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ABSTRACT

Multimodal large language models (MLLMs) suffer from a coordination failure
during training—attention heads optimize independently despite sharing inputs,
leading many to develop suboptimal specialization patterns. We identify that
numerous attention heads exhibit high downstream influence yet minimal cross-
modal interaction, acting as performance bottlenecks that propagate misaligned
patterns throughout the network. To address this, we introduce RAH-LoRA
(Representative Anchor Head Low-Rank Adaptation), a training-free calibra-
tion method that realigns these problematic heads by transferring successful pat-
terns from high-performing anchors. Our key insight is that the transformer’s
residual architecture enables safe pattern transfer between heads operating in the
same representation space. RAH-LoRA identifies bottleneck heads using our pro-
posed metrics (Instruction-conditioned Saliency and Causal Attention Flow), con-
structs representative patterns from similar well-performing heads, and applies
controlled low-rank updates with theoretical guarantees on output stability. The
method requires only forward passes on unlabeled data, completing calibration
in minutes on a single GPU. Experiments demonstrate consistent improvements
across vision-language benchmarks, with gains strongly correlated to the iden-
tified influence-saliency gap, validating that targeting high-influence, low-cross-
modal heads yields amplified benefits.

1 INTRODUCTION

Multimodal large language models (MLLMs) process vision and language through multi-head at-
tention, where heads specialize into distinct roles—some strongly couple modalities while others
remain predominantly unimodal (Liu et al., 2024b; Bai et al., 2023b; Dai et al., 2023; Lin et al.,
2024). Yet this specialization emerges from a fundamental coordination failure: heads within each
layer optimize independently despite sharing the same input and producing a single residual up-
date (Voita et al., 2019; Michel et al., 2019; Clark et al., 2019). Under layer normalization, heads
cannot differentiate through output magnitude, forcing them to compete for gradient signal through
attention patterns alone (Vaswani et al., 2017). This creates a winner-take-all dynamic where heads
gravitate toward extreme specializations, with many trapped in suboptimal configurations that per-
sist after convergence.

We identify a critical performance bottleneck through systematic profiling of attention behavior.
Using Instruction-conditioned Saliency (I-SAL) to measure cross-modal attention flow and Causal
Attention Flow (CAF) to quantify downstream impact, we discover a problematic pattern: 15-20%
of heads exhibit high CAF but low I-SAL. These heads strongly influence subsequent layers—their
outputs propagate through the residual stream affecting all downstream computation—yet they fail
to properly integrate visual and textual information. This mismatch is particularly damaging because
their high influence amplifies suboptimal patterns throughout the network, creating cascading errors
in multimodal understanding.

Consider a head (l, h) with CAF in the top 30% but I-SAL in the bottom 10%. When this head
processes a question about an image, it may focus solely on textual patterns while ignoring relevant
visual regions. Due to its high downstream influence, this misalignment propagates: layer l + 1
receives poorly integrated features, layer l + 2 compounds the error, and by the final layer, the
model’s understanding is fundamentally compromised. The tragedy is that better-performing heads
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in the same layer successfully integrate both modalities, but the problematic head never learned to
adopt these patterns due to the lack of inter-head coordination during training.

The solution lies in the transformer’s residual architecture itself (Vaswani et al., 2017). Due to
layer normalization, consecutive layers maintain near-identity Jacobians (∥Jac(l → l + 1)∥ ≈ 1),
creating continuous representation spaces where patterns can transfer between heads (Zou et al.,
2023). This enables post-hoc coordination: we can identify successful cross-modal patterns from
high-performing heads and transfer them to underperforming ones without retraining, similar in
spirit to model merging (Wortsman et al., 2022; Ilharco et al., 2023; Yadav et al., 2023) but operating
at head granularity.

We propose RAH-LoRA (Representative Anchor Head Low-Rank Adaptation), a training-free cal-
ibration method that exploits this architectural property. For each problematic head, we construct
a Representative Anchor Head (RAH) by aggregating patterns from high-performing similar heads,
then compute the difference ∆W = WRAH − Wl,h representing the desired pattern shift. Rather
than applying this difference directly (which could destabilize the model), we extract its principal
components via SVD and retain only the top-r directions, inspired by LoRA (Hu et al., 2021) and
DoRA (Liu et al., 2024c):

W ′
l,h = Wl,h + α ·

r∑
i=1

σiuiv
T
i (1)

This low-rank formulation captures the essential pattern realignment while filtering noise, prevents
catastrophic changes by limiting the update rank, and enables efficient deployment-time adaptation
without gradients (Yu et al., 2024; Akiba et al., 2025).

The step size α is determined through trust-region optimization to bound KL divergence:
E[KL(pθ||pθ′)] ≤ δ, drawing from safe policy update principles (Schulman et al., 2015; 2017). We
prove that under mild Lipschitz conditions, the total variation distance is bounded by TV(pθ, pθ′) ≤√
2δ ·

∏L
l′=l+1(1 + κl′), ensuring safe calibration.

Using only few unlabeled samples (< 1000) and 5 minutes of computation on a single GPU, RAH-
LoRA achieves 1-2% consistent improvements on TextVQA, GQA, and ScienceQA. Gains strongly
correlate (r > 0.8) with the influence-saliency gap, validating our hypothesis that targeting high-
influence, low-cross-modal heads yields amplified improvements. When entire layers lack strong
anchors, our method can leverage patterns from adjacent layers (±1-2), exploiting the representation
continuity while maintaining theoretical bounds.

Our contributions are:

• Novel characterization of coordination failure in MLLMs: We identify and quantify
the phenomenon of high-influence, low-cross-modal heads through the I-SAL-CAF frame-
work, revealing that 15-20% of attention heads act as performance bottlenecks by amplify-
ing suboptimal patterns throughout the network.

• Training-free calibration via representative pattern transfer: We develop RAH-LoRA,
a gradient-free method that introduces post-hoc inter-head coordination by transferring suc-
cessful patterns through low-rank updates, requiring only forward passes on few unlabeled
samples.

• Theoretical guarantees with empirical validation: We prove bounded output de-
viation under our calibration and demonstrate consistent 1-2% improvements across
vision-language benchmarks, with gains directly proportional to the influence-saliency
gap—confirming that targeting high-CAF, low-I-SAL heads yields amplified benefits.

2 RELATED WORK

2.1 ATTENTION SPECIALIZATION IN MULTIMODAL LLMS

Recent MLLMs reveal complex attention patterns beyond simple cross-modal interaction. LLaVA-
1.5 (Liu et al., 2024a) and Qwen-VL (Bai et al., 2023a) show that only 20-30% of heads actively
perform cross-modal fusion, while the majority maintain modality-specific processing. VILA (Lin
et al., 2024) demonstrates that deeper layers exhibit stronger cross-modal patterns, yet early-layer

2
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Figure 1: RAH-LoRA pipeline. (a) Head profiling: Computing I-SAL for cross-modal patterns and
CAF via gated gradients to identify calibration targets. (b) Calibration: Constructing representative
anchors from high-performing heads and applying low-rank updates to target heads.

heads with weak cross-modal attention preserve crucial visual details. Prior work interprets low
cross-modal attention as inefficiency to be pruned (Michel et al., 2019). We challenge this view:
our CAF metric reveals these heads often have high downstream influence, amplifying their patterns
throughout the network. This finding motivates calibration over elimination—preserving architec-
tural capacity while improving alignment.

2.2 WEIGHT MERGING AND TRAINING-FREE ADAPTATION

Model merging has emerged as a powerful paradigm for combining capabilities without training.
Model soups (Wortsman et al., 2022) averages weights of multiple fine-tuned models, improving
accuracy without inference cost. Task arithmetic (Ilharco et al., 2023) enables capability editing
through weight-space operations, showing that task vectors can be added or subtracted. TIES-
Merging (Yadav et al., 2023) resolves parameter interference when merging multiple models by
trimming redundant parameters. DARE (Yu et al., 2024) randomly drops weights before merging,
revealing that many parameters are redundant. Model breadcrumbs (Davari & Belilovsky, 2024) cre-
ates sparse masks for adaptation, while evolutionary merging (Akiba et al., 2025) optimizes com-
binations without gradients. These methods operate at model or layer granularity. RAH-LoRA
applies merging principles at head level: we identify successful patterns within the model itself and
transfer them to underperforming heads through controlled low-rank updates, enabling fine-grained
calibration without external models.

2.3 LOW-RANK ADAPTATION AND TRUST-REGION METHODS

LoRA (Hu et al., 2021) introduced low-rank decomposition for parameter-efficient fine-tuning,
spawning variants like DoRA (Liu et al., 2024c) which decomposes into magnitude and direction,
and LoRA-FA (Zhang et al., 2023) which freezes one factor for memory efficiency. However, all
require gradient computation and labeled data. Trust-region optimization (Schulman et al., 2015)
ensures safe updates by bounding KL divergence, a principle we extend to gradient-free settings.
Representation engineering (Zou et al., 2023) modifies behaviors through activation steering but
operates in activation space rather than weight space. RAH-LoRA uniquely combines these con-
cepts: we use low-rank decomposition for efficient updates, derive patterns from existing heads
rather than gradients, and apply trust-region constraints to ensure bounded modifications—enabling
safe, training-free adaptation at deployment time.

3 METHOD

Our RAH-LoRA framework identifies attention heads with limited cross-modal interaction and cal-
ibrates them toward representative patterns derived from high-performing anchors. The method
operates entirely through forward passes on unlabeled data, making it suitable for deployment-time
adaptation where gradient computation is infeasible or undesirable.
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3.1 PRELIMINARIES AND MOTIVATION

Consider an MLLM with L transformer layers, each containing H attention heads of dimen-
sion d. For layer l and head h, the attention mechanism operates through projection matrices
WQ

l,h,W
K
l,h,W

V
l,h ∈ Rd×dmodel and WO

l,h ∈ Rdmodel×d. Given inputs combining text tokens T and
visual tokens I, each head produces attention weights Al,h ∈ RT×T where T = |T |+ |I|.
The key insight motivating our approach stems from the residual structure of transformers. The final
representation accumulates contributions from all heads:

h
(L)
i = h

(0)
i +

L∑
l=1

[
H∑

h=1

Attnl,h(h
(l−1)
i ) + FFNl(h

(l−1)
i )

]
(2)

This additive structure has profound implications for multimodal processing. Even heads exhibiting
minimal cross-modal attention weights contribute to the final representation through their transfor-
mation of unimodal features, which subsequently interact with cross-modal signals in deeper layers.
For instance, a head focusing purely on visual features in layer l shapes the input to cross-modal
heads in layer l + 1. This cascade effect suggests that improving the alignment of low cross-modal
heads with task objectives—rather than eliminating them—preserves architectural capacity while
enhancing task performance.

3.2 HEAD PROFILING AND SELECTION

3.2.1 CROSS-MODAL INSTRUCTION SALIENCY

We characterize each head’s specialization through a bidirectional attention flow metric that quanti-
fies the degree of cross-modal interaction. Given a small set of unlabeled calibration examples Dcal,
we compute for each head:

rl,h =
1

2

 1

|T ||I|
∑
i∈T

∑
j∈I

Al,h[i, j]︸ ︷︷ ︸
text→image

+
1

|I||T |
∑
i∈I

∑
j∈T

Al,h[i, j]︸ ︷︷ ︸
image→text

 (3)

The bidirectional formulation is crucial: unidirectional metrics miss important interaction patterns.
For instance, a head where text strongly queries visual information but not vice versa would appear
weakly cross-modal under image→text metrics alone. By averaging both directions, we capture the
full spectrum of cross-modal interaction.

To account for the natural tendency of deeper layers to exhibit stronger cross-modal patterns due to
accumulated context, we apply layer-wise standardization:

r̃l,h =
rl,h − µl

σl + ϵ
, µl =

1

H

H∑
h′=1

rl,h′ , σl =

√√√√ 1

H

H∑
h′=1

(rl,h′ − µl)2 (4)

This normalization ensures fair comparison across layers and prevents deeper layers from dominat-
ing the selection process.

3.2.2 CAUSAL IMPORTANCE FILTERING

Not all heads with low cross-modal attention are suitable for calibration—some serve critical aux-
iliary functions despite minimal cross-modal patterns. To identify these, we measure each head’s
downstream influence using gradient-based importance estimation.

We introduce learnable gates γl,h ∈ [0, 1] that modulate head outputs: Attn′
l,h(x) = γl,h ·Attnl,h(x).

The causal attention flow (CAF) quantifies sensitivity to these gates:

CAF(l, h) =
(

∂L
∂γl,h

)
γ=1

+ λ · E

[(
∂L
∂γl,h

)2
]

(5)
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where the loss is computed from the model’s output logits using a label-free margin loss: L =
− 1

T

∑
t log(pt,1/pt,2), with pt,1, pt,2 being the top-2 probabilities at position t. The second term

incorporates curvature information for stability.

High CAF indicates strong downstream influence—either through direct output contribution or by
providing features critical for other heads.

3.2.3 TARGET SELECTION

We identify calibration targets through a two-stage filtering process that balances impact with safety.
First, we identify statistical outliers in the cross-modal interaction distribution:

Cl = {h : r̃l,h < percentile(r̃l, pI-SAL)} (6)
where pI-SAL selects heads with weak cross-modal patterns.

We then prioritize heads with high downstream influence:
T Hl = {h ∈ Cl : CAF(l, h) > percentile(CAFl, pCAF)} (7)

where pCAF ensures we target high-influence heads. This percentile-based approach adapts to the
distribution of each dataset and layer, avoiding arbitrary absolute thresholds. We select heads with
low I-SAL (weak cross-modal patterns) but high CAF (strong downstream influence), as these bot-
tlenecks offer maximum improvement potential when calibrated.

3.3 REPRESENTATIVE ANCHOR CONSTRUCTION

3.3.1 ANCHOR POOL AND SIMILARITY METRICS

For each target head, we seek functionally compatible anchors that can provide guidance without
imposing inappropriate patterns. We begin by identifying high-performing candidates within the
same layer:

AHl = {a : r̃l,a > µl + βσl} (8)

The restriction to same-layer anchors is motivated by the observation that heads in the same layer
operate on identical input representations and contribute to the same residual update, making their
patterns more directly transferable.

We assess compatibility through a weighted combination of functional and parametric similarity:
s(h, a) = ρ · sfunc(h, a) + (1− ρ) · sparam(h, a) (9)

where the functional similarity captures attention pattern alignment:

sfunc(h, a) = cos(ĀT→I
l,h , ĀT→I

l,a ), ĀT→I
l,h =

1

|Dcal|
∑

(x,v)∈Dcal

AT→I
l,h (x,v) (10)

and parametric similarity measures weight space proximity:

sparam(h, a) = wV · cos(WV
l,h,W

V
l,a) + wO · cos(WO

l,h,W
O
l,a) (11)

where WV
l,h,W

O
l,h are the head-specific weight slices.

The focus on V and O projections is motivated by their role in determining information extraction
and transformation (Voita et al., 2019).

3.3.2 ROBUST AGGREGATION

Given the top-k most similar anchors from AHl, we construct a representative that captures their
common patterns while filtering outliers:

WRAH
l,h = TrimMeana∈Top-k(AHl,s(h,·))(Wl,a; τ) (12)

The trimmed mean operation removes the top and bottom τ fraction of values element-wise be-
fore averaging. This provides robustness against individual anchor peculiarities while being com-
putationally efficient—requiring only O(k log k) operations per parameter compared to O(k2) for
iterative robust estimators.

5
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3.4 CALIBRATION VIA LOW-RANK ADAPTATION

3.4.1 LOW-RANK PROJECTION

Given the representative anchor, we compute the calibration direction and apply low-rank approxi-
mation via SVD:

∆Wl,h = WRAH
l,h −Wl,h = UΣV T ≈

r∑
i=1

σiuiv
T
i = ∆W

(r)
l,h (13)

We retain only the top-r components because neural network weight updates often lie in low-
dimensional subspaces—fine-tuning typically affects only a small intrinsic dimension despite high
parameter counts (Aghajanyan et al., 2020). Moreover, using full-rank updates from limited samples
risks overfitting, while rank-r constraint acts as implicit regularization (Hu et al., 2021).

3.4.2 TRUST-REGION OPTIMIZATION

The final calibration applies the low-rank update with an adaptive step size determined through
trust-region optimization:

W ′
l,h = Wl,h + α ·∆W

(r)
l,h (14)

Rather than using a fixed α, we adaptively determine the largest step size that maintains bounded
distributional shift:

α∗ = arg max
α∈[0,αmax]

α subject to E(x,v)∼B[KL(pθ(·|x,v)∥pθ′(·|x,v))] ≤ δ (15)

The KL divergence constraint ensures bounded distributional shift (Schulman et al., 2015). We
implement this through binary search: starting from α = αmax, we repeatedly halve α until the
constraint is satisfied.

3.5 THEORETICAL GUARANTEES

We provide formal guarantees on the behavior of our calibration method. First, we bound the maxi-
mum deviation in model outputs:

Theorem 1 (Bounded Output Change). Under trust-region constraint δ, the total variation distance
between original and calibrated model outputs satisfies:

TV(pθ, pθ′) ≤
√
2δ ·

L∏
l′=l+1

(1 + κl′) (16)

where κl′ is the Lipschitz constant of layer l′.

This bound shows that calibration effects are controlled and decay exponentially with layer depth
when κl′ < 1, which holds for properly normalized transformers.

Second, we establish that calibration improves task alignment:

Proposition 1 (Alignment Improvement). Let Atask denote optimal attention patterns for a given
task. After calibration:

E[∥Aθ′ −Atask∥F ] ≤ E[∥Aθ −Atask∥F ]− αr · gap(T H,AH) (17)

where gap(T H,AH) = Eh∈T H,a∈AH[∥Aa−Ah∥F ] measures the average distance between target
and anchor attention patterns.

3.6 EXPERIMENTAL SETUP

Models. We primarily experiment with LLaVA-1.5 (Liu et al., 2024b) in both 7B and 13B variants,
as they represent strong open-source MLLMs. For architectural generalization, we also evaluate on
Qwen-VL-Chat-7B (Bai et al., 2023b) and InstructBLIP-7B (Dai et al., 2023).

6
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Table 1: Performance comparison across vision-language benchmarks. RAH-LoRA achieves con-
sistent improvements without requiring gradients or labeled data.

Method Visual QA Multimodal Understanding Knowledge & Reasoning

VQAv2 TextVQA GQA POPE MME MM-Bench SciQA SEED

LLaVA-1.5-7B
Baseline 78.5 58.2 62.0 85.9 1511 64.3 66.8 58.6
RAH-LoRA (Ours) 79.8 59.6 63.1 86.3 1547 65.4 68.3 59.8
∆ +1.3 +1.4 +1.1 +0.4 +36 +1.1 +1.5 +1.2

LLaVA-1.5-13B
Baseline 80.0 61.3 63.3 85.9 1531 67.7 71.6 61.6
RAH-LoRA (Ours) 81.1 62.5 64.2 87.2 1569 68.8 72.9 62.7
∆ +1.1 +1.2 +0.9 +1.3 +38 +1.1 +1.3 +1.1

Table 2: Performance sensitivity to selection thresholds. We evaluate different percentile combina-
tions for I-SAL and CAF to identify optimal target selection criteria.

I-SAL (%) CAF (%) Head Statistics Performance

Targets Calibrated Avg ∆ Std Max Gain

10 70 8% 6% +0.92 0.08 +1.15
15 70 12% 9% +1.35 0.06 +1.62
20 70 18% 14% +1.28 0.14 +1.48

15 60 15% 12% +1.22 0.09 +1.41
15 80 9% 7% +1.18 0.07 +1.38

Datasets. Following standard MLLM evaluation protocols, we test on: (1) VQA tasks: VQAv2
(Goyal et al., 2017), GQA (Hudson & Manning, 2019), and TextVQA (Singh et al., 2019); (2)
Multimodal benchmarks: POPE (Li et al., 2023b), MME (Fu et al., 2023), and MM-Bench (Liu
et al., 2023); (3) Reasoning: ScienceQA-IMG (Lu et al., 2022) and SEED-Bench (Li et al., 2023a).

Baselines. We compare against: (1) No calibration: original model; (2) Head pruning: removing
bottom 10% heads by I-SAL; (3) Random calibration: calibrating random heads; (4) Weight av-
eraging: simple interpolation without low-rank; (5) LoRA fine-tuning: gradient-based adaptation;
(6) BitFit (Ben Zaken et al., 2022): bias-only fine-tuning.

Implementation details. We use percentile-based thresholds: 15% for I-SAL and 70% for CAF
selection. Other hyperparameters: k = 3 anchors, wV = 0.7, wO = 0.3, τ = 0.1 (trimmed mean),
ρ = 0.6, rank r = 8, δ = 0.05 for trust region, αmax = 0.15. CAF computed on 32 probe samples.
We use few unlabeled samples for calibration, focusing on layers 0-15 for 32-layer models.

3.7 MAIN RESULTS

Table 1 presents our main findings. RAH-LoRA consistently improves performance across all
benchmarks, with particularly notable gains on TextVQA (+1.4%) and ScienceQA (+1.5%), tasks
requiring strong vision-language alignment. The improvements are achieved without any gradient
computation or labeled data, using only 100 unlabeled calibration examples.

3.8 CRITICAL DESIGN VALIDATIONS
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Figure 2: Target selection via
influence-saliency analysis.

Target selection causality. Our selection criteria (low I-
SAL, high CAF) correctly identifies high-impact bottlenecks.
Heads with high CAF amplify their patterns throughout the
network, making them ideal calibration targets when they ex-
hibit weak cross-modal patterns.

The optimal configuration (15% I-SAL, 70% CAF) achieves
maximum gains with minimal variance, selecting approxi-
mately 9% of heads for calibration. Tighter thresholds miss
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Table 3: Performance and stability metrics across different ranks. Rank 4-full provides optimal
trade-off.

Rank VQAv2 TextVQA GQA Avg ∆ Output KL

r = 4 79.5 59.3 62.8 +1.08 0.042
r = 8 79.8 59.6 63.1 +1.35 0.048
r = 16 79.1 59.0 63.2 +1.28 0.065
r = 32 78.3 58.1 62.2 +1.02 0.089
full rank 78.1 58.3 61.5 +0.75 0.124

Original 78.5 58.2 62.0 - -

Table 4: Component ablation on LLaVA-1.5-7B. Each component contributes meaningfully to per-
formance.

Configuration VQAv2 TextVQA GQA POPE Avg ∆

Full RAH-LoRA 79.8 59.6 63.1 87.1 +1.35

Target selection
w/o CAF filtering 79.3 59.1 62.7 86.6 +0.90
Random targets 78.5 58.3 62.0 85.8 +0.05
Top I-SAL (inverse) 77.9 57.6 61.3 85.2 -0.75

Anchor selection
w/o attention similarity 79.4 59.2 62.8 86.7 +1.00
w/o weight similarity 79.2 59.0 62.6 86.5 +0.85
Single nearest anchor 79.0 58.8 62.4 86.3 +0.70

important targets, while looser ones include well-functioning
heads, reducing effectiveness.

3.9 LOW-RANK AND TRUST REGION ANALYSIS

Rank selection. We evaluate the impact of rank r on perfor-
mance and stability with fixed trust region δ = 0.05: The results confirm that r = 8 achieves the
best performance while maintaining low distribution shift (KL ¡ 0.05). Lower ranks (r = 4) slightly
underfit, while higher ranks (r ≥ 16) introduce unnecessary parameters without performance gains
and increase distribution shift. Full-rank updates perform worst, validating our low-rank hypothesis.

Trust region safety. Binary search effectively finds appropriate step sizes within 3-5 iterations,
with only 2.1% rollback rate at δ = 0.05.

3.10 DATA-FREE VALIDATION

To verify our method truly operates without labeled data, we test pathological calibration conditions.
Performance degrades or vanishes under corrupted calibration, confirming our method genuinely
relies on cross-modal patterns rather than data leakage.

3.11 DATASET-SPECIFIC CALIBRATION PATTERNS

Figure 3 reveals that while I-SAL patterns remain consistent across datasets (bottom row), CAF
scores vary significantly (top row), leading to dataset-specific calibration strategies.

Key observations:

• CC3M: Dispersed CAF values → 28 heads selected with moderate updates

• VQA: Strong CAF peaks in layers 14-18 → 45 heads with aggressive calibration

• Reasoning: High CAF in deep layers (20-28) → targets late-stage integration

8
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Table 5: Calibration safety and validation experiments.

(a) Trust region analysis showing step sizes and sta-
bility metrics.

δ Mean α Std α Rollback Rate Iterations

0.02 0.048 0.012 0.8% 2-3
0.05 0.087 0.024 2.1% 3-5
0.10 0.126 0.038 5.7% 4-6

(b) Sanity checks confirming data-free operation.

Calibration Condition VQAv2 Avg ∆

Normal (matched pairs) 79.8 +1.35
Shuffled image-text pairs 78.3 -0.20
Blank images 78.1 -0.40
Out-of-domain (40% mismatch) 79.0 +0.50
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Top: CAF scores - higher values indicate high-influence calibration targets
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(c) Reasoning
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(d) VQA

Bottom: I-SAL scores - lower values indicate weak cross-modal patterns

Figure 3: Head profiling heatmaps across different calibration datasets. Each column shows layer
index (y-axis) vs head index (x-axis). White crosses mark selected calibration targets (high CAF,
low I-SAL).

• MM Understanding: CAF concentration in layers 10-15 → focuses on visual grounding

Despite identical thresholds (15% I-SAL, 70% CAF), the method automatically adapts to each
dataset’s requirements—VQA needs more middle-layer calibration while reasoning benefits from
deeper modifications. This validates our percentile-based approach over fixed thresholds.

3.12 ANALYSIS AND INSIGHTS

Head specialization patterns. Figure 3 visualizes I-SAL scores and calibration effects across lay-
ers. We observe that cross-modal interaction generally increases in deeper layers, with notable het-
erogeneity within each layer. Calibrated heads show increased but not homogenized I-SAL scores,
preserving specialization diversity while improving task alignment.

Computational efficiency. RAH-LoRA requires only forward passes during calibration, complet-
ing in under 5 minutes on a single GPU for 7B models. Our method uses significantly less memory
and computation than gradient-based approaches while achieving comparable improvements.

Robustness across architectures. We evaluate RAH-LoRA on different MLLM architectures to
assess generalization. Qwen-VL-Chat shows similar improvements (+1.2% average), while Instruct-
BLIP gains are more modest (+0.7%), likely due to its Q-Former bottleneck limiting direct attention
manipulation. This suggests our method is most effective for architectures with standard cross-
attention mechanisms.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Failure modes. RAH-LoRA shows limited improvement on pure language tasks (e.g., text-only
ScienceQA questions) and can occasionally degrade performance on samples requiring strong uni-
modal processing. The method is also sensitive to calibration data quality—using out-of-domain
calibration samples reduces gains by approximately 40

4 CONCLUSION

We presented RAH-LoRA, a training-free calibration method that addresses coordination failures
in multimodal large language models. Our key insight—that high-influence heads with weak cross-
modal patterns act as performance bottlenecks—led to a targeted approach that transfers successful
patterns from well-performing heads to these bottlenecks. Through systematic profiling using I-
SAL and CAF metrics, we identified that 15-20% of attention heads exhibit this problematic pattern,
amplifying misaligned representations throughout the network.

RAH-LoRA achieves consistent 1-2% improvements across vision-language benchmarks using only
100 unlabeled samples and 5 minutes of computation, making it practical for deployment scenarios
where gradient-based adaptation is infeasible. The method’s theoretical guarantees ensure bounded
output changes while the percentile-based selection automatically adapts to dataset-specific require-
ments.

Limitations and Future Work. Our method shows reduced effectiveness on counting tasks and
pure language reasoning, suggesting room for task-adaptive calibration strategies. Future work could
explore dynamic rank selection, cross-layer pattern transfer, and extension to other multimodal ar-
chitectures. Additionally, investigating the root causes of coordination failures during training could
lead to more fundamentally aligned models.

The success of RAH-LoRA demonstrates that significant improvements in MLLMs can be achieved
through targeted post-hoc coordination, without the need for expensive retraining. This opens
new avenues for efficient model adaptation and suggests that many apparent limitations in current
MLLMs may stem from correctable coordination failures rather than fundamental architectural con-
straints.

USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we utilized Claude (Anthropic) as an assistive tool for specific tasks:

• Writing refinement: Improving clarity and conciseness of technical descriptions, ensuring
consistent terminology throughout the manuscript, and correcting grammatical errors.

• Literature search: Identifying relevant related work and verifying citation formats, though
all papers were independently reviewed by the authors.

• Code documentation: Generating docstrings and comments for the implementation,
though all algorithmic development was performed by the authors.

All scientific contributions, experimental design, analysis, and core insights are original work by the
authors. The LLM served solely as a writing and organizational aid, similar to grammar checkers or
reference managers. All generated content was carefully reviewed and validated by the authors to
ensure accuracy and originality.
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