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Abstract

In the cascaded approach to spoken language
translation (SLT), the ASR output is typically
punctuated and segmented into sentences be-
fore being passed to MT, since the latter is typ-
ically trained on written text. However, erro-
neous segmentation, due to poor sentence-final
punctuation by the ASR system, leads to degra-
dation in translation quality, especially in the
simultaneous (online) setting where the input
is continuously updated. To reduce the influ-
ence of automatic segmentation, we present a
sliding window approach to translate raw ASR
outputs (online or offline) without needing to
rely on an automatic segmenter. We train trans-
lation models using parallel windows (instead
of parallel sentences) extracted from the orig-
inal training data. At test time, we translate
at the window level and join the translated
windows using a simple approach to generate
the final translation. Experiments on English-
to-German and English-to-Czech show that
our approach improves 1.3-2.0 BLEU points
over the usual ASR-segmenter pipeline, and
the fixed-length window considerably reduces
flicker compared to a baseline retranslation-
based online SLT system.

1 Introduction

For machine translation (MT) with textual input,
it is usual to segment the text into sentences be-
fore translation, with the boundaries of sentences
in most text types indicated by punctuation. For
spoken language translation (SLT), in contrast, the
input is audio so there is no punctuation provided
to assist segmentation. Segmentation thus has to be
guessed by the ASR system or a separate compo-
nent. Perhaps more importantly, for many speech
genres the input cannot easily be segmented into
well-formed sentences as found in MT training
data, giving a mismatch between training and test.

In order to address the segmentation problem in
SLT, systems often include a segmentation com-
ponent in their pipeline, e.g. Cho et al. (2017).

In other words, a typical cascaded SLT system
consists of automatic speech recognition (ASR —
which outputs lowercased, unpunctuated text) a
punctuator/segmenter (which adds punctuation and
so defines segments) and an MT system. The seg-
menter can be a sequence-sequence model, and
training data is easily synthesised from punctuated
text. However adding segmentation as an extra
step has the disadvantage of introducing an extra
component to be managed and deployed. Further-
more, errors in segmentation have been shown to
contribute significantly to overall errors in SLT (Li
et al., 2021), since neural MT is known to be sus-
ceptible to degradation from noisy input (Khayral-
lah and Koehn, 2018).

These issues with segmentation can be exacer-
bated in the online or simultaneous setting. This
is an important use case for SLT where we want
to produce the translations from live speech, as the
speaker is talking. To minimise the latency of the
translation, we would like to start translating before
speaker has finished their sentence. Some online
low-latency ASR approaches will also revise their
output after it has been produced, creating addi-
tional difficulties for the downstream components.
In this scenario, the segmentation into sentences
will be more uncertain and we are faced with the
choice of waiting for the input to stabilise (so in-
creasing latency) or translating early (potentially
introducing more errors, or having to correct the
output when the ASR is extended and updated).

To address the segmentation issue in SLT, Li
et al. (2021) has proposed to a data augmentation
technique which simulates the bad segmentation in
the training data. They concatenate two adjacent
source sentences (and also the corresponding tar-
gets) and then start and end of the concatenated
sentences are truncated proportionally.

We use a sliding window approach to translate
unsegmented input. In this approach, we translate
the ASR output as a series of overlapping windows,



using a merging algorithm to turn the translated
windows into a single continuous (but still some-
times updated) stream. The process is illustrated
in Figure 1. To generate the training data, we con-
vert the sentence-aligned training data into window-
window pairs, and remove punctuation and casing
from the source. We explain our algorithms in
detail in Section 2.

For online SLT, we use a retranslation approach
(Niehues et al., 2016; Arivazhagan et al., 2020a),
where the MT system retranslates a recent portion
of the input each time there is an update from ASR.
This approach has the advantage that it can use
standard MT inference, including beam search, and
does not require a modified inference engine as in
streaming approaches (e.g. Ma et al. (2019)). Re-
translation may introduce flicker, i.e. potentially
disruptive changes of displayed text, when outputs
are updated. Flicker can be traded off with la-
tency by masking the last k£ words of the output
(Arivazhagan et al., 2020a).! Our sliding window
approach is easily combined with retranslation to
create an online SLT system which can operate on
unsegmented ASR. Each time there is an update
from ASR, we retranslate the last n tokens and
merge the latest translation into the output stream.
Using the fixed size window has the advantage of
reducing flicker, since we control how much of the
output stream can change on each retranslation.

Experiments on  English—+Czech and
English—German show that our sliding window
approach improves BLEU scores for both online
and offline SLT. For the online case, our approach
improves the tradeoff between latency and flicker.

2 Window-Based Translation

2.1 Preprocessing

To make the parallel corpus resemble ASR output,
we remove all punctuation (and other special char-
acters) from the source sentences and replace it
with spaces. We then remove repeated spaces, and
lowercase the source.

'This paper also introduced the idea of biased beam search,
where the translation of an extended prefix is soft-constrained
to stay close to the translation of the prefix. Biased beam
search significantly reduces flicker, but it requires that ASR
output has a fixed segmentation, and uses a modified MT
inference engine.
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Figure 1: Example of how our proposed window-based
translation works at test time in case of a match and no-
match of translations of two subsequent windows. The
text inside the rectangular box is the source window at
time ¢, which is translated into output window (T;) by
the MT system. The text in blue (dark) shade shows the
common segment between the output window (T;) and
the output stream (O;) at time ¢. The text in red shade
shows the segment newly added from the output win-
dow T; into the output stream O, ;. With no common
segment between T; and O; (“No match”), we extend
the input window into the history and translate again.
e ¢ o indicates there are more tokens. Note that we used
characters here (instead of tokens) just for explanation.

2.2 Generating the Window Pairs for
Training

To convert the parallel corpus into a set of parallel
windows, we use a word-alignment based approach.
We first word-align the pre-processed parallel cor-
pus using fast_align (Dyer et al., 2013), then
we concatenate each side of the corpus to give two
long lines. Note that the word alignments will
however never cross sentence boundaries. We ran-
domly select windows of length 15-25 from the
target side, and use the word alignment to get the
corresponding source window. The algorithms are
described in Appendix B.

A subtle detail is whether the original corpus
was or was not shuffled at the level of sentences.
An original, non-shuffled corpus provides the MT



system with useful examples of cross-sentence con-
ditioning, a very useful feature especially for spon-
taneous speech translation. A minority of our cs-en
data is shuffled, which adds some noise to the pro-
cess, but our method works despite this.

2.3 Translating Input Windows

In our simultaneous MT setting, we assume that the
ASR system is transcribing the incoming speech
signal into a continuous stream of text. To obtain
a new input to the MT system, a fixed-side win-
dow is shifted by one token to right every time the
stream is extended. For every input window, the
MT system translates it and sends it to the module
that joins the output windows to the output stream
as described in the next section.

2.4 Joining the Output Windows

Since two consecutive source windows overlap,
the corresponding output windows normally have
an overlap. We use this overlap to join an output
window to the output stream.

We show the pseudo code for merging an out-
put window to the output stream in Algorithm 1.
We assume that ASR produces an input stream [
which is continuously growing by one token at a
time. Our algorithm requires a window length wy,
a threshold r and the current output stream O;. For
every new token in /, our merge module in Algo-
rithm 1 is triggered. The MT system translates the
last w; tokens of I to a target window 7. For any
translated window 7; and output stream O, at that
time step, we find the longest common substring
5. The threshold r gives the required minimum
length of the common substring. If the match is
sufficiently long (‘“significant” in the following),
we merge the current target window 73, otherwise
we extend input window by 1 token to the left and
translate again.

In our experiments, we extend the history to max-
imum of 5 tokens until we have found a significant
match. A higher r assures that the translation of the
current window will not accidentally match a ran-
dom segment in the stream, and as the successive
windows are just 1 token apart, we find a match
almost always (see Appendix C for details). Once
we have found a significant match, we merge 7}
with Oy around the match, chopping the part of 7}
before match. This approach of joining windows is
able to handle both the online and offline situations.

Algorithm 1 Pseudo code for merging newly trans-
lated window into existing output.

Require: The current output stream Oy, input
stream I, an MT system, window length wy,
threshold r € (0, 1).

1: k = 0 {extra history considered}

2: while true do

3: Tt/<—MT(IHI]—(wl+k): 1111])

4 Oy = O |0 = [T = |04 ]

50 s,1,J < T3P0, {sis longest common sub-
string. ¢ and j are the start indices of match
in Oy and T} }

6: k<« k+1

7. if |s| > |Ty| *ror k > 5 then

8 break

9 end if

10: end while

11: if |s| =0 then

12: 14 |Tt|

13: j+0

14: end if

15: Ot+1 — Ot[O : |Ot| — ‘Tt‘ +7J] +Tt[j : |Tt|]
16: return O;4q

3 Datasets and Experimental Settings

For training, we use parallel datasets from WMT
2020 (Barrault et al., 2020) for English-German
and from WMT 2021 (Akhbardeh et al., 2021)
for English-Czech (see Appendix A for details).
For the validation set, we use the concatenation
of IWSLT 2014,15 test sets for English-German,
and newstest2019 for English-Czech. We use the
ESIC test set for evaluation. ESIC (Machécek et al.,
2021) is a corpus derived from the European parlia-
ment proceedings which has transcripts of source
English speech and interpreted German and Czech
transcripts. This test set is aligned at document
level.

We use the SentencePiece (Kudo and Richard-
son, 2018) tokenizer for preprocessing the windows
with a shared subword (Sennrich et al., 2016) vo-
cabulary size of 32k. We train transformer-based”
(Vaswani et al., 2017) NMT models using the Mar-
ian toolkit (Junczys-Dowmunt et al., 2018). MT
models are trained to convergence (using early stop-
ping of 10) with a learning rate of 0.0003, and
translate using a beam of 6. We train the following
two types of models: i) Baseline: trained on gold-

2with 60 millions parameters. One model using 4 GPUs
took on an average 2 days.



Baseline Window
Pair | SF SO | 8 10 12 14 16 18 20
en-de |11.2 11.4|12.5 12.8 13.0 13.0 13.1 13.2 13.2
en-cs | 94 94 (10.0 103 104 10.5 10.6 10.6 10.7

Table 1: Sacrebleu scores of segmented and window
based approaches. SF: Offline segment level. SO: On-
line segment level.

segmented data and evaluated on segmented data
generated by the ASR system; ii) Window: trained
on windows of 10-25 tokens and evaluated on fixed
length windows of ASR output.

4 Results

We evaluate both the offline and online SLT. For
offline SLT, the baseline system is trained using par-
allel sentences, and for the online version, the base-
line system is a prefix-prefix retranslation system
(Niehues et al., 2016; Arivazhagan et al., 2020a).
For our proposed window-based system, the offline
and online are the same system. We evaluate our
proposed approach on ESIC using Sacrebleu® (Pap-
ineni et al., 2002; Post, 2018) score. As the test set
is not sentence aligned, we translate each document
and then align the output sentences (hypothesis) to
corresponding reference document using mwerSeg-
menter (Matusov et al., 2005), before calculating
BLEU.

For the baseline, we translate the test set using
the segmentations produced by ASR. For our pro-
posed window-based method, we evaluate using
different fixed-size windows of length 8§, 10, . . ., 20
tokens. The results are shown in Table 1where we
observe that the proposed method outperforms the
baseline with margins of 1.3 and 2.0 BLEU. These
BLEU scores in Table 1 across different window
length are the best scores obtained after exploring
different threshold (7) of match (refer to line 7 of
Algorithm 1). We show the BLEU scores for each
threshold in Appendix Table 3.

For online SLT, since our system uses retransla-
tion, we evaluate quality using BLEU, and flicker
using normalised erasure (NE; Arivazhagan et al.
2020a). We first note that flicker is affected by
both window length and thresholds — shorter win-
dows force commitment earlier which gives lower
flicker. Low thresholds promote spurious matches,
make translation flicker more, whilst high thresh-
olds force too many retranslations, and will cause
extra flicker when the maximum backoff is ex-
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Figure 2: Mask vs Flicker plots for different window
lengths at threshold r = 0.4, and the baseline.

ceeded. After exploration (Appendix C), we set
the threshold to 0.4 for the rest of our experiments.

Figure 2 shows the flicker-latency tradeoff of
our sliding-window approach to online SLT, as we
vary the fixed mask. We can see that the tradeoff is
improved at all window sizes. This improvement is
because the window approach only allows updates
that are within the window length. The quality
of the online SLT (as measured on full sentences)
is the same as the offline SLT. The flexible mask
allows further improvements in flicker, for matched
latency

5 Conclusion

We proposed window-based approach which works
at window (of fixed length of tokens) level,
and removes the need of automatic sentence-
segmentation of ASR output in cascaded SLT. We
experimented with English-German and English-
Czech language pairs and found that our proposed
approach performs better than the segmentation
based translation obtaining an improvement of 1.3-
2 BLEU points. We also observed that masking the
output reduced the flicker by a considerable margin
as compared to the baseline.
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A Training data statistics

In Table 2 we show the breakdown of our training
data.

Corpus Sentence pairs
English-German
Europarl 1.79 M
Rapid 145M
News Commentary 035M
OpenSubtitle 2251 M
TED corpus 206 K
MuST-C.v2 248 K
English-Czech
Europarl 645 K
ParaCrawl 14 M
CommonCrawl 161 K
News Commentary 260 K
CzEng2.0 36 M*
Wikititles 410K
Rapid 452 K

Table 2: Corpora used in training the systems

B Creation of Windowed Parallel Corpus

First, we word-align the pre-processed parallel cor-
pus D to obtain alignment A using fast_align
(Dyer et al., 2013). Then we concatenate all the
source-target sentence pairs (g, tx) into a single,
very long, pair (s,t) and subsequently, revise the
alignment using the Algorithm 2, so that the in-
dexes are still correct in the concatenated corpus.

Algorithm 2 Pseudo code for collapsing a word-
aligned parallel corpus into a single pair of sen-
tences preserving the word alignments.

Require: Parallel corpus D = {(s1,t1),
(s2,t2), ..., (Sn,tn)}, alignment A =
{ay,a9,....,an},s = €,t = ¢, revised align-
ment A" = {}

1: for k< 1to|D|do

2:  foreachi,j € a; do

3: i1+ |s]

4: Jj— g+t

5: A — AU (i, 7)

6: end for

7. 845+ s {concatenation }
8 Lt t+1iy {concatenation }
9: end for

10: return s, ¢, A’

Once we have combined the parallel corpus into
a pair of sentences (s, t), we use the revised align-
ment A’ to generate parallel windows of length
15-25 tokens using Algorithm 3.

Algorithm 3 Pseudo-code for extracting windows
from the concatenated corpus

Require: Unsegmented source s, target ¢, and

word alignment A

Initialize: idx < 0

while idx < |t| do
l < random(10, 25)
Wy « tlidz - idx + 1] {target window}
p=min{(,j) € A ide < j < idx+1}
q=maxi{(i,j) € A ide < j < idx +1}
Wy « s[p: q] {source window }
idx < idx +1

end while

D AR e

C Exploration of Match Threshold

We have two hyperparameters to consider: win-
dow length and threshold, when generating the out-
put. We explore their combination to find the best
threshold value. Table 3 shows BLEU scores with
different window length and threshold. We plot
the flicker against the threshold for each window
in Figure 3 and we found 0.4 to be the best choice
for threshold. Shorter windows force commitment
earlier producing lower flicker. Low thresholds pro-
mote spurious matches making translation flicker
more, whilst high thresholds force too many re-
translations. We have shown the number of re-
translation in Table 4 for different combination
of window length and threshold. The reason why
higher threshold forces too many retranslations is
that even if we set higher threshold, it matches only
with the match ratio between 0.5 to 0.6 on aver-
age. We have shown the average match ratio after
joining every combination of window length and
threshold in Table 5. We observe in Figure 3 that
higher threshold increases the flicker. The reason
is that: as mentioned before, in one hand, it never
reaches a match of > 0.6 on average thus it retrans-
lates more and generates longer output window, on
the other hand, flicker depends on actual number
of token mismatch - longer window will have more
mismatch for the same threshold. In addition to
that, these extra retranslations incurs an increase in
computation requirement. However, this increase
in complexity can be easily ignored, as in real life



settings, largest source of latency is waiting for
new source content from the speaker (Arivazhagan

et al., 2020Db).
3.6 ende; mask = 0; window lengths
Match Threshold (r) — 8
Window(w;) | 0.1 02 04 05 06 08 s 3
en—de — 14
8 108 113 123 125 124 125 - \ e
10 120 123 127 128 128 127 . 2
12 125 127 129 130 13.0 129 2.,
14 127 128 13.0 13.0 129 128 e
16 129 129 131 131 131 13.0
18 130 13.0 132 132 132 13.1 28 el
20 131 130 132 132 132 132
en—cs 261
8 83 91 98 100 100 99
10 95 97 102 103 102 102 M 02 05 oa 05 o6 o7 o
12 100 102 104 104 104 104 Threshold (r)
14 102 104 105 104 105 104
16 105 106 106 106 106 105
18 105 105 106 106 10.6 105 :
20 105 106 107 107 105 105 . encs: maskc = 07 window lengths
10
Table 3: Results with different window length and 3.6 "

threshold. Sacrebleu computed after sentence aligning
each document using mwerSegmenter. Bleu scores in
green have the lowest flickers.
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Figure 3: Threshold (r) vs Flicker plots.
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16| 806 4762 37067 60457 92346 163384 44351
18| 489 4118 34710 58321 89392 158114 43969
20| 292 3807 33440 57187 87418 154827 43587

8 [0.40 042 0.52 0.56 0.57 0.55 45879
1010.47 0.49 0.57 0.59 0.60 0.58 45497
1210.51 0.52 0.59 0.62 0.62 0.59 45115
1410.52 0.54 0.60 0.63 0.64 0.60 44733

Table 4: Number of extra retranslations due to history 161053 055 0.61 0.64 0.65 0.62 44351
extension. w; is window length. 181054 0.55 0.61 0.64 0.65 0.62 43969
2010.55 0.56 0.62 0.64 0.65 0.62 43587

en—cs

8 [0.37 041 0.51 0.54 0.56 0.54 45879
10 10.45 0.47 0.56 0.59 0.60 0.57 45497
1210.50 0.52 0.59 0.61 0.63 0.60 45115
14 10.53 0.54 0.61 0.63 0.65 0.61 44733
16 [ 0.54 0.55 0.62 0.64 0.65 0.63 44351
18 10.55 0.56 0.62 0.65 0.66 0.63 43969
2010.56 0.57 0.63 0.65 0.66 0.64 43587

Table 5: Average match ratio after joining all
the windows across different window length and

threshold. We define average match ratio as
1 Z#window match_length
H#window output_window_length
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