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Abstract

Over-parameterized models have raised concerns about their potential to memorize training
data, even when achieving strong generalization. The privacy implications of such memoriza-
tion are generally unclear, particularly in scenarios where only model outputs are accessible.
We study this question in the context of kernel methods, and demonstrate both empirically
and theoretically that querying kernel models at various points suffices to reconstruct their
training data, even without access to model parameters. Our results hold for a range of
kernel methods, including kernel regression, support vector machines, and kernel density es-
timation. Our hope is that this work can shed light on potential privacy concerns associated
with such models.

1 Introduction

Machine learning methods often rely on highly expressive models for performing well on various tasks (Zhang
et al., 2021; Kaplan et al., 2020). However, this success comes at a cost: these models often memorize large
parts of their training data, raising significant concerns about unintended privacy leaks (Carlini et al., 2023a;
Haim et al., 2022). As a result, understanding memorization has become a central subject of research in
the past few years due to its importance, both theoretically and practically. Recent theoretical works have
suggested that memorizing a constant fraction of the training data may be inevitable in certain settings
(Brown et al., 2021; Attias et al., 2024). However, it is still unclear when memorization translates into
privacy vulnerabilities, especially in scenarios where attackers have only limited (e.g., query-only) access to
the model.

Kernel methods are a popular set of tools that offer an ideal proving ground for this question. In particular,
kernels are both highly expressive (capable of severe memorization) and analytically tractable. This allows
us to study fundamental questions about memorization in settings that reflect key characteristics of modern
learning systems (e.g., query-only settings). In particular, we will be interested in the following question:
Given query-only access to a kernel model, can we reconstruct its training data?

In this work, we both prove theoretically and demonstrate empirically that the answer to the above question
is yes: The ability to query models at multiple points is sufficient to mount an effective data reconstruction
attack. We show that in this setting, data reconstruction attacks pose a major security concern, even without
access to model parameters. We summarize our key contributions as follows.

1. We present a data reconstruction attack that works in settings where the attacker only has access
to model queries but not to model parameters. This attack is applicable for a variety of classical
learning algorithms, including kernel regression, kernel support vector machines, and kernel density
estimation.

2. On the theoretical side, we prove that for a wide range of kernels, minimizing our reconstruction
loss guarantees reconstructing the training set. Furthermore, we formally prove an upper bound on
the number of query points needed in order to gather enough information on the attacked model to
reconstruct its entire training set.
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Figure 1: Reconstruction of training images in a kernel regression task with an RBF kernel pre-trained on
500 images from the celebA dataset. The top row shows 10 reconstructions, and the bottom row shows their
nearest neighbors in the training set. The full set of reconstructions can be found in the appendix in Fig. 8.

3. We demonstrate our reconstruction attack empirically in a range of settings, in many cases recovering
the majority of the training set. While there are no works to directly compare against, we show that
the quality of our reconstructions is better than or comparable to reconstruction attacks in other
settings (even ones that access model parameters).

Fig. 1 shows examples of celebrity images reconstructed from a trained RBF kernel. These results challenge
the assumption that preventing access to model parameters mitigates privacy risks. By exposing vulnera-
bilities across various settings, we hope our work highlights the need for privacy-preserving techniques that
remain robust even in black-box settings.

2 Related Works

Data Reconstruction. Extracting sensitive information from trained models is the subject of many stud-
ies. Early works include model inversion attacks (Fredrikson et al., 2015; He et al., 2019; Yang et al., 2019),
also known as activation maximization, that aim at reconstructing class representatives by optimizing over
the inputs to maximize the desired class output. Although there are semantic similarities between the re-
constructions and the trained data, these are still not the true data samples used to train the attacked
model. Recently, Haim et al. (2022) demonstrated a reconstruction attack based on theoretical results on
the implicit bias of neural networks (Lyu & Li, 2019; Ji & Telgarsky, 2020). This work was later extended
and further analyzed (Buzaglo et al., 2024; Oz et al., 2024; Smorodinsky et al., 2024), and was adapted to
the lazy regime (Loo et al., 2023). We emphasize that all the above methods are not directly comparable to
ours, as their methods require working with the parameters of the trained model, which for kernel methods
is usually intractable. Our method only requires query access to the evaluations of the model on new points.
Other methods demonstrated the reconstruction of training data in large language (Carlini et al., 2021; 2022)
and diffusion models (Carlini et al., 2023b; Somepalli et al., 2023). These methods are specifically designed
for generative models. Notably, (Tramèr et al., 2016) empirically demonstrated potential reconstruction
attacks against a wide range of methods in a query-only fashion. However, their results for kernel methods
were on a very small scale, serving primarily as a proof of concept. In particular, they reconstructed only
10 MNIST-style images of resolution 14 × 14 from an RBF kernel trained on the logistic loss.

Kernel Methods. Kernel methods are a popular set of tools for solving various tasks, including kernel
regression, Support Vector Machines (SVM), and kernel density estimation (James et al., 2013; Devroye
et al., 2013). In recent years, kernel methods have seen renewed popularity due to their connection to
overparameterized neural networks (Lee et al., 2017; Jacot et al., 2018; Arora et al., 2019; Lee et al., 2019;
Chizat et al., 2019; Du et al., 2019; Allen-Zhu et al., 2019; Yang & Littwin, 2021). While this connection is
only approximate and does not encompass all relevant settings, kernel methods have proved to be a valuable
tool in understanding intriguing phenomena in neural networks, including, for example, double/multiple
descent (Belkin et al., 2019; Mei et al., 2022; Xiao & Pennington, 2022; Barzilai & Shamir, 2024), frequency
bias (Bietti & Mairal, 2019; Basri et al., 2020; Barzilai et al., 2023), and benign overfitting (Hastie et al.,
2022; Tsigler & Bartlett, 2023). From a practical perspective, kernel methods remain common tools, as they
may outperform neural networks in small data or low-dimensional tasks (Arora et al., 2020).
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(a) Initialization (b) Intermediate step (c) Final reconstructions

Figure 2: Reconstruction of training points from a two-dimensional kernel density estimator that was trained
on the ground truth data points marked by blue squares. We initialize our reconstruction with random sam-
ples (left panel). The blue contours represent the attacked density estimator f . The red dashed contours
represent the model generated by our reconstructions at different steps of optimizing Eq. (4). The recon-
structed points (marked by red crosses) match the ground truth points at convergence (right panel).

3 Preliminaries on Kernel Methods

Kernel methods learn a linear function in some feature map ϕ : X → H, where X ⊆ Rd and H is a Hilbert
space with norm ∥·∥. Consider a dataset of N inputs that are d-dimensional x1, . . . , xN ∈ Rd and possibly
C-dimensional labels y1, . . . , yN ∈ RC . Then, for parameters w1, . . . , wC ∈ H, kernel methods learn a
function of the form

f(x) = [⟨w1, ϕ(x)⟩, . . . , ⟨wC , ϕ(x)⟩]⊤ ∈ RC . (1)

Let k : X × X → R be the kernel defined as k(x, x′) := ⟨ϕ(x), ϕ(x′)⟩. A useful observation that is central to
our reconstruction attack is that for many learning algorithms, the learned predictor can be expressed using
the kernel function as

∀c ∈ [C] , fc(x) =
N∑

i=1
αi,ck(x, xi), for some αi,c ∈ R. (2)

We detail two scenarios in which f takes a form as in Eq. (2). The first is given by the Representer theorem
(Schölkopf et al., 2001; Micchelli & Pontil, 2005) which states that any f that minimizes a loss function that
also includes a regularization term on the norms of the parameters can be written as in Eq. (2).

The second scenario involves training by gradient-based methods. Consider the case where the weights wi

are initialized at zero and trained by running a gradient-based optimization method over a loss function ℓ.
Then it is straightforward to observe that the gradients ∇wiℓ (f(x1), y1, ..., f(xN ), yN ) must lie in the span
of ϕ(xi). As a result, for many variants of gradient descent, the parameters wi remain in the span of ϕ(xi)
throughout training. It is straightforward to verify that when this occurs, the learned predictor f can be
represented as in Eq. (2).

Importantly, the function f is characterized by the kernel k, and therefore does not require explicit compu-
tation of the feature map ϕ (often referred to as the kernel trick). This allows considering ϕ that may be
infinite-dimensional. As is common, we will often describe kernels through k without describing the feature
map ϕ explicitly.

4 Query-Based Reconstruction Attack

We now detail the reconstruction attack, which is summarized in Algorithm 1. Suppose that a model f that
was trained on a dataset x, . . . , xN is expressed as in Eq. (2). We call f the attacked model. Let n be the
number of samples we aim to reconstruct, and define the reconstruction parameters that we optimize

P := {α̂i,c}i∈[n],c∈[C]
⋃

{x̂i}i∈[n]. (3)
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Algorithm 1 Query-Based Kernel Reconstruction Attack
Input: Attacked model f , kernel k, Reconstruction points n, query distribution D, number of iterations T
Output: reconstructed points {x̂i}n

i=1 and coefficients {α̂i,c}
1: Initialize x̂i and α̂i,c randomly for i ∈ [n], c ∈ [C]
2: Sample query points {zj}m

j=1 ∼ D i.i.d.
3: for t = 1 to T do
4: Compute loss Lrec(P ) = 1

mC

∑m
j=1

∑C
c=1 (

∑n
i=1 α̂i,ck(zj , x̂i) − fc(zj))2

5: Update x̂i, α̂i via an optimization step
6: end for
7: return {x̂i}, {α̂i,c}

We choose a query distribution D, then sample m query points z1, . . . , zm ∼ D (more on the choice of D
below), and optimize the parameters P using the following reconstruction loss:

Lrec(P ) := 1
mC

m∑
j=1

C∑
c=1

(
n∑

i=1
α̂i,ck(zj , x̂i) − fc(zj)

)2

(4)

The reconstruction loss gives m · C non-linear equations that the parameters P should satisfy.

Importantly, our reconstruction attack accesses the attacked model f only through its evaluation of new
points and does not require access to its parameters wi. Access to model parameters does not have to
be made public, even if the underlying architecture (in our case, the feature map ϕ) is publicly known.
Furthermore, our attack does not require explicitly working in the feature space. Many feature maps that
we consider are very high-dimensional (or even infinite-dimensional), and thus, reconstruction attacks that
work in feature space may be computationally expensive and perhaps even completely infeasible.

An additional important aspect of this reconstruction attack is that the requirements on the queries are
relatively mild. First, the query points zj do not require labels. Second, the query distribution D does
not need to be identical to the training distribution of f , and indeed the theoretical analysis shows that D
can be any distribution with a density. For practical purposes, it is sensible to choose D to be of the same
modality as the training distribution, e.g. a large public image dataset if the training samples xi are natural
images. We will later demonstrate that it is also possible to use synthetic data for the query points.

4.1 Use Cases

Throughout this paper, we consider attacked models f that arise from various training algorithms and kernels
k. For the choice of kernel, we consider choices that are common in the literature, including the Laplace
kernel, the Gaussian (RBF) kernel, the NTK, and polynomial kernels (see Appendix C for definitions). We
now provide several concrete settings for which the reconstruction attack is applicable.

Kernel Regression (KRR). Here, the parameters w1, . . . , wC of f are chosen to minimize the regular-
ized mean-squared error loss

1
2N

N∑
i=1

C∑
c=1

(⟨wc, ϕ(xi)⟩ − yi,c)2 + λ

2 ∥wc∥2 (5)

with λ ≥ 0. It is well known that letting K ∈ RN×N be the kernel matrix given by Kij = k (xi, xj) and
Y := (y1, . . . , yN )⊤ ∈ RN×C , the minimizer of Eq. (5) is given by a function f satisfying Eq. (2) with

αi,c =
(

(K + NλI)−1
Y
)

i,c
∀i ∈ [N ], c ∈ [C].

Unless stated otherwise, we take λ = 0. We find that the reconstruction attack is relatively insensitive to
the choice of λ. Examples of reconstructions with λ > 0 can be found in Appendices 14 and 15.
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Support Vector Machines (SVM). For (hard) SVM, we consider the case where f is trained to
minimize the hinge loss, which for binary labels yi ∈ {±1} is given by 1

N

∑N
i=1 max (0, 1 − f(xi)yi) . For

multi-class classification, letting yi ∈ {1, . . . , C} be the class labels, the hinge loss is defined as (Crammer &
Singer, 2001)

1
N

N∑
i=1

max
(

0, 1 + max
c ̸=yi

⟨wc, ϕ(xi)⟩ − ⟨wyi
, ϕ(xi)⟩

)
,

where w1, . . . , wC are the parameters of f . Unlike kernel regression, there is no closed-form solution for the
minimizer of this loss. Nevertheless, we may consider an attacked model f that was trained on this loss by
gradient descent. As mentioned in Sec. 3, training by gradient descent ensures that f indeed is of the form
Eq. (2). Due to the high-dimensionality of ϕ, we express f as in Eq. (2) and train directly on αi,c so that
we never have to compute ϕ and w directly.

Kernel Density Estimation (KDE). Here, the task is to approximate a density function of a target
distribution given only a finite number of samples. Specifically, given some points x1, . . . , xn ∈ Rd drawn
from a distribution with unknown probability density function (PDF) p, kernel density estimation (KDE)
is a well-known method to learn a function f that estimates p. We next show how querying the function f
can leak the entire training data.
Consider the normalized Gaussian kernel given by

kH(x, x′) = 1√
(2π)d|H|

exp
(

−1
2

∥∥∥H− 1
2 (x − x′)

∥∥∥2

2

)
(6)

for a matrix H ≻ 0. Then, KDE estimates p using f(x) := n−1∑N
i=1 kH(x, xi). Clearly, f is a valid PDF

since each kH(x, xi) is a Gaussian when viewing xi as fixed. It is well known that the estimator f converges
to the true density function p as the number of samples grows (Devroye et al., 2013). Furthermore, f fits
our framework as it can be written in the form given by Eq. (2) with C = 1 and αi = 1/N , ∀i ∈ [N ].

We next provide an illustrative example of our attack using a 2-dimensional density estimation task. Sup-
pose the underlying PDF p is given by a mixture of two Gaussians, specifically p(x) = 1

2 N (−µ, I2) +
1
2 N (µ, I2) , µ = (2, 2)T . A KDE model f is obtained by sampling N = 10 points from p, {xi}10

i=1, and
computing an estimator f(x) := N−1∑N

i=1 kH(x, xi) with kH as in Eq. (6). For this example, suppose the
attacked model f picks H according to what is known as Scott’s rule (Scott, 2015)[Chapter 6], i.e., H is
diagonal with Hjj = n−1/6σ̃j , where σ̃j is the empirical standard deviation of {xi}N

i=1 in the jth coordinate.

We visualize our reconstruction attack in Fig. 2. Given the attacked model f as described above, our goal is to
optimize the parameters P (See Eq. (3)). Here, we do not assume that H is known and also learn an estimate
of H that we denote by Ĥ. P and Ĥ are optimized by sampling query points zj from a grid and minimizing
the reconstruction loss given by Eq. (4). Each step of the optimization produces an approximation to the
attacked model of the form

f̂(x) :=
n∑

i=1
α̂ikĤ(x, x̂i) (7)

that becomes very close to the attacked model f as the reconstruction loss Eq. (4) approaches 0. As can be
vividly seen in Fig. 2, when f̂ approaches f , the reconstructed training points x̂i approach the true training
points xi. We will show in Sec. 5 that this is not by coincidence and is a necessary condition for the loss to
be minimized.

5 Theoretical Guarantees

In this section, we prove theoretically the effectiveness of the proposed reconstruction attack. Our result
will be stated for kernels which are strictly p.d., meaning that for every set of distinct points x1, ..., xn ∈ X
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Figure 3: Top reconstructions from multiple kernel models trained on CIFAR10 images. Bottom row:
training images from the dataset. Rows 1-4: reconstructions that are nearest to the bottom row images,
obtained by attacking trained Laplace kernel, RBF kernel, cubic polynomial kernel, and NTK, respectively.

the kernel matrix Kij = k(xi, xj) is strictly positive definite. It is well known that many common kernels
satisfy this property, such as the NTK (Carvalho et al., 2025) and bounded translation invariant kernels on
Rd (Sriperumbudur et al., 2011). This includes the Laplace and RBF kernels that we use in this paper.

We will require that the kernel be analytic, except for possibly isolated singularity points, such as in the
Laplace kernel. This is important since non-analytic functions can be constant on a neighborhood of some
inputs, making precise reconstruction from the values of the function impossible. Formally, we define the
following mild condition, which is satisfied by all kernels we consider in this paper.
Definition 1. We say a kernel is almost analytic if there exists a countable family of C1(X ) functions
{Γs : X → X }s∈N such that for any (x, z) ∈ X ×X , if z /∈

⋃
s∈N{Γs(x)} then there is a neighborhood around

(x, z) on which k is analytic.

We are now ready to state our main theorem, which ensures reconstruction of both the attacked function as
well as the underlying data used to train it.
Theorem 2. Let X ⊆ Rd be open and k : X × X → R be strictly p.d. and almost analytic. Let D be any
distribution given by a density over X . Let f be an attacked predictor as in Eq. (2), where the data {xi}N

i=1
are distinct and αi ̸= 0. Let n ≥ N , m > n(d + 2), and let α̂i,c, x̂i be any solution to the minimization
problem defined by the reconstruction loss in Eq. (4), then it holds with probability 1 over z1, ..., zm ∼ Dm

that fc(v) = f̂c(v) :=
∑n

i=1 α̂i,ck(v, x̂i) for all v ∈ X , c ∈ [C], and

∀ i ∈ [N ] , ∃ j ∈ [n] s.t x̂j = xi.

A few notes are in order. In the above theorem, X is an open subset of Rd, but see Remark 7 for a
generalization to smooth kernels on submanifolds of dimension d (such as Sd). Furthermore, the distribution
D must be defined by a density, and in particular, we use the property that D(E) = 0 for every E ⊆ X with
0 (Lebesgue) volume.

An important property of Thm. 2 is that the size of the optimized training set n can be chosen as an upper
bound on the number of training points N of the attacked model (which may be unknown). The result x̂i, α̂i,c

of the optimization would then contain either repeated instances of a training point x̂i1 = ... = x̂it
= xi

(with ∀c ∈ [C] : αi,c =
∑t

j=1 α̂ij ,c) or meaningless points x̂i with zero coefficients ∀c ∈ [C] : α̂i,c = 0.

The full proof is found in Appendix B.2. The theorem in fact follows from the case C = 1, which can then
be applied ∀c ∈ [C]. The first step is to show that w.p. 1 over Z := (z1, ..., zm) ∼ Dm, every predictor
f̂(z) =

∑n
i=1 α̂ik(z, x̂i) satisfying ∀j ∈ [m] : f(zj) = f̂(zj) actually satisfies ∀z ∈ X : f̂(z) = f(z). As we

show in the appendix in Proposition 3, this implies that the training data of the minimizer f̂ and the true
predictor f are identical.

The main tool in proving that f̂(z) = f(z) everywhere is the Submersion Level Set Theorem (see for
instance, Lee (2012)). The theorem allows us to prove that when m > n(d+2), the set of m-tuples of queries
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(a) (b)

Figure 4: Reconstruction quality for different kernels and use cases on CIFAR10. Left: Comparison between
kernel regression (KRR) and SVM with the Laplace and RBF kernels. Each point in the graph shows the
median DSSIM obtained in a different run with a different number of query points. Right: Comparison
between different kernels trained using KRR. In this figure, each graph shows a cumulative plot from one
run, showing the quality of reconstruction, measured with DSSIM, obtained with the best k images for
k ∈ [n].

Z = (z1, ..., zm) for which there exists a predictor f̂ ̸≡ f of the above form satisfying ∀j ∈ [m] : f(zj) = f̂(zj),
is contained in a projected manifold structure of dimension smaller than md, hence comprising a null set
in X m. The challenge with this proof strategy is ensuring that each query zj contributes a non-degenerate
constraint on the training set, even when gradients of the predictor ∇z f̂(zj) vanish; this is guaranteed by
the analyticity condition on k, which implies that at least one higher order derivative of f̂ does not vanish
where f̂(z) = 0 (otherwise f̂ ≡ 0). For kernels k which are analytic everywhere, m > n(d+1) queries suffice;
the additional n queries are used in the proof to ensure that w.p. 1 over (z1, ..., zm), there is no predictor
which has less than n(d + 1) analytic points among (z1, ..., zm).

Given that the above set of tuples for which uniqueness of the predictor does not hold is a null set in X m,
we have the desired result, namely that w.p. 1 on Z ∼ Dm, no such Z is sampled, hence no such f̂ exists
for Z.

Note that when C > 1, the training points xi are shared by f1, ..., fC , a property not utilized by Thm. 2
which could potentially reduce the number of necessary queries. In this case, each query zj contributes C

constraints and the total number of parameters is n(d + C), hinting that a bound closer to m > n(d+C)
C

queries should suffice to guarantee the usage of the Submersion Level Set Theorem. For this, we would need
the predictors f1, ..., fC to be sufficiently "different". Specifically for every set of predictors f̂1, ...f̂C defined
by linearly independent coefficient vectors α̂:,1, ...α̂:,C ∈ Rn, the gradients of f̂1, ..., f̂C would need to be
linearly independent at points z where ∀c ∈ [C] : f̂c(z) = 0. Note that these gradients are a set of C vectors
in Rd (and typically C ≪ d), so this is likely to occur in practice when running Algorithm 1.

6 Analysis

Reconstruction Without Kernel Knowledge. The reconstruction attack in this paper assumes knowl-
edge of the kernel k used by the attacked model f . Nevertheless, many kernels share a very common structure
and differ only by a few hyperparameters. It is therefore possible to optimize for these hyperparameters and
thus reconstruct the training data without exact knowledge of the kernel. For example, consider the family
of Mattern kernels, given by k(x, x′) = exp

(
−γ ∥x − x′∥β

2

)
. This family encompasses Laplace kernels (with

β = 1) and RBF kernels (with β = 2). In Table 4 we run an experiment for reconstruction where the values
of β and γ of the attacked model are unknown. Specifically, we initialize β̂ = 0.15, γ̂ = 0.01, and run our
attack as before using the reconstruction loss in Eq. (4). Unlike before, we also compute the derivatives of
the loss with respect to β̂ and γ̂ and optimize them as well. We observe that β̂ and γ̂ converge near the real
unknown parameters β and γ of the attacked model. We also observe that the quality of the reconstructions
not only remains high, but in some cases may even surpass the quality when β and γ are known.
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Comparison Between Different Kernels. We find that the choice of kernel affects the effectiveness of
our attack. Fig. 4 shows a quantitative evaluation of our results with different tasks (attacking KRR and
SVM models) and with different choices of kernels (Laplace, RBF, NTK, and cubic polynomial). It appears
that attacking the Laplace kernel is more effective than the RBF kernel, and both are more effective than
cubic and NTK models. There is no clear difference between attacking KRR and SVM models.

The effectiveness of our attack is directly impacted by the precise form of the kernel. This is, however, a
natural phenomenon that is to be expected. Consider for example a Laplace kernel given by k(x, x′) =
exp (−γ ∥x − x′∥2) for some γ > 0. As γ → 0, the kernel is close to a constant function, and as γ → ∞,
the kernel approaches a delta function. In both extremes, one can expect reconstruction to be numerically
infeasible. We verify this intuition empirically in Fig. 7 where we plot the reconstruction quality for different
values of γ ranging from 0.01 to 0.3. We observe a U shape when plotting the median reconstruction quality
measured by DSSIM (see Sec. 7 for details), whereby the DSSIM worsens when γ is too large or too small.
For reference, Haim et al. (2022) considered reconstructions with a DSSIM less than 0.3 as high-quality. In
any case, extreme values of γ are less useful for regression and classification tasks and are, therefore, unlikely
to be used in practice.

Number of Query Points Needed. Since our attack requires sampling m query points zi, one may
wonder how many query points are needed to obtain good reconstructions. Thm. 2 gives a strict bound that
m > n(d+2) is sufficient. However, the discussion following the theorem as well as the empirical experiments
suggest that in practice, even fewer query points may suffice, closer to the order of n(d+C)

C . Practically, we
observe (see Fig. 4) that there is no hard threshold for m under which reconstructing the training set is
impossible. Instead, we observe a relatively steady improvement as m increases.

Importantly, because the complexity of our reconstruction attack does not depend on any parameter count,
even when m is very large, the attack may still be efficient relative to attacks that access parameters. For
example, Haim et al. (2022); Buzaglo et al. (2024) optimize the same number of parameters as us, but the
running time needed to compute the loss function scales as p · n · C where p is the number of parameters. In
the 3-layer network Haim et al. (2022) considered, p = 106 · d. In contrast, the running time complexity of
our reconstruction attack scales with m and the complexity of computing the kernel k instead of p. Thus,
even when using many query points, our attack may still be more efficient.

Dimensionality Reduction. The number of query points needed to reconstruct the training data depends
on the dimension of the reconstructed points. It is, therefore, natural to consider reducing the dimension
of x̂i to decrease the number of query points needed. Specifically, consider a function Ψ : Rk → Rd that
"decodes" or "upscale" vectors of dimension k ≪ d into vectors of dimension d. One may thus let x̂i = Ψ(v̂i)
for some vectors v̂i ∈ Rk, and minimize the reconstruction objective (Eq. (4)) by optimizing over v̂i instead
of x̂i. Explicitly, we minimize the loss

Lrec

(
{α̂i,c}i∈[n],c∈[C]

⋃
{Ψ (v̂i)}i∈[n]

)
.

Perhaps the simplest way to perform this dimensionality reduction is with PCA. As can be seen in Fig. 6,
reducing the dimension by a certain factor with PCA allows to reduce the number of query points by a
similar factor while maintaining a similar reconstruction quality.

We may also consider reducing the dimension with an autoencoder. Specifically, we let Ψ be the decoder
from a pretrained VAE.

For our experiments, we choose TAESD3 (Bohan, 2023), a small, distilled version of the VAE used in Stable
Diffusion 3 (Esser et al., 2024). The full set of reconstructions can be found in Fig. 11.

7 Experiments

Datasets. For our experiments, we use the CIFAR10, CIFAR100 (Krizhevsky et al., 2009), and celebA
(Liu et al., 2015) datasets. (Results on CIFAR100 are shown in the Appendix.) Following the convention set
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by previous papers on dataset reconstruction (Haim et al., 2022; Loo et al., 2023; Oz et al., 2024; Buzaglo
et al., 2024), we set the number of samples at N = 500. To allow for more samples zj to be used for loss in
Eq. (4), we redistribute the original train-test split. Furthermore, for the CIFAR10 dataset, we obtain more
query points zj by leveraging synthetic data. Specifically, we use the CIFAR-5M dataset (Nakkiran et al.,
2020) that includes roughly 6 million artificially generated images that are similar to CIFAR10. Importantly,
we picked the images used to train f so that they were not in the training data used for the model that
generated CIFAR-5M.

Metrics. Following Haim et al. (2022); Loo et al. (2023) we use both Structural Dissimilarity (DSSIM) and
L2 as our main metric to indicate the quality of our reconstructions. DSSIM is based on SSIM (Wang, 2004)
and defined as DSSIM(x, x′) = 1−SSIM(x,x′)

2 , we report the percentiles computed by finding the nearest
reconstruction to each of the training points. To determine the percentage of the dataset reconstructed,
we compute the DSSIM between all pairs of reconstructions and training points and count the pairs of
mutual nearest neighbors (meaning a reconstruction that is the closest to a certain training point out of all
reconstructions and also vice versa).

7.1 Comparison to other Reconstruction Schemes

To the best of our knowledge, there is no method that is directly comparable to ours (for example, the
methods of Haim et al. (2022); Loo et al. (2023) do not apply to infinite-dimensional features). The following
serves as the closest option, and we highlight some of the key differences between our settings and theirs:

(Loo et al., 2023) RBF - We adapted the attack of Loo et al. (2023) to kernel regression with the
RBF kernel. Specifically, since their attack requires computing the feature map explicitly, it is not directly
applicable in infinite-dimensional feature spaces. To overcome this, we apply their attack to a random Fourier
feature approximation of the RBF kernel (Rahimi & Recht, 2007) using 400k random features. Their method
further initializes twice the number of intended reconstruction candidates (n = 1000) since this improved
their results. We also note that in this setting, the attack for MSE-loss trained models of Haim et al. (2022);
Buzaglo et al. (2024) is similar to the attack of Loo et al. (2023).

We also include in Appendix D.1 the metrics for attacks that work on other models, such as those of Haim
et al. (2022); Buzaglo et al. (2024); Loo et al. (2023). It is difficult to draw a meaningful comparison as
the settings are incomparable. Nevertheless, these do serve as a rough baseline for what metrics one should
expect. Our reconstruction attack reaches on par or better scores across all metrics.

We report the results in Table 1. The comparison is carried out on models trained on the same images
of CIFAR10. In the most similar comparison, our method on RBF kernels outperforms the corresponding
comparison with (Loo et al., 2023) by a large margin despite being a query-only method. We also outperform
or achieve comparable performance to all other methods. Strikingly, our results indicate that merely hiding
parameters is an insufficient defense mechanism for data reconstruction attacks.

In Table 2, we further compare different kernels and use cases on the celebA dataset. This includes Laplace
and RBF kernels trained by either KRR or SVM. We also list the results when reconstructing using a VAE.

In Table 3, we verify that our method is not sensitive to knowing the exact number of training samples n.
In fact, using a larger number of reconstruction candidates allows us to reconstruct a larger portion of the
dataset.

8 Discussion and Limitations

We presented a data reconstruction attack for kernel methods that works by querying the attacked model
at various points.

We proved uniqueness for strictly p.d. kernels and showed that minimizing our reconstruction loss implies
reconstructing the training data. An interesting direction for future work is to provide a more complete
picture of the loss landscape, specifically, to characterize the difficulty of reaching near a minimizer of the
loss.
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Table 1: Comparison of different methods on CIFAR-10, n = N = 500. Our reconstructions here are for
kernel regression. The best result in each column is in bold, and the second best is underlined.

Method % of Dataset Reconstructed ↑ DSSIM ↓ L2 ↓
Total DSSIM < 0.3 25% 50% 75% 25% 50% 75%

(Loo et al., 2023) RBF (Approximation) 46.2% 42.8% 0.209 0.311 0.369 4.484 7.978 10.738
Ours RBF 67.8% 62.2% 0.12 0.232 0.351 2.145 4.091 10.746

Ours Laplace 81.2% 77% 0.079 0.154 0.258 1.621 2.898 6.028
Ours NTK 23.2% 4.6% 0.343 0.379 0.405 12.870 14.850 16.350
Ours Cubic Polynomial 26.0% 24.2% 0.286 0.329 0.359 7.735 10.326 12.384

Table 2: Reconstructions from the celebA dataset with our method, with various kernels and tasks. The
best result in each column is in bold, second best is underlined.

Method % of Dataset Reconstructed ↑ DSSIM ↓ L2 ↓ Resolution
Total DSSIM < 0.3 25% 50% 75% 25% 50% 75%

Laplace KRR 81.2 % 57% 0.239 0.289 0.328 7.770 10.356 13.848 64 × 64
RBF KRR 57.4% 40.4% 0.224 0.338 0.378 6.423 12.268 21.585 64 × 64
Laplace SVM 25.0% 1.8% 0.369 0.39 0.405 16.900 19.523 23.439 64 × 64
RBF SVM 50.8% 3.4% 0.353 0.381 0.400 13.052 16.665 25.753 64 × 64
Laplace KRR (using VAE) 79.6% 78.6% 0.162 0.205 0.253 14.031 18.973 28.688 128 × 128
RBF KRR (using VAE) 60.2% 58.6% 0.17 0.245 0.287 14.88 23.778 41.163 128 × 128

Table 3: Training data recovery when the size of the training data N = 500 is unknown. Each row in
the table shows the optimization of Eq. (4) with n ∈ {300, 400, 600, 700}. The metrics are calculated with
respect to the top min(n, N) reconstructions. The attacked model is trained for kernel regression with the
Laplace kernel on CIFAR10.

Reconstruction % of Dataset Reconstructed ↑ DSSIM ↓ L2 ↓
Candidates Total DSSIM < 0.3 25% 50% 75% 25% 50% 75%

300 83.33% 67.67% 0.195 0.327 0.384 3.163 7.787 12.543
400 82.25% 71.5% 0.118 0.235 0.353 2.088 4.607 10.825
600 92.2% 91.2% 0.05 0.091 0.157 1.225 1.964 3.25
700 96.6% 96.6% 0.038 0.069 0.114 1.014 1.652 2.544

Table 4: Training data recovery from CIFAR10 when the attacked model is unknown, but can be represented
as k(x, x′) = exp

(
−γ ∥x − x′∥β

2

)
for some β ≥ 1, γ > 0. This family encompasses Laplace kernels (with

β = 1) and RBF kernels (with β = 2). We randomly initialize β̂ and γ̂, and optimize them with the goal of
approximating β and γ. In all cases, β̂ was initialized as 0.15 and γ̂ at 0.01. Both Laplace kernels and RBF
kernels are well reconstructed without exact knowledge of the kernel being attacked.

Task Final β̂ Target β Final γ̂ Target γ % of Dataset Reconstructed ↑ DSSIM ↓ L2 ↓
Total DSSIM < 0.3 25% 50% 75% 25% 50% 75%

SVM 0.982 1 0.165 0.15 88.4% 82.4% 0.117 0.161 0.245 2.079 2.955 5.36
KRR 1.039 1 0.124 0.15 86.6% 82.4% 0.055 0.115 0.224 1.358 2.321 5.05
SVM 1.991 2 0.0309 0.003 54% 32% 0.27 0.335 0.4 4.61 7.894 12.691
KRR 1.991 2 0.00307 0.003 58.2% 48.8% 0.197 0.299 0.379 3.093 6.299 12.366

It is also worthwhile to note that all reconstruction attacks in this paper were performed on a single GPU.
Since query points do not require labels, and natural images are abundant, the reconstruction loss could
potentially be computed with several orders of magnitude more query points than in this paper. We thus
see expanding this attack to the scale found in state of the art models as an interesting avenue for future
research.
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Lastly, we note that all datasets used in this work are common and public. In particular, no sensitive private
data is exposed throughout this work. We believe that the potential benefits of shedding light on potential
privacy risks by publicizing this reconstruction attack far outweigh any potential risks.

Broader Impact Statement

This paper presents a data reconstruction attack that sheds light on potential privacy risks. All datasets
used in this work are common and public. In particular, no sensitive private data is exposed throughout
this work. We believe that the potential benefits of publicizing this reconstruction attack far outweigh any
potential risks.
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A Implementation Details

Below, we detail the implementation details. Every reconstruction attack in this paper was run on a single
NVIDIA H100 GPU. Runtimes varied, but as a reference, attacks on CIFAR10 that used m = 500, 000 and
ran for 300, 000 gradient descent steps ran for roughly 11 hours. We did not try to optimize runtimes, and
saw in our internal experiments that many fewer query points and gradient steps are necessary for decent
results. As such, we infer that good results can also be obtained in a fraction of that time.

A.1 Hyperparameters of the Reconstruction Algorithm

Unless specifically stated otherwise, all runs in the paper were with the hyper parameters listed below.

Number of Query Points We use m = 500, 000 for CIFAR10, m = 200, 000 for CIFAR100 (generated
from 50, 000 images with vertical and horizontal flips) and m = 162, 770 for celebA.

Initialization We initialize our reconstructions x̂i
i.i.d.∼ N(0, 0.3Id) and α̂i

i.i.d.∼ N(0, 0.05Id) unless specifi-
cally stated otherwise. For the NTK we initialized α̂i

i.i.d.∼ N(0, 0.5Id)

Optimization Process We use Adam optimizer (Kingma, 2014) with β1 = 0.9, β2 = 0.99. We use OneCy-
cle (Smith & Topin, 2019) learning rate scheduler with a maximal base rate of 2e − 2 for the reconstructions
and 1e − 2 for α̂i, warmup of 15% of the optimization process, div factor of 10, and final div factor of 100
and three phase scheduling. We run our attack for 300,000 steps.

A.2 Data Representation

For the CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) datasets we consider the labels as one-hot vectors
normalized to have zero mean and unit variance. For the celebA (Liu et al., 2015) resize and crop the images
to be at a resolution of 64 × 64. When using a VAE for the reconstruction we resize celebA images to
128 × 128. The task in this dataset is multi-label classification, and thus, we represent the label of each of
the 40 attributes as ±1.

A.3 Kernels

The precise formulation of all kernels used in this paper can be found in Appendix C. For the Laplace kernel,
we use γ = 0.15 for 32 × 32 images and 0.03 for 64 × 64 or 128 × 128. For the RBF, we use γ = 0.003 for
32 × 32 images, 0.0005 for 64 × 64 and 0.0001 for 128 × 128. For the polynomial kernel, we take a cubic
polynomial (ℓ = 3) with c0 = 1 and γ = 0.001. For the NTK we use L=3.

A.4 Training the Attacked Model

For f trained with kernel regression, we compute the minimizer explicitly as written in Sec. 4.1. For SVM,
as briefly mentioned in Sec. 4.1, we express f as in Eq. (2) and optimize αi,c on the hinge loss by gradient
descent. We perform 100, 000 iterations with a learning rate of 1e − 2 and OneCycle scheduler. This ensures
that in all of the experiments in this paper, the parameters converge.

A.5 PCA

If we know the underlying distribution of the data, we can compute a matrix U ∈ Rd×k whose k columns are
orthonormal vectors corresponding to the most influential directions and define Ψ(v̂i) = U v̂i. For standard
image datasets, one may take k to be much smaller than d such that the projections UU⊤x are visually very
similar to the original images.

Nevertheless, when optimizing v̂i this way, an undesired side-effect is that the “implicit-bias” of the optimizer
is changed. All of our experiments use Adam, which adjusts the learning rate of each parameter being
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optimized. In our case, this amounts to adjusting the learning rate per pixel. PCA changes the basis, so now
the learning rate is adjusted per principal direction. We found this to be undesired, so instead of initializing
v̂i to be of dimension k, we initialize v̂i to be of dimension d and set x̂i = UU⊤v̂i to be its projection.

A.6 Special Considerations.

For the polynomial kernel, we add a small loss term that discourages noisy reconstructions. We observe that
this is not strictly necessary, but slightly improves results. We also used a learning rate of 5e − 3 for both
the reconstructions as well as α̂i. For the NTK we used a base learning rate of 1e − 4 for the reconstructions
and 1e − 3 and α̂ respectively, and ran the optimization for 1,000,000 steps.

B Proofs

B.1 Uniqueness of Representations

Proposition 3. Let k be a strictly p.d. kernel, and suppose that we have two functions given by

f(z) =
N∑

i=1
αik(z, xi), f̂(z) =

n∑
i=1

α̂ik(z, x̂i)

where ∀i ∈ [n], i′ ∈ [N ], αi, α̂i′ ̸= 0, and ∀i ̸= j ∈ [n], i′ ̸= j′ ∈ [N ] : xi ̸= xj and x̂i′ ̸= x̂j′ . Then if the
functions are equal, i.e, ∀z ∈ X , f(z) = f̂(z), then n = N and, up to permutation, xi = x̂i and αi = α̂i.

Proof. Define U = {u1, ..., ur} := X ∪X̂ where X = {x1, ..., xN }, X̂ = {x̂1, ...x̂n} and r :=
∣∣∣X ∪ X̂

∣∣∣ ≤ n+N .

Rewrite the difference f(z)−f̂(z) =
∑N

i=1 αik(z, xi)−
∑n

j=1 α̂jk(z, x̂j) as
∑r

i=1 bik(z, ui) for suitable bi ∈ R.
Under our assumption that f ≡ f̂ , for j = 1, ..., r, substituting z = uj we get

∑r
i=1 bik(uj , ui) = 0. That is,

we have the linear system KU b = 0, where KU is the kernel matrix of U .

Since KU is strictly positive definite, it is invertible, so we conclude b = 0. Notice each bi is either αi for
some i ∈ [n], −α̂j for some j ∈ [N ], or αi − α̂j for some i, j. Because of the assumption that αi, α̂j are
nonzero, only the latter case is possible. This means each xi and x̂j belong to the intersection X ∩ X̂, so
X ⊆ X ∩ X̂, X̂ ⊆ X ∩ X̂, implying X = X ∩ X̂ = X̂ = U . So, r = n = N and, assuming w.l.o.g that X and
X̂ are indexed in the same order, bi = αi − α̂i. Since bi = 0 this gives αi = α̂i, so we are finished.

B.2 Proof of Thm. 2

Definition 4. A function f : Rd → R is said to be analytic on an open set U if for every x ∈ U , f is given
as a convergent power series in a neighborhood V ⊆ U of x. We say f is analytic at x if f is analytic in
some neighborhood of x.
Definition 5. Let X be any input space, and k : X × X → R a kernel. The evaluation function of k is the
function g(X, α, z) =

∑n
i=1 αik(xi, z) for a training set X = (x1, ..., xn) ∈ X n, coefficients α ∈ Rn, and a

point z ∈ X . We denote also gX,α(z) = g(X, α, z) and write gX,α ̸≡ 0 if ∃z ∈ X : gX,α(z) ̸= 0.

Recall Def. (1) of an almost analytic kernel.

We restate Thm. 2 to include explicit guarantees on the values of the coefficients α̂i,c. Notice this statement
implies Thm. 2.
Theorem 6. Let X ⊆ Rd be open, and k : X × X → R be an almost analytic, strictly p.d. kernel. Let D
be any distribution given by a density over X . Let fc =

∑N
i=1 αi,ck(z, xi) for c ∈ [C] be C predictors as in

Eq. (2), where ∀i ̸= j ∈ [N ] : xi ̸= xj, and ∀i ∈ [N ], ∃c ∈ [C] : αi,c ̸= 0. Let n ≥ N and m > n(d + 2), and
let α̂i,c, x̂i be any solution to the minimization problem defined by the reconstruction loss in Eq. (4). Then it
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holds with probability 1 over Z = (z1, ..., zm) ∼ Dm, up to permutation and summation of terms of identical
x̂i, that ∀i ∈ [N ], c ∈ [C] : α̂i,c = αi,c, x̂i = xi, and ∀N < i ≤ n, c ∈ [C] : α̂i,c = 0.
Remark 7. The theorem is stated with simple yet commonly satisfied conditions, namely a strictly p.d.,
analytic kernel on Rd, allowing isolated non-analytic points. Nonetheless, we provide some generalizations.

1. Generalization to submanifolds: In the statement of Thm. 6, we require X to be an open subset
of Rd. However, the main part of the proof, in which we show that the set of m-tuples Z = (z1, ..., zm)
for which uniqueness does not hold is contained in a submanifold of X m of dimension < md, relies
only on the fact that X is a smooth manifold (for the Submersion Level Set Theorem). To further
conclude that the probability of sampling such a Z is 0, we require only a well-defined distribution D
on X which gives 0 probability to submanifolds of dimension strictly smaller than d. Therefore, the
same proof strategy would work for any submanifold X ⊆ Rd′ of dimension d with such a properly
defined distribution (for instance, a Riemannian manifold with D defined by a density, integrated
with regard to the canonical volume measure). A common example would be distributions over
the sphere Sd. Note that in general, analytic functions are only properly defined on real-analytic
manifolds; see the next point for a generalization to C∞ kernels.

2. Generalization to C∞ kernels: The requirement on k may be weakened so that k ∈ C∞(X ),
under the condition that any linear combination f(z) =

∑n
i=1 αik(z, xi) which is not identically

zero, does not have partial derivatives of every order vanishing at a point z where f(z) = 0 (this is
a key property of analytic functions which is useful in the proof of Thm. 2). In this case, if every
such f(z) has isolated points z where f is not C∞ or has vanishing derivatives of every order, the
number of queries required is m > n(d + 1) + n(d+1)

d .

3. Generalization to larger sets of non-analytic points: One may have a kernel k so that for
every fixed x, k(x, z) has non-analytic points z in a submanifold Mx ⊆ X of dimension d′ < d.
This too can be accommodated in the theorem, as long as these non-analytic points are smoothly
parameterized by x. The number of queries in this case would be m > n(d + 1) + nd

d−d′ . In the
C∞ case, in which we consider for every linear combination f(z), points z from a d′-dimensional
manifold where f(z) has all partial derivatives vanishing, we would require m > n(d + 1) + n(d+1)

d−d′ .
Notice the bounds for the isolated case are recovered with d′ = 0. For an empty set (a kernel that
is analytic everywhere) the proof holds with m > n(d + 1).

B.2.1 Proof of Thm. 6

Proof. First, we assume w.l.o.g C = 1. Indeed, any solution attaining 0 loss for Eq. (4) also attains 0 loss for
each c ∈ C. Therefore, if the theorem holds for C = 1 we can apply it separately for every c ∈ C and obtain
that for m > n(d + 2), it holds with probability 1 over Z ∼ Dm that the coefficients α̂i,c and training points
x̂i reflect the true training data (note that the intersection of all C events still holds w.p. 1). Since ∀i ∈ [N ]
there exists c ∈ [C] with αi,c ̸= 0, every xi will appear in the solution set for the appropriate c, but since the
x̂i are shared between reconstruction terms, it will appear in all of them. Hence {x1, ..., xN } ⊆ {x̂1, ..., x̂n}.
W.l.o.g we permute 1, ..., n so that ∀1 ≤ i ≤ N : x̂i = xi, and assume that x̂1, ..., x̂n are distinct (if they are
not, for each c ∈ [C] we sum terms for identical x̂i, and complete the set {x̂1, ..., x̂n} to n distinct vectors
with a choice of arbitrary x̂i and coefficients equal to 0). Now, observing each c ∈ [C] separately, the equality
of the coefficients ∀1 ≤ i ≤ N : α̂i,c = αi,c and ∀i > N : α̂i,c = 0 follows from the case C = 1.

Assuming C = 1, for ease of notation we denote f = f1 and ∀i ∈ [N ] : αi = αi,1. Since k is strictly p.d., from
Proposition 3, it suffices to show that for any minimizer f̂ =

∑n
i=1 α̂ik(·, x̂i) with ∀j ∈ [m] : f̂(zj) = f(zj)

it holds that f ≡ f̂ . Denote V the family of training sets which define predictors non-equivalent to f :

V = {(X̂, α̂) ∈ X n × Rn | ∃z ∈ X :
n∑

i=1
α̂ik(z, x̂i) ̸= f(z)}

V is clearly an open set since, if for some (X̂, α̂) there exists z ∈ X with
∑n

i=1 α̂ik(z, x̂i) ̸= f(z), the same
holds for a neighborhood of (X̂, α̂) from continuity of k.
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Note that any f̂ of the above form with f ̸≡ f̂ is represented by some (X̂, α̂) ∈ V .

Define gf : V × X → R as

gf

(
(X̂, α̂), z

)
=

n∑
i=1

α̂ik(z, x̂i) − f(z) =
n∑

i=1
α̂ik(z, x̂i) −

N∑
i=1

αik(z, xi) (8)

Notice that gf ((X̂, α̂), z) is in fact the evaluation function on a training set of size ≤ 2n defined by (X̂ ∗
X, α̂ ∗ (−α)), where ∗ signifies concatenation. Also, for any (X̂, α̂), gf ((X̂, α̂), ·) ̸≡ 0 by definition of V .

From here on we denote v = (X̂, α̂) ∈ V ⊆ Rn(d+1).

Denote G : V × X m → Rm the function gf evaluated on m points:

G(v, Z) = (gf (v, z1), ..., gf (v, zm))
And π : V × X m the projection onto Z:

π(v, Z) = Z

Denote
Z = {Z ∈ X m | ∃v ∈ V : G(v, Z) = 0}

= π(G−1(0))

The rest of the proof will be dedicated to showing that when m is large enough, the set Z is a Lebesgue
null set in X m. Indeed, with this result, since D is a distribution with density, it follows that Z has an
integrated density of 0. It follows that with probability 1 over Z ∼ Dm, there exists no suitable f̂ ̸≡ f with
∀j ∈ [m] : f̂(zj) = f(zj), thereby finishing the proof.

First we show we can discount the non-analytic points. We say (v, z) is "violating" if gf (v, ·) is not analytic
at z. We prove that the set of m-tuples of queries Z ∈ X m, so that there exists a v ∈ V for which more
than n of the queries are violating, is null. This will allow us to assume that w.p. 1, Z contains more than
n(d + 1) non-violating queries for every possible v ∈ V . Denote

ZB = {Z ∈ X m | ∃v ∈ V, I ⊆ [m], |I| = n′ > n : ∀j ∈ I, (v, zj) is violating }

We show ZB is null.

Since k is almost analytic, there exist suitable functions {Γs : X → X }s∈N so that k(x, ·) is analytic for
every z /∈

⋃∞
s=1{Γs(x)}. Since analyticity is preserved under linear combinations, gf ((X̂, α̂), ·) is analytic at

every z /∈ {Γs(x) | s ∈ N, x ∈ {x1, ..., xN , x̂1, ..., x̂n}}.

For any I ⊆ [m], |I| = n′ > n, denote ZB,I the set of Z ∈ X m where ∃v ∈ V : ∀j ∈ I : (v, zj) is violating.
Since ZB =

⋃
I⊆[m],|I|>n ZB,I , it suffices to fix I and show that ZB,I is null.

For every (v, Z) with violating indices at I, it holds that each query zj , j ∈ I is in the image of some Γs for
some x ∈ {x1, ..., xN , x̂1, ..., x̂n}. Therefore, the n′-tuple (zj)j∈I is in the image of the following function for
some S = (s1, ..., sn′) ∈ Nn′

, J = (j1, ..., jn′) ∈ [2n]n′ :

ΓS,J(x̃1, ..., x̃n, ..., x̃2n) = (Γs1(x̃j1), ..., Γsn′ (x̃jn′ )) : X 2n → X n′

However, notice that in our case x1, ..., xN are fixed, while only x̂1, ..., x̂n vary. Therefore it holds that (up
to permutation of indices)

ZB,I ⊆
⋃

S∈Nn′ ,J∈[2n]n′

X m−n′
× ΓS,J(X n × {x̂1, ..., x̂n})

Fixing J and S, it suffices to show that ΓS,J(X n ×{x̂1, ..., x̂n}) is a null set in X n′ . This holds simply because
ΓS,J with n fixed input coordinates is a C1 function from X n, which is a smooth manifold of dimension nd,
to a smooth manifold of larger dimension n′d.
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From here on, for simplicity of notation we assume w.l.o.g that every (v, Z) for v ∈ V, Z ∈ Z contains only
non-violating queries; this is justified since we will only need the fact m > n(d + 1), and we have shown
that, up to a null set of tuples Z ∈ X m, each Z has, for any v ∈ V , more than n(d + 1) queries which are
non violating. The reduction to the non-violating case can be formally achieved through introducing into
the parameter r (see below) also the indices j for which (v, zj) are violating. Then, around every (v, Z)
we select the component functions gf (v, zj), corresponding to non-violating zj . As we shall see later in the
proof, this selection can only increase the size of the solution set, hence if the increased solution set is null,
so is the original.

It suffices to show that for every point (v, Z) ∈ G−1(0), there exists a neighborhood A of (v, Z) for which
π(A ∩ G−1(0)) is a null set in X m. Indeed, taking such neighborhoods for every (v, Z) ∈ G−1(0), we can
take a countable covering subset of these neighborhoods, from second countability of V × X m. We obtain
that π(G−1(0)) is the countable union of null sets, hence a null set.

To show this we use the Submersion Level Set Theorem (see for example Lee (2012)).

We first separate Z into subsets by vanishing of derivatives of the zj . For v ∈ V, z ∈ X with gf (v, z) = 0,
denote r(v, z) the integer r for which all partial derivatives of order ≤ r of gf (v, ·) vanish at z, and at least
one partial derivative of order r + 1 does not vanish. It holds that r is well-defined since gf (v, ·) is analytic
at z and gf (v, ·) ̸≡ 0. For every r = (r1, ..., rm) ∈ (N ∪ {0})m denote

Zr = {Z ∈ X m | ∃v ∈ V : G(v, Z) = 0 and ∀j ∈ [m] : r(v, zj) = rj}

It holds that
Z =

⋃
r∈(N∪{0})m

Zr

And this is a countable union.

Fix r. It suffices to show that Zr is null in X m. Denote by Gr : V × X m → Rm+d(r) the "augmented"
function obtained by appending to G the evaluation of the rj-order partial derivatives for every j (concretely,
d(r) =

∑m
j=1 drj ).

It holds that
Zr ⊆ π(G−1

r (0))
So, we must show for (v, Z) ∈ G−1

r (0) that there exists a neighborhood A of (v, Z) so that π(A ∩ G−1
r (0))

is null in X m.

We claim it suffices to find a m × m submatrix of ∂Gr/∂Z which has rank m. Indeed, if this holds we can
define a function G̃r(v, Z) : V × X m → Rm by selecting the component functions of Gr corresponding to
the rows of the submatrix. Note this amounts to reducing the constraints on (v, Z), namely

G−1
r (0) ⊆ G̃−1

r (0)

Now G̃r satisfies the conditions of the Submersion Level Set Theorem, implying that there exists a neighbor-
hood A of (v, Z) so that A∩G̃−1

r (0) is a n(d+1)+md−m < md dimensional manifold, hence π(A∩G̃−1
r (0))

is null in X m, implying the same for π(A ∩ G−1
r (0)). Finally, the choice of the m × m submatrix of rank

m arises simply from the fact that ∂Gr/∂Z has block matrix structure (∂Gr/∂zj ̸= 0 only at row indices
related to zj), and for any j ∈ [m], there exists at least one rj-order partial derivative, hence one row index,
which has a non-zero gradient with regard to zj , from the assumption r(v, zj) = rj

C Relevant Kernels

The following is a list of kernels that are relevant to this paper:

1. Laplace kernel: k (x, x′) := exp (−γ ∥x − x′∥2) for some γ > 0.

2. Gaussian (RBF) kernel: k (x, x′) := exp
(

−γ ∥x − x′∥2
2

)
for some γ > 0.

20



Under review as submission to TMLR

3. Polynomial kernel: k (x, x′) := (c0 + γ ⟨x, x′⟩)ℓ for some c0, γ > 0 and ℓ ∈ N.

4. Neural Tangent Kernel (NTK): when referring to the NTK, it will always be with respect to a fully
connected ReLU network, for which there is a known analytic formula (Jacot et al., 2018; Lee et al.,
2019; Bietti & Bach, 2020). First, let

κ0(u) := 1
π

(π − arccos(u)), κ1(u) := 1
π

(
u (π − arccos(u)) +

√
1 − u2

)
.

To define the NTK, we first define the L layer Gaussian Process Kernel (GPK; also known as NNGP)
on Sd−1 as

k
(L)
GPK(x, x′) := κ1

(
k

(L−1)
GPK (x, x′)

)
, k

(0)
GPK(x, x′) := x⊤x′,

so that the L layer NTK on Sd−1 is

k
(L)
NTK(x, x′) := k

(L−1)
NTK (x, x′)κ0

(
k

(L−1)
GPK (x, x′)

)
+ k

(L)
GPK(x, x′), k

(0)
NTK := k

(0)
GPK(x, x′).

Now for a general x, x′ ∈ Rd, using the fact that for a ReLU activation, the kernel is homogeneous
(Bietti & Mairal, 2019), the NTK is given by

k
(L)
NTK(x, x′) := ∥x∥ ∥x′∥ kNTK

(
x

∥x∥
,

x′

∥x′∥

)
.

D Further Results

D.1 Relation to Past Works

The following may serve as additional baselines for recent methods that work in a different setting of neural
networks.

(Haim et al., 2022) / (Buzaglo et al., 2024) NN - An attack proposed by Haim et al. (2022) and
later extended by Buzaglo et al. (2024) on neural networks trained with cross-entropy loss in a way that
ensures convergence to KKT points. Their attack utilizes the network weights. It further initializes twice
the number of intended reconstruction candidates (n = 1000) since this improved their results.

(Loo et al., 2023) NN - An extension by Loo et al. (2023) of the KKT attack to neural networks trained
near the lazy regime. Their attack uses the weights of the network both at initialization and at the end
of training. We compare our results to their attack on two different neural networks, one with a width
W = 1024 and the other with a width W = 4096. This method used n = 1000 reconstruction candidates as
well.

Table 5: Comparison of different methods on CIFAR-10, N = 500. Our reconstructions here are for kernel
regression. The best result in each column is in bold, and the second best is underlined.

Method % of Dataset Reconstructed ↑ DSSIM ↓ L2 ↓ Black-Box
Total DSSIM < 0.3 25% 50% 75% 25% 50% 75%

(Haim et al., 2022) NN 2.2% 2.0% 0.294 0.334 0.363 9.707 11.890 13.816 é

(Loo et al., 2023) NN-W=1024 23.2% 0.4% 0.399 0.427 0.446 15.371 16.514 17.649 é

(Loo et al., 2023) NN-W=4096 95.2% 94.4% 0.116 0.162 0.203 4.027 4.664 5.429 é

(Loo et al., 2023) RBF 46.2% 42.8% 0.209 0.311 0.369 4.484 7.978 10.738 é

Ours RBF 67.8% 62.2% 0.12 0.232 0.351 2.145 4.091 10.746 Ë

Ours Laplace 81.2% 77% 0.079 0.154 0.258 1.621 2.898 6.028 Ë

Ours NTK 23.2% 4.6% 0.343 0.379 0.405 12.870 14.850 16.350 Ë

Ours Cubic Polynomial 26.0% 24.2% 0.286 0.329 0.359 7.735 10.326 12.384 Ë

Ours Laplace - n = 700 96.6% 96.6% 0.038 0.069 0.114 1.014 1.652 2.544 Ë
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Figure 5: Commulative graph comparing the quality of training data reconstructions for different kernels.
The x-axis denotes DSSIM, and y-axis the proportion of reconstructions whose DSSIM is at most that of
the x-axis.

Figure 6: Reconstruction quality with dimensionality reduction with PCA. Models are trained on CIFAR10.
Each point represents the quality, measured in median DSSIM, obtained in one run with a different number
of query points. Unlike in the rest of the paper, in this experiment, we use n = 100 training images.

Figure 7: Reconstruction quality, measured in median DSSIM, with the Laplace kernel on CIFAR10 for
different choices of γ.
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D.2 Plots

E Full Reconstruction Results

E.1 Kernel Regression

Figure 8: Reconstructions from an RBF kernel trained using kernel regression on celebA.
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Figure 9: Reconstructions from a Laplace kernel trained using kernel regression on celebA.24
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Figure 10: Reconstructions using a VAE from an RBF kernel trained using kernel regression on celebA.25
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Figure 11: Reconstructions using a VAE from a Laplace kernel trained using kernel regression on celebA.26
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Figure 12: Reconstructions from an RBF kernel trained using kernel regression on CIFAR10.27
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Figure 13: Reconstructions from a Laplace kernel trained using kernel regression on CIFAR10.28
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Figure 14: Reconstructions from a Laplace kernel trained using kernel regression with regularization λ = 10−3

on CIFAR10.
29
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Figure 15: Reconstructions from a Laplace kernel trained using kernel regression with regularization λ = 10−5

on CIFAR10.
30
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Figure 16: Reconstructions from an RBF kernel trained using kernel regression on CIFAR100.31
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Figure 17: Reconstructions from a Laplace kernel trained using kernel regression on CIFAR100.32



Under review as submission to TMLR
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E.2 SVM

Figure 18: Reconstructions from an RBF kernel SVM on celebA.
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Figure 19: Reconstructions from a Laplace kernel SVM on celebA.35
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Figure 20: Reconstructions from an RBF kernel SVM on CIFAR10.36
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Figure 21: Reconstructions from a Laplace kernel SVM on CIFAR10.37
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Figure 22: Reconstructions from an RBF kernel SVM on CIFAR100.38
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Figure 23: Reconstructions from a Laplace kernel SVM on CIFAR100.39
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