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Abstract
In the cascaded approach to spoken language001
translation (SLT), the ASR output is typically002
punctuated and segmented into sentences be-003
fore being passed to MT, since the latter is typ-004
ically trained on written text. However, erro-005
neous segmentation, due to poor sentence-final006
punctuation by the ASR system, leads to degra-007
dation in translation quality, especially in the008
simultaneous (online) setting where the input009
is continuously updated. To reduce the influ-010
ence of automatic segmentation, we present a011
sliding window approach to translate raw ASR012
outputs (online or offline) without needing to013
rely on an automatic segmenter. We train trans-014
lation models using parallel windows (instead015
of parallel sentences) extracted from the orig-016
inal training data. At test time, we translate017
at the window level and join the translated018
windows using a simple approach to generate019
the final translation. Experiments on English-020
to-German and English-to-Czech show that021
our approach improves 1.3–2.0 BLEU points022
over the usual ASR-segmenter pipeline, and023
the fixed-length window considerably reduces024
flicker compared to a baseline retranslation-025
based online SLT system.026

1 Introduction027

For machine translation (MT) with textual input,028

it is usual to segment the text into sentences be-029

fore translation, with the boundaries of sentences030

in most text types indicated by punctuation. For031

spoken language translation (SLT), in contrast, the032

input is audio so there is no punctuation provided033

to assist segmentation. Segmentation thus has to be034

guessed by the ASR system or a separate compo-035

nent. Perhaps more importantly, for many speech036

genres the input cannot easily be segmented into037

well-formed sentences as found in MT training038

data, giving a mismatch between training and test.039

In order to address the segmentation problem in040

SLT, systems often include a segmentation com-041

ponent in their pipeline, e.g. Cho et al. (2017).042

In other words, a typical cascaded SLT system 043

consists of automatic speech recognition (ASR – 044

which outputs lowercased, unpunctuated text) a 045

punctuator/segmenter (which adds punctuation and 046

so defines segments) and an MT system. The seg- 047

menter can be a sequence-sequence model, and 048

training data is easily synthesised from punctuated 049

text. However adding segmentation as an extra 050

step has the disadvantage of introducing an extra 051

component to be managed and deployed. Further- 052

more, errors in segmentation have been shown to 053

contribute significantly to overall errors in SLT (Li 054

et al., 2021), since neural MT is known to be sus- 055

ceptible to degradation from noisy input (Khayral- 056

lah and Koehn, 2018). 057

These issues with segmentation can be exacer- 058

bated in the online or simultaneous setting. This 059

is an important use case for SLT where we want 060

to produce the translations from live speech, as the 061

speaker is talking. To minimise the latency of the 062

translation, we would like to start translating before 063

speaker has finished their sentence. Some online 064

low-latency ASR approaches will also revise their 065

output after it has been produced, creating addi- 066

tional difficulties for the downstream components. 067

In this scenario, the segmentation into sentences 068

will be more uncertain and we are faced with the 069

choice of waiting for the input to stabilise (so in- 070

creasing latency) or translating early (potentially 071

introducing more errors, or having to correct the 072

output when the ASR is extended and updated). 073

To address the segmentation issue in SLT, Li 074

et al. (2021) has proposed to a data augmentation 075

technique which simulates the bad segmentation in 076

the training data. They concatenate two adjacent 077

source sentences (and also the corresponding tar- 078

gets) and then start and end of the concatenated 079

sentences are truncated proportionally. 080

We use a sliding window approach to translate 081

unsegmented input. In this approach, we translate 082

the ASR output as a series of overlapping windows, 083
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using a merging algorithm to turn the translated084

windows into a single continuous (but still some-085

times updated) stream. The process is illustrated086

in Figure 1. To generate the training data, we con-087

vert the sentence-aligned training data into window-088

window pairs, and remove punctuation and casing089

from the source. We explain our algorithms in090

detail in Section 2.091

For online SLT, we use a retranslation approach092

(Niehues et al., 2016; Arivazhagan et al., 2020a),093

where the MT system retranslates a recent portion094

of the input each time there is an update from ASR.095

This approach has the advantage that it can use096

standard MT inference, including beam search, and097

does not require a modified inference engine as in098

streaming approaches (e.g. Ma et al. (2019)). Re-099

translation may introduce flicker, i.e. potentially100

disruptive changes of displayed text, when outputs101

are updated. Flicker can be traded off with la-102

tency by masking the last k words of the output103

(Arivazhagan et al., 2020a).1 Our sliding window104

approach is easily combined with retranslation to105

create an online SLT system which can operate on106

unsegmented ASR. Each time there is an update107

from ASR, we retranslate the last n tokens and108

merge the latest translation into the output stream.109

Using the fixed size window has the advantage of110

reducing flicker, since we control how much of the111

output stream can change on each retranslation.112

Experiments on English→Czech and113

English→German show that our sliding window114

approach improves BLEU scores for both online115

and offline SLT. For the online case, our approach116

improves the tradeoff between latency and flicker.117

2 Window-Based Translation118

2.1 Preprocessing119

To make the parallel corpus resemble ASR output,120

we remove all punctuation (and other special char-121

acters) from the source sentences and replace it122

with spaces. We then remove repeated spaces, and123

lowercase the source.124

1This paper also introduced the idea of biased beam search,
where the translation of an extended prefix is soft-constrained
to stay close to the translation of the prefix. Biased beam
search significantly reduces flicker, but it requires that ASR
output has a fixed segmentation, and uses a modified MT
inference engine.
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Figure 1: Example of how our proposed window-based
translation works at test time in case of a match and no-
match of translations of two subsequent windows. The
text inside the rectangular box is the source window at
time t, which is translated into output window (Tt) by
the MT system. The text in blue (dark) shade shows the
common segment between the output window (Tt) and
the output stream (Ot) at time t. The text in red shade
shows the segment newly added from the output win-
dow Tt into the output stream Ot+1. With no common
segment between Tt and Ot (“No match”), we extend
the input window into the history and translate again.
••• indicates there are more tokens. Note that we used
characters here (instead of tokens) just for explanation.

2.2 Generating the Window Pairs for 125

Training 126

To convert the parallel corpus into a set of parallel 127

windows, we use a word-alignment based approach. 128

We first word-align the pre-processed parallel cor- 129

pus using fast_align (Dyer et al., 2013), then 130

we concatenate each side of the corpus to give two 131

long lines. Note that the word alignments will 132

however never cross sentence boundaries. We ran- 133

domly select windows of length 15–25 from the 134

target side, and use the word alignment to get the 135

corresponding source window. The algorithms are 136

described in Appendix B. 137

A subtle detail is whether the original corpus 138

was or was not shuffled at the level of sentences. 139

An original, non-shuffled corpus provides the MT 140
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system with useful examples of cross-sentence con-141

ditioning, a very useful feature especially for spon-142

taneous speech translation. A minority of our cs-en143

data is shuffled, which adds some noise to the pro-144

cess, but our method works despite this.145

2.3 Translating Input Windows146

In our simultaneous MT setting, we assume that the147

ASR system is transcribing the incoming speech148

signal into a continuous stream of text. To obtain149

a new input to the MT system, a fixed-side win-150

dow is shifted by one token to right every time the151

stream is extended. For every input window, the152

MT system translates it and sends it to the module153

that joins the output windows to the output stream154

as described in the next section.155

2.4 Joining the Output Windows156

Since two consecutive source windows overlap,157

the corresponding output windows normally have158

an overlap. We use this overlap to join an output159

window to the output stream.160

We show the pseudo code for merging an out-161

put window to the output stream in Algorithm 1.162

We assume that ASR produces an input stream I163

which is continuously growing by one token at a164

time. Our algorithm requires a window length wl,165

a threshold r and the current output stream Ot. For166

every new token in I , our merge module in Algo-167

rithm 1 is triggered. The MT system translates the168

last wl tokens of I to a target window Tt. For any169

translated window Tt and output stream Ot at that170

time step, we find the longest common substring171

s. The threshold r gives the required minimum172

length of the common substring. If the match is173

sufficiently long (“significant” in the following),174

we merge the current target window Tt, otherwise175

we extend input window by 1 token to the left and176

translate again.177

In our experiments, we extend the history to max-178

imum of 5 tokens until we have found a significant179

match. A higher r assures that the translation of the180

current window will not accidentally match a ran-181

dom segment in the stream, and as the successive182

windows are just 1 token apart, we find a match183

almost always (see Appendix C for details). Once184

we have found a significant match, we merge Tt185

with Ot around the match, chopping the part of Tt186

before match. This approach of joining windows is187

able to handle both the online and offline situations.188

Algorithm 1 Pseudo code for merging newly trans-
lated window into existing output.

Require: The current output stream Ot, input
stream I , an MT system, window length wl,
threshold r ∈ (0, 1).

1: k = 0 {extra history considered}
2: while true do
3: Tt ←MT (I[ |I| − (wl + k) : |I| ])
4: O

′
t ← Ot[ |Ot| − |Tt| : |Ot| ]

5: s, i, j ← TtΨO
′
t {s is longest common sub-

string. i and j are the start indices of match
in O

′
t and Tt}

6: k ← k + 1
7: if |s| ≥ |Tt| ∗ r or k > 5 then
8: break
9: end if

10: end while
11: if |s| = 0 then
12: i← |Tt|
13: j ← 0
14: end if
15: Ot+1 ← Ot[0 : |Ot| − |Tt|+ i] + Tt[j : |Tt|]
16: return Ot+1

3 Datasets and Experimental Settings 189

For training, we use parallel datasets from WMT 190

2020 (Barrault et al., 2020) for English-German 191

and from WMT 2021 (Akhbardeh et al., 2021) 192

for English-Czech (see Appendix A for details). 193

For the validation set, we use the concatenation 194

of IWSLT 2014,15 test sets for English-German, 195

and newstest2019 for English-Czech. We use the 196

ESIC test set for evaluation. ESIC (Macháček et al., 197

2021) is a corpus derived from the European parlia- 198

ment proceedings which has transcripts of source 199

English speech and interpreted German and Czech 200

transcripts. This test set is aligned at document 201

level. 202

We use the SentencePiece (Kudo and Richard- 203

son, 2018) tokenizer for preprocessing the windows 204

with a shared subword (Sennrich et al., 2016) vo- 205

cabulary size of 32k. We train transformer-based2 206

(Vaswani et al., 2017) NMT models using the Mar- 207

ian toolkit (Junczys-Dowmunt et al., 2018). MT 208

models are trained to convergence (using early stop- 209

ping of 10) with a learning rate of 0.0003, and 210

translate using a beam of 6. We train the following 211

two types of models: i) Baseline: trained on gold- 212

2with 60 millions parameters. One model using 4 GPUs
took on an average 2 days.
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Baseline Window
Pair SF SO 8 10 12 14 16 18 20
en-de 11.2 11.4 12.5 12.8 13.0 13.0 13.1 13.2 13.2
en-cs 9.4 9.4 10.0 10.3 10.4 10.5 10.6 10.6 10.7

Table 1: Sacrebleu scores of segmented and window
based approaches. SF: Offline segment level. SO: On-
line segment level.

segmented data and evaluated on segmented data213

generated by the ASR system; ii) Window: trained214

on windows of 10-25 tokens and evaluated on fixed215

length windows of ASR output.216

4 Results217

We evaluate both the offline and online SLT. For218

offline SLT, the baseline system is trained using par-219

allel sentences, and for the online version, the base-220

line system is a prefix-prefix retranslation system221

(Niehues et al., 2016; Arivazhagan et al., 2020a).222

For our proposed window-based system, the offline223

and online are the same system. We evaluate our224

proposed approach on ESIC using Sacrebleu3 (Pap-225

ineni et al., 2002; Post, 2018) score. As the test set226

is not sentence aligned, we translate each document227

and then align the output sentences (hypothesis) to228

corresponding reference document using mwerSeg-229

menter (Matusov et al., 2005), before calculating230

BLEU.231

For the baseline, we translate the test set using232

the segmentations produced by ASR. For our pro-233

posed window-based method, we evaluate using234

different fixed-size windows of length 8, 10, . . ., 20235

tokens. The results are shown in Table 1where we236

observe that the proposed method outperforms the237

baseline with margins of 1.3 and 2.0 BLEU. These238

BLEU scores in Table 1 across different window239

length are the best scores obtained after exploring240

different threshold (r) of match (refer to line 7 of241

Algorithm 1). We show the BLEU scores for each242

threshold in Appendix Table 3.243

For online SLT, since our system uses retransla-244

tion, we evaluate quality using BLEU, and flicker245

using normalised erasure (NE; Arivazhagan et al.246

2020a). We first note that flicker is affected by247

both window length and thresholds – shorter win-248

dows force commitment earlier which gives lower249

flicker. Low thresholds promote spurious matches,250

make translation flicker more, whilst high thresh-251

olds force too many retranslations, and will cause252

extra flicker when the maximum backoff is ex-253

3nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
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Figure 2: Mask vs Flicker plots for different window
lengths at threshold r = 0.4, and the baseline.

ceeded. After exploration (Appendix C), we set 254

the threshold to 0.4 for the rest of our experiments. 255

Figure 2 shows the flicker-latency tradeoff of 256

our sliding-window approach to online SLT, as we 257

vary the fixed mask. We can see that the tradeoff is 258

improved at all window sizes. This improvement is 259

because the window approach only allows updates 260

that are within the window length. The quality 261

of the online SLT (as measured on full sentences) 262

is the same as the offline SLT. The flexible mask 263

allows further improvements in flicker, for matched 264

latency 265

5 Conclusion 266

We proposed window-based approach which works 267

at window (of fixed length of tokens) level, 268

and removes the need of automatic sentence- 269

segmentation of ASR output in cascaded SLT. We 270

experimented with English-German and English- 271

Czech language pairs and found that our proposed 272

approach performs better than the segmentation 273

based translation obtaining an improvement of 1.3- 274

2 BLEU points. We also observed that masking the 275

output reduced the flicker by a considerable margin 276

as compared to the baseline. 277

4



References278

Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-279
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Dominik Macháček, Matúš Žilinec, and Ondřej Bojar. 372
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A Training data statistics411

In Table 2 we show the breakdown of our training412

data.413

Corpus Sentence pairs
English-German

Europarl 1.79 M
Rapid 1.45 M
News Commentary 0.35 M
OpenSubtitle 22.51 M
TED corpus 206 K
MuST-C.v2 248 K

English-Czech
Europarl 645 K
ParaCrawl 14 M
CommonCrawl 161 K
News Commentary 260 K
CzEng2.0 36 M4

Wikititles 410 K
Rapid 452 K

Table 2: Corpora used in training the systems

B Creation of Windowed Parallel Corpus414

First, we word-align the pre-processed parallel cor-415

pus D to obtain alignment A using fast_align416

(Dyer et al., 2013). Then we concatenate all the417

source-target sentence pairs (sk, tk) into a single,418

very long, pair (s, t) and subsequently, revise the419

alignment using the Algorithm 2, so that the in-420

dexes are still correct in the concatenated corpus.421

Algorithm 2 Pseudo code for collapsing a word-
aligned parallel corpus into a single pair of sen-
tences preserving the word alignments.

Require: Parallel corpus D = {(s1, t1),
(s2, t2), . . . , (sn, tn)}, alignment A =
{a1, a2, ..., an}, s = ε, t = ε, revised align-
ment A

′
= {}

1: for k ← 1 to |D| do
2: for each i, j ∈ ak do
3: i← i+ |s|
4: j ← j + |t|
5: A

′ ← A
′ ∪ (i, j)

6: end for
7: s← s+ sk {concatenation}
8: t← t+ tk {concatenation}
9: end for

10: return s, t, A
′

Once we have combined the parallel corpus into 422

a pair of sentences (s, t), we use the revised align- 423

ment A
′

to generate parallel windows of length 424

15-25 tokens using Algorithm 3. 425

Algorithm 3 Pseudo-code for extracting windows
from the concatenated corpus

Require: Unsegmented source s, target t, and
word alignment A

′

1: Initialize: idx← 0
2: while idx < |t| do
3: l← random(10, 25)
4: Wt ← t[idx : idx+ l] {target window}
5: p = mini{(i, j) ∈ A

′
, idx ≤ j < idx+ l}

6: q = maxi{(i, j) ∈ A
′
, idx ≤ j < idx+ l}

7: Ws ← s[p : q] {source window}
8: idx← idx+ l
9: end while

C Exploration of Match Threshold 426

We have two hyperparameters to consider: win- 427

dow length and threshold, when generating the out- 428

put. We explore their combination to find the best 429

threshold value. Table 3 shows BLEU scores with 430

different window length and threshold. We plot 431

the flicker against the threshold for each window 432

in Figure 3 and we found 0.4 to be the best choice 433

for threshold. Shorter windows force commitment 434

earlier producing lower flicker. Low thresholds pro- 435

mote spurious matches making translation flicker 436

more, whilst high thresholds force too many re- 437

translations. We have shown the number of re- 438

translation in Table 4 for different combination 439

of window length and threshold. The reason why 440

higher threshold forces too many retranslations is 441

that even if we set higher threshold, it matches only 442

with the match ratio between 0.5 to 0.6 on aver- 443

age. We have shown the average match ratio after 444

joining every combination of window length and 445

threshold in Table 5. We observe in Figure 3 that 446

higher threshold increases the flicker. The reason 447

is that: as mentioned before, in one hand, it never 448

reaches a match of > 0.6 on average thus it retrans- 449

lates more and generates longer output window, on 450

the other hand, flicker depends on actual number 451

of token mismatch - longer window will have more 452

mismatch for the same threshold. In addition to 453

that, these extra retranslations incurs an increase in 454

computation requirement. However, this increase 455

in complexity can be easily ignored, as in real life 456
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settings, largest source of latency is waiting for457

new source content from the speaker (Arivazhagan458

et al., 2020b).459

Match Threshold (r)
Window(wl) 0.1 0.2 0.4 0.5 0.6 0.8

en→de
8 10.8 11.3 12.3 12.5 12.4 12.5
10 12.0 12.3 12.7 12.8 12.8 12.7
12 12.5 12.7 12.9 13.0 13.0 12.9
14 12.7 12.8 13.0 13.0 12.9 12.8
16 12.9 12.9 13.1 13.1 13.1 13.0
18 13.0 13.0 13.2 13.2 13.2 13.1
20 13.1 13.0 13.2 13.2 13.2 13.2

en→cs
8 8.3 9.1 9.8 10.0 10.0 9.9
10 9.5 9.7 10.2 10.3 10.2 10.2
12 10.0 10.2 10.4 10.4 10.4 10.4
14 10.2 10.4 10.5 10.4 10.5 10.4
16 10.5 10.6 10.6 10.6 10.6 10.5
18 10.5 10.5 10.6 10.6 10.6 10.5
20 10.5 10.6 10.7 10.7 10.5 10.5

Table 3: Results with different window length and
threshold. Sacrebleu computed after sentence aligning
each document using mwerSegmenter. Bleu scores in
green have the lowest flickers.

Match Threshold (r)
wl 0.1 0.2 0.4 0.5 0.6 0.8 #windows

en→de
8 1724 10513 66471 103034 140889 200441 45879
10 1303 7352 50345 82775 118991 185398 45497
12 956 6394 46528 74698 110669 178805 45115
14 702 4809 42886 69847 105207 173017 44733
16 432 4098 40447 66391 100591 167585 44351
18 308 3809 38774 65132 99410 163935 43969
20 215 3407 37358 64266 96701 162025 43587

en→cs
8 2388 14757 74465 111900 148605 206238 45879
10 1257 8906 53651 84838 120135 188964 45497
12 1374 7170 44905 71432 105294 176580 45115
14 1094 5825 40480 64564 97436 169418 44733
16 806 4762 37067 60457 92346 163384 44351
18 489 4118 34710 58321 89392 158114 43969
20 292 3807 33440 57187 87418 154827 43587

Table 4: Number of extra retranslations due to history
extension. wl is window length.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Threshold (r)

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Fl
ick

er

ende; mask = 0; window lengths
8
10
12
14
16
18
20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Threshold (r)

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Fl
ick

er

encs; mask = 0; window lengths
8
10
12
14
16
18
20

Figure 3: Threshold (r) vs Flicker plots.

Match Threshold (r)
wl 0.1 0.2 0.4 0.5 0.6 0.8 #windows

en→de
8 0.40 0.42 0.52 0.56 0.57 0.55 45879
10 0.47 0.49 0.57 0.59 0.60 0.58 45497
12 0.51 0.52 0.59 0.62 0.62 0.59 45115
14 0.52 0.54 0.60 0.63 0.64 0.60 44733
16 0.53 0.55 0.61 0.64 0.65 0.62 44351
18 0.54 0.55 0.61 0.64 0.65 0.62 43969
20 0.55 0.56 0.62 0.64 0.65 0.62 43587

en→cs
8 0.37 0.41 0.51 0.54 0.56 0.54 45879
10 0.45 0.47 0.56 0.59 0.60 0.57 45497
12 0.50 0.52 0.59 0.61 0.63 0.60 45115
14 0.53 0.54 0.61 0.63 0.65 0.61 44733
16 0.54 0.55 0.62 0.64 0.65 0.63 44351
18 0.55 0.56 0.62 0.65 0.66 0.63 43969
20 0.56 0.57 0.63 0.65 0.66 0.64 43587

Table 5: Average match ratio after joining all
the windows across different window length and
threshold. We define average match ratio as

1
#window

∑#window match_length
output_window_length
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