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ABSTRACT

Various saliency map methods have been proposed to interpret and explain pre-
dictions of deep learning models. Saliency maps allow us to interpret which parts
of the input signals have a strong influence on the prediction results. However,
since a saliency map is obtained by complex computations in deep learning mod-
els, it is often difficult to know how reliable the saliency map itself is. In this
study, we propose a method to quantify the reliability of a salient region in the
form of p-values. Our idea is to consider a salient region as a selected hypothesis
by the trained deep learning model and employ the selective inference framework.
The proposed method can provably control the probability of false positive de-
tections of salient regions. We demonstrate the validity of the proposed method
through numerical examples in synthetic and real datasets. Furthermore, we de-
velop a Keras-based framework for conducting the proposed selective inference
for a wide class of CNNs without additional implementation cost.

1 INTRODUCTION

Deep neural networks (DNNs) have exhibited remarkable predictive performance in numerous prac-
tical applications in various domains owing to their ability to automatically discover the representa-
tions needed for prediction tasks from the provided data. To ensure that the decision-making process
of DNNs is transparent and easy to understand, it is crucial to effectively explain and interpret DNN
representations. For example, in image classification tasks, obtaining salient regions allows us to
explain which parts of the input image strongly influence the classification results.

Several saliency map methods have been proposed to explain and interpret the predictions of DNN
models (Ribeiro et al., 2016; Bach et al., 2015; Doshi-Velez & Kim, 2017; Lundberg & Lee, 2017;
Zhou et al., 2016; Selvaraju et al., 2017). However, the results obtained from saliency methods
are fragile (Kindermans et al., 2017; Ghorbani et al., 2019; Melis & Jaakkola, 2018; Zhang et al.,
2020; Dombrowski et al., 2019; Heo et al., 2019). Therefore, it is important to develop a method for
quantifying the reliability of DNN-driven salient regions.

Our idea is to interpret salient regions as hypotheses driven by a trained DNN model and employ a
statistical hypothesis testing framework. We use the p-value as a criterion to quantify the statistical
reliability of the DNN-driven hypotheses. Unfortunately, constructing a valid statistical test for
DNN-driven salient regions is challenging because of the selection bias. In other words, because the
trained DNN selects the salient region based on the provided data, the post-selection assessment of
importance is biased upwards.

To correct the selection bias and compute valid p-values for DNN-driven salient regions, we intro-
duce a conditional selective inference (SI) approach. The selection bias is corrected by conditional

⇤Equal contribution
†Corresponding author

1



Published as a conference paper at ICLR 2023

Input Image Saliency Map Salient Region Reference Image

Two-sample 
Test

(a) Image without tumor region. The naive-p = 0.00 (wrong detection) and selective-p = 0.43 (true negative)

Input Image Saliency Map Salient Region Reference Image

Two-sample 
Test

(b) Image with tumor region. The naive-p = 0.00 (true positive) and selective-p = 0.00 (true positive)

Figure 1: Examples of the problem setup and the proposed method on the brain tumor dataset. By
applying a saliency method called CAM (Zhou et al., 2016) on a query input image, we obtain the
salient region. Our goal is to provide the statistical significance of the salient region in the form of
p-value by considering two-sample test between the salient region and the corresponding region in
the reference image. Note that, since the salient region is selected based on the data, the degree of
saliency in the selected region is biased upward. In the upper image where there is no true brain
tumor, the naive p-value which is obtained without caring about the selection bias is nearly zero,
indicating the false positive finding of the salient region. On the other hand, the selective p-value
which is obtained by the proposed conditional SI approach is 0.43, indicating that the selected
saliency region is not statistically significant. In the lower image where there is a true brain tumor,
both the naive p-value and the selective p-value are very small, which indicate a true positive finding.
These results illustrate that naive p-value cannot be used to quantify the reliability of DNN-based
salient region. In contrast, with the selective p-values, we can successfully identify false positive
and true positive detections with a desired error rate.

SI in which the test statistic conditional on the event that the hypotheses (salient regions) are selected
using the trained DNNs is considered. Our main technical contribution is to develop a method for
explicitly deriving the exact (non-asymptotic) conditional sampling distribution of the salient region
for a wide class convolutional neural networks (CNNs), which enables us to conduct conditional SI
and compute valid p-values. Figure 1 presents an example of the problem setup.

Related works. In this study, we focus on statistical hypothesis testing for post-hoc analysis, i.e.,
quantifying the statistical significance of the salient regions identified in a trained DNN model when
a test input instance is fed into the model. Several methods have been developed to visualize and
understand trained DNNs. Many of these post-hoc approaches (Mahendran & Vedaldi, 2015; Zeiler
& Fergus, 2014; Dosovitskiy & Brox, 2016; Simonyan et al., 2013) have focused on developing
visualization tools for saliency maps given a trained DNN. Other methods have aimed to identify
the discriminative regions in an input image given a trained network (Selvaraju et al., 2017; Fong &
Vedaldi, 2017; Zhou et al., 2016; Lundberg & Lee, 2017). However, some recent studies have shown
that many of these saliency methods of these saliency methods are not stable against a perturbation
or adversarial attack on the input data and model (Kindermans et al., 2017; Ghorbani et al., 2019;
Melis & Jaakkola, 2018; Zhang et al., 2020; Dombrowski et al., 2019; Heo et al., 2019). To the best
of our knowledge, no study to date has succeeded in quantitatively evaluating the reproducibility of
DNN-driven salient regions with a rigorous statistical inference framework.

In recent years, conditional SI has emerged as a promising approach for evaluating the statistical re-
liability of data-driven hypotheses. It has been actively studied for making inferences on the features
of linear models selected by various feature selection methods, such as Lasso (Lee et al., 2016). The
main concept behind conditional SI is to make inference based on the sampling distribution of the
test statistic conditional on a selection event. This approach allows us to derive the exact sampling
distribution of the test statistic. After the seminal work of Lee et al. (2016), conditional SI has also
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been applied to a wide range of problems (Loftus, 2015; Choi et al., 2017; Tian & Taylor, 2018;
Yang et al., 2016; Tibshirani et al., 2016; Fithian et al., 2014; Loftus & Taylor, 2014; Panigrahi
et al., 2016; Sugiyama et al., 2021a; Hyun et al., 2021; Duy & Takeuchi, 2021a;b; Sugiyama et al.,
2021b; Chen & Bien, 2019; Tsukurimichi et al., 2021; Tanizaki et al., 2020; Duy et al., 2020; 2022).

The most relevant existing work is Duy et al. (2022), where the authors provide a framework to
compute valid p-values for DNN-based image segmentation results. In Duy et al. (2022), the authors
only considered the inference on the output of a DNN in a segmentation task. In this paper, we
address a more general problem in which the hypotheses characterized by any internal nodes of the
DNN can be considered. This enables us to quantify the statistical significance of salient regions.
Furthermore, we introduce a Keras-based implementation framework that enables us to conduct SI
for a wide class of CNNs without additional implementation costs. This is in contrast to Duy et al.
(2022) in which the selection event must be implemented when the network architecture is changed.

In another direction, Burns et al. (2020) considered the black box model interpretability as a multiple
hypothesis testing problem. Their goal was to identify important features by testing the significance
of the difference between the prediction and the expected outcome when certain features are re-
placed with their counterfactuals. However, this approach faces a significant challenge: the number
of hypotheses to be considered can be very large (e.g., in the case of an image with n pixels, the
number of possible salient regions is 2

n). Multiple testing correction methods, such as the Bon-
ferroni correction, are highly conservative when the number of hypotheses is large. To address the
challenge, they only considered a tractable number of regions selected by a human expert or object
detector, which causes selection bias because the candidate regions are selected based on the data.

Contribution. Our main contributions are as follows:

• We provide an exact (non-asymptotic) inference method for salient regions obtained by CAM
based on the SI concept. We introduce valid p-values to statistically quantify the reliability of the
DNN-driven salient regions inspired by Duy et al. (2022).

• We propose a novel algorithm and its implementation. Specifically, we propose Keras-based im-
plementation which enables us to conduct conditional SI for a wide class of CNNs without additional
implementation costs.

• We conducted experiments on synthetic and real-world datasets, through which we show that our
proposed method can control the false positive rate, has good performance in terms of computational
efficiency, and provides good results in practical applications. Our code is available at

https://github.com/takeuchi-lab/selective inference dnn salient region.

2 PROBLEM FORMULATION

In this paper, we consider the problem of quantifying the statistical significance of the salient regions
identified by a trained DNN model when a test input instance is fed into the model. Consider an
n-dimensional query input vector

X = (X1, ..., Xn)
>
= s+ ", " ⇠ N(0,�2In)

and an n-dimensional reference input vector,

Xref
= (Xref

1
, ..., Xref

n )
>
= sref + "ref , "ref ⇠ N(0,�2In),

where s, sref 2 Rn are the signals and ", "ref 2 Rn are the noises for query and reference input
vectors, respectively. We assume that the signals, s and sref are unknown, whereas the distribution
of noises " and "ref are known (or can be estimated from external independent data) to follow
N(0,�2In), an n-dimensional normal distribution with a mean vector 0 and covariance matrix �2In,
which are mutually independent. In the illustrative example presented in §1, X is a query brain
image for a potential patient (we do not know whether she/he has a brain tumor), whereas Xref is a
brain image of a healthy person without brain tumors.

Consider a saliency method for a trained CNN. We denote the saliency method as a function A :

Rn ! Rn that takes a query input vector X 2 Rn and returns the saliency map A(X) 2 Rn. We
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define a salient region MX for the query input vector X as the set of elements whose saliency map
value is greater than a threshold

MX = {i 2 [n] : Ai(X) � ⌧} , (1)
where ⌧ 2 R denotes the given threshold. In this study, we consider CAM (Zhou et al., 2016) as an
example of saliency method and threshold-based definition of the salient region. Our method can be
applied to other saliency methods and other definitions of salient region.

Statistical inference. To quantify the statistical significance of the saliency region MX , we con-
sider a two-sample test for the difference between the salient regions of the query input vector XMX

and corresponding region of the reference input vector Xref

MX
where XMX is a sub-vector of X

indexed by X . As examples of the two-sample test, we consider the mean null test:

H0 :
1

|MX |
X

i2MX

si =
1

|MX |
X

i2MX

srefi v.s. H1 :
1

|MX |
X

i2MX

si 6=
1

|MX |
X

i2MX

srefi , (2)

and global null test:
H0 : si = srefi , 8i 2 MX , v.s. H1 : si 6= srefi , 9i 2 MX . (3)

In the mean null test in Eq. (2), we consider a null hypothesis that the average signals in the salient
region MX are the same between X and Xref . In contrast, in the global null test in Eq. (3), we
consider a null hypothesis that all elements of the signals in the salient region MX are the same
between X and Xref . The p-values for these two-sample tests can be used to quantify the statistical
significance of the salient region MX .

Test-statistic. For a two-sample test conducted between XMX and Xref

MX
, we consider a class of

test statistics called conditionally linear test-statistic, which is expressed as

T (X,Xref
) = ⌘>MX

✓
X

Xref

◆
, (4)

and conditionally � test-statistic, which is expressed as

T (X,Xref
) = ��1

����PMX

✓
X

Xref

◆���� , (5)

where ⌘MX 2 R2n is a vector and PMX 2 R2n⇥2n is a projection matrix that depends on MX .
The test statistics for the mean null tests and the global null test can be written in the form of Eqs.
(4) and (5), respectively. For the mean null test in Eq. (2), we consider the following test-statistic

T (X,Xref
) = ⌘>MX

✓
X

Xref

◆
=

1

|MX |
X

i2MX

Xi �
1

|MX |
X

i2MX

Xref

i ,

where ⌘MX =
1

|MX |

✓
1n
MX

�1n
MX

◆
2 R2n with 1n

C being the n-dimensional vector whose elements

belongs to the set C are set to 1, and 0 otherwise. For the global null test in Eq. (3), we consider the
following test-statistic

T (X,Xref
) = ��1

����PMX

✓
X

Xref

◆���� =

vuut
X

i2MX

✓
Xi �Xref

ip
2�

◆2

,

where PMX =
1

2

✓
diag(1n

MX
) �diag(1n

MX
)

�diag(1n
MX

) diag(1n
MX

)

◆
. To obtain p-values for these two-sample tests

we need to know the sampling distribution of the test-statistics. Unfortunately, it is challenging to
derive the sampling distributions of test-statistics because they depend on the salient region MX ,
which is obtained through a complicated calculation in the trained CNN.

3 COMPUTING VALID p-VALUE BY CONDITIONAL SELECTIVE INFERENCE

In this section, we introduce an approach to compute the valid p-values for the two-sample tests for
the salient region MX between the query input vector X and the reference input vector Xref based
on the concept of conditional SI (Lee et al., 2016).
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3.1 CONDITIONAL DISTRIBUTION AND SELECTIVE p-VALUE

Conditional distribution. The basic idea of conditional SI is to consider the sampling distribution
of the test-statistic conditional on a selection event. Specifically, we consider the sampling property
of the following conditional distribution

T (X,X ref
)

��� {MX = MXobs} , (6)

where Xobs is the observation (realization) of random vector X . The condition in Eq.(6) indicates
the randomness of X conditional on the event that the same salient region MX as the observed
MXobs is obtained. By conditioning on the salient region MX , derivation of the sampling distri-
bution of the conditionally linear and � test-statistic T (X,Xref

) is reduced to a derivation of the
distribution of linear function and quadratic function of (X,Xref

), respectively.

Selective p-value. After considering the conditional sampling distribution in (6), we introduce the
following selective p-value:

pselective = PH0

⇣ ��T (X,Xref
)
�� �

��T (Xobs,X
ref

obs
)
��
���MX = MXobs , QX,Xref = Qobs

⌘
, (7)

where
QX,Xref = ⌦X,Xref , Qobs = QXobs,Xref

obs

with ⌦X,Xref =

✓
I2n � ⌘MX

⌘>
MX

k⌘MX
k2

◆� X
Xref

�
2 R2n in the case of mean null test, and

QX,Xref =
�
VX,Xref , UX,Xref

 
, Qobs = QXobs,Xref

obs

with VX,Xref = �PMX

� X
Xref

�.���PMX

� X
Xref

���� 2 R2n, UX,Xref = P?MX

� X
Xref

�
2 R2n in the

case of global null test. The QX,Xref is the sufficient statistic of the nuisance parameter that needs
to be conditioned on in order to tractably conduct the inference 1.

The selective p-value in Eq.(7) has the following desired sampling property

PH0

⇣
pselective  ↵ | MX = MXobs

⌘
= ↵, 8↵ 2 [0, 1]. (8)

This means that the selective p-values pselective can be used as a valid statistical significance measure
for the salient region MX .

3.2 CHARACTERIZATION OF THE CONDITIONAL DATA SPACE

To compute the selective p-value in (7), we need to characterize the conditional data space
whose characterization is described and introduced in the next section. We define the set of
(X> Xref

>
)
> 2 R2n that satisfies the conditions in Eq. (7) as

D =

n
(X> Xref

>
)
> 2 R2n

��MX = MXobsQX,Xref = Qobs

o
. (9)

According to the second condition, the data in D is restricted to a line in R2n as stated in the
following Lemma.
Lemma 1. Let us define a = ⌦Xobs,Xref

obs
and b =

⌘MX
k⌘MX

k2 2 R2n in the case of mean null test,
and a = UXobs,Xref

obs
and b = VXobs,Xref

obs
in the case of global null test. The D in (9) can be

rewritten as D =

n�
X>Xref

>�>
= a+bz | z 2 Z

o
by using the scalar parameter z 2 R, where

Z = {z 2 R | Ma1:n+b1:nz = MXobs} . (10)

with x1:n representing a vector of elements 1 through n of x.
1This nuisance parameter QX,Xref corresponds to the component z in the seminal conditional SI paper

(Lee et al., 2016) (see Sec. 5, Eq. 5.2 and Theorem 5.2) and z,w in (Chen & Bien, 2019)(see Sec. 3, Theorem
3.7). We note that additional conditioning on QX,Xref is a standard approach in the conditional SI literature
and is used in almost all conditional SI-related studies. Here, we would like to note that the selective p-value
depends on QX,Xref , but the property in (8) is satisfied without this additional condition because we can
marginalize over all values of QX,Xref (see the lower part of the proof of Theorem 5.2 in Lee et al. (2016) and
the proof of Theorem 3.7 in Chen & Bien (2019) ).
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Proof. The proof is deferred to Appendix A.1.

Lemma 1 indicates that we do not need to consider the 2n-dimensional data space. Instead, we
only need to consider the one-dimensional projected data space Z in (10). Now, let us consider a
random variable Z 2 R and its observation Zobs 2 R that satisfies (X> Xref

>
)
>

= a + bZ and
(X>

obs
Xref

>

obs
)
>
= a+ bZobs. The selective p-value (7) is rewritten as

pselective = PH0 (|Z| � |Zobs| | Z 2 Z) . (11)

Because (X> Xref
>
)
> ⇠ N

✓⇣
s> sref

>
⌘>

,�2I2n

◆
due to the independence between X and

Xref , the variable Z ⇠ N(0,�2k⌘k2) in the case of mean null test and Z ⇠ � (Trace(P )) in the
case of global null test under the null hypothesis. Therefore, Z | Z 2 Z follows a truncated normal
distribution and a truncated � distribution, respectively. Once the truncation region Z is identified,
computation of the selective p-value in (11) is straightforward. Therefore, the remaining task is to
identify Z .

4 PIECEWISE LINEAR NETWORK

The problem of computing selective p-values for the selected salient region is cast into the problem
of identifying a set of intervals Z = {z 2 R | MX(z) = MXobs}. Given the complexity of saliency
computation in a trained DNN, it seems difficult to obtain Z . In this section, however, we show that
this is feasible for a wide class of CNNs.

Piecewise linear components in CNN. The key idea is to note that most of basic operations and
common activation functions used in a trained CNN can be represented as piecewise linear functions
in the following form:
Definition 1. (Piecewise Linear Function) A piecewise linear function f : Rn ! Rm is written as:

f(X) =

8
>>>><

>>>>:

 
f
1
X + f

1
, if X 2 Pf

1
:= {X 0 2 Rn | �f

1
X 0  �f

1
},

 
f
2
X + f

2
, if X 2 Pf

2
:= {X 0 2 Rn | �f

2
X 0  �f

2
},

...
 

f
K(f)X + f

K(f), if X 2 Pf
K(f) := {X 0 2 Rn | �f

K(f)X
0  �fK(f)},

where  f
k ,  f

k , �f
k and �fk for k 2 [K(f)] are certain matrices and vectors with appropriate

dimensions, Pf
k := {x 2 Rn | �f

kx  �fk} is a polytope in Rn for k 2 [K(f)], and K(f) is the
number of polytopes for the function f .

Examples of piecewise linear components in a trained CNN are shown in Appendix A.2.

Piecewise Linear Network.

Definition 2. (Piecewise Linear Network) A network obtained by concatenations and compositions
of piecewise linear functions is called piecewise linear network.

Since the concatenation and the composition of piecewise linear functions is clearly piecewise linear
function, the output of any node in the piecewise linear network is written as a piecewise linear
function of an input vector X . This is also true for the saliency map function Ai(X), i 2 [n]
obtained by CAM. Furthermore, as discussed in §4, we can focus on the input vector in the form of
X(z) = a1:n + b1:nz which is parametrized by a scalar parameter z 2 R. Therefore, the saliency
map value for each element is written as a piecewise linear function of the scalar parameter z, i.e.,

Ai(X(z)) =

8
>>>><

>>>>:

Ai
1

z + ⇢Ai
1

, if z 2 [LAi
1

, UAi
1

],
Ai
2

z + ⇢Ai
2

, if z 2 [LAi
2

, UAi
2

],
...

Ai

K(Ai)
z + ⇢fK(Ai)

, if z 2 [LAi

K(Ai)
, UAi

K(Ai)
],

, (12)
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Algorithm 1 SI DNN Saliency
Input: Xobs, zmin, zmax, T  ;
1: Obtain Eobs, compute ⌘ as well as a and b Lemma 1 and initialize: t = 1, zt = zmin

2: for t  T do

3: Compute zt+1 by Auto-Conditioning (see §5)
4: if EX(z),Xref (z) = Eobs in z 2 [zt, zt+1] (by using Eq.(13)) then

5: T  T + {t}
6: end if

7: t = t + 1

8: end for

9: Identify Z  
S

t2T [zt, zt+1]

10: pselective  Eq. (11)
Output: pselective

where K(Ai) is the number of linear pieces of the piecewise linear function, Ai
k , ⇢Ai

k are certain
scalar parameters, [LAi

k , UAi
k ] are intervals for k 2 [K(Ai)] (note that a polytope in Rn is reduced

to an interval when it is projected onto one-dimensional space).

This means that, for each piece of the piecewise linear function, we can identify the interval of z
such that Ai(X(z)) � ⌧ as follows 2

z 2

8
<

:

h
max

⇣
LAi
k ,

⇣
⌧ � ⇢Ai

k

⌘
/Ai

k

⌘
, UAi

k

i
if Ai

k > 0
h
LAi
k ,min

⇣
UAi
k ,

⇣
⌧ � ⇢Ai

k

⌘
/Ai

k

⌘
,
i

if Ai
k < 0

) Ai(X(z)) � ⌧. (13)

With a slight abuse of notation, let us collectively denote the finite number of intervals on z 2 R
that are defined by LAi

k , UAi
k , (⌧ � ⇢Ai

i /Ai
k ) for all (k, i) 2 [K(Ai)]⇥ [n] as

[z0, z1], [z1, z2], . . . , [zt�1, zt], [zt, zt+1], . . . , [zT�1, zT ],

where zmin = z0 and zmax = zT are defined such that the probability mass of z < zmin and
z > zmax are negligibly small.

Algorithm. Algorithm 1 shows how we identify Z = {z 2 R | MX(z),Xref (z) = Mobs}.
We simply check the intervals of z in the order of [z0, z1], [z1, z2], ..., [zT�1, zT ] to see whether
MX(z) = MX(zobs)

or not in the interval by using Eq.(13). Then, the truncation region Z in
Eq.(10) is given as Z =

S
t2[T ]|EX(z),Xref (z)=Eobs for z2[zt,zt+1]

[zt, zt+1]. In the literature of homo-
topy method (a.k.a. parametric programming), it is known that the actual computational cost differs
significantly from the worst case. A well-known application of the homotopy method in the ML
community is the Lasso regularization path, which also has the worst-case computational cost on
the exponential order of the number of features, but the actual cost is known to be nearly linear
order. Empirically, this also applies to our proposed method.

5 IMPLEMENTATION: AUTO-CONDITIONING

The bottleneck of our algorithm is Line 3 in Algorithm 1, where zt+1 must be found by considering
all relevant piecewise linear components in a complicated trained CNN. The difficulty lies not only
in the computational cost but also in the implementation cost. To implement conditional SI in
DNNs naively, it is necessary to characterize all operations at each layer of the network as selection
events and implement each of them specifically (Duy et al., 2022). To circumvent this difficulty,
we introduce a modular implementation scheme called auto-conditioning, which is similar to auto-
differentiation (Baydin et al., 2018) in concept. This enables us to conduct conditional SI for a wide
class of CNNs without additional implementation costs.

The basic idea in auto-conditioning is to add a mechanism to compute and maintain the interval
z 2 [Lf

k , U
f
k ] for each piecewise linear component f in the network (e.g., layer API in the Keras

2For simplicity, we omit the description for the case of Ai
k = 0. In this case, if ⇢Ai

k � ⌧ , then z 2
[LAi

k , UAi
k ] ) i 2 MX(z).
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framework). This enables us to automatically compute the interval [Lf
k , U

f
k ] of a piecewise linear

function f when it is obtained as concatenation and/or composition of multiple piecewise linear
components. If f is obtained by concatenating two piecewise linear functions f1 and f2, we can
easily obtain [Lf

k , U
f
k ] = [Lf1

k1
, Uf1

k1
]\ [Lf2

k2
, Uf2

k2
]. However, if f is obtained as a composition of two

piecewise linear functions f1 and f2, the calculation of the interval is given by the following lemma.
Lemma 2. Consider the composition of two piecewise linear functions f(X(z)) = (f2�f1)(X(z)).
Given a real value of z, the interval [Lf2

k , Uf2
k ] in the input domain of f2 can be computed as

Lf2
k2

= max

j:(�
f2
k2

�f1 )j<0

(�f2k2
)j � (�

f2
k2
�f1)j

(�
f2
k2
�f1)j

, Uf2
k2

= min

j:(�
f2
k2

�f1 )j>0

(�f2k2
)j � (�

f2
k2
�f1)j

(�
f2
k2
�f1)j

,

where �f1 + �f1z is the output of f1 (i.e., the input of f2). Moreover, �f2
k2

and �f2k2
are obtained

by verifying the value of �f1 + �f1z. Then, the interval of the composite function is obtained as
follows: [Lf

k , U
f
k ] = [Lf1

k1
, Uf1

k1
] \ [Lf2

k2
, Uf2

k2
]

The proof is provided in Appendix A.3. Here, the variables �fk and �fk can be recursively com-
puted through layers as

�fk+1 =  
fk
k �

fk + fk
k and �fk+1 =  

fk
k �

fk .

Lemma 2 indicates that the intervals in which X(z) falls in can be forwardly propagated through
these layers. This means that the lower bound LAi

k and upper bound UAi
k of the current piece in the

piecewise linear function in Eq. (12) can be automatically computed by forward propagation of the
intervals of the relevant piecewise linear components.

6 EXPERIMENT

We only highlight the main results. More details (methods for comparison, network structure, etc.)
can be found in the Appendix A.4.

Experimental setup. We compared our proposed method with the naive method, over-conditioning
(OC) method, and Bonferroni correction. To investigate the false positive rate (FPR), we considered
1000 null images X = (X1, ..., Xn) and 1000 reference images Xref

= (Xref

1
, ..., xref

n ), where
s = sref = 0 and ", "ref ⇠ N(0, In), for each n 2 {64, 256, 1024, 4096}. To investigate the true
positive rate (TPR), we set n = 256 and generated 1,000 images, in which si = � for any i 2 S ,
where S is the “true” salient region whose location is randomly determined, and si = 0 for any
i 62 S . We set � 2 {1, 2, 3, 4}. Reference images were generated in the same way as in the case of
FPR. In all experiments, we set ⌧ = 0 in the mean null test and ⌧ = 5 in the global null test. We set
the significance level ↵ = 0.05. We used CAM as the saliency method in all experiments.

Numerical results. The results of FPR control properties are presented in Fig. 2. The proposed
method, OC, and Bonferroni successfully controlled the FPR in both the mean and global null test
cases, whereas the naive method could not. Because naive method failed to control the FPR, we no
longer considered its TPR. The results of the TPR comparison are shown in Fig. 3. The proposed
method has the highest TPR in all cases. The Bonferroni method has the lowest TPR because it is
conservative owing to considering the number of all possible hypotheses. The OC method also has
a low TPR because it considers several extra conditions, which cause the loss of TPR.

Real data experiments. We examined the brain image dataset extracted from the dataset used in
Buda et al. (2019), which included 939 and 941 images with and without tumors, respectively. The
results of the mean null test are presented in Figs. 4 and 5. The results of the global null test are
presented in Figs. 6 and 7. The naive p-value remains small even when the image has no tumor
region, which indicates that naive p-values cannot be used to quantify the reliability of DNN-based
salient regions. The proposed method successfully identified false and true positive detections.

7 CONCLUSION

In this study, we proposed a novel method to conduct statistical inference on the significance of
DNN-driven salient regions based on the concept of conditional SI. We provided a novel algorithm

8
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(a) Mean null test (b) Global null test

Figure 2: False Positive Rate (FPR) comparison.

(a) Mean null test (b) Global null test

Figure 3: True Positive Rate (FPR) comparison.

Input Image Saliency Map Salient Region Reference ImageReference Region

Figure 4: Mean null test for image without tumor (pnaive = 0.00, pselective = 0.78).

Input Image Saliency Map Salient Region Reference ImageReference Region

Figure 5: Mean null test for image with a tumor (pnaive = 0.00, pselective = 1.92⇥ 10�4).

Input Image Saliency Map Salient Region Reference ImageReference Region

Figure 6: Global null test for image without tumor (pnaive = 0.03, pselective = 0.46)

Input Image Saliency Map Salient Region Reference ImageReference Region

Figure 7: Global null test for image with a tumor (pnaive = 0.00, pselective = 1.51⇥ 10�3).

for efficiently and flexibly conducting conditional SI for salient regions. We conducted experiments
on both synthetic and real-world datasets to demonstrate the performance of the proposed method.
In current setting, we have not considered the situations where there is a misalignment between the
input image and the reference image. A potential future improvement could be additionally per-
forming a step to automatically find an appropriate region in the reference image before conducting
a statistical test. If the matching operations can be represented as a set of linear inequalities, they
can be easily incorporated to the proposed method. If the matching operations can be represented as
a set of linear inequalities, they can be easily incorporated to the proposed method.

9
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