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Many works in statistics aim at designing a universal estimation procedure, that is, an estimator that would con-
verge to the best approximation of the (unknown) data generating distribution in a model, without any assumption
on this distribution. This question is of major interest, in particular because the universality property leads to the
robustness of the estimator. In this paper, we tackle the problem of universal estimation using a minimum distance
estimator presented in (Briol et al. (2019)) based on the Maximum Mean Discrepancy. We show that the estima-
tor is robust to both dependence and to the presence of outliers in the dataset. Finally, we provide a theoretical
study of the stochastic gradient descent algorithm used to compute the estimator, and we support our findings with
numerical simulations.
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1. Introduction

One of the main challenges in statistics is the design of a universal estimation procedure. Given data,
a universal procedure is an algorithm that provides an estimator of the generating distribution which
is simultaneously statistically consistent when the true distribution belongs to the model, and robust
otherwise. Typically, a universal estimator is consistent for any model, with minimax-optimal or fast
rates of convergence and is robust to small departures from the model assumptions [10] such as sparse
instead of dense effects or non-Gaussian errors in high dimensional linear regression. Unfortunately,
most statistical procedures are based upon strong assumptions on the model or on the corresponding
parameter set, and very famous estimation methods such as maximum likelihood estimation (MLE),
method of moments or Bayesian posterior inference may fail even on simple problems when such
assumptions do not hold. For instance, even though MLE is consistent and asymptotically normal
with optimal rates of convergence in parametric estimation under suitable regularity assumptions [62,
91] and in nonparametric estimation under entropy conditions, this method behaves poorly in case of
misspecification when the true generating distribution of the data does not belong to the chosen model.

Let us investigate a simple example presented in [12] that illustrates the non-universal characteristic
of MLE. We observe a collection of n independent and identically distributed (i.i.d.) random variables
X1, ..., X, that are distributed according to some mixture distribution P,? =(1=2n"YHu(o, 1 /10]) +
2n~1U([1/10,9/10]) where U([a, b]) is the uniform distribution between a and b. We consider the
parametric model of independent uniform distributions U/ ([0, 8]), 0 < 0 < 1, and we choose the
squared Hellinger distance h%(-,-) as the risk measure. Here the maximum likelihood is the maxi-
mum of the observations X,) := max(Xy, ..., X,), and ¢([0, 1/10]) is a good approximation of the
generating distribution P? as h?(P?,1([0, 1/10])) < 5/4n for n > 4. Hence, one would expect that
IE[hZ(P,0 U0, X1))] goes to 0 as n — 4-o0, which is actually not the case. We do not even have
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consistency: ]E[hz(P,?, U(0, Xo»n))1 > 0.38. Hence, the MLE is not robust to this small deviation from
the parametric assumption. The same happens in Bayesian statistics: the regular posterior distribution
is not always robust to model misspecification. Indeed, authors of [7,49] show pathologic cases where
the posterior does not concentrate to the true distribution.

Universal estimation is all the more important since it provides a generic approach to tackle the more
and more popular problem of robustness to outliers under the i.i.d. assumption, although definitions
and goals involved in robust statistics are quite different from the universal estimation perspective.
Hiiber introduced a framework that models situations where a small fraction ¢ of data is contaminated,
and he assumes that the true generated distribution can be written (1 — &) Py, + €Q where Q is the
contaminating distribution and ¢ is the proportion of corrupted observations [57]. The goal when using
this approach is to estimate the true parameter 6y given a misspecified model { Py /0 € ®} with §y € O.
A procedure is then said to be robust in this case if it leads to a good estimation of the true parameter
6. More generally, when a procedure is able to provide a good estimate of the generating distribution
of i.i.d. data when a small proportion of them is corrupted, whatever the values of these outliers, then
such an estimator is considered as robust.

Interestingly enough, none of the aforementioned works questioned the independence assumption
on the observation. We believe that a universal estimation procedure should still produce sensible
estimations under small deviations from this assumption.

1.1. Related work

Several authors attempted to design a general universal estimation method. Sture Holm [10] suggested
that Minimum Distance Estimators (MDE) were the most natural procedures being robust to misspec-
ification. Motivated by [81,92], MDE consists in minimizing some probability distance d between the
empirical distribution and a distribution in the model. The MDE 6, is defined by:

d(Py, Py) = inf d(Py, Py)

where £, =n~! Y"1 8(x;) is the empirical measure and © the parameter set associated to the model.
If the minimum does not exist, then one can consider an e-approximate solution. In fact, this minimum
distance estimator is used in many usual procedures. Indeed, the generalized method of moments [51]
is actually defined as minimizing the weighted Euclidean distance between moments of P, and Py
while the MLE minimizes the KL divergence, at least for discrete measures. When the distance d is
wisely chosen, for example, when it is bounded, then MDE can be robust and consistent.

A popular metric is the Total Variation (TV) distance [35,94]. [94] built an estimator that is uniformly
consistent in TV distance and is robust to misspecification under the i.i.d. assumption, but without any
assumption on the true distribution of the data. The rate of convergence depends on the Kolmogorov
entropy of the model. A few decades later, Devroye and Lugosi studied in details the skeleton esti-
mate, a variant of the estimator of [94] that is based on the TV-distance restricted to the so-called
Yatracos sets, see [35]. Unfortunately, the skeleton estimate and the original Yatracos estimate are not
computationally tractable.

In [5] and [6], Baraud, Birgé and Sart introduced p-estimation, a universal method that retains some
appealing properties of the MLE such as efficiency under some regularity assumptions, while being
robust to deviations, measured by the Hellinger distance. This p-estimation procedure is inspired from
T-estimation [12], itself inspired from earlier works of Le Cam [63,64] and Birgé [11], and goes be-
yond the classical compactness assumption used in T-estimation. In compact models, p-estimators can
be seen as variants of T-estimators also based on robust tests, but they can be extended to noncompact
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models such as linear regression with fixed or random design with various error distributions. As T-
estimators, they enjoy robustness properties, but involve other metric dimensions which lead to optimal
rates of convergence with respect to the Hellinger distance even in cases where T-estimators can not be
defined. Moreover, when the sample size is large enough, p-estimation recovers the usual MLE in den-
sity estimation when the model is parametric, well-specified and regular enough. Hence, p-estimation
can be seen as a robust version of the MLE. Unfortunately, this strategy is also intractable. The Wasser-
stein distance became recently extremely popular. Some attempts to obtain universal estimation with
the Wasserstein distance can be found in [8,67].

More recently, [15] showed that using the Maximum Mean Discrepancy (MMD) [47] to build a
minimum distance estimator leads to both robust estimation in the i.i.d. case, without any assumption
on the model { Py, 0 € ®}. Moreover, this estimator is tractable as soon as the model is generative, that
is, when one can sample efficiently from any Pg. MMD, a metric based on embeddings of probabil-
ity measures into a reproducing kernel Hilbert space, has been applied successfully in a wide range of
problems such as kernel Bayesian inference [87], approximate Bayesian computation [80], two-sample
[47] and goodness-of-fit testing [59], and MMD GANSs [42,68] and autoencoders [95], to name a few
prominent examples. Such minimum MMD-based estimators are proven to be consistent, asymptoti-
cally normal and robust to model misspecification. The trade-off between the statistical efficiency and
the robustness is made through the choice of the kernel. The authors investigated the geometry induced
by the MMD on a finite-dimensional parameter space and introduced a (natural) gradient descent algo-
rithm for efficient computation of the estimator. This algorithm is inspired from the stochastic gradient
descent (SGD) used in the context of MMD GANSs where the usual discriminator is replaced with a
two-sample test based on MMD [42]. These results were extended in the Bayesian framework by [26].

Finally, a whole branch of probability and statistics study limit theorems (LLN, CLT) under the as-
sumptions that the data is not exactly independent, but that in some sense, the dependence between the
observations is not strong. Since the seminal work of [85], many mixing conditions, that is, restrictions
on the dependence between observations, were defined. These conditions lead to limit theorems useful
to analyze the asymptotic behavior of estimators computed on time series [39]. Nevertheless, check-
ing mixing assumptions is difficult in practice and many classes of processes that are of interest in
statistics such as elementary Markov chains are sometimes not mixing. More recently, [40] proposed a
new weak dependence condition for time series that is built on covariance-based coefficients which are
much easier to compute than mixing ones, and that is more general than mixing as it stands for most
relevant classes of processes. We believe that it is important to study robust estimators in this setting,
in order to check that they are also robust from small deviations to the independence assumption.

1.2. Contributions

In this paper, we further investigate universality properties of minimum distance estimation based on
MMD distance [15]. Inspired by the related literature, our contributions in this paper are the following:

e We go beyond the classical i.i.d. framework. Indeed, we prove that the the estimator is robust to
dependence between observations. To do so, we introduce a new dependence coefficient expressed
as a covariance in some reproducing kernel Hilbert space, and which is very simple to use in
practice.

e We show that our oracle inequalities imply robust estimation under the i.i.d. assumption in the
Hiiber contamination model and in the case of adversarial contamination.

e We propose a theoretical analysis of the SGD algorithm used to compute this estimator in [15]
and [42] for some finite dimensional models. Thanks to this algorithm, we provide numerical
simulations to illustrate our theoretical results.
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The first result of this paper is a generalization bound in the non-i.i.d. setting. It states that under
a very general dependence assumption, the generalization error with respect to the MMD distance
decreases in n =1/ as n — +o0. This result extends the inequalities in [15] that are only available in
the i.i.d. framework, and is obtained using dependence concepts for stochastic processes. We introduce
in this paper a new dependence coefficient in the wake of [40] which can be expressed as a covariance in
some reproducing kernel Hilbert space associated with MMD. This coefficient can be easily computed
in many situations and which may be related to usual mixing coefficients such as the popular S-mixing
one. We show that a weak assumption on this new dependence coefficient can relax the i.i.d. assumption
of [15] and can lead to valid generalization bounds even in the dependent setting.

Regarding robustness, we prove that our generalization bounds for the MMD estimator implies that
this estimator is robust to the presence of outliers. Note that this includes Hiiber’s type contamination,
and adversarial contamination as well. In particular, we compare the rate of convergence of the MMD
estimator to the minimax estimators in the example of the estimation of the mean of a Gaussian.

Regarding computational issues, we provide a Stochastic Gradient Descent (SGD) algorithm as in
[15,42] involving a U-statistic approximation of the expectation in the formula of the MMD distance.
We theoretically analyze this algorithm in parametric estimation using a convex parameter set. We also
perform numerical simulations that illustrate the efficiency of our method, especially by testing the
behavior of the algorithm in the presence of outliers.

The rest of the paper is organized as follows. Section 2 defines the MMD-based minimum distance
estimator and our new dependence coefficient based on the kernel mean embedding. Section 3 pro-
vides nonasymptotic bounds in the dependent and misspecified framework, with their implications in
terms of robust parametric estimation. Section 4 illustrates the efficiency of our method in several dif-
ferent frameworks. We finally present an SGD algorithm with theoretical convergence guarantees in
Section 5 and we perform numerical simulations in Section 6. The proofs of the theorems of Section 3
are provided in Section 7. The supplementary material is dedicated to the remaining proofs [27].

2. Background and definitions

In this section, we first introduce some notations and present the statistical setting of the paper in
Section 2.1. Then, we remind in Section 2.2 some theory on reproducing kernel Hilbert spaces (RKHS)
and we define both the maximum mean discrepancy (MMD) and our minimum distance estimator
based on the MMD. Finally, we introduce in Section 2.3 a new dependence coefficient expressed as a
covariance in a RKHS.

2.1. Statistical setting

We shall consider a dependent setting throughout the paper. We observe in a measurable space (X, X)
a collection of n random variables X1,...,X, generated from a stationary process. This implies that
the X;’s are identically distributed, and we will let P® denote their marginal distribution. Note that this
include as an example the case where the X;’s are i.i.d. with generating distribution P°. We introduce
a statistical model { Py /0 € ®} indexed by a parameter space ®.
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2.2. Maximum mean discrepancy

We consider a positive definite kernel function k, that is, a symmetric function £ : X x X — R such
that for any integer n > 1, for any x, ..., x, € X and for any ¢y, ...,c, € R:

n

n
ZZCiCjk(xi,xj') > 0.

i=1 j=1

We then consider the reproducing kernel Hilbert space (RKHS) (Hy, (-, -)#, ) associated with the ker-
nel k which satisfies the reproducing property f(x) = (f, k(x, -))#, for any function f € H; and any
x € X. From now on, we assume that the kernel is bounded by some positive constant, that will be
assumed to be 1 without loss of generality. That is, for any x, y € X, |k(x, y)| < 1.

Now we introduce the notion of kernel mean embedding, a Hilbert space embedding of a probability
measure that can be viewed as a generalization of the original feature map used in support vector
machines and other kernel methods. Given a probability measure P, we define the mean embedding
up € Hy as:

pp():=Ex~p[k(X,)] € Hx.

All the applications and the theoretical properties of those embeddings have been well studied [76].
In particular, the mean embedding wp satisfies the relationship Ex~p[f(X)] = (f, up)y, for any
function f € Hy, and induces a semi-metric ! on measures called maximum mean discrepancy (MMD),
defined for two measures P and Q as follows:

Di(P, Q)= lup — ol

or equivalently
DF(P, Q) =Ex x~p[k(X, X)] = 2Ex~p y~o[k(X, )] +Ey y~o[k(Y,Y’)].

A kernel k is said to be characteristic if P +— wp is injective. This ensures that Dy is a metric, and
not only a semi-metric. Section 3.3.1 of the thorough survey [76] provides a wide range of conditions
ensuring that k is characteristic. They also provide many examples of characteristic kernels, see their
Table 3.1. Among others, when X C R? equipped with the Euclidean norm || - ||, the Gaussian kernel
k(x,y) =exp(—|lx — y||?/¥?) and the Laplace kernel k(x, y) = exp(—|lx — y||/y), are known to be
characteristic. We actually mostly use these two kernels in our applications. From now on, we will
assume that & is characteristic.

Note that there are many applications of the kernel mean embedding and MMD in statistics such as
two-sample testing [47], change-point detection [4], detection [65], we also refer the reader to [69] for
a thorough introduction to the applications of kernels and MMD to computationnal biology.

Here, we will focus on estimation of parameters based on MMD. This principle was used to train
generative networks [42,68], it’s only recently that it was studied as a general principle for estimation
[15]. Following these papers, we define the MMD estimator é,, such that,

D (P, Pa) = inf Di(Py, )

I This means that P — llwp “Hk satisfies the requirements of a norm besides |[up — g ”Hk =0only for up =pg.
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where P, = (1/n) Y"7_, 8x, is the empirical measure, that is,

R . 2 n
0n = argmin{ Ey ywp, [k(X, X')] — - ZEXNP(, [k(X, X)] }
0e® :
i=1
It could be that there is no minimizer, see the discussion in Theorem 1 page 9 in [15]. IP this case, we
can use an approximate minimizer. More precisely, for any ¢ > 0 we can always find a 6, . such that,

De(Fy, . Pa) < inf Di(Py, Py) +e.

In what follows, we will consider the case where the minimizer exists (that is, £ = 0) but when this is
not the case, everything can be easily extended by considering 6, 1/y.

2.3. Covariances in RKHS

In this subsection, we introduce and discuss a new dependence coefficient based on the kernel mean
embedding. This coefficient allows to go beyond the i.i.d. case in the study of the MMD estimator of
[15], and to show that it is actually robust to dependence.

Definition 2.1. We define, for any r € N,
0r = [E(k(Xy, ) — wpo, k(Xo, ) — ppoly |-

In the i.i.d. case, note that o; = 0 for any 7 > 1. In general, the following assumption will ensure the
consistency of our estimator.

Assumption 2.1. There is a £ < +o0 such that, forany n, ) | o, < Z.

Our mean embedding dependence coefficient may be seen as a covariance expressed in the RKHS
‘Hy. We shall see throughout the paper that the kernel mean embedding coefficient o, can be easily
computed in many situations, and that it is closely related to widely used mixing coefficients. In par-
ticular, we will show in Section 4.2 that our coefficient g, is upper-bounded by the popular S-mixing
coefficient. For the reader who would not be familiar with §-mixing, we also show that any real-valued
auto-regressive process X; = aX,_| + & satisfies Assumption 2.1 as long as |a| < 1, the &, are i.i.d.
and E(|eg]) < oo. Also, we show that some special cases of such auto-regressive processes are not
B-mixing, which proves that Assumption 2.1 is more general than B-mixing: an explicit example is
given in Section 4.3. Hence, Assumption 2.1 may be referred to as a weak dependence condition in
the wake of the concept of weak dependence introduced in [40]. We will show in the next section that
under Assumption 2.1, we can obtain a nonasymptotic generalization bound of the same order than in
the i.i.d. case.

3. Nonasymptotic bounds in the dependent, misspecified case

In this section, we provide nonasymptotic generalization bounds in MMD distance for the minimum
MMD estimator. In particular, we show in Section 3.1 that under a weak dependence assumption, it
is robust to both dependence and misspecification, and is consistent at the same n~!/? rate than in
the i.i.d. case. In particular, we give explicit bounds in the Hiiber contamination model and in a more
general adversarial setting in Section 3.2.
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3.1. Estimation with respect to the MMD distance

First, we begin with a theorem that gives an upper bound on the generalization error, that is, the ex-
pectation of D (P; , PY). The rate of convergence of this error is of order n~!/? independently of the
dimension of the p"arameter space ©®. In fact, note that there is actually no assumption at all on the
model { Py, 6 € B} in this theorem.

Theorem 3.1. We have:

. 1+22n: Q
E[]D)k(Pén, PO)] < ellel(g]D)k(Pg, PO) —{—2\/1.

As a consequence, under Assumption 2.1:

0N 0 142%
E[Dk (P, P')] 5912£)Dk(P9,P )+2 .

n

We remind that the proofs of the results in this section are deferred to Section 7. It is also possible
to provide a result that holds with large probability as in [15,42]. Naturally, this requires stronger
assumptions, and the conditions on the dependence become more intricate in this case. Here, we use a
condition introduced in [82,83] for generic metric spaces that we adapt to the kernel embedding and to
stationarity.

Assumption 3.1. Assume that there is a family (y;), of non-negative numbers such that, for any
integer n, for any £ € {1, ...,n — 1} and any function g : 7-{,,{ — R such that

4
|gar.....a)) — g(br.....b)| <D llai — bill,.
i=1

we have: [E[g(usy,, » - oy, ) X1s o Xel = Elg sy, -0 ttsx, I < vi+ -+ 4 Vaye—1, almost
surely. Assume that ' 1=}, ¥ < oo.

This assumption is more technical than Assumption 2.1. The idea is quite similar: the coefficient
ys is a measure of the dependence between X; and X, and the assumption will be satisfied if X,
and X;4, are “almost independent” when s is large — but the sense given to “almost independent” is
not exactly the same as in Assumption 2.1. For example, we show in Section 4.3 that auto-regressive
processes X;+1 = aX; + &41 with |a| < 1 and i.i.d. & satisfy this assumption under the additional
condition that the &; are almost surely bounded. Again, note that in the case of independence, we can
take all the y; =0 and hence I" = 0 in addition to ¥ = 0. We can now state our result in probability.

Theorem 3.2. Assume that Assumptions 2.1 and 3.1 are satisfied. Then, for any § € (0, 1),

VI+2Z + (1+1),/2log(})

>1-4.
N

Assumption 3.1 is fundamental to obtain a result in probability. Indeed, the rate of convergence

in Theorem 3.2 is characterized by some concentration inequality upper bounding the MMD distance
between the empirical and the true distribution as done in [15]. Nevertheless, the proof of this inequality

]P’I:]D)k(Pén, P%) < inf De(Py, P%) +2
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in [15] is based on a Hoeffding-type inequality known as McDiarmid’s inequality [74] that is only valid
for independent variables (that is, all the y; = 0), which makes this inequality not applicable in our
dependent setting. Hence, we use a version of McDiarmid’s inequality for time series obtained by Rio
[82,83] which is available under the assumption that ), ; y¢ < oo (Assumption 3.1).

Remark 3.1 (The i.i.d. case). Note that when the X;’s are i.i.d., Assumptions 2.1 and 3.1 are always
satisfied with ¥ = I' = 0 and thus Theorem 3.1 gives simply

E[Dk(P; , P°)] < inf Dy(Ps, P°) + 2

On C) Jn

while Theorem 3.2 gives

1+ /21og(3)
0 . 0

Remark 3.2 (Connection between the MMP distance and the L2 norm). In Section 4, we study
the connection between the convergence of Py in terms of MMD distance, and the convergence of

~

0,, is some classical models. However, it is also worth mentioning a connection between the MMD
distance and the quadratic distance on densities. Indeed, assume X = R? and that P and Q have density
p and g, respectively with respect to the Lebesgue measure. Using the Gaussian kernel &, (x, y) =
exp(—|lx — ylI?/y?), we expect that, when y — 0, under suitable assumptions,

Ex~py~o[k(X, V)] ~72y? / p(x)q(x) dx

and so that
d d
Di, (P, Q) ~may2|p—qllp2. (D

Corollary 4 page 1527 of [88] provides a formal statement of this claim. Thus, the convergence in the
MMD distance has connections with the convergence of the densities (when they exist) in L.

Note that [5,35] argue that the L2%-norm is not suitable for universal estimation: indeed, in some
models, Py does not have a density with respect to the Lebesgue measure. But (1) allows the interpre-
tation of the MMD distance (with the Gaussian kernel) as an approximation of the L? distance, that is
however well defined for any model (Py).

3.2. Robust parametric estimation

3.2.1. Contamination models

As explained in the introduction, when all observations but a small proportion of them are sampled
independently from a generating distribution Py, (6 € ®), robust parametric estimation consists in
finding estimators being both rate optimal and resistant to outliers. Two among the most popular frame-
works for studying robust estimation are the so-called Hiiber’s contamination model and the adversarial
contamination model.

Hiiber’s contamination model is as follows. We observe a collection of random variables X1, ..., X;.
We consider a contamination rate ¢ € (0, 1/2), latent i.i.d. random variables Zy, ..., Z, ~ Ber(¢) and
some noise distribution Q, such that the distribution of X; given Z; = 0is Py,, and that the distribution
of X; given Z; =1 is Q. Hence, the observations X;’s are independent and sampled from the mixture
PO=(1—¢)Py +£0Q.
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The adversarial model is more general. Contrary to Hiiber’s contamination where outliers were all
sampled from the contaminating distribution, we do not make any particular assumption on the outliers
here. Hence, we shall adopt slightly different notations. We assume that X1, ..., X, are identically
distributed from Py, for some 6y € ®. However, the statistician only observes X Iseens }f,, where X i
can be any arbitrary value for i € O, where O is an arbitrary set subject to the constraint |O| < en, and
X; = X, fori ¢ O. The estimators are built based on these observations X1, Xn.

3.2.2. Literature

One hot research trend in robust statistics is focused on the search of both statistically optimal and com-
putationally tractable procedures for the Gaussian mean estimation problem {Py = N (0, I;)/0 € R¢}
in the presence of outliers under the i.i.d. assumption, which remains a major challenge. Usual robust
estimators such as the coordinatewise median and the geometric median are known to be suboptimal in
this case, and there is a need to look at more complex estimators such as Tukey’s median that achieves
the minimax optimal rate of convergence max(%, £2) with respect to the squared Euclidean distance,
where d is the dimension, n is the sample size and ¢ is the proportion of corrupted data. Unfortunately,
computation of Tukey’s median is not tractable and even approximate algorithms lead to an O(n¢)
complexity [3,22]. This has led to the rise of the recent studies in robust statistics which address how
to build robust and optimal statistical procedures, in the wake of the works of [90] and [57], but that
are also computationally efficient.

This research area started with two seminal works presenting two procedures for the normal mean
estimation problem: the iferative filtering [36] and the dimension halving [61]. These algorithms
are based upon the idea of using higher moments in order to obtain a good robust moment estima-
tion, and are minimax optimal up to a poly-logarithmic factor in polynomial time. This idea was
then used in several other problems in robust statistics, for instance in sparse functionals estima-
tion [41], clustering [60], mixtures of spherical Gaussians learning [37], and robust linear regression
[38]. In Hiiber’s contamination model, [29] achieves the minimax rate without any extra factor in the
e = O(min(d~ /2, n~1/*)) regime with an improved overall complexity. Meanwhile, [43] offers a dif-
ferent perspective on robust estimation and connects the robust normal mean estimation problem with
Generative Adversarial Networks (GANs) [9,46], what enables computing robust estimators using ef-
ficient tools developed for training GANs. Hence, the authors compute depth-like estimators that retain
the same appealing robustness properties than Tukey’s median and that can be trained using stochastic
gradient descent (SGD) algorithms that were originally designed for GANs.

Another popular approach for the more general problem of mean estimation under the i.i.d. as-
sumption in the presence of outliers is the study of finite-sample sub-Gaussian deviation bounds. In-
deed, designing estimators achieving sub-Gaussian performance under minimal assumptions ensures
robustness to outliers that are inevitably present when the generating distribution is heavy-tailed. In
the univariate case, some estimators present a sub-Gaussian behavior for all distributions under first
and second order moments. A simple but powerful strategy, the Median-of-Means (MOM), dates back
to [1,58,78]. This method consists in randomly splitting the data into several equal-size blocks, then
computing the empirical mean within each block, and finally taking the median of them. Most MOM-
based procedures lead to estimators that are simultaneously statistically optimal [28,34,65,66,73] and
computationally efficient [24,33,54]. Moreover, this approach can be easily extended to the multi-
variate case [56,75]. An important advantage is that the MOM estimator has good performance even
for distributions with infinite variance. An elegant alternative to the MOM strategy is due to Catoni,
whose estimator is based on PAC-Bayesian truncation in order to mitigate heavy tails [20]. It has the
same performance guarantees than the MOM method but with sharper and near-optimal constants. In
[21], Catoni and Giulini proposed a very simple and trivial-to-compute multidimensional extension of
Catoni’s M-estimator defined as an empirical average of the data, with the observations with large norm
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shrunk towards zero, and that still satisfies a sub-Gaussian concentration using PAC-Bayes inequalities.
The influence function of Catoni and Giulini has been widely used since then, see [44,45,50,52,53]. We
refer the reader to the beautiful review of [72] for more details on those mean estimation procedures.

3.2.3. Robust MMD estimation

In this section, we show the properties of our MMD-based estimator in robust parametric estimation
with outliers, both in Hiiber’s contamination model and in the adversarial case. Our bounds are obtained
by working directly in the RKHS rather than in the parameter space. the consequence of these results
in terms of the Euclidean distance in the parameter space will be explored in Section 4.

First, we consider Hiiber’s contamination model [57]. The objective is to estimate Py, by observing
contaminated random variables X1...., X,, with actual distribution is P® = (1 — o) Py, + a Q for some
0, and some 0 < o < e. We state the key following lemma.

Lemma 3.3. We have, for any 6 € ©, |Di(Py, P*) — Di(Py, Py,)| < 2e.

Applying Lemma 3.3 to the left-hand side, and to the right-hand side, of Theorem 3.1, we have the
following result.

Corollary 3.4. Assume that X1, ..., X, are identically distributed from P° = (1 — a) Py, + o Q for
some 0y € ©, some Q, with0 <« <e. Then

1+2 n_
E[Di(P), . Pay)] <4e +2,] #.

If moreover we assume that Assumptions 2.1 and 3.1 are satisfied, then for any § € (0, 1),

VI+2Z + (1 +1),/2log(})
>1-34.
o]

We obtain a rate max(1/4/n, ) in MMD distance (note once again that the convergence rate with
respect to more standard distances is studied in Section 4). When ¢ < 1/4/n, then we recover the
rate of convergence without contamination, and when 1/./n < ¢, then the rate is dominated by the
contamination ratio €. Hence, the maximum number of outliers which can be tolerated without breaking
down the rate is ne =< /n.

This result can also be extended to the adversarial contamination setting, where no assumption is
made on the outliers.

P[Dk(PAn, Py,) < 2(28 +

Proposition 3.5. Assume that X1, ..., X, are identically distributed from from P° = Py, for some
6o € ©. However, the statistician only observes }51, e X~n where )~(,- can be any arbitrary value for
i € O, O is any arbitrary set subject to the constraint |O| < en, and X; = X; for i ¢ O and builds the
estimator 0~,, based on these observations:

1 . 1
Dy, (Pén’ - ;85(;') :ellel(g]]])k (Pg, - ;8&).
Then:
Dk(Péna P90) <de+ Z]D)k(Pén, Pgo).
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1 2 n
E[Dx(P;,, Poy)] < 4e + 4@

and, under Assumptions 2.1 and 3.1, for any § € (0, 1),

Thus

VI+2% + (1+1),/2log(3)

>1-4.
Jn

One can see that the rate of convergence we obtain without making any assumption on the outliers is

exactly the same than in Hiiber’s contamination model. The only difference is that the constant in the
right hand side of the inequality is tighter in Hiiber’s contamination model.

]P’|:]D)k(Pén, Pyy) < 4(8 +

4. Examples

4.1. Independent observations

In the previous section, we studied the convergence of P; with the MMD distance. In this subsection,

we show what are the consequences of these results in terms of the convergence of 6 in some classical
models. For the sake of simplicity, we focus on i.i.d. observations. That is, o; = 0 for any 7 > 1.
Moreover, we will only use the Gaussian kernel k,, (x, y) =exp(—|lx — 12/v2).

4.1.1. Estimation of the mean in a Gaussian model

Here, X = R? and we are interested in the estimation of the mean in a Gaussian model. For the sake of
simplicity, we assume that the variance is known.

Proposition 4.1. Assume that Pg = N0, 0>1y) for 0 € © = R?. Moreover, assume that we are in an

adversarial contamination model where a proportion at most € of the observations is contaminated.
Then, with probability 1 — §,

y 2024 1+,/2log(})\2
||9—9n||2§—(402+)/2)10g{1—8e V2 <8+T"> } )

In particular, the choice y = o+/2d leads to

1+,/2log(})\2
—5 )]

The complete proof can be found in the supplementary material. Note that when ¢ is small and n is
large,
- ) ) , (L4 /2log(3)?
16, —6ll” < —20“(d +2) log[l — 16e<8 + —)]
n
(1+,/2log(5))?

16, — 6olI> < —20%(d +2) 10g|:1 - Se<8 +

~32e0%(d +2) <82 +
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We can see that our MMD estimator achieves a rate of convergence de? 4 d/n which is the same
than for several median-based estimators such as the geometric median or the coordinatewise median
(see Proposition 2.1 in [23]). We have a quadratic dependence in ¢, contrary to many robust estimators
such as Median-of-Means which dependence in ¢ is linear. Hence, as soon as the dimension is no larger
than the square root of the sample size d < /n, the MMD method tolerates a larger number of outliers
without affecting the usual rate of convergence (i.e., the rate with no contamination).

Unfortunately, it seems that our method performs poorly compared to such estimators in large dimen-
sion. Indeed, according to Theorems 2.1 and 2.2 in [23], the minimax optimal rate with respect d, € and
n is €2 + d /n. Furthermore, numerical experiments and the investigation conducted for the population
limit case when one has access to infinitely many samples in [93] (that has been published since the first
version of this paper) suggest that the MMD estimator can not match the minimax rate of convergence.
Nevertheless, this non-optimality in the minimax sense does not necessarily imply inaccurate mean
estimation in general, and MMD can still lead to efficient estimation in most contamination scenarios.

To understand why the MMD estimator can not match the minimax rate of convergence in high
dimension, and why this is not necessarily a problem, we need to analyze the landscape of the opti-
mization program.

Let us first investigate the population limit case, where we do not work with the MMD distance to the
empirical distribution P,, but to the true distribution (1 — &)N (6, 21,) + e(Q, as if we had access to
infinitely many samples, and with a point-mass delta Dirac contamination Q = §{g,}. The optimization
program is, for any value of y,

min D, (P, (1 — &)N (60, 07 14) + €80,
OeR4

_ max] (1 — eyexp( N =012 240’2 (10— e
 9eRrd P y2+402 y2+ 202 P y2+202 /)|

Even though the objective function is nonconvex in 6, it is easy to see that the solution belongs to
the line between 6y and 6.. More precisely, if 6y and 6, are far from each other, then the solution is
simply 6. At the opposite, if 8y and 6, are closed, then the solution will be very close to 6. In the
situation in between where |6y — 6¢ ||2 ~ d, then it is proven in [93] that the solution is at least evd
far from the true parameter 6y, which explains the term de? in the rate of convergence of the MMD
estimator. Hence, we understand that the worst-case rate of the MMD estimator does not correspond to
cases where 0, is far from 6 but to cases where the distance is quite large in high dimensions only (of
order \/2 ).

The previous reasoning can be easily generalized to the MMD estimator with a finite sample. In this
situation with Q = §yg,}, the optimization program can be written, denoting by O the set of outliers,

16— X;? 16 — 6.2
=Tt @) - )i,
oy S ) 0w~

and the solution belongs to the convex hull of the set of points composed of the (random) inliers in the
random variables X1, ..., X, and of the contamination point 6.. A remarkable point in high dimen-
sional probability is that samples from a multivariate standard Gaussian distribution are concentrated
on the sphere of radius V/d centered at 6y, which means that the typical distance || X; — 6g|| of a data-
point X; from the mean 6y is roughly V/d. Then, if the contamination is such that |6y — 6,||> ~ d, the
outliers lie at a distance +/d from 6o without being detected, and thus look harmless but shift the mean
by approximately +/de, see Figure 1.

Hence, perhaps counter-intuitively at first sight, the worst contamination does not come from a value
of 6. that is very far away from 6y (in which case the estimation will simply be the mean of the inliers),
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Figure 1. Illustration of the behaviour of the MMD estimator in the high-dimensional Gaussian mean estimation
problem. The true parameter 6 and datapoints sampled from the true distribution N (6, 1) are colored in blue.
Outliers and the MMD estimator én are colored in red. We can see that outliers lying at a distance J/d are not
detected and shift the mean by e /d.

but that is only +/d away from 6, and hence there is mainly one “worst-case contamination” that
explains the non-optimality in the minimax sense. Figure 1a of [93] even seems to show that the error
of the MMD estimator when y is of order +/d increases with ||6y — .|| until achieving J/d, and then
decreases. The same applies to a Gaussian contamination with a small variance.

4.1.2. Cauchy model
Here, X =R and Py = C(0, 1) where C(6, s) has density 1/[zs(1 + (x —0)%/s?)].
Proposition 4.2. Assume that Py =C(0, 1) for 6 € ® = R. Moreover, assume that we are in an adver-

sarial contamination model where a proportion at most € of the observations is contaminated. Then,
taking y = 2 leads to, for any § > 0,

. 1
(60 — 60)* < 4(1 - Sawn )
2(1/5)
1 —96m(e2 + =——5-2)

Note that

(én_90)2§4<1_ 1 +2+4log(1/8)).

~ 5127 <82
1 — 1287 (e2 + 7”41‘15“/‘”)) n

4.1.3. Estimation with a dictionary

We consider here estimation of P° by a linear combination of measures in a dictionary. This framework
actually appears in various models:

e first, when the dictionary contains probability distributions, this is simply a mixture of known
components. In this case, the linear combination is actually a convex combination. This context is
for example studied in [30];

e assuming that P° has a density, in nonparametric density estimation, we can use this setting, the
dictionary being defined by a basis of L,. This is for example, the point of view in [2,16,17].
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We will here focus on the first setting, but an extension to the second one is quite straightforward. Let
{®1,..., Pp} be a family of probability measures over X = R4, For 1 < i < D we remind that

) = [ k904000,
Define the measure Py = D(; &4,...,DPp) = Zi’;eiqn, and define the model {Py,0 € ®} with
©CSp=1{0 eR?: Y7 6; =1}. The estimator is then
D

D Oena, () — g,

=1

6, = argmin
0e®

Hy

An application of Theorem 3.2 leads to the following proposition.

Proposition 4.3. Assume that Py = Zﬂ 10: ®; where ®; is a probability distribution. Define the ma-
trix Gy, = (Lo, Mo, >Hky )i<i,j<D- Letting Amin(-) denote the smallest eigenvalue of a symmetric ma-

trix, we have:
1+,/2log(})
78] Z | -

]P’|:]Dk(Pén, P < Jnf D (Py, P%) +2 7

and, in the well specified case where P = Py,

. 1+,/2log(})
P[H@—eonzsz—‘S }21_5.

)\min(Gy)\/’;

4.2. B-mixing observations

We now consider non-independent random variables: as in the general framework presented above,
(X1)sez is a strictly stationary time series, with stationary distribution P and we observe X1, ..., X,,.
We will exhibit some condition on the dependence of the X;’s ensuring that we can still estimate P°
with the MMD method.

There is a very rich literature on limit theorems and exponential inequalities under conditions on
various dependence coefficients. Mixing coefficients and their applications are detailed in the mono-
graphs [39,84], weak dependence coefficients in [31]. In this subsection, we show that our coefficient
o: can be upper-bounded by the S-mixing coefficients. So for any -mixing process, the estimation of
PO using MMD remains possible. We also remind some examples of A-mixing processes. Note that
we will show in the next subsection that Theorem 3.1 can be successfully applied to non S-mixing
processes.

4.2.1. B-mixing and coefficients o;
We start by a reminder of the definition of the S-mixing coefficients, from page 4 (Chapter 1) in [31].

Definition 4.1. Given two o -algebras A and B,

1
’3(“4’8)25 sup Y > PN Vy) — PWUHP(V))

LIzl oicri<j<y
Uy,...,.Ur
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where (Uy, ..., Uy) is any partition of A and V1, ..., V; any partition of B. Put:
X
B = B0 (X0, X_1,...),0(Xt, Xeg1s-..)).

Section 1.5 in [39] provides summability conditions on the ﬂ,(X) leading to a law of large numbers
and to a central limit theorem. Examples are also discussed.

Example 4.1. Assume in this example that (X;) is an homogeneous Markov chain given by its transi-
tion kernel P and Xo ~ 7w where m P = 7. Assume that there is a 0 < ¢ < 1 and a probability measure
Q on R such that, for some integer » > 1 and for any measurable A, P"(x, A) > cQ(A). Then it is
known, see, for example, Theorem 1 page 88 in [39] that

X L_
X <21 —c)r .
We now compare our o coefficients with the B-mixing coefficients.

Proposition 4.4. Assume that k(x,y) = F(||lx — y||) were F(a) = faoo f(b) db for some nonnegative
continuous function f with fooo f(b)db = 1. Then we have

0r <2B(0(Xo), 0 (X)) < 28;.

Note that k(x, y) = exp(—|lx — y|l/y) and k(x,y) = exp(—|x — y||?/y?) for example, trivially
work, respectively with f(b) =exp(—b/y)/y and f(b) = 2bexp(—b?/y?)/y>.

4.2.2. Application: Hidden Markov chains

Assume here that (Y;);en is a Markov chain on {1, ..., d}, and that X;|(Y; = i) is independent from
all the other values Y,/ and is drawn in R? from a probability measure ®;. The ®;’s are known and
X1, ..., X, are observed but the (Y;);cN are not observed. Note that this is a dependent extension of
the mixture model D(0; &1, ..., ®4) discussed above. Indeed, we consider this as a case of misspeci-
fication: the statistician uses the mixture model D(0; @1, ..., &4) with ® = S, being not aware that
the data is actually not independent.

Letting P denote the transition matrix of ¥, we assume that there exists ¢ > 0 and an integer » > 0
such that P’ (i, j) > ¢/d for any (i, j) € {1,...,d}?. Then we have 8" <2(1 — ¢)"/*=!. This also
implies that there is a unique 7 such that ¥ P = 7 and we assume that Yy ~ 7. Then the distribution
PO of each X is given by PO(x) = Z?Ll 77; ®; (x).

Also, note that

0r = B(0(X0).0(X)) < B(0(Xo. Yo). 0 (X;, ¥p)) = B0 (Yo), o (¥y)) <2(1 — o)/

So, a direct application of Theorem 3.1 gives:

1+ @1 —c)%_l(S—i—c)
all—(—¢)r]

B[l @ —m)|] =E[Di(F;,. P°)] <2

Note that we can add a second layer in the process: assume that an opponent is allowed to replace a
fraction ¢ of the X, as in Propositiqn 3.5. This result in the observation of X, such that X, = X, fora
proportion (1 — ¢) of the data, and X; can be anything for the remaining ¢. For example, the opponent
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can try fo fool the learner, by drawing from the wrong ®;. The MMD estimator 6 still satisfies, from
Proposition 3.5,

1+ (1 —0)571(34—6)
all—(1—or]

E[Di(P; , P°)] <4e+4

4.3. Auto-regressive observations

In this section, we provide examples of auto-regressive processes satisfying Assumption 2.1 and As-
sumption 3.1, which allows to apply Theorem 3.2. Interestingly, for one of these examples, 8; = 1/4
and so Y 72, B = 00, but still Y 72, o, < oco: this means that Assumption 2.1 is more general than
B-mixing.

4.3.1. Auto-regressive processes

Proposition 4.5. Assume that X; takes values in R4 and thar k(x, y) = F(|lx — y||) where F is an
L-Lipschitz function. Assume that

X1 =AX, +e11
where the (g;) are i.i.d. with E|l&oll < 0o, and A is a matrix with ||All = supy .y [|Ax|| < 1. Then
Assumption 2.1 is satisfied with

o0

2LE| ol Z 2||A||L1E||80II

or < IA]l’ .
! 1—[IA] — [IA])?

=1

Moreover, assume that almost surely, ||&;|| < c. Then Assumption 3.1 is satisfied with

2eVLIIA|lz > 2c/LTA
C2eVLIAI F=Y = oVIIAT
L= Al S A= lADpa = VTAD

4.3.2. Examples of non-mixing processes with ), 0; < 00

First, we remind a classical example of non-mixing process, in the sense that Y -, f; = 0. See, for
example, Section 1.5 page 8 in [31] where it is also proven that it is neither «-mixing. The process is
real-valued, it is defined by X; 1 = (X; + 1;41)/2, where the n; are i.i.d. Be(1/2) and Xo ~ U([O0, 1]).
Note that the noise is there &; = 1, /2. As for any ¢, X; = f(X;41) where f is the measurable function
f(x) =2x — [2x], it is possible to take I = J =2, Vi =U; and V, = Uy = Uf for some U; with
P(U;) = 1/2 in Definition 4.1. This leads to 8(o(Xy), o (X;)) > 1/4.

However, according to Proposition 4.5, as E|eg| = 1/4, we have

L K j ~ 2L
Qtfi, E:ZQ,:2L<OO, and yi=21_7x/z, F:Zyiz\/%/—] < 00
- —

Another classical example of non-mixing process is a reversed version of the previous one. We draw
Xo ~U([0, 1]) and simply define X, = f(X;) where we still have f(x) =2x — [2x]. Note that
once X is given, the process (X;);>¢ is entirely deterministic, and thus non-mixing. Properties of
(generalized versions) of such processes are studied in Section 3.3 page 28 in [31]. It is not difficult to
check that Y; = X _, actually satisfies Y, = (Y; 4 &;)/2 where the &, are independent Be(1/2). Thus,
a straightforward adaptation of the proof of Proposition 4.5 leads to o; <2/L".

t=1 i=
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5. Stochastic gradient algorithm for MMD estimation

In this section, we briefly discuss gradient-based algorithms to compute the estimator 6, when © C R,
In Section 5.1, we provide an expression of the gradient of the criterion to be minimized. We briefly
provide a special case where this gradient can be computed explicitly. However, in general, this is not
the case, but we can provide unbiased estimators of this gradient as soon as we are able to sample
from Py, in this case the model is often referred to as a generative model. Thus, it is possible to use
a stochastic gradient algorithm when { Py, 0 € ©} is a generative model. We describe this algorithm in
Section 5.2, and remind its theoretical properties in Section 5.3.

Note that the idea to use a stochastic gradient algorithm to compute 6, was first used to train a
generative neural network by [42]. In [15], the authors propose to use a stochastic natural gradient
algorithm instead. By providing adaptation to the geometry of the problem, the natural gradient will
lead to better results but increase the computational burden when the dimension of the problem is large.

5.1. Gradient of the MMD distance

We remind that in this whole section, ® C RY. To compute é,,, one must minimize, with respect to
0e®,

. 2 & 1
DF(Po, ) = Bx oy [K(X, X') ] = = 3 By [k(Xi, )]+ = 3 0 k(Xi, X))

i=1 1<i,j<n

or, equivalently,

2 n
Crit(8) = Ex x~p, [k(X, X")] - - > Ex~p,[k(Xi. X))

i=1

In order to use gradient algorithms or any first order method, a first step is to compute the gradient of
this quantity with respect to 6.

Proposition 5.1. Assume that each Py has a density py with respect to the Lebesgue measure.
Assume that for any x, 0 — py(x) is differentiable with respect to 6 and that there is a non-
negative function g(x,x’) such that, for any 0 € 0O, |k(x,x")Vg[pe(x)pe(x)]| < g(x,x) and
[ g(x, x")pu(dx)p(dx") < oo. Then

1 n
Vy Crit(9) = 2Ex x/~p, |:(k(X, X') - - Z k(X;, X)) Ve [log po (X)]i| )

i=1

Note that the gradient of Crit(f) is given by an expectation with respect to Py. So, as soon as it is
feasible to sample from Py, on can provide unbiased estimates of Vy Crit(6), and thus implement a
stochastic gradient algorithm.

Remark 5.1. It might be that in special cases, we have explicit formulas for the expectations in Crit(9)
and its gradient. For example, assume that we are a translation parameter, that is: pg(x) = f(x — 0)
for some density f, and that the kernel k is given by k(x, x’) = K(x — x) for some function K.
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Then

2 n
Crit(@)=//K(x—x’)f(x—Q)f(x’—e)u(dx)u(dx’)— ;Z/K(X,- —x) f(x —0)u(dx)
i=1

2 n
://K(x—x/)f(x)f(x/)u(dx)u(dx’)_ ;Z/K(Q—f-x—Xi)f(x)M(dx).
i=1

For example, in the case Py =U[6 — 1/2,60 + 1/2] we have

1/2

2 n
Crit(@):// K(x—x)drde' = = f KO +x—X;)dx
[~1/2.1/21 nio -

1/2

o L pO+1/2-X;
z// K(x—x’)dxdx/——Z/ K (u) du
[—1/2,1/2] n 0—1/2—X;

i=1

and thus

2 n
Vo Crit(0) === > [K@O +1/2— X)) — K6 — 1/2 - X))].
n
i=1
So, in this special case, the estimation of the gradient is unnecessary and we can use a proper gradient
algorithm to compute 6,.

5.2. Projected stochastic gradient algorithm for the MMD estimator

From Proposition 5.1,

1 n
Vi Crit() = 2Ex x'~p, |:<k (X, X') - - Zk(x,-, X)) Vo[log pg(X)]:|.

i=1

So, if we can compute V[log pg(x)] and if it is feasible to simulate from Py, we can easily compute a
Monte Carlo estimator of Vy Crit(f) and thus use a stochastic gradient descent (SGD). First, simulate
(Y1, ..., Yy) iid. from Py, then put

. 2 U 1<
Vy Crit(0) = ~ Z <ﬁ Zk(yj, Ye) — - Zk(Xi, Yj)> Vg [log pa(Y))].
i=1

j=1 (£

We provide the details of a projected stochastic gradient algorithm (PSGA) in Algorithm 1. The pro-
jection step is necessary if @ C R?. Thus, we assume that ® € R? is a closed and convex subset and
let [Tg denote the orthogonal projection on ®.

5.3. Theoretical analysis of the algorithm

In its original version, the stochastic gradient algorithm was proposed with a sequence of steps (1),
such that n; — 0 and Zt n; = oo. However, [77] proved that the method can be made more robust
by taking a constant step size n; = 1 and by averaging the parameters. The following proposition is
actually a direct application of the results of [77].
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Algorithm 1 PSGA for MMD

1: Input: a dataset (X1,..., X;,), amodel (Py,0 € ® C R9) a kernel k, a sequence of steps (1)r>1,
an integer M, a stopping time 7.

Initialize 0¥ € ©, t = 0.

Fort=1,...,T

draw (Y1, ..., Yy) iid from Pye-1y,

oM — HG){@(I—I) _ % Zjle[ﬁ Zz;ﬁj k(Y;,Yp) — %Z?:l k(Xi, Y;)Vga-nlog pge-n (¥;)]}
End for

SANAREF-IN

Proposition 5.2. Under the conditions of Proposition (5.1) above, and under the assumption that © is
closed, convex and bounded with D = supy pnee2 10 — 0’|, define

1 I
§(T) _ — @)
6 == e
=1
where the 0®) s are given by Algorithm 1. Assume that, for any 6 € ©,
E[|Ve Crit(@) | ] < M.
Assume that Crit(9) is a convex function of 6. Then the choice n = D/(M~NT) leads to

E[Crit(0") — Crit(,)] < DTA;, 3)

where the expectation E is taken with respect to drawings of the Y;’s in Algorithm 1. Moreover,

. 14237 0 DM
]E[]D)k(Pé,ST), PO)] < elgng(Pg, PO) +3 #11 + ﬁ

where the expectation is taken with respect to the sample and to the Y;’s, and the choice T = n* leads

to
VDM +3,/14+2%7 o

n

E[]D)k(Pé’Snz), PO)] < eiggﬂ)k(})g, PO) +

The restrictive assumption in this proposition is the convexity assumption on the criterion. However,
it is satisfied in some of the examples of Section 4.

Example 5.1. Let us come back to the “estimation with a dictionary” example of Section 4: Py is
given by its density

D
Py = Zez‘bz-
=1
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Let us assume that ® = Sp and the ®;’s are probability densities. Then ® closed, convex and bounded
with D = 1. Moreover,

— 2 L1 1 &
Vo Crit(0) = Z[ﬁ > k(¥ Ye) - - > k(X Yj)} Vo[log pa(Y))]-

Jj=1 L£] i=1
and
D1(Y))
il 0ePe(Y)
Vo[log po(Yj)] = :
@p(Y;)
Yo 0 (Y))
Consequently,
- , L2 M - 2
| Ve Crit(0) | * = ( [ k(Y,Yz)—— k(X,,Y)}—’ )
; ; g ! Z YD 0 0u(Y))
D
Sziz _ q’z(Yj)CDz(DYk)
oM e Cim 0e e (YD) (X OePe(Yi))
i Z S DY) De(Yi)
M2 e PeYDpeo
and then

— o DD (y , ,
E(|| Vo Crit®)]*) < f 42‘31—)2 (y‘;;y;(yf)(y )pe(y)pe(y)dydy

D
- 4// > 0u(y)@e(y) dydy’ =4D.
=1

Hence Proposition 5.2 leads to

3 A 4D D
(6D — Cri [4D _, |
E[Crit(6) — Crit(d,)] < —2,/=.

Remark 5.2. In many examples, the MMD criterion is not convex, so we cannot apply Proposition 5.2.
This includes for example, the estimation of the mean of a Gaussian distribution. However, the sim-
ulation study below shows that the stochastic gradient algorithm still provides excellent results, even
though we cannot prove that it reached a global minimum of the criterion.

In some sense, the situation is similar to the estimation of mixtures with the EM algorithm: we cannot
prove that the algorithm will not get trapped in a local minimum, but the algorithm is still extremely
valuable in practice. Note that many strategies were proposed in order to avoid local minima for EM:
for example, multiple runs of the algorithm, with randomized initializations. This strategy works well,
at least in reasonably small dimension, even though improvements are possible [79].
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6. Simulation study

In this section, we test our stochastic gradient algorithm in the Gaussian mean estimation and in the
Gaussian mixture estimation settings. In all the experiments, we chose a number of Monte-Carlo sam-

ples equal to 7 and a step-size of 7, = 1/4/1, and we used the Gaussian kernel k(x, y) = e~ le=yl3/d
where d is the dimension. Each experiment is repeated 10 times.

6.1. Gaussian mean estimation

First, we estimate the mean of a Gaussian distribution N (0, ;) where I; is the identity matrix of di-
mension d and where more generally, a is the vector with all components equal to a € R. We provide
numerical experiments to illustrate and validate our theory on the non-minimax optimality given in
Section 4. We verify the rates we obtained from a theoretical point of view by exploring via numerical
experiments various types of contamination distributions Q and different proportions of outliers. The
MMD gradient descent is compared with the maximum likelihood estimator which is here the arith-
metic mean, the componentwise median, and the JS-GAN studied in [43], which is known to be robust
and even minimax optimal. Note that in [43], JS-GAN outperforms iterative filtering and dimension
halving in all experiments, so we don’t include these two methods here. The metric considered here is
the square root of the mean square error (MSE) over all the 50 repetitions. We focus on the scenario
where d/n < ¢ with d = 10, n = 500 and ¢ = 0.2. We are interested here in the influence of the con-
tamination distribution Q on the MSE. The results are reported on Table 1, where the bold character
marks the lowest MSE among all methods for each contamination Q. As expected, we can see that
there is mainly one “worst-case contamination” (the point-mass distribution in a /d-far contamination
parameter) for which the MMD estimator performs poorly. At the opposite, in all other situations, the
MMD estimator is one of the best methods and is not really affected by the distance of the contamina-
tion parameter to 6. In particular, MMD estimation is competitive with the minimax-optimal JS-GAN
procedure.

Additionally, Figure 2 shows that the estimation error is linear with respect to the proportion of out-
liers £ in dimension d = 10 with a sample size n = 5000. We chose the contamination Q = N'(5, 1),

Table 1. Square root of the MSE for several choices of Q (with standard deviations in parenthesis from the 50
repeated experiments). Here, ¢ = 0.2, d = 10 and n = 500 such that /d/n < . Chosen structure of the network
for the GAN: 1 hidden layer with 5 hidden units (as suggested in [43]). The bold character marks the lowest MSE
among all methods for each Q. The MMD estimator performs poorly only when there are outliers on the sphere
of radius +/d centered at 0, i.e. Q = 819,y with [0y — Oc|l = Jd

Method N@©2, 1) N©O5,1) NQ,Ip) NG, 1) NAO, I C(0.5) 8{1} 5{10}
Mean 0.0379 0.0954 0.2033 1.0166 1.9915 0.3577 0.2057 2.0048
(0.0046) (0.0039) (0.0115) (0.0145) (0.0153) (0.6451) (0.0115) (0.0156)
Median 0.0387 0.0893 0.1756 0.3106 0.3345 0.0769 0.3194 0.3258
(0.0158) (0.0098) (0.0058) (0.0109) (0.0164) (0.0232) (0.0215) (0.0098)
JS-GAN 0.1848 0.2036 0.2172 0.1879 0.2204 0.2276 0.1969 0.1877
(0.0443) (0.0346) (0.0241) (0.0287) (0.0423) (0.0376)  (0.0342) (0.0324)
MMD 0.0654 0.1172 0.1730 0.0634 0.0681 0.0882 0.3622 0.0601

(0.0132) (0.0199) (0.0077)  (0.0081) (0.0157)  (0.0140) (0.0212)  (0.0157)
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Figure 2. Mean square error as a function of the outliers ratio ¢, for a dimension d = 10, a sample size n = 5000,
and a Gaussian contamination Q = N(5, I;). The error grows linearly as the ratio increases.

but this choice is not crucial and other choices of the contamination distribution would lead to the same

results.

Similarly, Figure 3 shows the effect of the dimension on the estimation error, using ¢ = 0.1 and
n = 5000. We can see that for a “harmless contamination” Q = N (5, 1) (blue curve), there is no effect
at all of the dimension on the estimation error. This result is still valid for other contaminations. At the
opposite, when choosing the “worst-case contamination” Q = 81) (red curve), such that the distance
between the true parameter and the corrupted mean is +/d, then the estimation error grows linearly in
the square root of the dimension, which explains the rate of convergence of the MMD estimator.
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Figure 3. Mean square error as a function of the square root of the dimension +/d, for an outlier ratio ¢ = 0.1, a
sample size n = 5000, and two different contaminations: a “harmless” Gaussian Q = N/ (5, I;) and a “worst-case”
Dirac Q = §y1. The error grows linearly in the Dirac case but is not affected by the dimension in the Gaussian

case.
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6.2. Gaussian mixture estimation

In the second experiment of this paper, we sample data according to a three component Gaussian
mixture 0.3N (=3.72, 1) + 0.3N(0.11, 1) + 0.4N'(4.54, 1). Here, we use the same approach than in
Section 4.1.3. We try to estimate the mixture as a linear combination of mixture in a dictionary com-
posed of all Gaussians of variance 1 and whose means range from —5 to 5 with a stepsize of 0.02.
Note that the Gaussian A(0.11, 1) is not even in the dictionary. The goal is to estimate the weights
of each Gaussian in the dictionary using MMD estimation. This estimation method is compared to the
gold standard Expectation-Maximization (EM) [32] algorithm and to the tempered Coordinate Ascent
Variational Inference (CAVI) algorithm [13,25] that estimate directly the means and the weights of the
three-component mixture, using ten random initializations. The experiment is conducted first without
any outlier, and then with an outlier equal to 100. Here, the metric is a mean average error (MAE)
between the densities. First, we sample 10.000 datapoints independently according to the true mixture.
Then, we evaluate the difference between the true density p® and the estimated density py evaluated
at each of the 10.000 datapoints, and we finally take the average: !

TRV where N = 10.000,

N
1 0
MAE = Y100 = i e

Again, the final metric is the average over 50 repetitions of the experiment. Figures 4, 5 and 6, and
Table 2 clearly show that our estimator performs comparably to both the EM and the CAVI algorithms
in the well-specified case, while it is the only one that is not sensitive to the outlier and that gives a
consistent estimate.

7. Proofs of the main theorems

7.1. A preliminary lemma: Convergence of ﬁ,, to P with respect to Dy,

Lemma 7.1. We have
< 1 +22?:1(1 - %)Qt.

n

E[DZ (P, PY)]

— True
— MMD
— CDVI
— EM

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Figure 4. Plot of the estimated densities using different methods without outliers. The blue curve represents the
true density, the red one the MMD density, the green one the CAVI density and the black one the EM density.
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Figure 5. Plot of the estimated densities using different methods in presence of 1 outlier at 100. The blue curve
represents the true density, the red one the MMD density, the green one the CAVI density and the black one the
EM density. The EM estimate has a small component at 100, and CAVI only one component at 100.

Proof. First, note that E([|k(X;,-) — ppo ||%_[k) <E(k(X;, ')”%-tk)' This formula is the RKHS version
of Var(X) < E(X?) and is proven in the following way:

E([k (X, ) 3,,) — 2B(k (X2 ). ipolyy ) +ElpollZy,)
E(|k(Xi.)]3,) = 2AE(KX:. ). wpolyy, +E(lipol3,)

E(|k(Xi.)3,) = E(lepoldy,) < E([kX:.)]3,). @)

2}
Hi

1 n
= n—zE{Z”k(X,», ) = fpo ||?Hk +2 D (kX ) = mpo, k(X ) = ipo)yy,
i=1

1<i<j<n

E(|k(Xi.) = upo3,)

Let us now prove the lemma. We have

1 n
= [k(Xi, ) — o]

i=1

E[Dﬁ(ﬁmp%]:m{

0.401 — True
— MMD
— CbVI

0.30 — EM

0.25

0.20 A

0.05

0.00 T T T T T T u
-10.0 =75 -5.0 =25 0.0 2.5 5.0 7.5 10.0

Figure 6. Zoom of Figure 5, without the component of EM at 100.
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Table 2. MAE for the Gaussian mixture with/without the
outlier (with the corresponding standard deviations)

Algorithm Without the outlier With the outlier

MMD 0.0170 (0.0052) 0.0173 (0.0045)
CAVI 0.0218 (0.0172) 0.0976 (0.0002)
EM 0.0186 (0.0147) 0.0738 (0.0186)

We upper bound the first term in the right-hand side thanks to (4), while we remark that the second
term exactly matches the definition of g|;_ ;. This leads to:

R 1 1
e(0i(h )] < el ooy +2 T v

i=l1 1<i<j<n

1 n
=;E Zk(xi,Xi)-i-z Z Qli—j}-
i=1

I<i<j=<n

As we assumed in all the paper that |k(x, x")| < 1 for any (x, x’) € X2, we obtain:

p 1 142357 (1-1)
E[DF(P,, P%)] < ﬁ<n+2 3 Qli—j) _ Zl_nl Dor ]

I<i<j<n
Note that in the i.i.d case, this leads to

E[DF (P, P7)] <

S| =

and thus

E[Di(B,, P)] < \JE[D2(B,, PY)] < %

The rate 1/4/n is known to be minimax in this case: Theorem 1 in [89].

7.2. Proof of Theorem 3.1

Proof. First,
Dy (Py, . P°) < Di(P; . Py) + D (By. PO)
< Dy (Py, Py) + Dy (By, P°)
for any 6 € ®, by definition of 6,,, and thus, using the triangle inequality again,

Dy (P, P%) <D (Py, P) + 2D (Py, P).
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Take the expectation on both sides and note that

5 5 1+2% a-1t n
E[Dx(Py. P°)] < IE[]D)]%(PH’PO)]S\/ 22 n)QtS\/l—i-ZZt:lQ,
n n

where the second inequality is given by Lemma 7.1. ]

7.3. Proof of Theorem 3.2
We start by reminding the following result from [15]; similar results can be found in [86] or [48].

Lemma 7.2 (Lemma 1 page 10 [15]). For any § > 0,
A 1
P(]D)k(P,,, P < ﬁ(l + log(1/8))> >1-—34.

This result (that we won’t use here) relies on McDiarmid inequality [74] who proposed a beautiful
way to control the difference between a function of the data, f (X1, ..., X,), and its expectation. The
idea relies on writing this function as a martingale, f(Xy,..., X,) = M, where M,, for t <n, is
given by M; = E[f(Xy,..., Xn)|X1, ..., X;], and controlling the martingale increments. It appears
that many inequalities can be proven by using this technique, this is discussed in details in Chapter 3
in [14]. Using this technique, Rio [82] proved a version of McDiarmid’s inequality for series satisfying
Assumption 3.1 (note that the paper is written in French, a more recent paper by the same author [83]
in English contains this result and new ones). We start by reminding Rio’s result.

Lemma 7.3 (Theorem 1 page 906 [82]). Under Assumption 3.1, assume that H], — R satisfies:

}f(al,...,an)—f(a{,...,a,’l)| SZ“CI,‘ —a;”Hk.
i=1

Then, for any t > 0,

21+ F)2n>

Eexp[tf (Wsy, s ox,) = TE[f (1o, s s sy )]] < GXP( 2

This allows us to state our variant of Lemma 7.2.

Lemma 7.4. Under Assumptions 2.1 and 3.1,

. VI+2Z + (1 +1),/2log(})
]P’(]D)k(P,,,PO)g 7 )zl—s.

Proof of Lemma 7.4. Define

Z(ai — 1 po)

i=1

flai,...,an) =

Hy
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For any x > 0 and any ¢ > 0,
P(Dk(Py, P°) — E[Dk(Py, P°)] = x)
:]P(f(ltaxl, ey May,)

n

—E[Di (P, P)] = x>

F sy, ooy oy,) .
<Eexp (t al I tIE[ID)k (P,,, PO)] — tx) by Markov inequality
n
2 2
t“(1+T
< exp(%n) - tx) by Lemma 7.3

. < x2n )
P\ 72012

where we chose t = xn/(1 + 2. Putx=(1+ I'./2log(1/8)/n to get:

1
P(Dk(ﬁn, P°) <E[Di(Py. PO)]+ (1 +T),/ @) >1-36.

Use Theorem 7.1 to upper bound the expectation in the right-hand side. This gives the claimed result:

. 1+2% 2log(+
P(Dk(Pn»PO)S‘/+—+(1+F)‘/L(a)>21—5. .
n n

We are now in position to prove Theorem 3.2.

Proof of Theorem 3.2. With probability 1 — §, for any 0 € ©,
]D)k(Pén, PO) < ]D)k(PAn, I3n) + Dk(ﬁn, PO) (triangle inequality)
VI+2E + (1+1),/2log(})
NG
VI+2Z + (1+T1),/2l0g(3)
Jn
VI+2E + (1+1),/2log(})
NG

<Di(Ps, P) +

(definition of é,, and Lemma 7.4)

< D (P, PO) + Dy (ﬁn, PO) + (triangle inequality)

<Dy (Py, P%) +2

(Lemma 7.4)

7.4. Proof of Lemma 3.3 and of Proposition 3.5

Proof of Lemma 3.3. We have
|Di(Py. P°) — Dy (Py, Pyy)| <Di(P°, Pyy)

=|a- )Py, +ERQ — Py, | 3, (definition of PY)
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= ||8(/'LQ - /“LPQO)“H](
<e(lwolpy +llep,llg)  (triangle inequality)

<2s. O

Proof of Proposition 3.5. Let us put

First, note that for any probability measure Q,

|Di(Q. By) = Di(Q, Py)| < Di(Py, Py)

1 & -
= H =D (kX ) —k(Xi, )

i=1

Hi

1 & N
<= D oIk ) = k(Xi, )4y,
i=1

1 ~
= ;iEZOHMXi, )= k(Xi, )4,

2|0|
S —_—
n
<2e. )

Consider Q = Pén' Then:
Di(Py . P°) <Di(P; . Py) + Dy (Py. PO)
<Dk(P; . P,) + D(Py. P°) by definition of 6,
< [2e + Du(Py . P)] + [26 + D (P, PO)]
where we used (5) with Q = Pén and then Q = PO, respectively. So:
Dy (P, . P°) <4 +Di(P; . By) + Dy (P, PO)
<d4e 4 Dy (Pyy, 13,1) + Dy (13,1, PO) by definition of 0,
=4e + 2Dy (B, PO)

as it is here assumed that P® = Py,. O

8. Conclusion

Parametric estimation with MMD provides a simple way to define universally consistent, robust esti-
mators. In many settings, these estimators also have optimal rates of convergence. The computation of



Finite sample properties of parametric MMD estimation 209

the MMD-based estimator can generally be done through a stochastic gradient descent. We thus believe
that it is a practically reasonable and nice alternative to many robust estimation procedures.

Interestingly, Proposition 4.1 provides a natural calibration to the kernel parameter, which is usually
a problem in practice. However, in more general settings, the calibration of this parameter, and the
choice of the kernel, remain important open questions.

The application of this method to more sophisticated models in statistics and in machine learning
(time series models, regression) should be investigated in details and will be the object of future works.
In particular, the coefficients o, of Definition 2.1 are new to our knowledge and it would be interesting
to compare them to more weak dependence coefficients.”
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