of the sum
of the variances of value functions, and apply the law of
total variance (Lattimore & Hutter, 2012; Gheshlaghi Azar
et al., 2013). As a result, we achieve a regret reduction by a
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factor of
?
H compared to directly summing over H MNL

bandit regrets.

Comparison to Agarwal et al. (2023). While the regret
analysis for general function approximation largely follows
the approach of Agarwal et al. (2023), several technical lem-
mas (e.g., Lemmas D.23 and D.24) and parameters (e.g., uk)
are revised to accommodate the estimation errors specific to
MNL models.

Overall, our results cannot be gleaned by simply piecing to-
gether prior techniques. Instead, they arise from an involved
analysis, leading to stronger theoretical guarantees in more
general and new combinatorial RL settings.

5.3. Linear MDPs with Preference Feedback

As a special case, we also consider linear MDPs (refer Defi-
nition E.1) with preference feedback. To show the depen-
dency on parameters, we denote the linear MDPs as MΞ‹ ,
where Ξ‹ “ ttθ‹

huHh“1, tµ
‹
huHh“1, tw

‹
huHh“1u. Note that the

bonus oracle can be easily implemented using the standard
elliptical bonus, which satisfies all the necessary properties
(refer Appendix E). The proof is deferred to Appendix E.

Theorem 5.2 (Informal, Regret upper bound for linear
MDPs). In linear MDPs, under the same conditions as
Theorem 5.1, with probability at least 1 ´ δ, the regret of
MNL-VQL is upper-bounded by:

Regret pMΞ‹ ,Kq À d
?
HK `

1

κ
d2H2

` dlin
?
HK ` pdlinq6H5.

We also establish a matching lower bound by constructing
a novel multi-layered (linear) MDP (see Figure F.1) with a
preference feedback. The proof is deferred to Appendix F.

Theorem 5.3 (Informal, Regret lower bound for linear
MDPs). For any algorithm and sufficiently large K, there
exists an episodic linear MDP MΞ with MNL preference
feedback such that the worst-case expected regret is lower
bounded as follows:

sup
Ξ

EΞ rRegret pMΞ,Kqs “ Ω
´

d
?
HK ` dlin

?
HK

¯

.

Discussion of Theorems 5.2 and 5.3. For sufficiently large
K, i.e., K ě Õ

`

d2H3{κ2`pdlinq10H9
˘

, the regret upper
bound for linear MDPs scales as Õpd

?
HK ` dlin

?
HKq,

which matches the lower bound up to logarithmic factors.
Note that if we rescale the rewards to be 1{H in the lower
bounds of Zhou et al. (2021a) to align with our setting, their
regret bound matches the second term of our regret bound,
Ωpdlin

?
HKq. To the best of our knowledge, this is the

first theoretical result proving minimax-optimality in linear
MDPs with preference feedback.

6. Numerical Experiment
In this section, we empirically evaluate the performance
of our algorithm, MNL-VQL, in two settings: a synthetic
environment (Subsection 6.1) and a real-world dataset (Sub-
section 6.2).

We compare our algorithm against two baselines: Myopic
and LSVI-UCB (Jin et al., 2020). Myopic is a variant of
OFU-MNL+ (Lee & Oh, 2024) adapted for unknown rewards.
It selects assortments based only on immediate rewards,
ignoring long-term effects. LSVI-UCB (Jin et al., 2020)
treats each assortment as a single atomic action, requiring
enumeration of all possible assortments. We also include
the optimal policy (Optimal) as a reference.

6.1. Synthetic Environment

Setup. We consider an online shopping with budget environ-
ment (Figure G.1), modeled as a linear MDP with an MNL
preference model. Let S “ ts1, . . . , s|S|u denote the set
of states and I “ ta1, . . . , aN , a0u the set of items, where
a0 represents the outside option (no purchase). Each state
sj P S corresponds to a user’s budget level, with larger
indices indicating a higher budget. The initial state is set to
the middle budget level, sr|S|{2s. The transition probabilities
Ph, rewards rh, and preference model Ph remain constant
across all time steps h P rHs, so we omit the subscript h.

At state sj , the agent offers an assortment A P A with a
maximum size of M . The user either purchases an item
ai P A or does not (a0 P A). If the user buys item ai, the
agent receives a reward rpsj , aiq “

´

i
100N `

j
|S|

¯

{H and
the state transitions according to Ppsminpj`1,|S|q|sj , aiq “

1 ´ i
N , and Ppsmaxpj´1,0q|sj , aiq “ i

N . If the user does
not buy anything (a0), the reward is rpsj , a0q “ 0, and
the state transitions as Ppsminpj`1,|S|q|sj , a0q “ 1. For the
MNL preference model, the true parameter θ‹ P Rd and the
feature vector ϕps, aq P Rd are randomly sampled from a
d-dimensional uniform distribution for each instance.

Results. Figure 1 demonstrates that our algorithm signifi-
cantly outperforms other baseline algorithms. Remarkably,
Myopic converges to a suboptimal solution, highlighting the
importance of accounting for long-term values. Moreover,
in Appendix Table G.1, we show that our algorithm is much
faster than others, especially when the total number of as-
sortments |A| is large. Due to the extremely slow runtime of
LSVI-UCB, we could not include its performance results for
N “ 20 and N “ 40. For more details, see Appendix G.

6.2. Real-World MovieLens Experiment

Setup. The MovieLens dataset contains 25 million ratings
on a 5-star scale for 62,000 movies (base items a) provided
by 162,000 users (u). We define the state s as the number
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MNL-VQL (ours) LSVI-UCB (holistic) Myopic (OFU-MNL+) Optimal

Figure 1: Synthetic experiment: Episodic returns averaged over 10 runs. Dotted lines indicate estimated returns for
incomplete runs due to excessive runtime. Shading denotes ˘1 standard deviation.
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N=100, |A|=166750
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MNL-VQL (ours) LSVI-UCB (holistic) Myopic (OFU-MNL+) Optimal

Figure 2: MovieLens experiment: The dotted lines represent estimated (virtual) episodic returns for cases that could not be
run due to excessively long runtimes. Shaded regions represent ˘1 standard deviation.

of movies a user u has watched after entering the system,
denoted by s “ pu, nq, where n P t0, . . . ,H ´ 1u is the
number of movies watched during the session. We interpret
the ratings as representing MNL utilities.

In each episode k, a user (uk) is randomly sampled and
arrives at the recommender system, initiating the state
sk1 “ puk, 0q. The agent offers a set of items with a maxi-
mum size of M . If the user clicks on an item, they receive a
reward of 1 and transition to the next state sk2 “ puk, 1q. If
no item is clicked, the user receives no reward and remains
in the current state (sk2 “ sk1). In addition, certain junk
items—such as those with a provocative title and poster but
poor content—can cause users to leave the system immedi-
ately. This is modeled as a transition to an absorbing state,
where no further rewards are received and the state remains
unchanged regardless of future actions. We believe the pres-
ence of such junk items is quite natural and reflective of
real-world recommendation environments.

For our experiments, we use a subset of the dataset con-
taining 1.1 ˆ 103 users and a varying number of movies,
N P t50, 100, 200u. To construct MNL features, we fol-
low a similar experimental setup as in Li et al. (2019), em-
ploying low-rank matrix factorization. For linear MDP
features, we apply the same approach as used in our syn-

thetic data experiments. We set the parameters as follows:
K “ 10000, H “ 3,M “ 4, |S| “ 100 ˚ pH ` 1q “ 400
(including the absorbing state), d “ 26 (MNL feature di-
mension), dlin “ 204 (Linear MDP feature dimension),
N P t50, 100, 200u (number of base items) and |A| “
řM´1

m“1

`

N
m

˘

P t20875, 166750, 1333500u. The proportion
of junk items is set to 30%.

Results. Consistent with the synthetic experiment results,
Figure 2 shows that our algorithm substantially outperforms
the baseline methods on the real-world dataset. This demon-
strates the robustness of our approach and its practical effec-
tiveness in realistic settings.

7. Conclusion
In this work, we study combinatorial RL with prefer-

ence feedback, extending MNL bandit problems to account
for the influence of user states and state transitions in ap-
plications like recommendation systems. Under an MNL
preference model with linear utilities and general function
approximation for item values, we propose an efficient al-
gorithm, MNL-VQL, which, to the best of our knowledge,
provides the first statistical guarantee. As a special case, in
linear MDPs, we show the minimax-optimality of MNL-VQL
by establishing matching upper and lower bounds.
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Appendix
A. Illustrative Explanation for Combinatorial RL with Preference Feedback
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Figure A.1: Illustration of combinatorial RL with preference feedback.

In this section, we provide additional explanation of our framework, combinatorial RL with preference feedback, for better
clarity. In this framework, at each episode, as a user arrives at the system (starting in the initial state, e.g., high loyalty),
a learning agent selects an assortment A (a set of items) and offers it to the user (the first figure in Figure A.1). The user
then chooses an item from the assortment A (the second figure in Figure A.1). The agent receives a reward, along with
preference (or choice) feedback, and transitions to the next state (e.g., lower loyalty) (the last figure in Figure A.1). This
process repeats until the episode concludes.

The key advantage of this framework is its ability to capture the long-term value of choosing an item by considering state
transitions and avoiding myopic decisions. For instance, in Figure A.1, a user may choose a junk item that provides a high
immediate reward. However, repeatedly recommending such items can lead to user fatigue, resulting in a transition to a state
of lower satisfaction or loyalty to the system, ultimately leading to a lower cumulative reward.

We compare our framework with other related works.

vs MNL bandits. Our framework can be considered as a multi-step extension of MNL bandits (Rusmevichientong et al.,
2010; Sauré & Zeevi, 2013; Agrawal et al., 2017; 2019; Oh & Iyengar, 2019; 2021; Perivier & Goyal, 2022; Agrawal et al.,
2023; Zhang & Sugiyama, 2024; Lee & Oh, 2024). In MNL bandits, there are no state transitions; thus, in Figure F.1, the
user exits the system immediately after receiving a reward.

Another important difference is that, in MNL bandits, the value (reward) of choosing an item is assumed to be known,
and the value of choosing the outside option a0 is always assumed to be zero. In contrast, in our framework, the value of
choosing an item is unknown due to the stochastic nature of rewards and transition probabilities. Additionally, we allow the
value of choosing the outside option a0 to be non-zero.

vs Cascading RL. In cascading RL (Du et al., 2024), the agent also selects a set of items, and state transitions are taken into
account when making decisions. However, these items are offered to the user one by one, and the user decides whether to
choose the currently offered item.

Cascading RL fundamentally differs from our framework because the user does not compare multiple items at once, so it
does not involve relative preference feedback. Another key distinction is that in cascading RL, the probability of choosing
each item is independent of the others in the chosen set of items In contrast, in our MNL preference model, the choice
probability of an item is influenced by the other items in the assortment.

vs PbRL. In preference-based RL (PbRL) (Akrour et al., 2012; Wirth et al., 2017; Christiano et al., 2017; Ouyang et al.,
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2022; Saha et al., 2023; Zhu et al., 2023; Zhan et al., 2023), the agent learns not from explicit numerical rewards, but through
preferences as feedback. The user is presented with two (or sometimes multiple) items and chooses a preferred one.

In our framework, if we treat the reward signal generated by the user’s choice as a preference signal instead of a numerical
reward, we can learn the policy based on user preferences, similar to PbRL, without relying on explicit rewards. However,
our framework differs fundamentally from PbRL because our goal is not just to offer a single item, but multiple items—a
combinatorial (base) action—at each timestep.

B. Efficient Bonus Oracle B using Online-subsampling
The guarantees of Algorithm 1 rely on a consistent bonus oracle, B, that satisfies Definition B.1.

Definition B.1 (Oracle B, Agarwal et al. 2023). For any ph, kq P rHs ˆ rKs, sequence of tσ̄τ
hu

k´1
τ“1 and dataset

Dk´1
h “ tpsτh, a

τ
h, r

τ
h, s

τ
h`1qu

k´1
τ“1, function class Fh with f̂h P Fh, βh, ρ ą 0, error parameter ϵb ě 0, the bonus or-

acle Bptσ̄τ
hu

k´1
τ“1,D

k´1
h ,Fh, f̂h, βh, ρ, ϵbq outputs a bonus function bhp¨q such that, for any zh “ psh, ahq P S ˆ I, we

have

• bh : S ˆ I Ñ R` belongs to a bonus function class W and denote Nb “ |W|.

• bhpzhq ě max

"

|fhpzhq ´ f̂hpzhq|, fh P Fh :
řk´1

τ“1
1

pσ̄τ
hq

2

´

fhpzτhq ´ f̂kh pzτhq

¯2

ďpβhq
2

*

.

• bhpzhq ď C ¨

ˆ

DFh

`

zh; tzτhu
k´1
τ“1, tσ̄

τ
hu

k´1
τ“1

˘

¨

b

pβhq
2

` ρ` ϵb ¨ βh

˙

with 0 ă C ă 8.

Further we say the oracle B is consistent if for any k ă k1 with consistent tσ̄τ
hu

k´1
τ“1 Ď tσ̄τ

hu
k1

´1
τ“1 , Dk´1

h Ď Dk1
´1

h , βk
h

non-decreasing in k for each h P rHs and f̂kh as defined in (3), it holds that Bptσ̄τ
hu

k´1
τ“1,D

k´1
h ,Fh, f̂

k
h , β

k
h, ρ, ϵbq ě

Bptσ̄τ
hu

k1
´1

τ“1 ,D
k1

´1
h ,Fh, f̂

k1

h , β
k1

h , ρ, ϵbq element-wise.

With the oracle B, we can efficiently calculate the optimistic Q-value estimate fkh with an error of ϵb.

To implement this oracle, we use the online sensitivity sub-sampling approach described by Agarwal et al. (2023), which
builds on the original sensitivity sub-sampling method proposed by Kong et al. (2021) and Wang et al. (2020).

For completeness, we include the sub-sampling procedure in Algorithm B.1 and show its guarantees in Proposition B.3. Let
z “ ps, aq P S ˆ I. We first define the weighted data set Z , where each element is pz, σ̄pzqq, and introduce the weighted
sensitivity score as follows:

sensitivityZ,F,γ,νpzq “ min

$

&

%

sup
f,f 1PF

1
σ̄2pzq

pfpzq ´ f 1pzqq
2

min
!

ř

z1PZ
1

σ̄2pz1q
pfpz1q ´ f 1pz1qq

2
, KpH`1q2

ν2

)

` γ2
, 1

,

.

-

.

Now we introduce the sub-sampling procedure.

Algorithm B.1 Online Sensitivity Sub-sampling with Weights

1: Inputs: function class F , current sub-sampled dataset Ẑ Ď S ˆ I, new state-action pair s, a, parameter γ, threshold
ν ą 0, failure probability δ.

2: Parameter: 1 ď C ă 8

3: Let pz be the smallest real number such that

1{pz is an integer and pz ě min
!

1, C ¨ sensitivityẐ,F,γ,νpzq ¨ logpKN {δq

)

.

4: Independently add 1{pz copies of pz, σ̄pzqq into Ẑ with probability pz .
5: Return: Ẑ .
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For the weighted dataset Zk´1
h “ tpsτh, a

τ
hq, σ̄τ

hu
k´1
τ“1, we defined }f}2Zk´1

h

“
ř

zPZk´1
h

1
σ̄2pzq

f2pzq, i.e., weighted sum

of ℓ2-norm square. We denote Ẑk´1
h as the dataset sub-sampled from Zk´1

h . At every pk, hq P rKs ˆ rHs, we call
Algorithm B.1 with the current sub-sampled dataset Ẑk´1

h and the new state action-pair zkh “ pskh, a
k
hq to generate the next

sub-sampled dataset Ẑk
h .

The following proposition shows that the distance of any two functions measured by the historical dataset Zk´1
h is well

approximated by the subsamping dataset Ẑk´1
h . Additionally, it shows that both the number of distinct elements in |Ẑk´1

h |

and its the total size (counting repetitions) do not scale with polypSq.

Proposition B.2 (Guarantees of online sensitivity sub-sampling, Proposition 13 of Agarwal et al. 2023). Let z “ ps, aq P

S ˆ I. When σ̄pzq ě ν for any z, then with probability at least 1 ´ δ, it holds that

sup
f1,f1:}f1´f2}2

Zk
h

ďγ2

|f1pzq ´ f2pzq| ď sup
f1,f1:}f1´f2}2

Ẑk
h

ď102γ2

|f1pzq ´ f2pzq|

ď sup
f1,f1:}f1´f2}2

Zk
h

ď104γ2

|f1pzq ´ f2pzq|.

Further, for any pk, hq P rKs ˆ rHs, the number of distinct elements in sub-sampled dataset Ẑk
h is always bounded by

O
`

log KN
δ ¨ maxhPrHs dimν,KpFhq

˘

and the total size of Ẑk
h is bounded by OpK3{δq.

We can assert that the predictive differences between the functions are preserved up to constant factors, while requiring
significantly less data. Then, the size of the bonus class W in Definition B.1 is bounded as follows:

Proposition B.3 (Implementing B using online-subsampling, Corollary 14 of Agarwal et al. 2023). There exists an algorithm
(see Algorithm B.1) such that, with probability at least 1 ´ δ, implements a consistent bonus oracle B with ϵb “ 0 for all
pk, hq P rKs ˆ rHs, where

log |W| ď O
ˆ

max
hPrHs

dimν,KpFhq ¨ log
KN
δ

log
K|S ˆ I|

δ

˙

.

C. Efficient combinatorial optimization
In this section, we explain how to solve the combinatorial optimization problem in (8), following the method outlined
in Davis et al. (2013); Ie et al. (2019).

To find an assortment A P A that maximizes the optimistic Q-value, a fundamental step in Q-learning and crucial for
inducing exploration, we must solve the following combinatorial optimization problem:

max
APA

ÿ

aPA

rPk
h,jpa|skh, Aqfkh,jpskh, aq, (C.1)

where rPk
h,j is the optimistic choice probability as defined in (7) (also in (D.17)), and fkh,j is the Q-value estimate (item-level

Q-values) as defined in (D.15).

Fix pk, h, s, jq P rKs ˆ rHs ˆ S ˆ t1, 2,´2u. For simplicity, we will abbreviate these indices. Accordingly, we denote
wa “ exp

`

rυkhpskh, aq
˘

or wa “ exp
`

qυkhpskh, aq
˘

, depending on the value of j. Additionally, let f̃a “ fkh,jpskh, aq for
simplicity.

We can then express the optimization problem in (C.1) in terms of w as fractional mixed-integer program (MIP), with binary
variables xa P t0, 1u for each item a P Izta0u, indicating whether a is included in the assortment A:

max
wa0

f̃a0
`
ř

aPIzta0u xawaf̃a

wa0
`
ř

a1PIzta0u xa1wa1

(C.2)

s.t.
ÿ

aPIzta0u

xa ď M ´ 1;

xa P t0, 1u, @a P Izta0u.
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By Chen & Hausman (2000), the binary indicator in the MIP can be relaxed, resulting in the following fractional linear
program (LP):

max
wa0

f̃a0
`
ř

aPIzta0u xawaf̃a

wa0
`
ř

a1PIzta0u xa1wa1

(C.3)

s.t.
ÿ

aPIzta0u

xa ď M ´ 1;

0 ď xa ď 1, @a P Izta0u.

Since this relaxed problem is a fractional linear program (LP), using the Charnes-Cooper method (Cooper et al., 1962), it
can be transformed into a (non-fractional) LP. To achieve this, we introduce additional variables:

t “
1

wa0
`
ř

a1PIzta0u xa1wa1

, ya “
xa

wa0
`
ř

a1PIzta0u xa1wa1

.

Then, we can obtain the following LP:

max
ÿ

aPIzta0u

f̃awaya ` f̃a0
wa0

t (C.4)

s.t.
ÿ

aPIzta0u

waya ` wa0t “ 1;

ÿ

aPIzta0u

ya ď pM ´ 1qt; t ě 0.

The optimal solution (y‹
a1
, . . . , y‹

aN
, t‹) to this LP in (C.4) provides the optimal xi values for the fractional LP in (C.3) by

setting xa “ y‹
a{t‹. This, in ture, determines the optimal assortment in the original fractional MIP (Equation (C.2)) by

including any item where y‹
a ą 0. Thus, the optimization problem is proven to be solvable in polynomial time.

D. Proof of Theorem 5.1
D.1. Notations and Preliminaries

In this subsection, for easy reference, we introduce notations and definitions used throughout the proof. The key notations
are summarized in Table D.1, and the specific parameter choices are listed in Table D.2.

Online parameter update and confidence interval for MNL preference model. We define the multinomial logistic loss
function at pk, hq P rKs ˆ rHs as follows:

ℓkhpθq :“ ´
ÿ

aPAk
h

ykhpaq logPhpa|skh, A
k
h;θq. (D.1)

To achieve constant-time parameter estimation, we use the online mirror descent algorithm to estimate the true parameter θ‹
h:

θk`1
h P argmin

θPΘ
x∇ℓkhpθk

hq,θy `
1

2η
}θ ´ θk

h}2
H̃k

h

, where Θ “
␣

θ P Rd : }θ}2 ď B
(

, (D.2)

where η “ 1
2 logpM ` 1q `B ` 1 is the step-size parameter, and the related matrices are defined as:

Hk
h :“ λId `

k´1
ÿ

τ“1

∇2ℓτhpθτ`1
h q,

H̃k
h :“ Hk

h ` η∇2ℓkhpθk
hq, (D.3)

where

∇2ℓkhpθq “
ÿ

aPAk
h

Phpa|skh, A
k
h;θqϕpskh, aqϕpskh, aqJ

´
ÿ

aPAk
h

ÿ

a1PAk
h

Phpa|skh, A
k
h;θqPhpa1|skh, A

k
h;θqϕpskh, aqϕpskh, a

1qJ.

16



Combinatorial Reinforcement Learning with Preference Feedback

Table D.1: Summary of notations

Notation Meaning Remark

S,A, I state space, action (assortment) space, item set
k, h k P rKs episode, h P rH ` 1s horizon

rkh, s
k
h, A

k
h, a

k
h reward, state, action and item at k, h

rh, sh, Ah, ah random reward, state, action and item h

z shorthand for state-item pair ps, aq

Q : S ˆ I Ñ R item-level Q-value function
Th, T 2

h Bellman operator and second-moment operator

Dk´1
h data set tpsτh, a

τ
h, r

τ
h, s

τ
h`1qu

k´1
τ“1

Fh function class for horizon h P rHs Ass. 3.3
F lin

h linear function class for horizon h P rHs Eqn. E.1
F lin

h pϵcq ϵc-cover of linear function class F lin
h

W bonus function class defined for bonus oracle B Def. B.1
ϵb error paremeter for bonus oracle
N maximal size of function class, i.e., maxhPrHs |Fh|

Nb size of bonus function class |W|

D2
F
`

z; tzτu
k´1
τ“1, tσ

τu
k´1
τ“1

˘

:“ supf1,f2,PF
pf1pzq´f2pzqq

2

řk´1
τ“1

1
pστ q2

pf1pzτ q´f2pzτ qq2`ρ
ρ param.

dimν,KpFq generalized Eluder dimension defined in Definition 3.5 ν param.

dν :“ 1
H

řH
h“1 dimν,KpFhq (Definition 3.5) ν param.

ℓkhpθq ´
ř

aPAk
h
ykhpaq logPhpa|skh, A

k
h;θq, loss for MNL model at k, h Eqn. D.1

Hk
h, H̃

k
h “ λId `

řk´1
τ“1 ∇2ℓτhpθτ`1

h q,“ Hk
h ` η∇2ℓkhpθk

hq, respectively Eqn. D.3
Ck
h confidence interval for MNL model at k, h Eqn. D.5

fkh,1 optimistic Q at k, h

f̂kh,1 solution of fitting weighted regression at k, h Eqn. D.7

Fk
h,1 version space of optimistic Q at k, h Eqn. D.8

fkh,˘2 overly optimistic (pessimistic) Q at k, h

f̂kh,˘2 solution of fitting unweighted regression at k, h Eqn. D.11

Fk
h,˘2 version space of overly optimistic (pessimistic) Q at k, h Eqn. D.12
ĝkh solution of fitting second-moment regression at k, h Eqn. D.13
Gk
h version space of second-moment estimates at k, h Eqn. D.14

Eθ event that tθ‹
h P Ck

h for all k ě 1 and all h P rHsu

Ek
h event that tThV k

h`1,j P Fk
h,j for j “ 1,˘2 and T 2

h V
k
h`1,1 P Gk

hu Ass. 3.3

Eďk joint event that
Şk

τ“1

ŞH
h“1 Eτ

h

rυkhpskh, aq, qυkhpskh, aq optimistic (pessimistic) utility defined in (6)
rPk
hpa|s,Aq optimistic choice probability defined in (7)

Qk
h,jps,Aq :“

ř

aPA
rPk
h,jpa|s,Aqfkh,jps, aq for j “ 1,˘2

V k
h,jpsq :“ maxAPAQ

k
h,jps,Aq for j “ 1,˘2

Ak
h,j P argmaxAPA

ř

aPA
rPk
h,jpa|skh, Aqfkh,jpskh, aq for j “ 1,˘2

Ak
h chosen assortment at k, h by assortment selection rule in (9)

Qk
hps,Aq, V k

h psq realized optimistic values determined by (D.18) Eqn. 9
hk random h when first taking action Ak

h,2 at k, i.e., Ak
h “ Ak

h,2 Eqn. 9
Ko,Koo disjoint subsets of rKs when hk “ H ` 1 or hk P rHs Eqn. 9
bkh,j bonus term obtained in Line 8 and 11 using B Def. B.1

EPr¨|skh, a
k
hs,VPr¨|skh, a

k
hs Esh`1„Php¨|skh,a

k
hqr¨|skh, a

k
hs,Vsh`1„Php¨|skh,a

k
hqr¨|skh, a

k
hs

EP r¨|skh, A
k
hs Eah„Php¨|skh,A

k
hqr¨|skh, A

k
hs

17



Combinatorial Reinforcement Learning with Preference Feedback

Table D.2: Summary of parameter choices

Notation Choice Remark

δ δ P p0, 1{pH2 ` 15qq

δkh δ{ ppK ` 1qpH ` 1qq

η 1
2 logpM ` 1q `B ` 1, step-size parameter for OMD Eqn. D.2

λ 84
?
2dη, regularization parameter

αk
h Op

?
d log k logMq, confidence radius of Ck

h Eqn. D.6
ϵc error due to taking covering of function class

ν
a

1{KH Def. 3.5
ρ 1 Def. 3.5

opδq

b

log N 2p2 logp4LK{νq`2qplogp8L{ν2q`2q

δ

ιpδq 3
b

log NNbp2 logp4LK{νq`2qplogp8L{ν2q`2q

δ

βk
h,1

b

`

6
?
ρ` 156

˘

¨ log
N 2pK`1qpH`1qp2 log 4LK

ν `2qplog 8L
ν2 `2q

δ ,
confidence radius of Fk

h,1 Eqn. D.8

ι1pδq

b

2 log NNbp2 logp18LKq`2qplogp18Lq`2q

δ

βk
h,2

b

2p24L` 21qpι1pδkhqq2, confidence radius of Fk
h,˘2 Eqn. D.12

ι2pδq

b

2 log NNbp2 logp32LKq`2qplogp32Lq`2q

δ

β̄k
h

b

8p11L` 9qpι2pδkhqq2, confidence radius of Gk
h Eqn. D.14

`

σk
h

˘2
min

"

4, ĝkhpzkhq ´

´

f̂kh,´2pzkhq

¯2

Eqn. 4

`D2
Fh

`

zkh; tzτhu
k´1
τ“1, t1

τu
k´1
τ“1

˘

¨

˜

b

`

β̄k
h

˘2
` ρ` 2L

c

´

βk
h,2

¯2

` ρ

¸

*

σ̄k
h max

"

σk
h, ν,

?
2ιpδkhq

b

fkh,2pzkhq ´ fkh,´2pzkhq,

2
´
b

opδkhq ` ιpδkhq

¯

¨

b

DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄

τ
hu

k´1
τ“1

˘

*

Eqn. D.7

uk C ¨

˜

b

log NKH
νδ ¨

´

log NNbKH
νδ ¨H5{2

?
dν `

?
kHϵb

¯

`dH5{2 logK logM
b

log NNbKH
νδ

¸

{
?
k for C ą 0 Eqn. 9

By a standard online mirror descent formulation (Orabona, 2019), (D.2) can be solved using a single projected gradient step
through the following equivalent formula:

θ̄k`1
h “ θk

h ´ η
´

H̃k
h

¯´1

∇ℓkhpθk
hq, and θk`1

h P argmin
θPΘ

}θ ´ θ̄k`1
h }H̃k

h
, (D.4)

which enjoys a computational cost of only OpMd3q, completely independent of k (Mhammedi et al., 2019; Zhang &
Sugiyama, 2024; Lee & Oh, 2024).

We define the confidence interval at pk, hq P rKs ˆ rHs as follows:

Ck
h :“

!

θ P Θ :
›

›θ ´ θk
h

›

›

Hk
h

ď αk
h

)

, (D.5)
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where the radius of the confidence interval Ck
h is as follows:

αk
h “

g

f

f

e2η

˜

11 ¨ p3 logp1 ` pM ` 1qkq `B ` 2q log

ˆ

2
?
1 ` 2k

δ

˙

` 2 `
7

?
6

6
dη log

ˆ

1 `
k ` 1

2λ

˙

` 2

¸

` 4λB2

(D.6)

Then, we define the optimistic and pessimistic utility as follows:

rυkhps, aq :“ ϕps, aqJθk
h ` αk

h}ϕps, aq}
pHk

hq
´1 , qυkhps, aq :“ ϕps, aqJθk

h ´ αk
h}ϕps, aq}

pHk
hq

´1 ,

Regression and confidence intervals for item-level functions. In this paper, we define N :“ maxhPrHs |Fh| as the
maximum size of the function classes F1, . . . ,FH and Nb “ |W| as the size of the bonus function class W .

For all pk, hq P rKs ˆ rHs, the weighted regression problem for fitting the optimistic item-level Q-functions, Q, along with
the version space of these functions, is defined as:

f̂kh,1 P argmin
fhPFh

k´1
ÿ

τ“1

1

pσ̄τ
hq

2

`

fhpsτh, a
τ
hq ´ rτh ´ V k

h`1,1psτh`1q
˘2
, (D.7)

Fk
h,1 :“

#

fh P Fh :
k´1
ÿ

τ“1

1

pσ̄τ
hq

2

´

fhpsτh, a
τ
hq ´ f̂kh,1psτh, a

τ
hq

¯2

ď
`

βk
h,1

˘2

+

. (D.8)

Let zkh “ pskh, a
k
hq. The parameters are as follows (for k ě 2):

`

σk
h

˘2
:“ min

#

4, ĝkhpzkhq ´

´

f̂kh,´2pzkhq

¯2

`DFh

`

zkh; tzτhu
k´1
τ“1, t1

τu
k´1
τ“1

˘

¨

˜

b

`

β̄k
h

˘2
` ρ`

c

´

βk
h,2

¯2

` ρ

¸+

, (D.9)

σ̄k
h :“ max

"

σk
h, ν,

?
2ιpδkhq

b

fkh,2pzkhq ´ fkh,´2pzkhq,

2

ˆ

b

opδkhq ` ιpδkhq

˙

¨

b

DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄

τ
hu

k´1
τ“1

˘

*

, (D.10)

βk
h,1 :“

d

p6
?
ρ` 156q ¨ log

N 2pK ` 1qpH ` 1qp2 log 4LK
ν ` 2qplog 8L

ν2 ` 2q

δ
,

opδkhq :“

d

log
N 2p2 logp4LK{νq ` 2qplogp8L{ν2q ` 2q

δkh
, δkh :“

δ

pK ` 1qpH ` 1q
,

ιpδkhq :“ 3

d

log
NNbp2 logp4LK{νq ` 2qplogp8L{ν2q ` 2q

δkh
.

For all pk, hq P rKs ˆ rHs, the unweighted regression for fitting overly optimistic and overly pessimistic item-level
Q-functions, along with the version space of them, is defined as follows:

f̂kh,˘2 P argmin
fhPFh

k´1
ÿ

τ“1

`

fhpsτh, a
τ
hq ´ rτh ´ V k

h`1,˘2psτh`1q
˘2
, (D.11)

Fk
h,˘2 :“

#

fh P Fh :
k´1
ÿ

τ“1

´

fhpsτh, a
τ
hq ´ f̂kh,˘2psτh, a

τ
hq

¯2

ď
`

βk
h,2

˘2

+

. (D.12)
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We choose the parameters as follows:

βk
h,2 :“

b

2p24L` 21qpι1pδkhqq2,

ι1pδkhq :“

d

2 log
NNbp2 logp18LKq ` 2qplogp18Lq ` 2q

δkh
, δkh :“

δ

pK ` 1qpH ` 1q
.

For all pk, hq P rKs ˆ rHs, the unweighted regression for fitting second-moment function values to item-level Q-functions,
and their version space, is as follows:

ĝkh P argmin
ghPFh

k´1
ÿ

τ“1

´

ghpsτh, a
τ
hq ´

`

rτh ` V k
h`1,1psτh`1q

˘2
¯2

, (D.13)

Gk
h :“

#

gh P Fh :
k´1
ÿ

τ“1

`

ghpsτh, a
τ
hq ´ ĝkhpsτh, a

τ
hq
˘2

ď
`

β̄k
h

˘2

+

. (D.14)

We choose the parameters as follows:

β̄k
h :“

b

8p11L` 9qpι2pδkhqq2,

ι2pδkhq :“

c

2 log
NNbp2 logp32LKq ` 2qplogp32Lq ` 2q

δ
, δkh :“

δ

pK ` 1qpH ` 1q
.

Given the center of the constructed confidence intervals, f̂kh,j for j “ 1,˘2, we define the optimistic, overly optimistic, and
overly pessimistic Q-values as follows:

fkh,1p¨, ¨q :“ min
!

f̂kh,1p¨, ¨q ` bkh,1p¨, ¨q, 1
)

,

fkh,2p¨, ¨q :“ min
!

f̂kh,2p¨, ¨q ` 2bkh,1p¨, ¨q ` bkh,2p¨, ¨q, 1
)

,

fkh,´2p¨, ¨q :“ max
!

f̂kh,´2p¨, ¨q ´ bkh,2p¨, ¨q, 0
)

. (D.15)

Good events. We define the following good events:

Eθ :“
␣

@k ě 1,@h P rHs : θ‹
h P Ck

h

(

, (D.16)

EďK :“
ŞK

k“1

ŞH
h“1 E

k
h ,

Ek
h :“ Ek

h,1

Ş

Ek
h,2

Ş

Ek
h,´2

Ş

Ēk
h ,

where Ek
h,j :“

!

ThV k
h`1,1 P Fk

h,j

)

for j “ 1,˘2, and Ēk
h :“

!

T 2
h V

k
h`1,1 P Gk

h

)

.

Optimistic Q-values. For pk, h, s, Aq P rKs ˆ rHs ˆ S ˆ A and for j “ 1,˘2, we define the optimistic choice probability
as follows:

rPk
h,jpa|s,Aq :“

$

’

’

’

&

’

’

’

%

exp
`

rυkhps, aq
˘

ř

a1PA exp
`

rυkhps, a1q
˘ , if Da P Izta0u s.t. fkh,jps, aq ě fkh,jps, a0q

exp
`

qυkhps, aq
˘

ř

a1PA exp
`

qυkhps, a1q
˘ , otherwise,

(D.17)

where

rυkhps, aq :“ ϕps, aqJθk
h ` αk

h}ϕps, aq}
pHk

hq
´1 , qυkhps, aq :“ ϕps, aqJθk

h ´ αk
h}ϕps, aq}

pHk
hq

´1 .

Next, we define the optimistic Q-values for j “ 1,˘2, each constructed using fkh,j and rPk
h,j :

Qk
h,jps,Aq “

ÿ

aPA

rPk
h,jpa|s,Aqfkh,jps, aq, V k

h,jpsq “ max
APA

Qk
h,jps,Aq.

20



Combinatorial Reinforcement Learning with Preference Feedback

For convenience, we also define the realized optimistic value functions at pk, hq P rKs ˆ rHs as follows:

Qk
hps,Aq :“

#

Qk
h,1ps,Aq if Ak

h “ Ak
h,1,

Qk
h,2ps,Aq otherwise,

V k
h psq “ max

APA
Qk

hps,Aq, (D.18)

where Ak
h is the assortment offered to the user by the assortment selection rule in (9) (or equivalently in (D.19)). Therefore,

we write πk
hpskhq “ argmaxAPAQ

k
hpskh, Aq.

Design of exploration policy. At each episode k, the agent collects data using both Ak
h,1 and Ak

h,2, where Ak
h,j P

argmaxAPA
ř

aPA
rPk
h,jpa|skh, Aqfkh,jpskh, aq for j “ 1, 2. Given a sequence of pre-specified tukuKk“1, at episode k, the

agent select an assortment based on the following rule:

Ak
h “

#

Ak
h,1 if fkh1,1pskh1 , ah1 q ě fkh1,2pskh1 , ah1 q ´ uk, @ah1 P Ak

h1,1,@h
1 ď h.

Ak
h,2 otherwise,

(D.19)

where

uk “ O

¨

˚

˝

b

log NKH
νδ ¨

´

log NNbKH
νδ ¨H5{2

?
dν `

?
kHϵb

¯

` dH5{2 logK logM
b

log NNbKH
νδ

?
k

˛

‹

‚

. (D.20)

We denote hk P rH `1s as the (random) horizon at which the agent first begins offering the assortment Ak
h,2. More formally,

for h ď hk, the assortment offered is Ak
h “ Ak

h,1, and for h ě hk, the assortment offered is Ak
h “ Ak

h,2. We then divide the
set of episodes rKs into two disjoint subsets: Ko and Koo, such that

Ko :“ tk P rKs : hk “ H ` 1u, and Koo :“ tk P rKs : hk ď Hu.

Later in the proof, we separately bound the regret for each case.

Other notations. Throughout the proof, we use z “ ps, aq, zh “ psh, ahq and zkh “ pskh, a
k
hq interchangeably. We

sometimes use Php¨|s,A;θ‹
hq instead of Php¨|s,Aq to explicitly indicate the dependence on the parameter θ‹

h. For simplicity,
we denote EPr¨|skh, a

k
hs “ Esh`1„Php¨|skh,a

k
hqr¨|skh, a

k
hs, VPr¨|skh, a

k
hs “ Vsh`1„Php¨|skh,a

k
hqr¨|skh, a

k
hs, and EP r¨|skh, A

k
hs “

Eah„Php¨|skh,A
k
hqr¨|skh, A

k
hs.

D.2. Confidence Intervals and good events

In this subsection, we show that, given the construction of confidence intervals Ck
h and Fk

h,j for j “ 1,˘2, the good events
Eθ and EďK occurs with high probability.
Proposition D.1 (Online parameter confidence interval, Lemma 1 of Lee & Oh 2024). Let δ P p0, 1q. Under Assumption 3.1,
for the confidence interval defined in (2) with

αk
h “

g

f

f

e2η

˜

11 ¨ p3 logp1 ` pM ` 1qkq `B ` 2q log

ˆ

2
?
1 ` 2k

δ

˙

` 2 `
7

?
6

6
dη log

ˆ

1 `
k ` 1

2λ

˙

` 2

¸

` 4λB2

` 16

ˆ

log

ˆ

2
?
1 ` 2k

δ

˙˙2˙

`
7

?
6

6
dη log

ˆ

1 `
k ` 1

2λ

˙

` 2

¸

` λB2

ff1{2

“ Op
?
d log k logMq,

η “ 1
2 logpM ` 1q `B ` 1 and λ “ 84

?
2dη, and for any h P rHs, we have

Prr@k ě 1,θ‹
h P Ck

hs ě 1 ´ δ.

Now, we define the good event for the preference model Eθ as follows:

Eθ :“
␣

@k ě 1,@h P rHs : θ‹
h P Ck

h

(

.

Then, by applying proposition D.1 and using a union bound over h P rHs, we obtain the following corollary:
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Corollary D.2 (Good event for MNL preference model). Under the same assumption and settings as in Proposition D.1,
for δ P p0, 1q, with probability at least 1 ´ δ, the good event for the preference model Eθ happens, i.e., θ‹

h P Ck
h for all k ě 1

and all h P rHs.

The following proposition shows that ThV k
h`1,j for j “ 1,˘2, and T 2

h V
k
h`1,1 lie within their respective confidence intervals.

Proposition D.3 (Good event for general functions, Proposition 33 of Agarwal et al. 2023). Suppose Algorithm 1 uses
a consistent bonus oracle satisfying Definition B.1. Let δ P p0, 1{5q. Then, with probability at least 1 ´ 5δ, the good
event EďK “

ŞK
k“1

ŞH
h“1 Ek

h happens, that is, ThV k
h`1,1 P Fk

h,1, ThV k
h`1,˘2 P Fk

h,˘2, and T 2
h V

k
h`1,1 P Gk

h for all
pk, hq P rKs ˆ rHs.

D.3. Bound for MNL Preference Model

In this subsection, we provide proofs for several properties of the MNL preference model.

The following lemma presents both the optimistic and pessimistic utilities.

Lemma D.4. For any pk, h, s, aq P rKs ˆ rHs ˆ S ˆ I , let rυkhps, aq :“ ϕps, aqJθk
h ` αk

h}ϕps, aq}
pHk

hq
´1 and qυkhps, aq “

ϕps, aqJθk
h ´ αk

h}ϕps, aq}
pHk

hq
´1 . Under the good event Eθ defined in (D.16), it holds that

0 ď rυkhps, aq ´ ϕps, aqJθ‹
h ď 2αk

h}ϕps, aq}
pHk

hq
´1 ,

and 0 ď ϕps, aqJθ‹
h ´ qυkhps, aq ď 2αk

h}ϕps, aq}
pHk

hq
´1 .

Proof of Lemma D.4. Conditioning on the good event Eθ holds, we have

ˇ

ˇϕps, aqJθk
h ´ ϕps, aqJθ‹

h

ˇ

ˇ ď }ϕps, aq}
pHk

hq
´1

›

›θk
h ´ θ‹

h

›

›

Hk
h

ď αk
h }ϕps, aq}

pHk
hq

´1 ,

where the first inequality holds by Hölder’s inequality, and the last inequality holds by Corollary D.2. Therefore, it follows
that

rυkhps, aq ´ ϕps, aqJθ‹
h “ ϕps, aqJθk

h ´ ϕps, aqJθ‹
h ` αk

h}ϕps, aq}
pHk

hq
´1

ď 2αk
h }ϕps, aq}

pHk
hq

´1 .

Furthermore, since ϕps, aqJθk
h ´ ϕps, aqJθ‹

h ě ´αk
h }ϕps, aq}

pHk
hq

´1 , we also get

rυkhps, aq ´ ϕps, aqJθ‹
h “ ϕps, aqJθk

h ´ ϕps, aqJθ‹
h ` αk

h}ϕps, aq}
pHk

hq
´1 ě 0.

The second statement directly follows from the results mentioned above.

Lemma D.5 is useful for proving optimism (Lemma D.15) and bounding the approximation error of the optimistic Q
(Lemma D.20).

Lemma D.5. For all pk, h, s, Aq P rKs ˆ rHs ˆ S ˆ A and any j P t1, 2u, under the good event Eθ defined in (D.16),
there exists a subset Ã Ď A such that Ã P A and

max

#

ÿ

aPA

Phpa|s,Aqfkh,jps, aq,
ÿ

aPA

rPk
h,j1 pa|s,Aqfkh,jps, aq

+

ď
ÿ

aPÃ

rPk
h,jpa|s, Ãqfkh,jps, aq,

where j1 ‰ j.

Proof of Lemma D.5. First, recall that, without loss of generality, we assumed that ϕps, a0q “ 0 for all s P S. Therefore,
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the true preference model and the optimistic preference model can be written as

Phpa|s,Aq “
exp

`

ϕps, aqJθ‹
h

˘

1 `
ř

a1PAzta0u exp pϕps, a1qJθ‹
hq
,

rPk
h,jpa|s,Aq “

$

’

’

’

&

’

’

’

%

exp
`

rυkhps, aq
˘

1 `
ř

a1PAzta0u exp
`

rυkhps, a1q
˘ , if Da P Izta0u s.t. fkh,jps, aq ě fkh,jps, a0q

exp
`

qυkhps, aq
˘

1 `
ř

a1PAzta0u exp
`

qυkhps, a1q
˘ , otherwise.

(D.21)

Fix s P S and A P A. We now present the proof by considering two cases: (i) fkh,jps, a0q ą fkh,jps, aq for all a P A and (ii)
Da P Azta0u such that fkh,jps, a0q ď fkh,jps, aq.

Case (i) fkh,jps, a0q ą fkh,jps, aq for all a P A.
We denote ã P argmaxaPAzta0u f

k
h,jps, aq. Let Ã “ ta0, ãu. Since fkh,jps, a0q ą fkh,jps, aq for all a P A and a0 is always

included in A, removing any item a P Azta0u from A increases the expected value of fkh,j . Thus, we get
ÿ

aPA

Phpa|s,Aqfkh,jps, aq ď
ÿ

aPÃ

Phpa|s, Ãqfkh,jps, aq

and
ÿ

aPA

rPk
h,j1 pa|s,Aqfkh,jps, aq ď

ÿ

aPÃ

rPk
h,j1 pa|s, Ãqfkh,jps, aq. (D.22)

By the definition of rPk
h,j in (7), we use the pessimistic utility qυkhps, aq in this case. Since qυkhps, aq ď ϕps, aqJθ‹

h by
Lemma D.4, using this utility, qυkhps, aq, reduces the probability of selecting ã (compared to the true choice probability Ph).
Moreover, we know that fkh ps, a0q ě fkh ps, ãq, we have

ÿ

aPÃ

Phpa|s, Ãqfkh,jps, aq ď
ÿ

aPÃ

rPk
h,jpa|s, Ãqfkh,jps, aq. (D.23)

Furthermore, if rPk
h,j1 is constructed using the pessimistic utility qυkhps, aq, then, rPk

h,j1 “ rPk
h,j . However, if rPk

h,j1 is
constructed using the optimistic utility rυkhps, aq, replacing rυkhps, aq with qυkhps, aq (which is equivalent to replacing rPk

h,j1

with rPk
h,j ) decreases the probability of choosing ã, meaning increase the expected value of fkh,j . Thus, we get

ÿ

aPÃ

rPk
h,j1 pa|s, Ãqfkh,jps, aq ď

ÿ

aPÃ

rPk
h,jpa|s, Ãqfkh,jps, aq. (D.24)

Combining (D.22), (D.23), and (D.24), we have

max

#

ÿ

aPA

Phpa|s,Aqfkh,jps, aq,
ÿ

aPA

rPk
h,j1 pa|s,Aqfkh,jps, aq

+

ď
ÿ

aPÃ

rPk
h,jpa|s, Ãqfkh,jps, aq.

Case (ii) Da P Azta0u such that fkh,jps, a0q ď fkh,jps, aq.

Let Ã “

!

A1 Ď A : fkh,jps, aq ě fkh,jps, a0q,@a P A1

)

. Note that |Ã| ě 2 and a0 P Ã by definition of action space A. By

selecting Ã instead of A, we exclude items with the small values of fkh,jps, aq, thereby increasing the expected value of fkh,j ,
i.e.,

ÿ

aPA

Phpa|s,Aqfkh,jps, aq ď
ÿ

aPÃ

Phpa|s, Ãqfkh,jps, aq

and
ÿ

aPA

rPk
h,j1 pa|s,Aqfkh,jps, aq ď

ÿ

aPÃ

rPk
h,j1 pa|s, Ãqfkh,jps, aq. (D.25)

By the definition of rPk
h,j in (7), we use the optimistic utility rυkhps, aq in this case. Since ϕps, aqJθ‹

h ď rυkhps, aq by
Lemma D.4, this choice of utility increases the probability of choosing item a ‰ Ãzta0u compared to the true Ph), implying
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that
ÿ

aPÃ

Phpa|s, Ãqfkh,jps, aq ď
ÿ

aPÃ

rPk
h,jpa|s, Ãqfkh,jps, aq. (D.26)

Moreover, if rPk
h,j1 is constructed using the pessimistic utility qυkhps, aq, replacing qυkhps, aq with rυkhps, aq (which is equivalent

to replacing rPk
h,j1 with rPk

h,j ) increases the probability of choosing item a ‰ Ãzta0u. However, if rPk
h,j1 is constructed using

the optimistic utility rυkhps, aq, we have rPk
h,j “ rPk

h,j1 . To this end, we get
ÿ

aPÃ

rPk
h,j1 pa|s, Ãqfkh,jps, aq ď

ÿ

aPÃ

rPk
h,jpa|s, Ãqfkh,jps, aq. (D.27)

Combining (D.25), (D.26), and (D.27), we have

max

#

ÿ

aPA

Phpa|s,Aqfkh,jps, aq,
ÿ

aPA

rPk
h,j1 pa|s,Aqfkh,jps, aq

+

ď
ÿ

aPÃ

rPk
h,jpa|s, Ãqfkh,jps, aq.

This concludes the proof of Lemma D.5.

Denote Jpk, hq P t1, 2u as the chosen index of function fkh,j at pk, hq. Then, we show that the value estimates for the chosen
assortment, fkh,Jpk,hq

pskh, aq for all a P Ak
h, are greater than equal to

ř

aPAk
h
Pk
h,Jpk,hq

pa|s,Ak
hqfkh,Jpk,hq

pskh, aq.

Lemma D.6. For any pk, hq P rKs ˆ rHs, let Jpk, hq : K ˆ rHs Ñ t1, 2u be the one-to-one function that maps from
K ˆ rHs to the index set t1, 2u such that Ak

h “ Ak
h,Jpk,hq

P argmaxAPA
ř

aPA
rPk
h,Jpk,hq

pa|skh, Aqfkh,Jpk,hq
pskh, aq. Then,

under the good event Eθ defined in (D.16), we have

fkh,Jpk,hqpskh, aq ě
ÿ

aPAk
h

Phpa|skh, A
k
hqfkh,Jpk,hqpskh, aq, @a P Ak

h.

Proof of Lemma D.6. By Lemma D.5, there exists a subset Ã Ď Ak
h and Ã P A such that

ÿ

aPAk
h

Phpa|skh, A
k
hqfkh,Jpk,hqpskh, aq ď

ÿ

aPÃ

rPk
h,Jpk,hqpa|skh, Ãqfkh,Jpk,hqpskh, aq

ď
ÿ

aPAk
h

rPk
h,Jpk,hqpa|skh, A

k
hqfkh,Jpk,hqpskh, aq,

where the second inequality holds the assortment selection rule. Thus, it is sufficient to show that fkh,Jpk,hq
pskh, aq ě

ř

aPAk
h

rPk
h,Jpk,hq

pa|skh, A
k
hqfkh,Jpk,hq

pskh, aq for all a P Ak
h.

We prove this by contradiction. Suppose there exists an item a P Ak
h such that

fkh,Jpk,hqpskh, aq ă
ÿ

aPAk
h

rPk
h,Jpk,hqpa|skh, A

k
hqfkh,Jpk,hqpskh, aq.

If we remove item a from the assortment Ak
h, it would result in higher value. This contradicts the optimality of Ak

h. Hence,
we conclude

fkh,Jpk,hqpskh, aq ě
ÿ

aPAk
h

rPk
h,Jpk,hqpa|skh, A

k
hqfkh,Jpk,hqpskh, aq,

which completes the proof.

Lemma D.7 is an elliptical potential lemma used for bounding the regret incurred from the MNL preference model
(Lemma D.10 and D.13).
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Lemma D.7 (Elliptical potential lemma, Lemma E.2 and H.3 of Lee & Oh 2024). Assume that λ ě 2 and ϕps, a0q “ 0 for
all s P S. For any pk, h, aq P rKs ˆ rHs ˆ I, we define rϕpskh, aq “ ϕpskh, aq ´ Ea1„Php¨|skh,A

k
h;θ

k`1
h qrϕpskh, aqs. Then, for

Hk
h defined in (D.3), and for any h P rHs, the following statements hold true:

k
ÿ

τ“1

ÿ

aPAτ
h

Ph

`

a|sτh, A
τ
h;θ

τ`1
h

˘

Ph

`

a0|sτh, A
τ
h;θ

τ`1
h

˘

}ϕpsτh, aq}2
pHτ

hq
´1 ď 2d log

ˆ

1 `
k

dλ

˙

,

k
ÿ

τ“1

ÿ

aPAτ
h

Ph

`

a|sτh, A
τ
h;θ

τ`1
h

˘

}rϕpsτh, aq}2
pHτ

hq
´1 ď 2d log

ˆ

1 `
k

dλ

˙

,

k
ÿ

τ“1

max

"

max
aPAτ

h

}ϕpsτh, aq}2
pHτ

hq
´1 ,max

aPAτ
h

}rϕpsτh, aq}2
pHτ

hq
´1

*

ď
2

κ
d log

ˆ

1 `
k

dλ

˙

.

Lemma D.8 is used to derive the tight bound for the second-order regret term of the MNL preference model (LemmaD.13).

Lemma D.8 (Lemma E.3 of Lee & Oh 2024). Let M P Z`. Define R : RM Ñ R, such that for any υ “ pυ1, . . . , υM q P

RM , Rpυq “
řM

m“1
exppυmq

1`
řM

l“1 exppυlq
. Let pmpυq “

exppυmq

1`
řM

l“1 exppυlq
. Then, for all m P rM s, we have

ˇ

ˇ

ˇ

ˇ

B2R

BmBn

ˇ

ˇ

ˇ

ˇ

ď

#

3pmpυq if m “ n,

2pmpυqpnpυq if m ‰ n.

Lemma D.9 is crucial for deriving the κ-improved bound for the MNL preference model (LemmaD.13), enabling the
analysis.

Lemma D.9 (Overly optimistic choice probability). We define

«

Pk
h,jpa|s,Aq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

exp
´

ϕps, aqJθ‹
h ` 2αk

h}ϕps, aq}
pHk

hq
´1

¯

ř

a1PA exp
´

ϕps, a1qJθ‹
h ` 2αk

h}ϕps, a1q}
pHk

hq
´1

¯ , if Da P Izta0u s.t.

fkh,jps, aq ě fkh,jps, a0q,

exp
´

ϕps, aqJθ‹
h ´ 2αk

h}ϕps, aq}
pHk

hq
´1

¯

ř

a1PA exp
´

ϕps, a1qJθ‹
h ´ 2αk

h}ϕps, a1q}
pHk

hq
´1

¯ , otherwise.

(D.28)

Let Ak
h,j P argmaxAPA

ř

aPA
rPk
h,jpa|skh, Aqfkh,jpskh, aq, where j P t1, 2u. Then, under the good event Eθ, for all pk, h, jq P

rKs ˆ rHs ˆ t1, 2u, we have
ÿ

aPAk
h,j

rPk
h,jpa|skh, A

k
h,jqfkh,jpskh, aq ď

ÿ

aPAk
h,j

«

Pk
h,jpa|skh, A

k
h,jqfkh,jpskh, aq.

Proof of Lemma D.9. Fix pk, h, jq P rKs ˆ rHs ˆ t1, 2u. We consider the two cases: (i) fkh,jpskh, a0q ą fkh,jpskh, aq for all
a P I and (ii) Da P Izta0u such that fkh,jpskh, a0q ď fkh,jpskh, aq.

Case (i) fkh,jpskh, a0q ą fkh,jpskh, aq for all a P I.
Recall that, by the definition of rPk

h,j in (7), we use the pessimistic utility qυkhps, aq to construct rPk
h,j in this case. Note that

the outside option a0 must be included in the assortment, i.e., a0 P Ak
h. Moreover, under the event Eθ, by Lemma D.4, we

have

qυkhpskh, aq ě ϕpskh, aqJθ‹
h ´ 2αk

h}ϕpskh, aq}
pHk

hq
´1 .

Thus, since we assume, without loss of generality, that ϕpskh, a0q “ 0 (refer (D.21)), using
«

Pk
h,j instead of rPk

h,j decreases
the probability of choosing any item a P Ak

hzta0u. As a result, the expected value of fkh,j increases, since fkh,jps, a0q ě
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fkh,jps, aq for all a P Ak
h. Formally, we have

ÿ

aPAk
h,j

rPk
h,jpa|skh, A

k
h,jqfkh,jpskh, aq ď

ÿ

aPAk
h,j

«

Pk
h,jpa|skh, A

k
h,jqfkh,jpskh, aq.

Case (ii) Da P Izta0u such that fkh,jpskh, a0q ď fkh,jpskh, aq.
First, we show that for all a P Ak

hzta0u, we have fkh,jpskh, aq ě
ř

aPAk
h,j

rPk
h,jpa|skh, A

k
h,jqfkh,jpskh, aq. Suppose that

there exists a P Ak
hzta0u for which fkh,jpskh, aq ă

ř

aPAk
h,j

rPk
h,jpa|skh, A

k
h,jqfkh,jpskh, aq. Then, removing item a from the

assortment Ak
h results in the increase in the expected value of fkh,j . Consequently, this contradicts the optimality of Ak

h.
Hence, we get

fkh,jpskh, aq ě
ÿ

aPAk
h,j

rPk
h,jpa|skh, A

k
h,jqfkh,jpskh, aq, @a P Ak

hzta0u.

On the other hand, recall that, by the definition of rPk
h,j in (7), we use the pessimistic utility rυkhps, aq to construct rPk

h,j in this
case. Furthermore, by Lemma D.4, we know that

rυkhpskh, aq ď ϕpskh, aqJθ‹
h ` 2αk

h}ϕpskh, aq}
pHk

hq
´1 .

If we increase rυkhpskh, aq to ϕpskh, aqJθ‹
h`2αk

h}ϕpskh, aq}
pHk

hq
´1 for all a P Ak

hzta0u, the probability of choosing the outside

option decreases (because ϕpskh, a0q “ 0). In other words, the sum of probabilities of choosing a P Ak
hzta0u increases. Since

fkh,jpskh, aq ě
ř

aPAk
h,j

rPk
h,jpa|skh, A

k
h,jqfkh,jpskh, aq for all a P Ak

hzta0u, the expected value of fkh,j increases. Formally, we
get

ÿ

aPAk
h,j

rPk
h,jpa|skh, A

k
h,jqfkh,jpskh, aq ď

ÿ

aPAk
h,j

«

Pk
h,jpa|skh, A

k
h,jqfkh,jpskh, aq.

This concludes the proof.

Lemma D.10 will be used to carefully bound the sum of bkh,1 (Lemma D.23). Note that the following MNL bandit regret
improves upon the one proposed in (Oh & Iyengar, 2021) by a factor of 1{

?
κ, which can be exponentially large.

Lemma D.10 (Crude bound for MNL bandits). For any h P rHs, j “ t1, 2,´2u and subset K P rKs, under the good event
Eθ defined in (D.16), we have

ÿ

kPK

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

aPAk
h

´

rPk
h,jpa|skh, A

k
hq ´ Phpa|skh, A

k
hq

¯

fkh,jpskh, aq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď O
ˆ

1
?
κ
d
a

|K| ¨ plogKq3{2 logM

˙

,

where M is the maximum size of the assortment.

Proof of Lemma D.10. We denote Mk
h as the size of the assortment at horizon h in episode k, i.e., Mk

h “ |Ak
h|. For any

j P t1, 2,´2u, we define a function Rj : RMk
h Ñ R such that, for all υ P RMk

h , Rjpυq “
řMk

h
m“1

exppυmqfk
h,jpskh,aim q

1`
řMk

h
l“1 exppυlq

.

For simplicity, we denote υkh,jps, aq as the utility, which can represent either the optimistic utility rυkhps, aq or the pessimistic

utility qυkhps, aq, as determined by (7), depending on fkh,j . Let υk
h,jpskhq “

´

υkh,jpskh, aq

¯

aPAk
h

P RMk
h and υ‹

hpskhq “

`

ϕpskh, aqJθ‹
h

˘

aPAk
h

P RMk
h . Then, by the mean value theorem, there exists a vector ῡk

h,jpskhq, which is a convex combination

of υk
h,jpskhq and υ‹

hpskhq, such that

ÿ

kPK

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

aPAk
h

´

rPk
h,jpa|skh, A

k
hq ´ Phpa|skh, A

k
hq

¯

fkh,jpskh, aq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

kPK

ˇ

ˇRj

`

υk
h,jpskhq

˘

´Rj

`

υ‹
hpskhq

˘
ˇ

ˇ

“
ÿ

kPK

ˇ

ˇ

ˇ
∇Rj

`

ῡk
h,jpskhq

˘J `

υk
h,jpskhq ´ υ‹

hpskhq
˘

ˇ

ˇ

ˇ
.
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Therefore, we get
ÿ

kPK

ˇ

ˇ

ˇ
∇Rj

`

ῡk
h,jpskhq

˘J `

υk
h,jpskhq ´ υ‹

hpskhq
˘

ˇ

ˇ

ˇ

“
ÿ

kPK

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

aPAk
h

exp
´

ῡkh,jpskh, aq

¯

fkh,jpskh, aq

ř

a2PAk
h
exp

´

ῡkh,jpskh, a
2q

¯

`

υkh,jpskh, aq ´ ϕpskh, aqJθ‹
h

˘

´
ÿ

aPAk
h

ÿ

a1PAk
h

exp
´

ῡkh,jpskh, aq

¯

fkh,jpskh, aq exp
´

ῡkh,jpskh, a
1q

¯

´

ř

a2PAk
h
exp

´

ῡkh,jpskh, a
2q

¯¯2

`

υkh,jpskh, a
1q ´ ϕpskh, a

1qJθ‹
h

˘

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

kPK

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

aPAk
h

Ph

`

a|skh, A
k
h; ῡ

k
h,jpskhq

˘ `

υkh,jpskh, aq ´ ϕpskh, aqJθ‹
h

˘

¨

ˆ

fkh,jpskh, aq ´ Ea1„Php¨|skh,A
k
h;ῡ

k
h,jpskhqq

“

fkh,jpskh, a
1q
‰

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2
ÿ

kPK

ÿ

aPAk
h

Ph

`

a|skh, A
k
h; ῡ

k
h,jpskhq

˘

ˇ

ˇ

ˇ

`

υkh,jpskh, aq ´ ϕpskh, aq
˘J

θ‹
h

ˇ

ˇ

ˇ
, (D.29)

where the inequality is from fkh,j ď 1. Recall that υkh,jpskh, aq can be either rυkhpskh, aq or qυkhpskh, aq. Then, by Lemma D.4,

we have
ˇ

ˇ

ˇ
pυkh,jpskh, aq ´ ϕpskh, aqJθ‹

h

ˇ

ˇ

ˇ
ď 2αk

h}ϕpskh, aq}
pHk

hq
´1 . Hence, we can further bound the right-hand side of (D.29).

2
ÿ

kPK

ÿ

aPAk
h

Ph

`

a|skh, A
k
h; ῡ

k
h,jpskhq

˘

ˇ

ˇ

ˇ

`

υkh,jpskh, aq ´ ϕpskh, aq
˘J

θ‹
h

ˇ

ˇ

ˇ

ď 4αK
h

ÿ

kPK

ÿ

aPAk
h

Ph

`

a|skh, A
k
h; ῡ

k
h,jpskhq

˘

}ϕpskh, aq}
pHk

hq
´1

ď 4αK
h

d

ÿ

kPK

ÿ

aPAk
h

Ph

`

a|skh, A
k
h; ῡ

k
h,jpskhq

˘

d

ÿ

kPK

ÿ

aPAk
h

Ph

`

a|skh, A
k
h; ῡ

k
h,jpskhq

˘

}ϕpskh, aq}2
pHk

hq
´1

ď 4αK
h

a

|K| ¨

g

f

f

e

K
ÿ

k“1

ÿ

aPAk
h

}ϕpskh, aq}2
pHk

hq
´1

“ 4αK
h

a

|K| ¨

g

f

f

e

K
ÿ

k“1

ÿ

aPAk
h

Ph

`

a|skh, A
k
h;θ

k`1
h

˘

Ph

`

a0|skh, A
k
h;θ

k`1
h

˘

Ph

`

a|skh, A
k
h;θ

k`1
h

˘

Ph

`

a0|skh, A
k
h;θ

k`1
h

˘}ϕpskh, aq}2
pHk

hq
´1

ď 4αK
h

a

|K| ¨

g

f

f

e

1

κ
¨

K
ÿ

k“1

ÿ

aPAk
h

Ph

`

a|skh, A
k
h;θ

k`1
h

˘

Ph

`

a0|skh, A
k
h;θ

k`1
h

˘

}ϕpskh, aq}2
pHk

hq
´1

ď 4αK
h

a

|K| ¨

d

1

κ
¨ 2d log

ˆ

1 `
K

dλ

˙

, (D.30)

where the first inequality holds because α1
h ď ¨ ¨ ¨ ď αK

h , the second inequality follows from the Cauchy-Schwarz inequality,
the second-to-the last inequality holds due to the definition of κ, and the last inequality holds by Lemma D.7.

Combining (D.29) and (D.30), and plugging in the value of αk
h, we derive that

ÿ

kPK

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

aPAk
h

´

rPk
h,jpa|skh, A

k
hq ´ Phpa|skh, A

k
hq

¯

fkh,jpskh, aq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
ˆ

1
?
κ
d
a

|K| ¨ plogKq3{2 logM

˙

.
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Lemma D.11. For any pk, hq P rKs ˆ rHs, θ1,θ2 P Ck
h , and ωk

hpaq ě 0, under the event Eθ defined in (D.16), we have
ÿ

aPAk
h

ˇ

ˇPhpa|skh, A
k
h;θ1q ´ Phpa|skh, A

k
h;θ1q

ˇ

ˇωk
hpaq ď 4αk

h max
aPAk

h

ωk
hpaq max

aPAk
h

}ϕpskh, aq}pHk
hq´1 .

Proof of Lemma D.11. By the mean value theorem, there exists ξ “ p1 ´ cqθ1 ` cθ2 for some c P p0, 1q such that
ÿ

aPAk
h

ˇ

ˇPhpa|skh, A
k
h;θ1q ´ Phpa|skh, A

k
h;θ1q

ˇ

ˇωk
hpaq “

ÿ

aPAk
h

ˇ

ˇ∇Phpa|skh, A
k
h; ξqJpθ1 ´ θ2q

ˇ

ˇωk
hpaq

“
ÿ

aPAk
h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝Phpa|skh, A
k
h; ξqϕpskh, aq ´ Phpa|skh, A

k
h; ξq

ÿ

a1PAk
h

Phpa1|skh, A
k
h; ξqϕpskh, a

1q

˛

‚

J

pθ1 ´ θ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ωk
hpaq

ď
ÿ

aPAk
h

Phpa|skh, A
k
h; ξq

ˇ

ˇϕpskh, aqJpθ1 ´ θ2q
ˇ

ˇωk
hpaq `

ÿ

aPAk
h

Phpa|skh, A
k
h; ξqωk

hpaq
ÿ

a1PAk
h

Phpa1|skh, A
k
h; ξq

ˇ

ˇϕpskh, aqJpθ1 ´ θ2q
ˇ

ˇ

ď 2αk
h

ÿ

aPAk
h

Phpa|skh, A
k
h; ξq}ϕpskh, aq}pHk

hq´1ωk
hpaq ` max

aPAk
h

ωk
hpaq

ÿ

aPAk
h

Phpa|skh, A
k
h; ξq}ϕpskh, aq}pHk

hq´1

ď 4αk
h max
aPAk

h

ωk
hpaq max

aPAk
h

}ϕpskh, aq}pHk
hq´1 ,

where the second-to-last inequality holds under the good event Eθ defined in (D.16).

Lemma D.12 pertains to the law of total variance (Lattimore & Hutter, 2012; Gheshlaghi Azar et al., 2013) that the variance
of the value function is smaller than its magnitude by a factor

?
H .

Lemma D.12 (Total variance lemma, Lemma C.5 of Jin et al. 2018). Let fkh,j P r0, 1s. Then, with probability at least 1 ´ δ,
we have

K
ÿ

k“1

H
ÿ

h“1

rVhf
k
h,jspskhq “ O pK `H logp1{δqq .

Lemma D.13 is crucial for obtaining a κ-independent regret in our leading term. While the proof is largely inspired by Lee
& Oh (2024), extending their result to our setting is non-trivial because the unknown item values fkh,j add complexity to the
analysis. Moreover, thanks to Lemma D.12, we can obtain a tight bound by a factor of

?
H , instead of naively summing

over H MNL bandit regrets.
Lemma D.13 (κ-improved bound for MNL bandits). For any subset K P rKs, let Jpk, hq : K ˆ rHs Ñ

t1, 2u be the one-to-one function that maps from K ˆ rHs to the index set t1, 2u such that Ak
h “ Ak

h,Jpk,hq
P

argmaxAPA
ř

aPA
rPk
h,Jpk,hq

pa|skh, Aqfkh,Jpk,hq
pskh, aq. Then, under the good event Eθ defined in (D.16), with probabil-

ity at least 1 ´ δ, we have

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

´

rPk
h,Jpk,hqpa|skh, A

k
hq ´ Phpa|skh, A

k
hq

¯

fkh,Jpk,hqpskh, aq

“ O
ˆ

d
a

H|K|plogKq3{2 logM `
1

κ
d2HplogKq3plogMq2

˙

.

Proof of Lemma D.13. We begin by defining
«

Pk
h,jpa|s,Aq as given in D.28. Then, by Lemma D.9, we have

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

´

rPk
h,Jpk,hqpa|skh, A

k
hq ´ Phpa|skh, A

k
hq

¯

fkh,Jpk,hqpskh, aq

ď
ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

´

«

Pk
h,Jpk,hqpa|skh, A

k
hq ´ Phpa|skh, A

k
hq

¯

fkh,Jpk,hqpskh, aq.
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We denote Mk
h as the size of the assortment at horizon h in episode k, i.e., Mk

h “ |Ak
h|. We define a function R̃ : RMk

h Ñ R
such that for all υ P RMk

h , R̃pυq “
řMk

h
m“1

exppυmqfk
h,Jpk,hqpskh,aim q

1`
řMk

h
l“1 exppυlq

.

For any pk, hq P K ˆ rHs and all a P I, we denote υkhpskh, aq as the utility, which can be either ϕpskh, aqJθ‹
h `

2αk
h}ϕpskh, aq}

pHk
hq

´1 or ϕpskh, aqJθ‹
h ´ 2αk

h}ϕpskh, aq}
pHk

hq
´1 , determined deterministically based on the history up to

pk, hq:

υkhpskh, aq “

$

&

%

ϕpskh, aqJθ‹
h ` 2αk

h}ϕpskh, aq}
pHk

hq
´1 , if Da P Izta0u s.t. fkh,Jpk,hq

pskh, aq ě fkh,Jpk,hq
pskh, a0q

ϕpskh, aqJθ‹
h ´ 2αk

h}ϕpskh, aq}
pHk

hq
´1 , if @a P Izta0u fkh,Jpk,hq

pskh, aq ă fkh,Jpk,hq
pskh, a0q.

Let υk
hpskhq “

`

υkhpskh, aq
˘

aPAk
h

P RMk
h and υ‹

hpskhq “
`

ϕpskh, aqJθ‹
h

˘

aPAk
h

P RMk
h . Thanks to exact second-order Taylor

expansion, we obtain that

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

´

rPk
h,Jpk,hqpa|skh, A

k
hq ´ Phpa|skh, A

k
hq

¯

fkh,Jpk,hqpskh, aq

“
ÿ

kPK

H
ÿ

h“1

R̃pυk
hpskhqq ´ R̃pυ‹

hpskhqq

“
ÿ

kPK

H
ÿ

h“1

∇R̃pυ‹
hpskhqqJ

`

υk
hpskhq ´ υ‹

hpskhq
˘

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

(A)

`
1

2

ÿ

kPK

H
ÿ

h“1

`

υk
hpskhq ´ υ‹

hpskhq
˘J ∇2R̃pῡk

hpskhqq
`

υk
hpskhq ´ υ‹

hpskhq
˘

loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

(B)

,

(D.31)

where ῡk
hpskhq “

`

ῡkhpskh, aq
˘

aPAk
h

P RMk
h is the convex combination of υk

hpskhq and υ‹
hpskhq.

We first bound the term (A) in (D.31).

ÿ

kPK

H
ÿ

h“1

∇R̃pυ‹
hpskhqqJ

`

υk
hpskhq ´ υ‹

hpskhq
˘

“
ÿ

kPK

H
ÿ

h“1

˜

ÿ

aPAk
h

exp
`

ϕpskh, aqJθ‹
h

˘

fkh,Jpk,hq
pskh, aq

ř

a2PAk
h
exp

`

ϕpskh, a
2qJθ‹

h

˘

`

υkhpskh, aq ´ ϕpskh, aqJθ‹
h

˘

´
ÿ

aPAk
h

ÿ

a1PAk
h

exp
`

ϕpskh, aqJθ‹
h

˘

fkh,Jpk,hq
pskh, aq exp

`

ϕpskh, a
1qJθ‹

h

˘

´

ř

a2PAk
h
exp

`

ϕpskh, a
2qJθ‹

h

˘

¯2

`

υkhpskh, a
1q ´ ϕpskh, a

1qJθ‹
h

˘

¸

“
ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

Ph

`

a|skh, A
k
h;θ

‹
h

˘

fkh,Jpk,hqpskh, aq

¨

ˆ

`

υkhpskh, aq ´ ϕpskh, aqJθ‹
h

˘

´
ÿ

a1PAk
h

Ph

`

a1|skh, A
k
h;θ

‹
h

˘ `

υkhpskh, a
1q ´ ϕpskh, a

1qJθ‹
h

˘

˙

. (D.32)

We bound the right-hand side of (D.32) by examining two separate cases. For any fixed h P rHs, let Kpiq denote the set of
episodes where Case (i) holds, and Kpiiq denote the set of episodes where Case (ii) holds. More formally, we define:

Kpiq “

!

k P K : υkhpskh, aq “ ϕpskh, aqJθ‹
h ` 2αk

h}ϕpskh, aq}
pHk

hq
´1

)

(Case (i))

Kpiiq “

!

k P K : υkhpskh, aq “ ϕpskh, aqJθ‹
h ´ 2αk

h}ϕpskh, aq}
pHk

hq
´1

)

. (Case (ii))

Case (i) For pk, hq P K ˆ rHs such that υkhpskh, aq “ ϕpskh, aqJθ‹
h ` 2αk

h}ϕpskh, aq}
pHk

hq
´1 .
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Denoting Eθr¨s “ Ea1„Php¨|skh,A
k
h;θqr¨s and ᾱK :“ maxhPrHs α

K
h for simplicity, we get

ÿ

kPKpiq

H
ÿ

h“1

∇R̃pυ‹
hpskhqqJ

`

υk
hpskhq ´ υ‹

hpskhq
˘

“
ÿ

kPKpiq

H
ÿ

h“1

2αk
h

ÿ

aPAk
h

Ph

`

a|skh, A
k
h;θ

‹
h

˘

fkh,Jpk,hqpskh, aq

ˆ

}ϕpskh, aq}
pHk

hq
´1 ´ Eθ‹

h

”

}ϕpskh, a
1q}

pHk
hq

´1

ı

˙

ď 2ᾱK

ÿ

kPKpiq

H
ÿ

h“1

ÿ

aPAk
h

Ph

`

a|skh, A
k
h;θ

‹
h

˘

fkh,Jpk,hqpskh, aq

ˆ

}ϕpskh, aq}
pHk

hq
´1 ´ Eθ‹

h

”

}ϕpskh, a
1q}

pHk
hq

´1

ı

˙

“ 2ᾱK

ÿ

kPKpiq

H
ÿ

h“1

Eθ‹
h

”´

fkh,Jpk,hqpskh, aq ´ Eθ‹
h

”

fkh,Jpk,hqpskh, a
1q

ı¯´

}ϕpskh, aq}
pHk

hq
´1 ´ Eθ‹

h

”

}ϕpskh, a
1q}

pHk
hq

´1

ı¯ı

ď 2ᾱK

ÿ

kPKpiq

H
ÿ

h“1

Eθ‹
h

«

ˆ

fkh,Jpk,hqpskh, aq ´ Eθ‹
h

”

fkh,Jpk,hqpskh, a
1q

ı

looooooooooooooooooooooooomooooooooooooooooooooooooon

ě0

˙

}ϕpskh, aq ´ Eθ‹
h

rϕpskh, a
1qs}

pHk
hq

´1

ff

, (D.33)

where, in the first inequality, we use the fact that αK
h is non-decreasing with respect to k, and by Lemma D.6, we have

ÿ

aPAk
h

Ph

`

a|skh, A
k
h;θ

‹
h

˘

fkh,Jpk,hqpskh, aq

ˆ

}ϕpskh, aq}
pHk

hq
´1 ´ Eθ‹

h

”

}ϕpskh, a
1q}

pHk
hq

´1

ı

˙

“
ÿ

aPAk
h

Ph

`

a|skh, A
k
h;θ

‹
h

˘

}ϕpskh, aq}
pHk

hq
´1

ˆ

fkh,Jpk,hqpskh, aq ´ Eθ‹
h

”

fkh,Jpk,hqpskh, a
1q

ı

looooooooooooomooooooooooooon

“
ř

a1PAk
h
Phpa1|skh,A

k
hqfk

h,Jpk,hq
pskh,a

1q

˙

ě 0.

And the last inequality of Equation (D.33) holds because

}ϕpskh, aq}
pHk

hq
´1 ´ Eθ‹

h

”

}ϕpskh, a
1q}

pHk
hq

´1

ı

ď }ϕpskh, aq}
pHk

hq
´1 ´ }Eθ‹

h

“

ϕpskh, a
1q
‰

}
pHk

hq
´1

ď }ϕpskh, aq ´ Eθ‹
h

rϕpskh, a
1qs}

pHk
hq

´1 ,

where the first inequality holds by Jensen’s inequality and the last inequality holds due to the fact that }a} “ }a ´ b ` b} ď

}a ´ b} ` }b} for any vectors a,b P Rd.

We further decompose the right-hand side of (D.33) as follows:

ÿ

kPKpiq

H
ÿ

h“1

Eθ‹
h

”´

fkh,Jpk,hqpskh, aq ´ Eθ‹
h

”

fkh,Jpk,hqpskh, a
1q

ı¯

}ϕpskh, aq ´ Eθ‹
h

rϕpskh, a
1qs}

pHk
hq

´1

ı

“
ÿ

kPKpiq

H
ÿ

h“1

ÿ

aPAk
h

b

Ph

`

a|skh, A
k
h;θ

‹
h

˘

Ph

`

a|skh, A
k
h;θ

k`1
h

˘

´

fkh,Jpk,hqpskh, aq ´ Eθ‹
h

”

fkh,Jpk,hqpskh, a
1q

ı¯

¨ }ϕpskh, aq ´ Eθk`1
h

rϕpskh, a
1qs}

pHk
hq

´1

`
ÿ

kPKpiq

H
ÿ

h“1

ÿ

aPAk
h

ˆ

b

Ph

`

a|skh, A
k
h;θ

‹
h

˘

´

b

Ph

`

a|skh, A
k
h;θ

k`1
h

˘

˙

b

Ph

`

a|skh, A
k
h;θ

‹
h

˘

¨

´

fkh,Jpk,hqpskh, aq ´ Eθ‹
h

”

fkh,Jpk,hqpskh, a
1q

ı¯

}ϕpskh, aq ´ Eθk`1
h

rϕpskh, a
1qs}

pHk
hq

´1

`
ÿ

kPKpiq

H
ÿ

h“1

ÿ

aPAk
h

Ph

`

a|skh, A
k
h;θ

‹
h

˘

´

fkh,Jpk,hqpskh, aq ´ Eθ‹
h

”

fkh,Jpk,hqpskh, a
1q

ı¯

¨

´

}ϕpskh, aq ´ Eθ‹
h

rϕpskh, a
1qs}

pHk
hq

´1 ´ }ϕpskh, aq ´ Eθk`1
h

rϕpskh, a
1qs}

pHk
hq

´1

¯

. (D.34)
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For simplicity, let ϕ̄pskh, aq “ ϕpskh, aq ´ Eθ‹
h

“

ϕpskh, a
1q
‰

and rϕpskh, aq “ ϕpskh, aq ´ Eθk`1
h

“

ϕpskh, a
1q
‰

. Now, we bound the
terms on the right-hand side of (D.34) individually. For the first term, with probability at least 1 ´ δ, we get

ÿ

kPKpiq

H
ÿ

h“1

ÿ

aPAk
h

b

Ph

`

a|skh, A
k
h;θ

‹
h

˘

Ph

`

a|skh, A
k
h;θ

k`1
h

˘

´

fkh,Jpk,hqpskh, aq ´ Eθ‹
h

”

fkh,Jpk,hqpskh, a
1q

ı¯

}rϕpskh, aq}
pHk

hq
´1

ď

g

f

f

e

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

Ph

`

a|skh, A
k
h;θ

‹
h

˘

´

fkh,Jpk,hq
pskh, aq ´ Eθ‹

h

”

fkh,Jpk,hq
pskh, a

1q

ı¯2

loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon

“:rVhfk
h,Jpk,hq

spskhq

¨

g

f

f

e

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

Ph

`

a|skh, A
k
h;θ

k`1
h

˘

}rϕpskh, aq}2
pHk

hq
´1

ď

g

f

f

e

ÿ

kPK

H
ÿ

h“1

rVhfkh,Jpk,hq
spskhq

d

2dH log

ˆ

1 `
K

dλ

˙

“ O
´

a

|K| `H logp1{δq

¯

¨

d

2dH log

ˆ

1 `
K

dλ

˙

, (D.35)

where the first inequality follows from the Cauchy-Schwarz inequality, the second-to-last inequality holds by Lemma D.7,
and the last equality holds by Lemma D.12. Additionally, the second term in (D.34) can be bounded as follows:

ÿ

kPKpiq

H
ÿ

h“1

ÿ

aPAk
h

ˆ

b

Ph

`

a|skh, A
k
h;θ

‹
h

˘

´

b

Ph

`

a|skh, A
k
h;θ

k`1
h

˘

˙

b

Ph

`

a|skh, A
k
h;θ

‹
h

˘

¨

´

fkh,Jpk,hqpskh, aq ´ Eθ‹
h

”

fkh,Jpk,hqpskh, a
1q

ı¯

}rϕpskh, aq}
pHk

hq
´1

ď
ÿ

kPKpiq

H
ÿ

h“1

ÿ

aPAk
h

|Ph

`

a|skh, A
k
h;θ

‹
h

˘

´ Ph

`

a|skh, A
k
h;θ

k`1
h

˘

|
b

Ph

`

a|skh, A
k
h;θ

‹
h

˘

`

b

Ph

`

a|skh, A
k
h;θ

k`1
h

˘

b

Ph

`

a|skh, A
k
h;θ

‹
h

˘

}rϕpskh, aq}
pHk

hq
´1

ď
ÿ

kPKpiq

H
ÿ

h“1

ÿ

aPAk
h

|Ph

`

a|skh, A
k
h;θ

‹
h

˘

´ Ph

`

a|skh, A
k
h;θ

k`1
h

˘

|}rϕpskh, aq}
pHk

hq
´1

ď 4ᾱK

ÿ

kPKpiq

H
ÿ

h“1

max
aPAk

h

}rϕpskh, aq}
pHk

hq
´1 max

aPAk
h

}ϕpskh, aq}
pHk

hq
´1

ď 4ᾱK

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

max
aPAk

h

}rϕpskh, aq}2
pHk

hq
´1

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

max
aPAk

h

}ϕpskh, aq}2
pHk

hq
´1

ď
4

?
κ
ᾱK

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

ÿ

aPAk
h

Phpa|skh, A
k
h, ;θ

k`1
h q}rϕpskh, aq}2

pHk
hq

´1

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

max
aPAk

h

}ϕpskh, aq}2
pHk

hq
´1

ď
8

?
κ
ᾱKdH log

ˆ

1 `
K

dλ

˙

, (D.36)

where the third inequity holds by Lemma D.11 and by the definition of ᾱK “ maxhPrHs α
K
h , the second-to-last inequality

holds by the definition of κ, and the last inequality holds by Lemma D.7.
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Finally, we bound the last term in (D.34). Using the inequality }a} ´ }b} ď }a ´ b} for any vectors a,b P Rd, we have

ÿ

kPKpiq

H
ÿ

h“1

ÿ

aPAk
h

Ph

`

a|skh, A
k
h;θ

‹
h

˘

ˆ

fkh,Jpk,hqpskh, aq ´ Eθ‹
h

”

fkh,Jpk,hqpskh, a
1q

ı

looooooooooooooooooooooooomooooooooooooooooooooooooon

ě0

˙

´

}rϕpskh, aq}
pHk

hq
´1 ´ }ϕ̄pskh, aq}

pHk
hq

´1

¯

ď
ÿ

kPKpiq

H
ÿ

h“1

ÿ

aPAk
h

Ph

`

a|skh, A
k
h;θ

‹
h

˘

›

›

›

›

›

›

ÿ

a1PAk
h

`

Ph

`

a1|skh, A
k
h;θ

‹
h

˘

´ Ph

`

a1|skh, A
k
h;θ

k`1
h

˘˘

ϕpskh, a
1q

›

›

›

›

›

›

pHk
hq

´1

ď

K
ÿ

k“1

H
ÿ

h“1

ÿ

aPAk
h

ˇ

ˇPh

`

a|skh, A
k
h;θ

‹
h

˘

´ Ph

`

a|skh, A
k
h;θ

k`1
h

˘
ˇ

ˇ }ϕpskh, aq}
pHk

hq
´1

ď 4ᾱK

K
ÿ

k“1

H
ÿ

h“1

max
aPAk

h

}ϕpskh, aq}2
pHk

hq
´1

ď
8

κ
ᾱKdH log

ˆ

1 `
K

dλ

˙

, (D.37)

where the third inequity holds by Lemma D.11 and by the definition of ᾱK “ maxhPrHs α
K
h and the last inequality holds by

Lemma D.7.

By plugging (D.35), (D.36), and (D.37) into (D.34), and ccombining the result with (D.33), we obtain

ÿ

kPKpiq

H
ÿ

h“1

∇R̃pυ‹
hpskhqqJ

`

υk
hpskhq ´ υ‹

hpskhq
˘

ď O
´

a

|K| `H logp1{δq

¯

¨ 2ᾱK

d

2dH log

ˆ

1 `
K

dλ

˙

`
32

κ
ᾱ2
KdH log

ˆ

1 `
K

dλ

˙

“ O
ˆ

d
a

H|K|plogKq3{2 logM `
1

κ
d2HplogKq3plogMq2

˙

. (D.38)

Now, we consider the second case to bound the term (A) in Equation (D.31).

Case (ii) For pk, hq P K ˆ rHs such that υkhpskh, aq “ ϕpskh, aqJθ‹
h ´ 2αk

h}ϕpskh, aq}
pHk

hq
´1 .

In this case, we know that fkh,Jpk,hq
pskh, aq ă fkh,Jpk,hq

pskh, a0q for all a P Izta0u. This implies that |Ak
h| “ 2, since adding

any item a P Izta0u to the set ta0u always decreases the expected value of fkh,Jpk,hq
. Furthermore, since we assume

ϕpskh, a0q “ 0 (which also implies υkhpskh, a0q “ 0), and denoting Ak
h “ ta0, ã

k
hu, we have:

ÿ

kPKpiiq

H
ÿ

h“1

∇R̃pυ‹
hpskhqqJ

`

υk
hpskhq ´ υ‹

hpskhq
˘

“
ÿ

kPKpiiq

H
ÿ

h“1

2αk
hPh

`

ãkh|skh, A
k
h;θ

‹
h

˘

fkh,Jpk,hqpskh, ã
k
hq

ˆ

}ϕpskh, ã
k
hq}

pHk
hq

´1 ´ Ph

`

ãkh|skh, A
k
h;θ

‹
h

˘

”

}ϕpskh, ã
k
hq}

pHk
hq

´1

ı

˙

ď 2ᾱK

ÿ

kPKpiiq

H
ÿ

h“1

Eθ‹
h

«

ˆ

fkh,Jpk,hqpskh, aq ´ Eθ‹
h

”

fkh,Jpk,hqpskh, a
1q

ı

˙

}ϕpskh, aq ´ Eθ‹
h

rϕpskh, a
1qs}

pHk
hq

´1

ff

, (D.39)

where in the inequality, we use the definition ᾱK :“ maxhPrHs α
K
h . The rest of the analysis is similar to that in Case (i).

Therefore, we derive

ÿ

kPKpiiq

H
ÿ

h“1

∇R̃pυ‹
hpskhqqJ

`

υk
hpskhq ´ υ‹

hpskhq
˘

“ O
ˆ

d
a

H|K|plogKq3{2 logM `
1

κ
d2HplogKq3plogMq2

˙

. (D.40)
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Now, we bound the term (B) in (D.31). Let papῡk
hpskhqq “

exppῡk
hpskh,aqq

1`
ř

a2PAk
h
exppῡk

hpskh,a
2qq

.

1

2

ÿ

kPK

H
ÿ

h“1

`

υk
hpskhq ´ υ‹

hpskhq
˘J ∇2R̃pῡk

hpskhqq
`

υk
hpskhq ´ υ‹

hpskhq
˘

“
1

2

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

ÿ

a1PAk
h

`

υkhpskh, aq ´ ϕpskh, aqJθ‹
h

˘ B2R̃pῡk
hpskhqq

BaBa1

`

υkhpskh, a
1q ´ ϕpskh, a

1qJθ‹
h

˘

“
1

2

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

ÿ

a1
PAk

h

a1
‰a

`

υkhpskh, aq ´ ϕpskh, aqJθ‹
h

˘ B2R̃pῡk
hpskhqq

BaBa1

`

υkhpskh, a
1q ´ ϕpskh, a

1qJθ‹
h

˘

`
1

2

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

`

υkhpskh, aq ´ ϕpskh, aqJθ‹
h

˘2 B2R̃pῡk
hpskhqq

BaBa

ď
ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

ÿ

a1
PAk

h

a1
‰a

ˇ

ˇυkhpskh, aq ´ ϕpskh, aqJθ‹
h

ˇ

ˇ papῡk
hpskhqqpa1 pῡk

hpskhqq
ˇ

ˇυkhpskh, a
1q ´ ϕpskh, a

1qJθ‹
h

ˇ

ˇ

`
3

2

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

`

υkhpskh, aq ´ ϕpskh, aqJθ‹
h

˘2
papῡk

hpskhqq, (D.41)

where the inequality holds by Lemma D.8 and fkj,Jpk,hq
ď 1. To bound the first term in (D.41), by applying the AM-GM

inequality, we get

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

ÿ

a1
PAk

h

a1
‰a

ˇ

ˇυkhpskh, aq ´ ϕpskh, aqJθ‹
h

ˇ

ˇ papῡk
hpskhqqpa1 pῡk

hpskhqq
ˇ

ˇυkhpskh, a
1q ´ ϕpskh, a

1qJθ‹
h

ˇ

ˇ

ď
ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

ÿ

a1PAk
h

ˇ

ˇυkhpskh, aq ´ ϕpskh, aqJθ‹
h

ˇ

ˇ papῡk
hpskhqqpa1 pῡk

hpskhqq
ˇ

ˇυkhpskh, a
1q ´ ϕpskh, a

1qJθ‹
h

ˇ

ˇ

ď
1

2

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

ÿ

a1PAk
h

`

υkhpskh, aq ´ ϕpskh, aqJθ‹
h

˘2
papῡk

hpskhqqpa1 pῡk
hpskhqq

`
1

2

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

ÿ

a1PAk
h

papῡk
hpskhqqpa1 pῡk

hpskhqq
`

υkhpskh, a
1q ´ ϕpskh, a

1qJθ‹
h

˘2

“
ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

`

υkhpskh, aq ´ ϕpskh, aqJθ‹
h

˘2
papῡk

hpskhqq. (D.42)
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Plugging (D.42) into (D.41), we have

1

2

ÿ

kPK

H
ÿ

h“1

`

υk
hpskhq ´ υ‹

hpskhq
˘J ∇2R̃pῡk

hpskhqq
`

υk
hpskhq ´ υ‹

hpskhq
˘

ď
5

2

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

papῡk
hpskhqq

`

υkhpskh, aq ´ ϕpskh, aqJθ‹
h

˘2

ď 10 pᾱKq
2
ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

papῡk
hpskhqq}ϕpskh, aq}

pHk
hq

´1

ď 10 pᾱKq
2
ÿ

kPK

H
ÿ

h“1

max
aPAk

h

}ϕpskh, aq}
pHk

hq
´1 “ O

ˆ

1

κ
d2H plogKq

3
plogMq

2

˙

, (D.43)

where the last inequality holds by Lemma D.7.

Combining (D.38), (D.40) and (D.43), we obtain

ÿ

kPK

H
ÿ

h“1

ÿ

aPAk
h

´

rPk
h,Jpk,hqpa|skh, A

k
hq ´ Phpa|skh, A

k
hq

¯

fkh,Jpk,hqpskh, aq

“ O
ˆ

d
a

H|K|plogKq3{2 logM `
1

κ
d2HplogKq3plogMq2

˙

.

This conclude the proof of Lemma D.13.

D.4. Optimism

In this subsection, we prove the optimism of our value estimates V k
h .

Lemma D.14 (Point-wise monotonicity, Lemma 31 of Agarwal et al. 2023). Suppose Algorithm 1 uses a consistent bonus
oracle satisfying Definition B.1. For any fixed pk, hq P rKs ˆ rHs, conditioning on events Eďk´1

Ş

´

ŞH
h1“hEk

h1

¯

, for all

psh, ahq P S ˆ I, we have

1. Q
‹

hpsh, ahq ď fkh,1psh, ahq;

2. fkh,´1psh, ahq ď Q
‹

hpsh, ahq;

3. fτh,2psh, ahq ě max
!

ThV k
h`1,1psh, ahq, fkh,1psh, ahq

)

, @τ P rks.

Lemma D.15 (Optimism). Let V k
h be the realized optimistic value function defined in (D.18). Suppose Algorithm 1

uses a consistent bonus oracle satisfying Definition B.1. On the even conditioning on the good event Eθ
Ş

EďK , for all
pk, hq P rKs ˆ rHs, we have

V k
h pskhq ě V ‹

h pskhq.

Proof of Lemma D.15. We denote Ak,‹
h P argmaxA

ř

aPA Phpa|skh, AqQ
‹

hpskh, aq. If Ak
h “ Ak

h,1, by the definition of the
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optimal value function V ‹
h , we have

V ‹
h pskhq “ max

APA

ÿ

aPA

Phpa|skh, AqQ
‹

hpskh, aq

“
ÿ

aPAk,‹

h

Phpa|skh, A
k,‹
h qQ

‹

hpskh, aq

ď
ÿ

aPAk,‹

h

Phpa|skh, A
k,‹
h qfkh,1pskh, aq

ď
ÿ

aPÃk
h

rPk
h,1pa|skh, Ã

k
hqfkh,1pskh, aq

ď
ÿ

aPAk
h,1

rPk
h,1pa|skh, A

k
h,1qfkh,1pskh, aq

“ max
APA

ÿ

aPA

rPk
h,1pa|skh, Aqfkh,1pskh, aq “ V k

h pskhq,

where the first inequality holds by Lemma D.14, in the second inequality, we use the fact that, by Lemma D.5, there exists a
subset Ãk

h Ď Ak,‹
h with Ãk

h P A such that the inequality holds, and the last inequality holds by the definition of Ak
h,1.

The case where Ak
h “ Ak

h,2 can be proven using the same reasoning.

D.5. Variances

In this subsection, we present properties related to variances.

Lemma D.16 (Upper bound of variance estimator, Lemma 34 of Agarwal et al. 2023). Let zkh “ pskh, a
k
hq. We denote

EPr¨|skh, a
k
hs “ Esh`1„Php¨|skh,a

k
hqr¨|skh, a

k
hs and VPr¨|skh, a

k
hs “ Vsh`1„Php¨|skh,a

k
hqr¨|skh, a

k
hs, where the expectation in only

taken over sh`1 due to the model transition for shorthand. Suppose Algorithm 1 uses a consistent bonus oracle satisfying
Definition B.1. For any episode k ě 2 conditioning on the good event EďK , the variance estimator σk

h satisfies

`

σk
h

˘2
ď V

“

rh ` V k
h`1,1psh`1q | zkh

‰

` 4
`

fkh,2pzkhq ´ fkh,´2pzkhq
˘

` 4min

#

1, DFh

`

zkh; tzτhu
k´1
τ“1, t1

τu
k´1
τ“1

˘

¨

˜

2

b

`

β̄k
h

˘2
` ρ` 4L

c

´

βk
h,2

¯2

` ρ

¸+

.

Lemma D.17 (Sum of variances, Corollary 50 of Agarwal et al. 2023). Let zkh “ pskh, a
k
hq. We denote EPr¨|skh, a

k
hs “

Esh`1„Php¨|skh,a
k
hqr¨|skh, a

k
hs and VPr¨|skh, a

k
hs “ Vsh`1„Php¨|skh,a

k
hqr¨|skh, a

k
hs, where the expectation in only taken over sh`1

due to the model transition for shorthand. When L “ Op1q, with probability at least 1 ´ δ, we have

K
ÿ

k“1

H
ÿ

h“1

V
“

rh ` V k
h`1,1psh`1q|zkh

‰

ď O

˜

H
K
ÿ

k“1

H
ÿ

h“1

`

fkh,2pzkhq ´ fkh,´2pzkhq
˘

`K `KH2δ `H2|Koo| `H4 log2
KH

δ

¸

.

D.6. Approximation Error of Optimistic, Overly Optimistic (Pessimistic) Q-values

In this section, we provide some inequalities for bounding the optimistic values, overly optimistic values, and overly
pessimistic values sequence, which are useful for the proofs in Subsection D.7.

Lemma D.18 (Approximation error of overly pessimistic Q). Suppose Algorithm 1 uses a consistent bonus oracle satisfying

35



Combinatorial Reinforcement Learning with Preference Feedback

Definition B.1. Conditioning on the good event EďK , for any pk, hq P rKs ˆ rHs, it holds that

pfkh,´2 ´Q
πk

h qpskh, a
k
hq ě

H
ÿ

h1“h`1

ÿ

a1PAk
h1

´

rPk
h1,´2pa1|skh1 , Ak

h1 q ´ Ph1 pa1|skh1 , Ak
h1 q

¯

fkh1,´2pskh1 , a1q

´ 2
H
ÿ

h1“h

bkh1,2pskh1 , akh1 q `

H
ÿ

h1“h`1

ζkh1,´2 `

H
ÿ

h1“h`1

9ζkh1,´2,

where ζkh,´2 :“ EP

”

pV k
h,´2 ´ V πk

h qpshq | skh´1, a
k
h´1

ı

´ pV k
h,´2 ´ V πk

h qpskhq and 9ζkh,´2 :“

EP

”´

fkh,´2 ´Q
πk

h

¯

pskh, ahq | skh, A
k
h

ı

´

´

fkh,´2 ´Q
πk

h

¯

pskh, a
k
hq.

Proof of Lemma D.18. Under the event EďK , we have

pfkh,´2 ´Q
πk

h qpskh, a
k
hq

“ pfkh,´2 ´ ThV k
h`1,´2qpskh, a

k
hq ` pThV k

h`1,´2 ´Q
πk

h qpskh, a
k
hq

ě ´2bkh,2pskh, a
k
hq ` EP

“

prh ´ rhq ` pV k
h`1,´2 ´ V πk

h`1qpsh`1q|skh, a
k
h

‰

“ ´2bkh,2pskh, a
k
hq ` pV k

h`1,´2 ´ V πk

h`1qpskh`1q ` ζkh`1,´2

ě ´2bkh,2pskh, a
k
hq ` pQk

h`1,´2 ´Qπk

h`1qpskh`1, A
k
h`1q ` ζkh`1,´2

“
ÿ

a1PAk
h`1

´

rPk
h`1,´2pa1|skh`1, A

k
h`1qfkh`1,´2pskh`1, a

1q ´ Ph`1pa1|skh`1, A
k
h`1qQ

πk

h`1pskh`1, a
1q

¯

´ 2bkh,2pskh, a
k
hq ` ζkh`1,´2

“
ÿ

a1PAk
h`1

´

rPk
h`1,´2pa1|skh`1, A

k
h`1q ´ Ph`1pa1|skh`1, A

k
h`1q

¯

fkh`1,´2pskh`1, a
1q

` EP

”´

fkh`1,´2 ´Q
πk

h`1

¯

pskh`1, ah`1q|skh`1, A
k
h`1

ı

´ 2bkh,2pskh, a
k
hq ` ζkh`1,´2

“
ÿ

a1PAk
h`1

´

rPk
h`1,´2pa1|skh`1, A

k
h`1q ´ Ph`1pa1|skh`1, A

k
h`1q

¯

fkh`1,´2pskh`1, a
1q

`

´

fkh`1,´2 ´Q
πk

h`1

¯

pskh`1, a
k
h`1q ´ 2bkh,2pskh, a

k
hq ` ζkh`1,´2 ` 9ζkh`1,´2,

where the first inequality holds because ThV k
h`1,´2 P Fk

h,´2 under the event EďK and definition of bkh,2, and the last
inequality holds since V k

h`1,´2pskh`1q ě Qk
h`1,´2pskh`1, A

k
h`1q.

Hence, by recursion we obtain that

pfkh,´2 ´Q
πk

h qpskh, a
k
hq ě

H
ÿ

h1“h`1

ÿ

a1PAk
h1

´

rPk
h1,´2pa1|skh1 , Ak

h1 q ´ Ph1 pa1|skh1 , Ak
h1 q

¯

fkh1,´2pskh1 , a1q

´ 2
H
ÿ

h1“h

bkh1,2pskh1 , akh1 q `

H
ÿ

h1“h`1

ζkh1,´2 `

H
ÿ

h1“h`1

9ζkh1,´2.

Lemma D.19 (Approximation error of overly optimistic Q). Suppose Algorithm 1 uses a consistent bonus oracle satisfying
Definition B.1. Conditioning on the good event EďK , for any k P rKs and any h ě hk, it holds that

pfkh,2 ´Q
πk

h qpskh, a
k
hq ď

H
ÿ

h1“h`1

ÿ

a1PAk
h1

´

rPk
h1,2pa1|skh1 , Ak

h1 q ´ Ph1 pa1|skh1 , Ak
h1 q

¯

fkh1,2pskh1 , a1q

` 2
H
ÿ

h1“h

bkh1,1pskh1 , akh1 q ` 2
H
ÿ

h1“h

bkh1,2pskh1 , akh1 q `

H
ÿ

h1“h`1

ζkh1,2 `

H
ÿ

h1“h`1

9ζkh1,2,
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where ζkh,2 :“ EP

”

pV k
h,2 ´ V πk

h qpshq | skh´1, a
k
h´1

ı

´ pV k
h,2 ´ V πk

h qpskhq and 9ζkh,2 :“

EP

”´

fkh,2 ´Q
πk

h

¯

pskh, ahq | skh, A
k
h

ı

´

´

fkh,2 ´Q
πk

h

¯

pskh, a
k
hq.

Proof of Lemma D.19. Under the event EďK , at h ě hk, we have

pfkh,2 ´Q
πk

h qpskh, a
k
hq “ pfkh,2 ´ ThV k

h`1,2qpskh, a
k
hq ` pThV k

h`1,2 ´Q
πk

h qpskh, a
k
hq

ď 2bkh,1pskh, a
k
hq ` 2bkh,2pskh, a

k
hq ` E

“

pV k
h`1,2 ´ V πk

h`1qpsh`1q|skh, a
k
h

‰

“ 2bkh,1pskh, a
k
hq ` 2bkh,2pskh, a

k
hq ` pV k

h`1,2 ´ V πk

h`1qpskh`1q ` ζkh`1,2

“ 2bkh,1pskh, a
k
hq ` 2bkh,2pskh, a

k
hq ` pQk

h`1,2 ´Qπk

h`1qpskh`1, A
k
h`1q ` ζkh`1,2

“
ÿ

a1PAk
h`1

´

rPk
h`1,2pa1|skh`1, A

k
h`1qfkh`1,2pskh`1, a

1q ´ Ph`1pa1|skh`1, A
k
h`1qQ

πk

h`1pskh`1, a
1q

¯

` 2bkh,1pskh, a
k
hq ` 2bkh,2pskh, a

k
hq ` ζkh`1,2

“
ÿ

a1PAk
h`1

´

rPk
h`1,2pa1|skh`1, A

k
h`1q ´ Ph`1pa1|skh`1, A

k
h`1q

¯

fkh`1,2pskh`1, a
1q

` EP

”´

fkh`1,2 ´Q
πk

h`1

¯

pskh`1, ah`1q|skh`1, A
k
h`1

ı

` 2bkh,1pskh, a
k
hq ` 2bkh,2pskh, a

k
hq ` ζkh`1,2

“
ÿ

a1PAk
h`1

´

rPk
h`1,2pa1|skh`1, A

k
h`1q ´ Ph`1pa1|skh`1, A

k
h`1q

¯

fkh`1,2pskh`1, a
1q

`

´

fkh`1,2 ´Q
πk

h`1

¯

pskh`1, a
k
h`1q ` 2bkh,1pskh, a

k
hq ` 2bkh,2pskh, a

k
hq ` ζkh`1,2 ` 9ζkh`1,2,

where the first inequality holds based on the assumption that ThV k
h`1,2 P Fk

h,2 and definition of bkh,2,
and the third equality holds because for h ě hk, we know that Ak

h`1 P argmaxAQ
k
h`1pskh`1, Aq “

argmaxA
ř

aPA
rPk
h`1,2pa|skh`1, Aqfkh`1,2pskh`1, aq by the data collection policy in (9).

Therefore, by recursion we get

pfkh,2 ´Q
πk

h qpskh, a
k
hq ď

H
ÿ

h1“h`1

ÿ

a1PAk
h1

´

rPk
h1,2pa1|skh1 , Ak

h1 q ´ Ph1 pa1|skh1 , Ak
h1 q

¯

fkh1,2pskh1 , a1q

` 2
H
ÿ

h1“h

bkh1,1pskh1 , akh1 q ` 2
H
ÿ

h1“h

bkh1,2pskh1 , akh1 q `

H
ÿ

h1“h`1

ζkh1,2 `

H
ÿ

h1“h`1

9ζkh1,2.

Lemma D.20 (Approximation error of optimistic Q). Suppose Algorithm 1 uses a consistent bonus oracle satisfying
Definition B.1. Conditioning on the good event Eθ

Ş

EďK , for any k P rKs and any h ď hk, we have

pfkh,1 ´Q
πk

h qpskh, a
k
hq

ď

hk´1
ÿ

h1“h`1

ÿ

a1PAk
h1

´

rPk
h1,1pa1|skh1 , Ak

h1 q ´ Ph1 pa1|skh1 , Ak
h1 q

¯

fkh1,1pskh1 , a1q

`

H
ÿ

h1“hk

ÿ

a1PAk
h1

´

rPk
h1,2pa1|skh1 , Ak

h1 q ´ Ph1 pa1|skh1 , Ak
h1 q

¯

fkh1,2pskh1 , a1q

` 2
H
ÿ

h1“h

bkh1,1pskh1 , akh1 q ` 2
H
ÿ

h1“hk

bkh1,2pskh1 , akh1 q `

hk´1
ÿ

h1“h`1

pζkh1,1 ` 9ζkh1,1q `

H
ÿ

h1“hk

pζkh1,2 ` 9ζkh1,2q,

37



Combinatorial Reinforcement Learning with Preference Feedback

where

ζkh,1 :“ EP
“

pV k
h,1 ´ V πk

h qpshq | skh´1, a
k
h´1

‰

´ pV k
h,1 ´ V πk

h qpskhq,

9ζkh,1 :“ EP

”´

fkh,1 ´Q
πk

h

¯

pskh, ahq | skh, A
k
h

ı

´

´

fkh,1 ´Q
πk

h

¯

pskh, a
k
hq,

ζkh,2 :“ EP
“

pV k
h,2 ´ V πk

h qpshq | skh´1, a
k
h´1

‰

´ pV k
h,2 ´ V πk

h qpskhq,

9ζkh,2 :“ EP

”´

fkh,2 ´Q
πk

h

¯

pskh, ahq | skh, A
k
h

ı

´

´

fkh,2 ´Q
πk

h

¯

pskh, a
k
hq.

Here, following the convention, we use the empty sum notation, i.e.,
řb

i“a xi “ 0, when b ď a.

Proof of Lemma D.20. Under the event EďK , by Lemma D.14 it holds that fkh,1ps, aq ď fkh,2ps, aq for all ps, aq P S ˆ I.
Therefore, for h “ hk, by Lemma D.19, we get

pfkh,1 ´Q
πk

h qpskh, a
k
hq ď pfkh,2 ´Q

πk

h qpskh, a
k
hq

ď

H
ÿ

h1“h`1

ÿ

a1PAk
h1

´

rPk
h1,2pa1|skh1 , Ak

h1 q ´ Ph1 pa1|skh1 , Ak
h1 q

¯

fkh1,2pskh1 , a1q

` 2
H
ÿ

h1“h

bkh1,1pskh1 , akh1 q ` 2
H
ÿ

h1“h

bkh1,2pskh1 , akh1 q `

H
ÿ

h1“h`1

ζkh1,2 `

H
ÿ

h1“h`1

9ζkh1,2. (D.44)

For h “ hk ´ 1, we have

pfkh,1 ´Q
πk

h qpskh, a
k
hq “ pfkh,1 ´ ThV k

h`1,1qpskh, a
k
hq ` pThV k

h`1,1 ´Q
πk

h qpskh, a
k
hq

ď 2bkh,1pskh, a
k
hq ` E

“

pV k
h`1,1 ´ V πk

h qpsh`1q|skh, a
k
h

‰

ď 2bkh,1pskh, a
k
hq ` E

“

pV k
h`1,2 ´ V πk

h qpsh`1q|skh, a
k
h

‰

“ 2bkh,1pskh, a
k
hq ` pV k

h`1,2 ´ V πk

h qpskh`1q ` ζkh`1,2

“ 2bkh,1pskh, a
k
hq ` pQk

h`1,2 ´Qπk

h qpskh`1, A
k
h`1q ` ζkh`1,2

ď
ÿ

a1PAk
h`1

´

rPk
h`1,2pa1|skh`1, A

k
h`1qfkh`1,2pskh`1, a

1q ´ Ph`1pa1|skh`1, A
k
h`1qQ

πk

h`1pskh`1, a
1q

¯

` 2bkh,1pskh, a
k
hq ` ζkh`1,2

“
ÿ

a1PAk
h`1

´

rPk
h`1,2pa1|skh`1, A

k
h`1q ´ Ph`1pa1|skh`1, A

k
h`1q

¯

fkh`1,2pskh`1, a
1q

` EP

”´

fkh`1,2 ´Q
πk

h`1

¯

pskh`1, ah`1q|skh`1, A
k
h`1

ı

` 2bkh,1pskh, a
k
hq ` ζkh`1,2

“
ÿ

a1PAk
h`1

´

rPk
h`1,2pa1|skh`1, A

k
h`1q ´ Ph`1pa1|skh`1, A

k
h`1q

¯

fkh`1,2pskh`1, a
1q

`

´

fkh`1,2 ´Q
πk

h`1

¯

pskh`1, a
k
h`1q ` 2bkh,1pskh, a

k
hq ` ζkh`1,2 ` 9ζkh`1,2, (D.45)

where the first inequality holds based on the assumption that ThV k
h`1,1 P Fk

h,1 and definition of bkh,1, and the second
inequality holds because for any sh`1 P S, we have

V k
h`1,1psh`1q “

ÿ

a1PAh`1,1

rPk
h`1,1pa1|sh`1, Ah`1,1qfkh`1,1psh`1, a

1q

ď
ÿ

a1PAh`1,1

rPk
h`1,1pa1|sh`1, Ah`1,1qfkh`1,2psh`1, a

1q

ď
ÿ

a1PÃh`1,1

rPk
h`1,2pa1|sh`1, Ãh`1,1qfkh`1,2psh`1, a

1q

ď
ÿ

a1PAk
h`1,2

rPk
h`1,2pa1|sh`1, A

k
h`1,2qfkh`1,2psh`1, a

1q “ V k
h`1,2psh`1q,
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where in the first equality, we denoteAh`1,1 P argmaxA
ř

a1PA
rPk
h`1,1pa1|sh`1, Aqfkh`1,1psh`1, a

1q, for the first inequality,
we use the fact that fkh`1,1ps, aq ď fkh`1,2ps, aq (Lemma D.14), the second inequality holds for some Ãh`1,1 Ď Ah`1,1

(Lemma D.5), and the last inequality follows from the definition of Ak
h`1,2. Moreover, the third equality of (D.45) holds

because for h` 1 “ hk, we know that Ak
h`1 “ Ak

h`1,2 by the data collection policy in (9).

Therefore, by recursion, we have

pfkh,1 ´Q
πk

h qpskh, a
k
hq

ď

H
ÿ

h1“h`1

ÿ

a1PAk
h1

´

rPk
h1,2pa1|skh1 , Ak

h1 q ´ Ph1 pa1|skh1 , Ak
h1 q

¯

fkh1,2pskh1 , a1q

` 2
H
ÿ

h1“h

bkh1,1pskh1 , akh1 q ` 2
H
ÿ

h1“h`1

bkh1,2pskh1 , akh1 q `

H
ÿ

h1“h`1

ζkh1,2 `

H
ÿ

h1“h`1

9ζkh1,2 (D.46)

Finally, we consider the case where h ă hk ´ 1.

pfkh,1 ´Q
πk

h qpskh, a
k
hq “ pfkh,1 ´ ThV k

h`1,1qpskh, a
k
hq ` pThV k

h`1,1 ´Q
πk

h qpskh, a
k
hq

ď 2bkh,1pskh, a
k
hq ` E

“

pV k
h`1,1 ´ V πk

h`1qpsh`1q|skh, a
k
h

‰

“ 2bkh,1pskh, a
k
hq ` pV k

h`1,1 ´ V πk

h`1qpskh`1q ` ζkh`1,1

“ 2bkh,1pskh, a
k
hq ` pQk

h`1,1 ´Qπk

h`1qpskh`1, A
k
h`1q ` ζkh`1,1

“
ÿ

a1PAk
h`1

´

rPk
h`1,1pa1|skh`1, A

k
h`1qfkh`1,1pskh`1, a

1q ´ Ph`1pa1|skh`1, A
k
h`1qQ

πk

h`1pskh`1, a
1q

¯

` 2bkh,1pskh, a
k
hq ` ζkh`1,1

“
ÿ

a1PAk
h`1

´

rPk
h`1,1pa1|skh`1, A

k
h`1q ´ Ph`1pa1|skh`1, A

k
h`1q

¯

fkh`1,1pskh`1, a
1q

` EP

”´

fkh`1,1 ´Q
πk

h`1

¯

pskh`1, ah`1q|skh`1, A
k
h`1

ı

` 2bkh,1pskh, a
k
hq ` ζkh`1,1

“
ÿ

a1PAk
h`1

´

rPk
h`1,1pa1|skh`1, A

k
h`1q ´ Ph`1pa1|skh`1, A

k
h`1q

¯

fkh`1,1pskh`1, a
1q

`

´

fkh`1,1 ´Q
πk

h`1

¯

pskh`1, a
k
h`1q ` 2bkh,1pskh, a

k
hq ` ζkh`1,1 ` 9ζkh`1,1,

where the first inequality holds based on the assumption that ThV k
h`1,1 P Fk

h,1 and definition of bkh,1 and the third equality
holds because for h` 1 ă hk, we have Ak

h`1 “ Ak
h`1,1 by the data collection policy in (9).

Hence, by recursion we have

pfkh,1 ´Q
πk

h qpskh, a
k
hq ď

hk´1
ÿ

h1“h`1

ÿ

a1PAk
h1

´

rPk
h1,1pa1|skh1 , Ak

h1 q ´ Ph1 pa1|skh1 , Ak
h1 q

¯

fkh1,1pskh1 , a1q

`

H
ÿ

h1“hk

ÿ

a1PAk
h1

´

rPk
h1,2pa1|skh1 , Ak

h1 q ´ Ph1 pa1|skh1 , Ak
h1 q

¯

fkh1,2pskh1 , a1q

` 2
H
ÿ

h1“h

bkh1,1pskh1 , akh1 q ` 2
H
ÿ

h1“hk

bkh1,2pskh1 , akh1 q `

hk´1
ÿ

h1“h`1

pζkh1,1 ` 9ζkh1,1q

`

H
ÿ

h1“hk

pζkh1,2 ` 9ζkh1,2q. (D.47)

Combining (D.44), (D.46), and (D.47), we conclude the proof.
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D.7. Bounds on bonuses and |Koo|

In this subsection, we provide proofs for the bounds on the sum of bonuses (Lemma D.21, Lemma D.22, and Lemma D.23)
as well as the bound on the size of Koo (Lemma D.24).

Lemma D.21 (Crude bound on bkh,1, Lemma 39 of Agarwal et al. 2023). Let zkh “ pskh, a
k
hq. Given bkh,1p¨q ď C ¨

˜

DFh

`

¨; tzτhu
k´1
τ“1, tσ̄

τ
hu

k´1
τ“1

˘

¨

c

´

βk
h,1

¯2

` ρ` ϵbβ
k
h,1

¸

, when ρ “ 1, ν ď 1, it holds that for any subset K P rKs, we

have

ÿ

kPK

H
ÿ

h“1

min
␣

1 ` L, bkh,1pzkhq
(

“ O

˜

c

log
NKH

νδ
¨

˜

c

log
NNbKH

νδ
¨H

a

dν |K| ` log
NNbKH

νδ
¨ dνH ` |K|Hϵb

¸¸

.

Lemma D.22 (Crude bound on bkh,2, Lemma 38 of Agarwal et al. 2023). Let zkh “ pskh, a
k
hq. Given bkh,2p¨q ď C ¨

˜

DFh

`

¨; tzτhu
k´1
τ“1, t1

τu
k´1
τ“1

˘

¨

c

´

βk
h,2

¯2

` ρ` ϵbβ
k
h,1

¸

, when ρ “ 1, ν ď 1, it holds that for any subset K P rKs, we

have

ÿ

kPK

H
ÿ

h“1

min
␣

1 ` L, bkh,2pzkhq
(

“ O

˜

c

log
NNbKH

δ
¨

´

H
a

dν |K| ` dνH ` |K|Hϵb

¯

¸

.

Lemma D.23 (Fine-grained bound on bkh,1). Let zkh “ pskh, a
k
hq. Recall that the bonus oracle B outputs a bonus function

such that bkh,1p¨q ď C ¨

˜

DFh

`

¨; tzτhu
k´1
τ“1, tσ̄

τ
hu

k´1
τ“1

˘

¨

c

´

βk
h,1

¯2

`ρ` ϵbβ
k
h,1

¸

. When ρ “ 1, ν “ 1{
?
KH , δ ă p0, 1{7q

and the event EďK holds, with probability at least 1 ´ 7δ, we have

K
ÿ

k“1

H
ÿ

h“1

min
␣

1 ` L, bkh,1pzkhq
(

“ O

˜

c

dνHK ¨ log
NKH

δ
`

1
?
κ
dH7{2

a

dνplogKq3{2 logM ¨ log
NNbKH

δ
¨

c

log
NKH

δ

¸

` O

˜

dνH
7{2 log

NKH

δ
¨

ˆ

log
NNbKH

δ

˙3{2

`

c

log
NKH

δ
¨

´

KHϵb `
a

dνKH3δ
¯

¸

` O

¨

˝

c

log
NKH

δ
log

NNbKH

δ
¨
a

dνH ¨

¨

˝

d

H2
ÿ

kPKo

uk `
a

H2|Koo|

˛

‚

˛

‚.

Proof of Lemma D.23. By the definition of the oracle B (Definition B.1), we have

K
ÿ

k“1

H
ÿ

h“1

min
␣

1 ` L, bkh,1pzkhq
(

“ O

˜

K
ÿ

k“1

H
ÿ

h“1

min

#

1, DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

¨

c

´

βk
h,1

¯2

` ρ

+

`KHϵb ¨ max
k,h

βk
h,1

¸

“ O

˜

c

log
NKH

δ
¨

K
ÿ

k“1

H
ÿ

h“1

min
␣

1, DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘(

`KHϵb

¸

, (D.48)

where the last equality holds by the definition of βk
h,1.
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Now, we bound the summation terms

K
ÿ

k“1

H
ÿ

h“1

min
␣

1, DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘(

“

K
ÿ

k“1

H
ÿ

h“1

min
!

1, σ̄k
h ¨

`

σ̄k
h

˘´1
DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

)

by dividing into the following cases:

I1 “

!

pk, hq P rKs ˆ rHs :
`

σ̄k
h

˘´1
DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

ě 1
)

,

I2 “
␣

pk, hq P rKs ˆ rHs : σ̄k
h “ ν, pk, hq ‰ I1

(

,

I3 “

!

pk, hq P rKs ˆ rHs : σ̄k
h “ 2

ˆ

b

opδkhq ` ιpδkhq

˙

¨

b

DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄

τ
hu

k´1
τ“1

˘

,

pk, hq ‰ I1
)

,

I4 “

!

pk, hq P rKs ˆ rHs : σ̄k
h “

?
2ιpδkhq

b

fkh,2pzkhq ´ fkh,´2pzkhq, pk, hq ‰ I1
)

I5 “
␣

pk, hq P rKs ˆ rHs : σ̄k
h “ σk

h, pk, hq ‰ I1
(

, .

For the case of I1, we have
ÿ

pk,hqPI1

min
!

1, σ̄k
h ¨

`

σ̄k
h

˘´1
DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

)

ď
ÿ

pk,hqPI1

`

σ̄k
h

˘´1
DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

ď

H
ÿ

h“1

dimν,KpFhq “ dνH. (D.49)

For I2, we use the Cauchy-Schwarz inequality to get
ÿ

pk,hqPI2

min
!

1, σ̄k
h ¨

`

σ̄k
h

˘´1
DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

)

ď
?
ν2KH ¨

d

ÿ

pk,hqPI2

`

σ̄k
h

˘´2
D2

Fh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

ď

g

f

f

e

H
ÿ

h“1

dimν,KpFhq “
a

dνH. (D.50)

For I3, we have
ÿ

pk,hqPI3

min
!

1, σ̄k
h ¨

`

σ̄k
h

˘´1
DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

)

ď
ÿ

pk,hqPI3

`

8opδkhq ` ι2pδkhq
˘

¨ min
!

1,
`

σ̄k
h

˘´2
D2

Fh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

)

“ O

˜˜

c

log
NKH

δ
` log

NNbKH

δ

¸

¨

H
ÿ

h“1

dimν,KpFhq

¸

“ O

˜˜

c

log
NKH

δ
` log

NNbKH

δ

¸

dνH

¸

, (D.51)

where the inequality holds because, by dividing both sides of σ̄k
h “ 2

´
b

opδkhq ` ιpδkhq

¯

¨

b

DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄

τ
hu

k´1
τ“1

˘

by
b

σ̄k
h and rearranging terms, we get:

σ̄k
h ď

`

8opδkhq ` ι2pδkhq
˘

DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

.
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We also use the property that
`

σ̄k
h

˘´1
DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

ď 1 for pk, hq P I3, which follows directly from the
definition of I3.

For I4, we have
ÿ

pk,hqPI4

min
!

1, σ̄k
h ¨

`

σ̄k
h

˘´1
DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

)

ď
ÿ

pk,hqPI4

σ̄k
h ¨

`

σ̄k
h

˘´1
DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

“
ÿ

pk,hqPI4

?
2ιpδkhq

b

fkh,2pzkhq ´ fkh,´2pzkhq ¨
`

σ̄k
h

˘´1
DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

ď O

¨

˝

c

log
NNbKH

δ

g

f

f

e

K
ÿ

k“1

H
ÿ

h“1

fkh,2pzkhq ´ fkh,´2pzkhq ¨
a

dνH

˛

‚, (D.52)

where the last inequality holds by the Cauchy-Schwarz inequality together with the definition of ιpδkhq.

Lastly, restricting on I5, if the event EďK holds, we have
ÿ

pk,hqPI5
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!
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h ¨

`

σ̄k
h

˘´1
DFh

`

zkh; tzτhu
k´1
τ“1, tσ̄u

k´1
τ“1

˘

)

ď
ÿ
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˘
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ÿ
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¨
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ÿ
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˘
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¨

˝

d

ÿ

k,h

V
”

rh ` V k
h`1,1psh`1q | zkh

ı

`
ÿ

k,h

´
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¯

¨
a

dνH

˛

‚

` O

¨

˝

g

f

f

e

ÿ

k,h
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␣

1, DFh

`
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˘(

c

log
NNbKH

δ
¨
a

dνH

˛

‚, (D.53)

where the second inequality holds by the Cauchy-Schwarz inequality, the last inequality holds by Lemma D.16 and the
definition of Eluder dimension.

To further bound the first term on the right-hand side of (D.53), we apply Lemma D.17. Therefore, with probability at least
1 ´ δ, we have

ÿ

pk,hqPI5
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!

1, σ̄k
h ¨
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ÿ
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ÿ
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¨
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d
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‚
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¨
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c
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d
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ÿ
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´
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a
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˛

‚
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˜
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1.5

c

log
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¸

, (D.54)
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where the first inequality holds by the fact that
ÿ

k,h

min
␣

1, DFh

`

zkh; tzτhu
k´1
τ“1, t1

τu
k´1
τ“1

˘(

ď dνH

ÿ

k,h
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␣

1, DFh

`

zkh; tzτhu
k´1
τ“1, t1

τu
k´1
τ“1

˘(

ď
?
KH

d

ÿ

k,h

D2
Fh

`

zkh; tzτhu
k´1
τ“1, t1

τu
k´1
τ“1

˘

ď H
a

dνK,

and the last inequality holds by the AM-GM inequality such that

H

c

K ¨ dν log
NNbKH

δ
ď K `H2dν log

NNbKH

δ
.

Combining Equation D.49, D.50, D.51, D.52, and D.54, we get

K
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ÿ
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`
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ÿ
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ÿ
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c
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δ
¨
a
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c

log
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δ

¸

. (D.55)

Now, we bound the term
ř

k,h

´

fkh,2pzkhq ´ fkh,´2pzkhq

¯

. For k P Koo, we have

ÿ

kPKoo

H
ÿ

h“1

`

fkh,2pzkhq ´ fkh,´2pzkhq
˘

“ Op|Koo|Hq.

Otherwise, for episodes k P Ko, we know that it holds true that fkh,1pzkhq ě fkh,2pzkhq ´ uk by (9). Therefore, under the event
EďK , we have

ÿ

kPKo

H
ÿ
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ÿ
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ÿ
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“
ÿ
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H
ÿ
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ÿ
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ÿ
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H
ÿ
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ÿ
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ÿ
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ÿ
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ÿ
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¯
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ÿ
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ÿ
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#
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H
ÿ
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+
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ÿ

kPKo

H
ÿ
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#
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H
ÿ
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`
ÿ
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H
ÿ
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H
ÿ
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¯

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

martingale difference sequences (MDSs)

`H
ÿ

kPKo

uk, (D.56)

where the second inequality holds by Lemma D.18 and D.20.

To further the right-hand side of (D.56), we apply Lemma D.10 (which holds with probability at least 1 ´ 2δ) to the first
and the second terms, Lemma D.21 to the third term, Lemma D.22 to the forth term, and we bound the fifth term using the
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Azuma-Hoeffding inequality (which holds with probability at least 1 ´ 4δ). As a result, absorbing the low-order terms, we
obtain that

K
ÿ

k“1

H
ÿ

h“1

`

fkh,2pzkhq ´ fkh,´2pzkhq
˘
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¨

˜
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c
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c

KH log
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δ
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kPKo

uk

¸

, (D.57)

where the last inequality holds by the AM-GM inequality.

Plugging (D.57) to (D.55), we have
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‚, (D.58)

where the second inequality holds by applying the AM-GM inequality and absorbing the lower-order terms.
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Finally, plugging (D.58) to (D.48), we derive that
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This concludes the proof of Lemma D.23.

Lemma D.24 (Bounding size of Koo). Suppose ν ď 1 and we set
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¸

,

for some large enough constant 0 ă C ă 8, when the event EďK holds true, then with probability at least 1 ´ 2δ, it holds
that
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Proof of Lemma D.24. By the definition of hk, for each k P Koo, we have fkhk,2
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, akhk
q ě fkhk,1

pskhk
, akhk

q ` uk, which
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. (D.59)

Furthermore, under the event EďK , by Lemma D.14, it holds that fkh,1psh, ahq ě Q
‹

hpsh, ahq ě Q
πk

h psh, ahq for all
psh, ahq P S ˆ I. Thus, we get
ÿ

kPKoo

pfkhk,2
´ fkhk,1

qpskhk
, akhk

q ď
ÿ

kPKoo

pfkhk,2
´Q

πk

hk
qpskhk

, akhk
q

ď
ÿ

kPKoo

H
ÿ

h1“hk`1

ÿ

a1PAk
h1,2

´

rPk
h1,2pa1|skh1 , Ak

h1,2q ´ Ph1 pa1|skh1 , Ak
h1,2q

¯

fkh1,2pskh1 , a1q

` 2
ÿ

kPKoo

H
ÿ

h1“hk

min
␣

1 ` L, bkh1,1pskh1 , akh1 q
(

` 2
ÿ

kPKoo

H
ÿ

h1“hk

min
␣

1 ` L, bkh1,2pskh1 , akh1 q
(

`
ÿ

kPKoo

H
ÿ

h1“hk`1

´

ζkh1,2 ` 9ζkh1,2

¯

ď O

˜

dH
a

|Koo| ¨ plogKq3{2 logM `
1

κ
d2H

´

plogKq3{2 logM
¯2

`

c

|Koo|H log
KH

δ

¸

` O

˜

c

log
NKH

νδ
¨

˜

c

log
NNbKH

νδ
¨H

a

dν |Koo| ` log
NNbKH

νδ
¨ dνH ` |Koo|Hϵb

¸¸

, (D.60)
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where in the first inequality, we note that Ak
h1 “ Ak

h1,2 for h1 ě hk, the second inequality follows from D.19. And for the
third inequality, we apply Lemma D.13 to the first term, Lemma D.21 to the second term, Lemma D.22 to the third term.
Finally, we bound the last term using the Azuma-Hoeffding inequality with probability at least 1 ´ 2δ.

Thus, in order for the two inequalities D.59 and D.60 to hold simultaneously, the following condition must be satisfied:
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˜
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Using the AM-GM inequality, we can further bound the second term inside the max operation.
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where the second inequality also follow from the AM-GM inequality and the last inequality holds due to the fact that
pa` bq2 ď 2a2 ` 2b2 for any a, b P R`. This concludes the proof.

D.8. Proof of Theorem 5.1

Now, we are ready to provide the proof of Theorem 5.1. To start, we formally restate the thorem.

Theorem D.25 (Restatement of Theorem 5.1, Regret upper bound of MNL-VQL). Suppose Assumptions 3.1 and 3.3 hold. We
assume that we have the generalized Eluder dimension dimν,KpFhq, for h P rHs, as defined in Definition 3.5 with ρ “ 1, and
access to a consistent bonus oracle B satisfying Definition B.1 with ϵb “ Op1{KHq. Let dν “ 1

H

řH
h“1 dimν,KpFhq with

ν “
a

1{KH , and set uk “ O
`?

logN ¨plogNNb ¨H5{2
?
dν `dH5{2

?
logNNbq{

?
K
˘

. Then, for any δ ă 1{pH2`15q,
with probability at least 1 ´ δ, the regret of MNL-VQL is upper-bounded by:
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d
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1
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ˆ
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c

log
NNbKH

δ
¨KHϵb

¸

,

where d is the feature dimension of the MNL preference model, N is the maximum size of the function class, i.e., N “

maxhPrHs |Fh|, and Nb is the size of the bonus function class, i.e., Nb “ |W|.

Proof of Theorem 5.1. When the event Eθ
Ş

EďK happens (with probability at least 1 ´ 2δ), we can bound the regret as
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follows:

RegretpM,Kq “

K
ÿ

k“1

pV ‹
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1 q psk1q ď
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ÿ
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ÿ
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ÿ
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ÿ

kPKoozt1u

`

Qk
1 ´Qπk

1

˘

psk1 , A
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1q, (D.61)

where the first inequality holds by Lemma D.15.

For k P Kozt1u, recall that Qk
hps,Ak

hq “
ř

a1PAk
h

rPk
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hqfkh,1pskh, a1q for all h P rHs, as defined in (D.18).
Therefore, we have
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Then, by applying Lemma D.20 with hk “ H ` 1, we have
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where ζkh,1 “ EP

”

pV k
h,1 ´ V πk
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Now, we consider the case where k P Koozt1u. In this cases, note that hk P rHs. Similar to the above analysis, by
Lemma D.20, we get
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¯

fkh,1pskh, ahq

`

H
ÿ

h“hk

ÿ

ahPAk
h

´

rPk
h,2pah|skh, A

k
hq ´ Phpah|skh, A

k
hq

¯

fkh,2pskh, ahq

` 2
H
ÿ

h“1

bkh,1pskh, a
k
hq ` 2

H
ÿ

h“hk

bkh,2pskh, a
k
hq `

hk´1
ÿ

h“1

9ζkh,1 `

hk´1
ÿ

h“2

ζkh,1 `

H
ÿ

h“hk

9ζkh,2 `

H
ÿ

h“hk

ζkh,2,

(D.63)

where ζkh,2 “ EP

”

pV k
h,2 ´ V πk

h qpshq | skh´1, a
k
h´1

ı

´pV k
h,2´V πk

h qpskhq and 9ζkh,2 “ EP

”´

fkh,2 ´Q
πk

h

¯

pskh, ahq | skh, A
k
h

ı

´
´

fkh,2 ´Q
πk

h

¯

pskh, a
k
hq.
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Plugging (D.62) and (D.63) into (D.61), and denoting Jpk, hq : rKs ˆ rHsÑt1, 2u as the one-to-one function that maps
from rKs ˆ rHs to the index set t1, 2u such that Ak

h “ Ak
h,Jpk,hq

P argmaxAPA
ř

aPA
rPk
h,Jpk,hq

pa|skh, Aqfkh,Jpk,hq
pskh, aq,

we obtain that

RegretpM,Kq

ď Op1q `

K
ÿ

k“2

H
ÿ

h“1

ÿ

ahPAk
h

´

rPk
h,Jpk,hqpah|skh, A

k
hq ´ Phpah|skh, A

k
hq

¯

fkh,Jpk,hqpskh, ahq

` 2
K
ÿ

k“2

H
ÿ

h“1

min
␣

1 ` L, bkh,1pskh, a
k
hq
(

` 2
ÿ

kPKoo

H
ÿ

h“hk

min
␣

1 ` L, bkh,2pskh, a
k
hq
(

`

K
ÿ

k“2

hk´1
ÿ

h“1

9ζkh,1 `

K
ÿ

k“2

hk´1
ÿ

h“2

ζkh,1 `

K
ÿ

k“2

H
ÿ

h“hk

9ζkh,2 `

K
ÿ

k“2

H
ÿ

h“hk

ζkh,2.

Now, by applying the results from Lemma D.13 to bound the first term (which holds with probability at least 1 ´ 2δ),
Lemma D.23 for the second term (which holds with probability at least 1´7δ), Lemma D.22 for the third term, and applying
the Azuma-Hoeffding inequality to the remaining terms (which holds with probability at least 1 ´ 4δ), we get

RegretpM,Kq

ď O
ˆ

d
a

HK|plogKq3{2 logM `
1

κ
d2HplogKq3plogMq2

˙

` O

˜

c

dνHK ¨ log
NKH

δ
`

1
?
κ
dH7{2

a

dνplogKq3{2 logM ¨ log
NNbKH

δ
¨

c

log
NKH

δ

¸

` O

˜

dνH
7{2 log

NKH

δ
¨

ˆ

log
NNbKH

δ

˙3{2

`

c

log
NKH

δ
¨

´

KHϵb `
a

dνKH3δ
¯

¸

` O

¨

˝

c

log
NKH

δ
log

NNbKH

δ
¨
a

dνH ¨

¨

˝

d

H2
ÿ

kPKo

uk `
a

H2|Koo|

˛

‚

˛

‚

` O

˜

c

log
NNbKH

δ
¨

´

H
a

dν |Koo| ` |Koo|Hϵb

¯

¸

ď O
ˆ

d
a

HK|plogKq3{2 logM `
1

κ
d2HplogKq3plogMq2

˙

` O

˜

c

dνHK ¨ log
NKH

δ
`

1
?
κ
dH7{2

a

dνplogKq3{2 logM ¨ log
NNbKH

δ
¨

c

log
NKH

δ

¸

` O

˜

dνH
7{2 log

NKH

δ
¨

ˆ

log
NNbKH

δ

˙3{2

`

c

log
NNbKH

δ
¨

´

KHϵb `
a

dνKH3δ
¯

¸

` O

¨

˝

c

log
NKH

δ
log

NNbKH

δ
¨
a

dνH ¨

d

H2
ÿ

kPKo

uk

˛

‚, (D.64)

where the second inequality holds by Lemma D.24 with probability at least 1 ´ 2δ, and use the fact that |Koo|Hϵb ď KHϵb.

Now, we apply the AM-GM inequality to the term O
´

1?
κ
dH7{2

?
dνplogKq3{2 logM ¨ log NNbKH

δ ¨

b

log NKH
δ

¯

, thus
we get

O

˜

1
?
κ
dH7{2

a

dνplogKq3{2 logM ¨ log
NNbKH

δ
¨

c

log
NKH

δ

¸

ď O

˜

1

κ
d2H2plogKq3plogMq2 ` dνH

5

ˆ

log
NNbKH

δ

˙2

¨ log
NKH

δ

¸

. (D.65)
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Furthermore, by substituting the chosen values of uk and applying the AM-GM inequality, we get

O

¨

˝

c

log
NKH

δ
log

NNbKH

δ
¨
a

dνH ¨

d

H2
ÿ

kPKo

uk

˛

‚

“ O

˜

c

dνHK ¨ log
NKH

δ
` d2H2plogKq3plogMq2 ` dνH

5 log
NKH

δ
¨

ˆ

log
NNbKH

δ

˙2
¸

` O

˜

c

log
NKH

δ
¨KHϵb

¸

. (D.66)

Then, by plugging (D.65) and (D.66) into (D.64), and setting δ ă 1
H2`15 , we derive that

RegretpM,Kq “ O

˜

d
?
HKplogKq3{2 logM `

c

dνHK ¨ log
NKH

δ
`

1

κ
d2H2plogKq3plogMq2

¸

` O

˜

dνH
5 log

NKH

δ
¨

ˆ

log
NNbKH

δ

˙2

`

c

log
NNbKH

δ
¨KHϵb

¸

.

We conclude the proof of Theorem 5.1.

E. Proof of Theorem 5.2
In this section, we introduce several properties of linear function class. We formally define the linear MDP as follows:

Definition E.1 (Linear MDPs, Yang & Wang 2019; Jin et al. 2020). An MDP M is a linear MDP if we have a known feature
mapping ψ : S ˆ I Ñ Rdlin

, and there exist dlin unknown (signed) measures µ‹
h “ pµ

p1q

h , . . . , µ
pdlin

q

h q over S and unknown
vector w‹

h P Rdlin
, such that for any ps, aq P S ˆ I, we have Php¨|s, aq “ xψps, aq,µ‹

hp¨qy and rhps, aq “ xψps, aq,w‹
hy.

We assume that supps,aqPSˆI }ψps, aq}2 ď 1, maxt}
ř

sPS |µ‹
hpsq|}2, }w

‹
h}2u ď

?
dlin for all h P rHs.

In this proof, to explicitly indicate the dependency on parameters, we denote the linear MDPs as Mθ‹,µ‹,w‹ , where
θ‹“tθ‹

huHh“1,µ
‹“tµ‹

huHh“1, and w‹“tw‹
huHh“1.

We also assume that
řH

h“1 rh P r0, 1s. Proposition 2.3 of Jin et al. (2020) shows that linear MDPs satisfy Assumption 3.3
under the linear function class F lin

h defined as follows:

F lin
h :“

!

xψp¨, ¨q,ωhy : ωh P Rdlin
, }ωh}2 ď 2

?
dlin

)

, for anyh P rHs. (E.1)

For linear MDPs, let F lin
h pϵcq be an ϵc-cover of F lin

h under the ℓ8 norm, so that

log |F lin
h pϵcq| “ O

˜

dlin log
2
?
dlin

ϵc

¸

“ Õ
`

dlin˘ . (E.2)

Then, the definition of generalized Eluder dimension for the linear function class F lin
h can be expressed as:

Lemma E.2 (Lemma 3 of Agarwal et al. 2023). For the class F lin
h defined in (E.1), letting F lin

h pϵcq be the ϵc-cover of F lin
h

for some ϵc ą 0, we have

dimν,KpF lin
h pϵcqq ď dimν,KpF lin

h q “ O
ˆ

dlin log

ˆ

1 `
K

ν2ρ

˙˙

“ Õpdlinq.

The bonus oracle for linear MDPs can be easily instantiated using the standard elliptical bonus, and, as demonstrated in the
next lemma, satisfies all the required properties for a bonus oracle.
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Lemma E.3 (Bonus oracle B for linear MDPs, Lemma 7 of Agarwal et al. 2023). Given K,H P Z`, suppose all βk
h ď β

and βk
h is non-decreasing in k P rKs for each h P rHs. For any k ě 1, h P rHs, variances tσ̄τ

huhτ“1 satisfying σ̄τ
h ě ν for

some ν ą 0, dataset Dk´1
h “ tψpsτh, a

τ
hq, aτh, r

τ
h, ψpsτh`1, a

τ
h`1qu

k´1
τ“1, function class Fk

h and f̂kh P Fk
h defined via weighted

regression in (3), and parameters ρ, ϵc ą 0, let Bptσ̄τ
huhτ“1,Dk´1

h ,Fk
h , f̂

k
h , β

k
h, ρ, ϵcq “ }ψps, aq}

pΣk
hq

´1

b

`

βk
h

˘2
` ρ,

where Σk
h “

ρ
16dI `

řk´1
τ“1

1

pσ̄τ
hq

2ψpsτh, a
τ
hqψpsτh, a

τ
hqJ. For any choice of covering radius ϵc ď ν

a

ρ{8K, the oracle

satisfies all the properties of Definition B.1 with

logNb “ log |W| “ O
´

pdlinq2 log
´

1 ` dlin
?
dlinβ{pρϵ2cq

¯¯

“ Õ
`

pdlinq2
˘

.

Theorem E.4 (Formal version of Theorem 5.2, Regret upper bound of MNL-VQL for linear MDPs). Under the same
conditions with Theorem 5.1, suppose that the underlying MDP has linear transition probabilities and rewards, so that the
function class for linear MDPs, F lin

h , satisfies Assumption 3.3. Let F lin
h pϵcq be an ϵc-cover of F lin

h under ℓ8 norm. We set
ρ “ 1, uk “ Θ̃

`

pdlinq3H5{2 ` dpdlinq3{2H5{2q{
?
K
˘

, ν “
a

1{HK, ϵb “ ϵc ď 1{p8HKq and δ ă 1{pH2 ` 15q. Then,
with probability at least 1´δ, the cumulative regret of MNL-VQL, with bonus oracle defined in Lemma E.3, is upper-bounded
by

Regret pMθ‹,µ‹,w‹ ,Kq “ Õ
ˆ

d
?
HK `

1

κ
d2H2

loooooooooomoooooooooon

regret from MNL model

` dlin
?
HK ` pdlinq6H5

loooooooooooomoooooooooooon

regret from linear MDPs

˙

.

Proof of Theorem 5.2. We apply the above results to linear MDPs Mθ‹,µ‹,w‹ with function class F lin
h pϵcq, h P rHs, and

bonus oracle B. From (E.2), we know that N “ Õpdlinq. Additionally, Lemma E.2 shows that dν “ Õpdlinq. Therefore, by
combining these results with Theorem 5.1 and Lemma E.3, we can establish the upper regret bounds for linear MDPs.

Regret pMθ‹,µ‹,w‹ ,Kq “ Õ
´

d
?
HK ` dlin

?
HK `

1

κ
d2H2 ` pdlinq6H5

¯

,

where we set ρ “ 1, uk “ Θ̃
`

pdlinq3H5{2 ` dpdlinq3{2H5{2
˘

{
?
K, ν “

a

1{HK, ϵb “ ϵc ď 1{p8HKq and δ ă

1{pH2 ` 15q.

F. Proof of Theorem 5.3
In this section, we provide a regret lower bound for linear MDPs with preference model. We construct a hard in-
stance MpS, I,A,M, tPhuHh“1, tPhuHh“1, tr

H
h“1u, Hq, illustrated as in Figure F.1. This instance is based on an H ` 1-

layered structure, where each layer is a variation of the hard-to-learn MDPs introduced in Zhou et al. (2021b).

Without loss of generality, we assume that dlin ě 6 and that dlin ´ 5 is divisible by 2.3 Let i P rH ` 2s represent the layer
index. For each layer i P rH ` 2s, there are H ´ i ` 3 states, denoted as xpiq

i , . . . , x
piq
H`2, where xpiq

H`2 is the absorbing
state. Furthermore, there is a global absorbing state x0, which can only be reached at any state and horizon through the
user’s choice of the outside option a0 (not choosing any item in the assortment). Thus, there are pH ` 1qpH ` 2q{2 ` 1

states in total in the set of states S. There are 2pdlin
´5q{2 ` 1 items, so the item set is I “ t´1, 1updlin

´5q{2 Y ta0u. The set
of candidate assortments follows the definition in Section 3, i.e., A “ tA Ď I : a0 P A, 1 ď |Azta0u| ď Mu.

F.1. Construction of linear transitions and rewards

At each episode k P rKs, the agent starts from the fixed initial state xp1q

1 . We define a‹
h as an item such that a‹

h P

argmaxaPIzta0uxµh,ay, where µh P t´∆,∆updlin
´5q{2 with ∆ “

a

δ{K{p4
?
2q and δ “ 1{H .

If the state is xpiq
h with i P rH ` 1s and h P ri,H ` 1s, and the user chooses the item a‹

h, the agent remains in the same layer
i and receives a reward of γi´1{H , where γ “ H

1`H . The next state will be either xpiq
h`1^H`1 or xpiq

H`2, with probabilities

1 ´ pδ ` xµh,ayq and δ ` xµh,ay, respectively. If the user chooses an item a ‰ a0,a
‹
h in the state xpiq

h with i P rH ` 1s

and h P ri,H ` 1s, the agent obtains a reward of γi{H and transitions to xpi`1q

h`1^H`1 or xpi`2^H`2q

H`2 , with probabilities

3If dlin
´ 5 is not divisible by 2, we can set dlin

Ð dlin
` 1 by adding zero padding.
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x
p1q

1 x
p1q

2 x
p1q

3
. . . x

p1q

H`1

x
p1q

H`2

x
p2q

2 x
p2q

3
. . . x

p2q

H`1

x
p2q

H`2

x
p3q

3
. . . x

p3q

H`1

x
p3q

H`2

. . . . . .
...

x0

1 ´ δ ´ xµh,a
‹
hy,

r “ 1{H

δ`

xµh,a
‹
hy,

r “ 1{H

1 ´ δ´

xµh,ay,
r “ γ{H

b

δ ` xµh,ay,
r “ γ{H

1, r “ 0

1,
r “ 1{H

1,
r “ γ{H

1,
r “ γ2{H

1, r “ 0

Figure F.1: Inhomogeneous, hard-to-learn linear MDPs with MNL preference model. The solid line indicates the transition
caused by the user choosing the item a‹

h (with a reward of rh “ γi´1{H), the dashed line shows the transition caused by the
user choosing any item a ‰ a‹

h,a0 (with a reward of rh “ γi{H), and the dotted line represents the transition caused by the
user choosing the outside option a0 (with a reward of rh “ 0). The blue solid line indicates a transition from the absorbing
state back to itself, caused by the user choosing any item (with a reward of rh “ γi´1{H), and the red dotted line indicates
a transition from the global absorbing state back to itself, caused by the user choosing any item (with a reward of rh “ 0).

1 ´ pδ ` xµh,ayq and δ ` xµh,ay, respectively. If the user does not choose any item, i.e., chooses the outside option a0, in
the state xpiq

h with i P rH ` 1s and h P ri,H ` 1s, the agent will deterministically transition to the global absorbing state x0
and receive no reward.

If the agent is in any of the absorbing states–xpiq
H`2 for i P rH ` 2s–the agent will remain in the same state and receive a

reward of γi´1{H , regardless of which item (including the outside option) the user chooses.

Formally, we construct transition probabilities Phps1|s,aq “ xψps,aq,µ‹
hps1qy, with

ψps,aq “

$

’

’

’

’

&

’

’

’

’

%

pα, βaJ, 0,0, 0, 0, γ
i´1
?
2

qJ, s “ x
piq
h , a “ a‹

h, i P rH ` 1s, h P ri,H ` 1s;

p0,0, α, βaJ, 0, 0, γi
?
2

qJ, s “ x
piq
h ,a ‰ a‹

h,a0, i P rH ` 1s, h P ri,H ` 1s;

p0,0J, 0,0J, 0, 1, 0qJ, s “ x
piq
h ,a “ a0, i P rH ` 1s, h P ri,H ` 1s;

p0,0J, 0,0J, 1?
2
, 0, γ

i´1
?
2

qJ, s “ x
piq
H`2, i P rH ` 2s,

(F.1)
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and

µ‹
hps1q “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

p 1´δ
α ,´

µJ
h

β , 0,0, 0, 0, 0qJ, s1 “ x
piq
h`1^H`1;

p δ
α ,

µJ
h

β , 0,0,
?
2, 0, 0qJ, s1 “ x

piq
H`2;

p0,0, 1´δ
α ,´

µJ
h

β , 0, 0, 0qJ, s1 “ x
pi`1q

h`1 ;

p0,0, δ
α ,

µJ
h

β , 0, 0, 0qJ, s1 “ x
pi`2^H`2q

H`2 ;

p0,0J, 0,0, 0, 1, 0qJ, s1 “ x0;

p0,0J, 0,0, 0, 0, 0qJ, otherwise,

(F.2)

where we denote 0 P Rpdlin
´5q{2 as the zero vector of dimension pdlin ´ 5q{2, and set γ “ H

H`1 as the discount factor

for transitioning to the next layer. Additionally, we choose δ “ 1{H , µh P t´∆,∆updlin
´5q{2 with ∆ “

a

δ{K{p4
?
2q,

α “
a

1{p2 ` ∆ ¨ pdlin ´ 5qq, and β “
a

∆{p2 ` ∆ ¨ pdlin ´ 5qq.

And the parameter vectors for the linear rewards rhps,aq “ xψps,aq,w‹
hy are as follows:

w‹
h “ p0,0J, 0,0, 0, 0,

?
2{HqJ,

which ensures that the reward function satisfies:

rh ps,aq “

$

’

’

’

’

&

’

’

’

’

%

γi´1{H, s “ x
piq
h ,a “ a‹

h, i P rH ` 1s, h P ri,H ` 1s;

γi{H, s “ x
piq
h ,a ‰ a‹

h,a0, i P rH ` 1s, h P ri,H ` 1s;

0, s “ x
piq
h ,a “ a0, i P rH ` 1s, h P ri,H ` 1s;

γi´1{H, s “ x
piq
H`2, i P rH ` 2s,

where 0 ă γ ď H
H`1 is the discount factor for transitioning to the next layer.

This parameter setting satisfies the boundedness assumption of linear MDPs (refer Definition E.1). First, we show that
}ψps,aq}2 ď 1:

}ψps,aq}22 ď α2 `
dlin ´ 5

2
β2 `

1

2
“ 1, (the first and second cases of (F.1)),

}ψps,aq}22 “ 1, (the third case of (F.1)),

}ψps,aq}22 ď
1

2
`

1

2
“ 1, (the fourth case of (F.1)),

Moreover, since dlin ě 6 and K ě 13pdlin ´ 5q2{H , we ensure that max t}
ř

sPS µhpsq}2, }w
‹
h}2u ď

?
dlin:

›

›

›

›

›

ÿ

sPS

|µhpsq|

›

›

›

›

›

2

2

“
2p1 ´ δq2 ` 2δ2

α2
`

}µh}2

β2
` 3

ď 2
`

2 ` ∆ ¨ pdlin ´ 5q
˘

` 2∆ ¨ pdlin ´ 5q
`

2 ` ∆ ¨ pdlin ´ 5q
˘

ď
`

2 ` 2∆ ¨ pdlin ´ 5q
˘2

ď dlin,

and }w‹
h}22 ď

2

H2
ď dlin.

F.2. Construction of MNL preference model

Inspired by the lower bound proposed in Lee & Oh (2024), we construct an adversarial setting for the MNL preference
model.

We assume that d ě 2 and that d ´ 1 is divisible by 4 (without loss of generality). Let ϵ P

´

0, 1
pd´1q

?
d´1

¯

be a small

positive parameter. Throughout the proof, we set ϵ “

b

d´1
144C¨K ¨

pH`1q2

H , for some C ą 0. For every subset W Ď rd´ 1s,
we define the corresponding parameter θW P Rd´1 as rθW sj “ ϵ for all j P W , and rθW sj “ 0 for all j R W .
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Next, for any h P rHs, we define the parameter set as:

θ‹
h P Θ :“ tpθJ

W ,´ logHqJ :W P Wpd´1q{4u

“ tpθJ
W ,´ logHqJ :W Ď rd´ 1s, |W | “ pd´ 1q{4u,

where Wk denotes the class of all subsets of rd´ 1s of size k.

The feature vector ϕps,aq is invariant across the state s. For each U P Wpd´1q{4, we define vectors zU P Rd´1 as follows:

rzU sj “ 1{
?
d´ 1 for j P U ; rzU sj “ 0 for j R U.

Let Z :“ tzU : U P Wpd´1q{4u. We define the function Z : I Ñ Z , so that Zpaq P Z . Then, the feature vector ϕps,aq is
constructed as follows:

ϕps,aq “

#

pZpaqJ, 0qJ, a ‰ a0;

p0, 1qJ, a “ a0,

where 0 P Rd´1. For all V P Vd{4 and ps,aq P S ˆ I, it can be verified that θV and ϕps,aq satisfy the boundedness in
Assumption 3.1 as follows:

}ϕps,aq}2 ď
a

pd´ 1q ¨ 1{pd´ 1q “ 1,

}θ‹
h}2 ď

a

pd´ 1qϵ2 ` p´ logHq2 ď
?
2 logH “: B.

Let a‹
h (defined in the previous subsection) also have the maximum utility, i.e., a‹

h P argmaxaPIzta0uxθ‹
h, ϕps,aqy (note

that ϕp¨, ¨q is identical for all s P S).

F.3. Proof of Theorem 5.3

A good policy is one that quickly reaches the state xpiq
H`2 while remaining in the lower layers (i.e., with lower i). Recall

that the item a‹
h has the highest utility and, therefore, the highest choice probability. It also has the best chance of quickly

reaching the state xpiq
H`2 while staying within the same layer. In other words, a good policy encourages the user to frequently

select the item a‹
h P argmaxaPIzta0uxµh,ay “ argmaxaPIzta0uxθ‹

h, ϕps,aqy. Note that a‹
h is unique due to the way the

action space and transition probabilities are constructed.

We formally restate Theorem 5.3 as follows.
Theorem F.1 (Restatement of Theorem 5.3, Regret lower bound for linear MDPs with preference feedback). Suppose
that d ě 2, dlin ě 6, H ě 3, and K ě maxtC ¨ pdlin ´ 5q2HpH ` 1q2, C 1 ¨ pd ´ 1q4p1 ` Hq{Hu for some constant
C,C 1 ą 0. Then, for any algorithm, there exists an episodic linear MDP Mθ,µ,w with MNL preference feedback such that
the worst-case expected regret is lower bounded as follows:

sup
θ,µ,w

Eθ,µ,w rRegret pMθ,µ,w,Kqs “ Ω
´

d
?
HK ` dlin

?
HK

¯

.

Proof of Theorem 5.3. Fix θ and µ so that we can omit the parameter dependency of P and P throughout the proof. Based
on the construction of the hard instance M discussed in the previous subsections, the following lemma shows that the
optimal assortment at horizon h P rHs is ta0,a

‹
hu.

Lemma F.2. For any h P rHs, we have A‹
h “ ta0,a

‹
hu.

Furthermore, we can bound the expected value of Q
‹

for any assortment as follows:

Lemma F.3. For any pA, i, hq P A ˆ rHs ˆ rHs, let ãpiq
h P argmaxaPAzta0u ϕpx

piq
h ,aqJθ‹

h, Ãpiq
h “ tã

piq
h ,a0u, and

ā
piq
h P argmaxaPAzta0u Q

π

hpx
piq
h ,aq. For any a1 ‰ a0, we define

rQπ
hpx

piq
h ,a‹

h,a
1q

:“

#

γi´1

H ` Phpx
piq
h`1|x

piq
h ,a‹

hqV π
h`1px

piq
h`1q ` Phpx

piq
H`2|x

piq
h ,a1q

pH´hqγi´1

H , a1 “ a‹
h,

γi´1

H ` Phpx
piq
h`1|x

piq
h ,a‹

hqV π
h`1px

piq
h`1q ` Phpx

pi`2q

H`2 |x
piq
h ,a1q

pH´hqγi´1

H , a1 ‰ a‹
h.
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Then, for any policy π, if K ě 4pdlin ´ 5q2HpH ` 1q2, we have

ÿ

aPA

Phpa|x
piq
h , AqQ

π

hpx
piq
h ,aq ď Phpã

piq
h |x

piq
h , Ã

piq
h q rQπ

hpx
piq
h ,a‹

h, ā
piq
h q.

Now, we are ready to provide the proof of Theorem 5.3.

For any h P rHs and any Ah P A, let ãh P argmaxaPAhzta0u ϕpx
piq
h ,aqJθ‹

h. We also denote Ãh “ tãh,a0u and
āh P argmaxaPAzta0u Q

π

hpxh,aq. Recall that the index i can be omitted for ãh because the transition and choice probabilities

are identical across all xp1q

h , . . . x
pHq

h given a P I . The change in layer i only affects the scaling of rewards, and consequently
the Q-values, but the item that maximizes Qpx

piq
h ,aq remains the same across layers.

By applying Lemma F.3, the value of policy π in state xp1q

1 can be bounded as follows:

V π
1 px

p1q

1 q “
ÿ

aPA1

P1pa|x
p1q

1 , A1qQ
π

1 px
p1q

1 ,aq ď P1pã1|x
p1q

1 , Ã1q rQπ
hpx

p1q

1 ,a‹
1, ā1q. (F.3)

Moreover, according to Lemma F.2, the optimal assortment for horizon h P rHs is A‹
h “ ta0,a

‹
hu. Thus, the optimal value

function in state xp1q

1 can be written as follows:

V ‹
1 px

p1q

1 q “
ÿ

aPA‹
1

P1pa|x
p1q

1 , A‹
1qQ

‹

1px
p1q

1 ,aq “ P1pa‹
1|x

p1q

1 , A‹
1qQ

‹

1px
p1q

1 ,a‹
1q,

where the last equality holds because Q
‹

hpx
piq
h ,a0q “ 0. We denote sH`2 can be either xp1q

H`2 or xp3q

H`2, depending on
whether the item (for transition) is a‹

h or any a ‰ a‹
h,a0. Then, we have

pV ‹
1 ´ V π

1 q px
p1q

1 q ě P1pa‹
1|x

p1q

1 , A‹
1qQ

‹

1px
p1q

1 ,a‹
1q ´ P1pã1|x

p1q

1 , Ã1q rQπ
hpx

p1q

1 ,a‹
1, ā1q

“

´

P1pa‹
1|x

p1q

1 , A‹
1q ´ P1pã1|x

p1q

1 , Ã1q

¯

Q
‹

1px
p1q

1 ,a‹
1q

` P1pã1|x
p1q

1 , Ã1q

´

Q
‹

1px
p1q

1 ,a‹
1q ´ rQπ

hpx
p1q

1 ,a‹
1, ā1q

¯

“

´

P1pa‹
1|x

p1q

1 , A‹
1q ´ P1pã1|x

p1q

1 , Ã1q

¯

Q
‹

1px
p1q

1 ,a‹
1q

` P1pã1|x
p1q

1 , Ã1q

˜

1

H
` P1px

p1q

2 |x
p1q

1 ,a‹
1qV ‹

2 px
p1q

2 q ` P1px
p1q

H`2|x
p1q

1 ,a‹
1q

pH ´ 1q

H

´

ˆ

1

H
` P1px

p1q

2 |x
p1q

1 ,a‹
1qV π

2 px
p1q

2 q ` P1psH`2|x
p1q

1 , ā1q
pH ´ 1q

H

˙

¸

“

´

P1pa‹
1|x

p1q

1 , A‹
1q ´ P1pã1|x

p1q

1 , Ã1q

¯

Q
‹

1px
p1q

1 ,a‹
1q

` P1pã1|x
p1q

1 , Ã1qP1px
p1q

2 |x
p1q

1 ,a‹
1qpV ‹

2 ´ V π
2 qpx

p1q

2 q

` P1pã1|x
p1q

1 , Ã1q

´

P1px
p1q

H`2|x
p1q

1 ,a‹
1q ´ P1psH`2|x

p1q

1 , ā1q

¯

pH ´ 1q

H
, (F.4)

where the first inequality holds by (F.3). Note that, by construction, for any h P rHs, we have

Q
‹

hpx
p1q

h ,a‹
hq “

H ´ h` 1

H
,

Phpãh|x
p1q

h , Ãhq ě
1

1{H ` 1
“

H

1 `H
,

Phpx
p1q

h`1|x
p1q

h ,a‹
hq “ 1 ´ δ ´ pdlin ´ 5q∆,

Phpx
p1q

H`2|x
p1q

h ,a‹
hq ´ PhpsH`2|x

p1q

h , āhq “ pdlin ´ 5q∆ ´ xµh, āhy. (F.5)
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Hence, by plugging (F.5) into (F.4) and applying recursion, we get

pV ‹
1 ´ V π

1 q px
p1q

1 q

ě

H
ÿ

h“1

´

Phpa‹
h|x

p1q

h , A‹
hq ´ Phpãh|x

p1q

h , Ãhq

¯ H ´ h` 1

H
¨

ˆ

H

H ` 1

˙h´1

¨
``

1 ´ δ ´ pdlin ´ 5q∆
˘˘h´1

`

H
ÿ

h“1

`

pdlin ´ 5q∆ ´ xµh, āhy
˘ H ´ h

H
¨

ˆ

H

H ` 1

˙h

¨
``

1 ´ δ ´ pdlin ´ 5q∆
˘˘h´1

´

H
ÿ

h“1

pH ´ hq

H
?
K

¨

ˆ

H

H ` 1

˙h

¨
``

1 ´ δ ´ pdlin ´ 5q∆
˘˘h´1

. (F.6)

Furthermore, since H ě 3 and 3pdlin ´ 5q∆ ď δ “ 1{H , we have

ˆ

H

H ` 1

˙h

ě

ˆ

H

H ` 1

˙H`1

ě
3

10
,

``

1 ´ δ ´ pdlin ´ 5q∆
˘˘h´1

ě

ˆ

1 ´
4δ

3

˙H

ě
1

3
. (F.7)

Therefore, by substituting (F.7) into (F.6), and considering the terms where h ě H{2, we obtain

pV ‹
1 ´ V π

1 q px
p1q

1 q ě
1

20

H{2
ÿ

h“1

´

Phpa‹
h|x

p1q

h , A‹
hq ´ Phpãh|x

p1q

h , Ãhq

¯

`
1

20

H{2
ÿ

h“1

`

pdlin ´ 5q∆ ´ xµh, āhy
˘

“
1

20

H{2
ÿ

h“1

´

Phpa‹
h|x

p1q

h , A‹
hq ´ Phpãh|x

p1q

h , Ãhq

¯

looooooooooooooooooooooomooooooooooooooooooooooon

MNL bandit regret

`
1

20

H{2
ÿ

h“1

ˆ

max
aPI

xµh,ay ´ xµh, āhy

˙

loooooooooooooooomoooooooooooooooon

linear bandit regret

. (F.8)

On the right-hand side of (F.8), the first term corresponds to an MNL bandit problem. Recall that |A‹
h| “ |Ãh| “ 2 and, by

construction, we have

Phpa‹
h|x

p1q

h , A‹
hq “

exp
´

ϕpx
p1q

h ,a‹
hqJθ‹

h

¯

1{H ` exp
´

ϕpx
p1q

h ,a‹
hqJθ‹

h

¯ , Phpãh|x
p1q

h , Ãhq “
exp

´

ϕpx
p1q

h , ãhqJθ‹
h

¯

1{H ` exp
´

ϕpx
p1q

h , ãhqJθ‹
h

¯ .

Hence, this corresponds to an MNL bandit problem with a maximum assortment size of M “ 2, where the attraction
parameter for the outside option (the constant in the denominator) is 1{H .

Furthermore, the second term on the right-hand side of (F.8) represents a linear bandit problem. To sum up, the learning
problem is not harder than minimizing the regret on ΩpH{2q MNL and linear bandit problems.

To bound each term of (F.8), we introduce the following propositions:

Proposition F.4 (Regret lower bound of MNL bandits, Lee & Oh 2024). Let v0 denote the attraction parameter for the
outisde option. Let d be divisible by 4. Suppose K ě C ¨ d4M{pM ´ 1q for some constant C ą 0. Then, in the uniform
reward setting (where rewards are identical) with the reward for the outside option being zero, for any policy and the MNL
preference model parameterized by θ, there exists a worst-case problem instance such that the worst-case expected regret is
lower bounded as follows:

sup
θ

Eθ rMNLBanditRegretpθ,Kqs “ Ω

˜

a

v0pM ´ 1q

v0 `M ´ 1
¨ d

?
K

¸

.

Proposition F.5 (Lemma C.8 in Zhou et al. 2021a). Fix 0 ă δ ă 1{3. Consider the linear bandit problem parameterized
with a vector µ P t´∆,∆ud and action set I “ t´1, 1ud. And the reward distribution for taking action a P I is a Bernoulli
distribution denoted asBpδ`xµ,ayq. LetK be the number of time steps playing this bandit problem. AssumeK ě d2{p2δq
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and ∆ “
a

δ{K{p4
?
2q. Then, for any bandit algorithm B, there exists µ such that the expected pseudo-regret of B over K

steps is lower bounded as follows:

EµrLinearBanditRegretpµ,Kqs ě
d

?
Kδ

8
?
2
.

where the expectation is with respect to the reward distribution that depends on µ.

Now, by using Proposition F.4 and F.5, we can bound the regret as follows:

sup
θ,µ,w

Eθ,µ,w rRegret pMθ,µ,w,Kqs ě
1

20

H{2
ÿ

h“1

sup
θ

Eθ

«

K
ÿ

k“1

´

Phpa‹
h|x

p1q

h , A‹
hq ´ Phpãh|x

p1q

h , Ãhq

¯

ff

`
1

20

H{2
ÿ

h“1

sup
µ

Eµ

«

K
ÿ

k“1

ˆ

max
aPI

xµh,ay ´ xµh, āhy

˙

ff

“ Ω
´

d
?
HK ` dlin

?
HK

¯

,

where, in the last equality, we use v0 “ 1{H , M “ 2, and δ “ 1{H . This concludes the proof of Theorem 5.3.

F.4. Proof of Lemmas for Theorem 5.3

F.4.1. PROOF OF LEMMA F.2

Proof of Lemma F.2. For any i P rHs, we can write the optimal Q-value in state xpiq
h at horizon h P rHs as follows:

Q
‹

hpx
piq
h ,aq “

$

’

&

’

%

γi´1

H ` Phpx
piq
h`1|x

piq
h ,aqV ‹

h`1px
piq
h`1q ` Phpx

piq
H`2|x

piq
h ,aq

pH´hqγi´1

H , a “ a‹
h;

γi

H ` Phpx
pi`1q

h`1 |x
piq
h ,aqV ‹

h`1px
pi`1q

h`1 q ` Phpx
pi`2q

H`2 |x
piq
h ,aq

pH´hqγi`1

H , a “ a‹
h,a0;

0, a “ a0.

First, we show that for any pi, hq P rHs ˆ rHs, we have

Q
‹

hpx
piq
h ,aq ě

ÿ

a1PA‹
h

Phpa1|x
piq
h , A‹

hqQ
‹

hpx
piq
h ,a1q, @a P A‹

hzta0u. (F.9)

We prove this by contradiction. Suppose there exists a P A‹
h such that Q

‹

hpx
piq
h ,aq ă

ř

a1PA‹
h
Phpa1|x

piq
h , A‹

hqQ
‹

hpx
piq
h ,a1q.

In that case, removing the item a from the assortment A‹
h results in a higher expected value of Q

‹

h. This contradicts the
optimality of A‹

h. Therefore, (F.9) must hold.

By the definition of Q
‹

hpx
piq
h ,aq, for any a P Izta‹

hu, we have

Q
‹

hpx
piq
h ,aq ď

γi´1

H
` Phpx

pi`1q

h`1 |x
piq
h ,aqV ‹

h`1px
piq
h`1q ` Phpx

pi`2q

H`2 |x
piq
h ,aq

pH ´ hqγi´1

H

ď
γi´1

H
` Phpx

piq
h`1|x

piq
h ,a‹

hqV ‹
h`1px

piq
h`1q ` Phpx

piq
H`2|x

piq
h ,a‹

hq
pH ´ hqγi´1

H

“ Q
‹

hpx
piq
h ,a‹

hq,

where the first inequality holds since V ‹
h`1px

pi`1q

h`1 q ď V ‹
h`1px

piq
h`1q, and the second inequality holds due to the fact that

V ‹
h`1px

piq
h`1q ď

pH´hqγi´1

H and Phpx
pi`2q

H`2 |x
piq
h ,aq ď Phpx

piq
H`2|x

piq
h ,a‹

hq.

Since Q
‹

hpx
piq
h ,a‹

hq has the highest value among all items, the optimal assortment A‹
h should include a‹

h. Thus, we have
a‹
h,a0 P A‹

h. In other words, when A‹
h “ ta‹

h,a0u, the condition in (F.9) is satisfied. Thus, we begin with A‹
h “ ta‹

h,a0u

and check if there exist an item a ‰ a‹
h,a0 that can increase the expected value of Q

‹

h. To this end, for A‹
h “ ta‹

h,a0u, we
get

ÿ

a1PA‹
h

Phpa1|x
piq
h , A‹

hqQ
‹

hpx
piq
h ,a1q “ Phpa‹

h|x
piq
h , A‹

hqQ
‹

hpx
piq
h ,a‹

hq ě γQ
‹

hpx
piq
h ,a‹

hq, (F.10)
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where the equality holds since Q
‹

hpx
piq
h , a0q “ 0, and the inequality holds by the definition of γ:

γ “
H

1 `H
“

1

1{H ` 1
ď min

hPrHs
min
sPS

min
APA

min
aPAzta0u

exp
`

ϕps,aqJθ‹
h

˘

1{H ` exp pϕps,aqJθ‹
hq

ď

exp
´

ϕpx
piq
h ,a‹

hqJθ‹
h

¯

1{H ` exp
´

ϕpx
piq
h ,a‹

hqJθ‹
h

¯ “ Phpa‹
h|x

piq
h , A‹

hq. (F.11)

Here, we rely on the fact that the sigmoid function is monotonically increasing to establish the inequalities.

On the other hand, for any item a ‰ a‹
h,a0, we have

Q
‹

hpx
piq
h ,aq “

γi

H
` Phpx

pi`1q

h`1 |x
piq
h ,aqV ‹

h`1px
pi`1q

h`1 q ` Phpx
pi`2q

H`2 |x
piq
h ,aq

pH ´ hqγi`1

H

ď
γi

H
` Phpx

pi`1q

h`1 |x
piq
h ,aqV ‹

h`1px
pi`1q

h`1 q ` Phpx
pi`2q

H`2 |x
piq
h ,aq

pH ´ hqγi

H

ď
γi

H
` Phpx

piq
h`1|x

piq
h ,a‹

hqV ‹
h`1px

pi`1q

h`1 q ` Phpx
piq
H`2|x

piq
h ,a‹

hq
pH ´ hqγi

H

“ γ ¨

ˆ

γi´1

H
` Phpx

piq
h`1|x

piq
h ,a‹

hqV ‹
h`1px

piq
h`1q ` Phpx

piq
H`2|x

piq
h ,a‹

hq
pH ´ hqγi´1

H

˙

“ γQ
‹

hpx
piq
h ,a‹

hq, (F.12)

where the second inequality holds because V ‹
h`1px

pi`1q

h`1 q ď
pH´hqγi

H , Phpx
pi`2q

H`2 |x
piq
h ,aq ď Phpx

piq
H`2|x

piq
h ,a‹

hq, and the

second equality follows from the fact that γV ‹
h`1px

piq
h`1q “ V ‹

h`1px
pi`1q

h`1 q by construction.

Combining (F.10) and (F.12), when A‹
h “ ta‹

h,a0u, for any item a ‰ a‹
h,a0, we get

ÿ

a1PA‹
h

Phpa1|x
piq
h , A‹

hqQ
‹

hpx
piq
h ,a1q ě Q

‹

hpx
piq
h ,aq.

Since Q
‹

hpx
piq
h ,aq for a ‰ a‹

h,a0 is not greater than the expected value of Q
‹

h for A‹
h, adding any item a ‰ a‹

h,a0 to A‹
h

does not increase the expected value of Q
‹

h. This confirms the optimality of A‹
h.

F.4.2. PROOF OF LEMMA F.3

Proof of Lemma F.3. For any i P rHs, we can write the Q-value for the policy π in state xpiq
h at horizon h P rHs as follows:

Q
π

hpx
piq
h ,aq “

$

’

&

’

%

γi´1

H ` Phpx
piq
h`1|x

piq
h ,aqV π

h`1px
piq
h`1q ` Phpx

piq
H`2|x

piq
h ,aq

pH´hqγi´1

H , a “ a‹
h;

γi

H ` Phpx
pi`1q

h`1 |x
piq
h ,aqV π

h`1px
pi`1q

h`1 q ` Phpx
pi`2q

H`2 |x
piq
h ,aq

pH´hqγi`1

H , a “ a‹
h,a0;

0, a “ a0.

We provide a proof by considering the following cases:

Case (i) a‹
h P A.

Recall that, by (F.11), we have

γ “
H

1 `H
ď

exp
´

ϕpx
piq
h ,a‹

hqJθ‹
h

¯

1{H ` exp
´

ϕpx
piq
h ,a‹

hqJθ‹
h

¯ . (F.13)
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By multiplying rQπ
hpx

piq
h ,a‹

h,a
1q on both sides of (F.13), we get

γ ¨ rQπ
hpx

piq
h ,a‹

h,a
1q ď

exp
´

ϕpx
piq
h ,a‹

hqJθ‹
h

¯

rQπ
hpx

piq
h ,a‹

h,a
1q

1{H ` exp
´

ϕpx
piq
h ,a‹

hqJθ‹
h

¯

ô

¨

˝

ÿ

aPAzta‹
h,a0u

exp
´

ϕpx
piq
h ,aqJθ‹

h

¯

˛

‚γ ¨ rQπ
hpx

piq
h ,a‹

h,a
1q

´

1{H ` exp
´

ϕpx
piq
h ,a‹

hqJθ‹
h

¯¯

ď

¨

˝

ÿ

aPAzta‹
h,a0u

exp
´

ϕpx
piq
h ,aqJθ‹

h

¯

˛

‚exp
´

ϕpx
piq
h ,a‹

hqJθ‹
h

¯

rQπ
hpx

piq
h ,a‹

h,a
1q

ô

¨

˝exp
´

ϕpx
piq
h ,a‹

hqJθ‹
h

¯

`
ÿ

aPAzta‹
h,a0u

γ ¨ exp
´

ϕpx
piq
h ,aqJθ‹

h

¯

˛

‚
rQπ
hpx

piq
h ,a‹

h,a
1q

¨

´

1{H ` exp
´

ϕpx
piq
h ,a‹

hqJθ‹
h

¯¯

ď

¨

˝1{H ` exp
´

ϕpx
piq
h ,a‹

hqJθ‹
h

¯

`
ÿ
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On the other hand, by the definition of rQπ
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where the second equality holds since γV π
h`1px

piq
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Specifically, if the upper bound of the left-hand side is less than or equal to the lower bound of the right-hand side, the
inequality holds. To demonstrate this, we have:
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and, since γi “
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´
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Combining (F.16) and (F.17), and rearranging the terms, we get
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2 `
3

10pH ` 1q
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ď
3

10HpH ` 1q
,

which holds when K ě 4pdlin ´ 5q2HpH ` 1q2. This explains how the inequality in (F.15) is satisfied.

Let āpiq
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where the first inequality holds since āpiq
h is the action that maximizes theQ-value. The second inequality follows from (F.14)

and (F.15), and from the fact that Q
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Case (ii) a‹
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where the second inequality holds since the sigmoid function is a monotonically increasing function.
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Recall that for any a1 ‰ a‹
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This concludes the proof of Lemma F.3.

G. Numerical Experiments
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Figure G.1: The “online shopping with budget” environment with |S| “ 5. Each state represents the user’s budget level
of 1, 2, 3, 4, or 5. The solid line indicates the transition when the user purchases an actual item ai (with a reward of
pi{100N ` j{|S|q {H), and the dashed line shows the transition when the user does not purchase any item (with a reward of
0). The initial state is s3.

In this section, we empirically evaluate the performance of our algorithm, MNL-VQL, in linear MDPs. We consider an online
shopping with budget (refer Figure G.1) environment under linear MDPs and an MNL user preference model. We denote
the set of states as S “ ts1, . . . , s|S|u and the set of items as I “ ta1, . . . , aN , a0u (a0 denotes the outside option). Each
state sj P S corresponds to a user’s budget level, where a larger index j indicates a higher budget (e.g., s|S| represents the
state with the largest budget). The initial state is set to the medium budget state sr|S|{2s. Furthermore, we let the transition
probabilities Ph, rewards rh, and preference model Ph be the same for all h P rHs, and thus we omit the subscript h.

At state sj , the agent offers an assortment A P A with a maximum size of M . The user then either purchases an item ai P A
or opts not to buy anything, represented by the outside option a0 P A. Then, the reward is defined as follows:

• If the user purchases an item ai P A, the reward is: rpsj , aiq “

´

i
100N `

j
|S|

¯

{H .

• If the user does not buy anything (a0), the reward is: rpsj , a0q “ 0.

The reward can be regarded as the user’s rating of the purchased item. It is reasonable to assume that, at higher budget
states, users tend to be more generous in their ratings, leading to higher ratings (rewards). And the transition probability is
defined as follows:

• If the user purchases an item ai P A, the transition probability is:

Ppsminpj`1,|S|q|sj , aiq “ 1 ´
i

N
, and Ppsmaxpj´1,0q|sj , aiq “

i

N
.

• If the user does not buy anything (a0), the transition probability is:

Ppsminpj`1,|S|q|sj , a0q “ 1

If the user does purchase an item, the budget level decreases with a certain probability that depends on the chosen item.
Conversely, if the user does not purchase any item (a0), the budget level increases deterministically.
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Myoptic LSVI-UCB MNL-VQL (ours)

N “ 10, |A| “ 637 0.089 s 0.136 s 0.463 s
N “ 20, |A| “ 21, 699 0.097 s 4.861 s 0.526 s
N “ 40, |A| “ 760, 098 0.113 s 453.641 s 0.620 s

Table G.1: Average runtime (seconds) per episode for M “ 6.

We construct the feature map ψps, aq (for linear MDPs) using SVD. Specifically, the transition kernel Pp¨|¨, ¨q P R|S||I|ˆ|S|

has at most |S| singular values, and the reward vector rp¨, ¨q P R|S||I| has one singular value. Consequently, the feature map
ψps, aq P Rdlin lies in a space of dimension |S| ` 1, i.e., dlin “ |S| ` 1.

For MNL preference model, the true parameter θ‹ P Rd, and the feature ϕps, aq P Rd (for MNL preference model) are
randomly sampled from a d-dimensional uniform distribution in each instance.

We set K “ 30000, H “ 5,M “ 6, |S| “ 5, d “ 5 (feature dimension for MNL preference model), dlin “ 6 (feature
dimension for linear MDP), N P t10, 20, 40u (the number of items), and |A| “

řM´1
m1“1

`

N
m

˘

P t637, 21699, 760098u (the
number of assortments). Moreover, for simplicity, we set σ̄k

h “ 1 in our algorithm. As a result, we use unweighted regression
to estimate the Q-values.

We compare our algorithm with two baselines: Myopic and LSVI-UCB (Jin et al., 2020). Myopic is a variant of
OFU-MNL+ (Lee & Oh, 2024) adapted for unknown rewards. It is a myopic algorithm that selects assortments based
only on immediate rewards, ignoring state transitions. LSVI-UCB (Jin et al., 2020) treats each assortment as a single, atomic
(holistic) action, requiring enumeration of all possible assortments. To demonstrate the effectiveness of our approach, we
also include the performance of the optimal policy (Optimal) to highlight that our algorithm is converging toward optimality.
We run the algorithms on 10 independent instances and report the episodic return across all episodes.

Figure 1 demonstrates that our algorithm significantly outperforms other baseline algorithms. And Table G.1 shows that
our algorithm maintains robust runtime performance even as the total number of assortments |A| increases. Although
the runtime of Myopic is approximately 5.3 times faster than ours, its performance is substantially worse, converging
to a suboptimal solution. This underscores a key limitation of the myopic strategy—it can completely fail in certain
environments, highlighting the importance of accounting for long-term outcomes. Additionally, the runtime of LSVI-UCB
increases exponentially as N grows, because it requires enumerating all possible assortments. Due to the extremely slow
runtime of LSVI-UCB, we did not include its performance results for N “ 20 and N “ 40. Instead, for these cases, we used
dotted lines to represent the average episodic return observed for N “ 10. Even for the smaller case of N “ 10, LSVI-UCB
demonstrated the worst performance. Based on this observation, we suspect that its performance is unlikely to improve as N
increases.
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