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ABSTRACT

In this paper, we explore how directly pretraining a value model simplifies and
stabilizes reinforcement learning from human feedback (RLHF). In reinforcement
learning, value estimation is the key to policy optimization, distinct from reward
supervision. The value function predicts the return-to-go of a partial answer, that is,
how promising the partial answer is if it were continued to completion. In RLHF,
however, the standard pipeline first pretrains a reward model and then learns a value
function online, even though no new reward signals are available once preference
data is collected. This makes critic learning redundant, as the process of training
a reward model and then deriving a value model is informationally equivalent
to directly pretraining a value model. Importantly, this requires no additional
supervision, and our value model is trained on exactly the same data used for
reward modeling. Building on this insight, we introduce Decoupled Value Policy
Optimization (DVPO), a framework that pretrains a Global Value Model (GVM)
offline and freezes it as a universal critic for policy learning. The GVM provides
stable, fine-grained credit assignment without critic drift or trajectory sampling.
Experiments across MT-Bench, Alpaca-Eval, and Arena-Hard demonstrate that
DVPO matches or surpasses state-of-the-art RLHF methods. These results highlight
RLHF can be reframed as policy-only optimization guided by a single pretrained
value model. The implementation code for our method is available in https:
//github.com/microsoft/DKI_LLM/tree/main/dvpo

1 INTRODUCTION

The alignment of large language models (LLMs) with human preferences has become one of the core
challenges of modern natural language processing. While scaling up LLMs has led to remarkable gains
in performance and generality Achiam et al. (2023); Bubeck et al. (2023), scale alone does not ensure
that models behave in ways users actually desire, especially in complex reasoning, summarization, or
dialogue tasks. Reinforcement Learning from Human Feedback (RLHF) Christiano et al. (2017); Bai
et al. (2022b); Song et al. (2024) has emerged as a critical step in shaping model behavior, enabling
systems that are safer, more accurate, and more useful (Bai et al., 2022a; Ganguli et al., 2022).

A central component of RLHF is reinforcement learning (RL), where policies are optimized with
respect to value estimates of return-to-go. Existing RLHF frameworks, however, have taken a
circuitous path toward value estimation. First, because LLMs lack an interactive environment
that provides ground-truth rewards, the community trains a reward model (RM) from preference
data (Ziegler et al., 2019; Ouyang et al., 2022; Wang et al., 2024). Second, this reward model is used
to supervise either an online-trained critic (as in PPO (Schulman et al., 2017) and its variants) or to
indirectly estimate values through trajectory sampling (as in DPO (Rafailov et al., 2024), ReMax (Li
et al., 2023), and GRPO (Shao et al., 2024)). Both approaches are costly and unstable: critics drift
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during joint training, while sampling-based methods discard token-level credit assignment and suffer
from high variance. (Yao et al., 2023; Huang et al., 2024)

This work explores a simpler and more direct alternative, motivated by two ideas. First, if no new
ground-truth rewards are available during policy training, then learning a value model online from a
fixed reward model adds no fundamentally new information. Pretraining a reward model followed by
critic training is therefore informationally equivalent to directly pretraining a value model. Second,
in open-ended tasks, rewards are largely policy-invariant: whether policy A or policy B produces a
solution, the return is determined by correctness or preference, not by policy-specific stochasticity.
This opens the door to amortizing value estimation into a Global Value Model (GVM), pretrained
once on diverse trajectories and reused as a frozen critic across policies.

We call this approach Decoupled Value Policy Optimization (DVPO). DVPO eliminates online
critic training entirely: the GVM is pretrained offline to predict token-level return-to-go, frozen, and
then used to guide policy optimization via a standard RL objective. Crucially, the GVM is trained on
exactly the same preference data that would ordinarily be used to pretrain a reward model, requiring
no additional supervision or annotations. This design avoids critic drift, reduces compute and memory
overhead, and provides fine-grained interpretability through token-level attributions.

We present empirical evaluations across standard RLHF benchmarks, including MT-Bench Zheng
et al. (2023), Alpaca-Eval Dubois et al. (2024), and Arena-Hard Li et al. (2024). Our results show
that DVPO achieves performance on par with or surpassing state-of-the-art RLHF methods while
reducing GPU memory usage by 30-40% and training time by 30-45%. This indicates that rather
than repeatedly retraining unstable actor–critic pairs or discarding value functions altogether, a single
offline-pretrained value model can serve as a stable, scalable, and generalizable critic for RLHF.

2 RELATED WORK

Reinforcement Learning in Language Model Optimization. Reinforcement learning has emerged
as a prevalent method for fine-tuning large language models (LLMs), with Proximal Policy Optimiza-
tion (Schulman et al., 2017) and its variations (Ramamurthy et al., 2022; Wu et al., 2023) being the
most prevalent methods. These techniques largely adhere to the actor-critic paradigm (Sutton, 2018),
This approach alternates between training a value estimator for the current policy and leveraging it to
enhance policy performance. This bilevel process may result in a suboptimal policy, as demonstrated
by empirical studies (Gao et al., 2023). Moreover, the alternating optimization of the policy and critic
models, along with the use of rewards provided by the reward model as environmental feedback,
necessitates loading four models (including the reference model) simultaneously during training.
This significantly increases training complexity and computational resource consumption (Yao et al.,
2023; Hu et al., 2024).

Efficiency RLHF. Many recent studies have sought to mitigate the computational complexity and re-
source consumption of the reinforcement learning (RL) step in RLHF. Methods such as DPO (Rafailov
et al., 2024) and its variants (Meng et al., 2024; Ethayarajh et al., 2024; Hong et al., 2024) bypass
reward modeling and the actor-critic learning framework by directly learning from preferences.
However, existing research indicates that due to their offline nature, these approaches exhibit a
performance gap compared to online RL (Xu et al., 2024). Some recent works have proposed a
reward-only approach to reduce the training cost of the RL phase (Li et al., 2023; Gunter et al.,
2024; Shao et al., 2024; Ahmadian et al., 2024; Yu et al., 2025). However, this method lacks value
estimation and assigns the same reward score to each token, leading to high variance and instability
during training (Hu, 2025). Unlike these approaches, our method pre-trains a global value model
(GVM) and leverages it to guide RL training, providing token-level supervision signals. This not only
reduces training resource consumption but also stabilizes the training process, achieving performance
comparable to the original PPO.

Some recent works have attempted to learn a value function and use it to guide the decoding phase of
LLMs, thereby bypassing the RL optimization stage (Han et al., 2024; Kong et al., 2024; Mao et al.,
2024). However, this approach significantly increases inference complexity and raises inference costs.
Some studies (Yuan et al., 2025) also leverage pre-trained value models to guide policy optimization;
however, they still employ an actor–critic architecture, incurring substantial computational overhead.
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Figure 1: Overview of DVPO. PPO requires a pre-trained reward model to provide environmental
feedback. It combines this reward signal with a learned value function to estimate the action–value
Q(s, a). In contrast, DVPO trains a Global Value Model (GVM) on the same offline data to produce
fine-grained value estimates. This design removes the need for additional ground-truth rewards during
policy training and decouples policy learning from value learning.

In contrast, we leverage the learned value model to guide RL training, where the pre-trained value
model helps the policy model converge more stably (Noukhovitch et al., 2024).

3 METHOD

We propose DVPO for RLHF in which a GVM is trained once and then fixed to guide policy
updates. This approach removes the need for joint policy–value training and mitigates the associated
computational overhead and instability. As shown in Figure 1, our method comprises two primary
stages: (1) Train GVM: Use offline trajectories (states, actions, returns, and policy-specific data)
to learn a policy-conditioned action-value function Qϕ. Notably, returns can be derived from either
preference data—commonly used in standard RLHF settings—or a pretrained reward model. For a
detailed comparison of these sources, see Appendix G. (2) Decoupled Value Policy Optimization:
Freeze Qϕ and optimize a policy using a standard RL objective (e.g., PPO), taking advantage estimates
from the fixed GVM.

3.1 PROBLEM SETTING

We model the sequence generation task in NLP as a Markov Decision Process (MDP). The response
consists of T tokens, denoted by y = y<T+1 := [y1, y2, . . . , yT ], where yt ∈ Y and Y is the
vocabulary. We assume y<1 = [ ], indicating an empty prefix. Given a prompt x and the first t− 1
tokens y<t, the language model (LM) predicts the probability distribution for the next token as:
πθ(· | [x, y<t]).
In this MDP formulation, the state is defined as st = [x, y<t], representing the prompt (i.e., x) and
the generated response up to step t. The action is the next generated token at = yt. The ground-truth
reward at the sentence level, denoted by r(x, y), is provided by human feedback. To transform the
sentence-level reward into token-level rewards r(st, at), we apply a simplified form of temporal
difference (TD) learning. Specifically, we assign a reward of 0 to each intermediate step and use the
final step’s reward as the sentence-level reward value.

By this definition, the cumulative return from step t onwards is expressed as: Gt =∑T
k=t γ

k−tr(sk, ak), which simplifies to Gt = γT−tr(x, y) when all intermediate rewards are
zero. In RLHF, we rely on offline data D, which contains state–action trajectories, returns, and policy
behaviors. The dataset is defined as: D =

{
(τi, s

i
t, a

i
t, G

i
t)
}N
i=1

, where τi represents the i-th policy
behavior, typically expressed as a sequence of question–answer pairs, (sit, a

i
t) is a state–action pair

sampled under that policy. Note that τi and (sit, a
i
t) may refer to different or identical question–answer

pairs under the same policy. No additional ground-truth rewards are collected during training.
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3.2 TRAINING A GLOBAL VALUE MODEL (GVM)

Our key insight is to learn a policy-conditioned action-value function Qϕ(τ, s, a) from offline data,
where τ represents a sampled trajectory capturing how the policy behaves in unrelated contexts. This
conditioning approximates how well a particular policy, embodied by τ , would perform when taking
action a in state s.

Policy Conditioning via Trajectories. Traditional actor–critic methods require online adaptation
of the value function to the actor’s evolving behavior. In contrast, we aim for a single, global Qϕ that
generalizes across different policies, thus avoiding iterative re-learning. Instead of conditioning on
explicit policy parameters, we leverage trajectories τ randomly sampled from the policy in question.
Each τ is a sequence of question–answer pairs (in LLM tasks) or other interactions that reveal distinct
policy traits (e.g., stylistic tendencies, correctness, domain expertise).

Formally, we parametrize: Qϕ(τ, s, a) ≈ E
[∑∞

t=0 γ
t r(st, at)

∣∣∣ s0 = s, a0 = a, τ
]
, where τ

implicitly determines which policy π(· | s) we are approximating. In practice, we train the global
value model Qϕ(τ, s, a) using Temporal Difference (TD) learning. The target return Gi is estimated
based on future rewards and value predictions. Specifically, Gi is computed as:

Gt = r(st, at) + γQϕ(τ, st+1, at+1),

where r(st, at) is the reward for taking action at in state st, and Qϕ(τ, st+1, at+1) is the predicted
value of the next state-action pair.

The training objective for the global value model is to minimize the TD loss:

LGVM(ϕ) = E(τt,st,at,rt,st+1,at+1)∈D
[(
rt + γQϕ(τ, st+1, at+1)−Qϕ(τ, st, at)

)2]
, (1)

This TD-based loss drives Qϕ to iteratively adjust its estimates of the expected return, ensuring that
the value function accurately reflects both immediate and future rewards. This approach is particularly
suitable for offline RLHF scenarios, as it can handle sequences with deterministic state transitions.

3.3 DECOUPLED-VALUE POLICY OPTIMIZATION

In traditional actor–critic methods, both the policy (actor) and value (critic) are trained simultaneously,
which introduces instability due to their interdependence. This issue is exacerbated in offline RLHF
settings, where no new environment rewards can be collected to correct misaligned updates. To
address these challenges, we propose a decoupled-value policy optimization approach: the global
value model Qϕ is trained and fixed before policy optimization, decoupling the learning dynamics of
the actor and critic.

Policy Optimization Objective. Once the global value model Qϕ converges, we fix its parameters
and use it to guide policy updates. Let πθ(a | s) be the policy to be optimized. We adopt a clipped
PPO objective, which stabilizes policy updates by limiting the impact of large policy changes:

LPPO(θ) = E
[
min

(
rt(θ)Ât, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)]
, (2)

where rt(θ) =
πθ(at|st)
πθold (at|st)

is the importance sampling ratio, and ϵ is a clipping parameter to prevent
overly large updates.

The advantage function measures the relative quality of an action compared to the expected value of
the state. We define the advantage using the fixed value model:

Ât = Q̃ϕ(τ, st, at),

where Q̃ϕ is the value estimate computed during the GVM training stage (see §3.2). In offline RLHF,
this static advantage definition provides a reliable signal for policy improvement without requiring
dynamic value updates.

Our decoupled-value approach offers two key advantages: (1) By fixing Qϕ, we eliminate the “moving
target” problem inherent in actor–critic methods, leading to more stable and predictable policy updates.
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(2) Since no additional environment rewards can be collected, the static Qϕ provides all necessary
supervisory information, enabling efficient reuse of the offline dataset for policy optimization.

In addition, DVPO does not require stronger assumptions than standard PPO-style RLHF. Because
the GVM is pretrained once and fixed, policy optimization proceeds with stable guidance and avoids
critic drift. We provide empirical evidence of this stability in Appendix F, where DVPO exhibits
smooth and reliable training curves compared to PPO.

3.4 EQUIVALENCE OF REWARD–CRITIC TRAINING AND VALUE PRETRAINING

In RLHF with fixed feedback, we first train a reward model Rϕ on a preference dataset D. Existing
pipelines then estimate values from this trained reward—either by learning an online critic from
Rϕ (PPO-style) or by sampling many outputs and normalizing Rϕ scores . Crucially, both routes
consume no supervision beyond D: the value signal is entirely derived from the already-trained Rϕ.
Therefore, the two-stage procedure (reward training) + (value estimation from the trained reward) is
informationally equivalent to directly pretraining a value model Qψ on the same D. This is the
equivalence we claim: not that rewards and values are identical, but that deriving a value signal
from a fixed, pretrained reward adds no new information compared to pretraining the value model
directly. DVPO leverages this by pretraining a Global Value Model once and discarding the redundant
estimation stage.

3.4.1 PRELIMINARIES

Let r(s, a) denote the unknown ground-truth reward function, and let γ ∈ [0, 1] be the dis-
count factor. We assume access to an offline dataset D, from which we pretrain the following
models. (1) Reward Model Rϕ(s, a), which approximates r(s, a) with error bounded by ϵR.
(2) Global Value Model Qψ(s, a), which approximates the action-value function Qπ(s, a) =
Eπ [

∑∞
t=0 γ

tr(st, at) | s0 = s, a0 = a] , with approximation error bounded by ϵQ.

We merge any explicit conditioning (e.g., trajectory τ ) into the state definition to simplify notation.
Since no new rewards are observed post-deployment, both Rϕ and Qψ serve as static supervision
signals throughout training.

Let πθ(a | s) be the trainable policy. We define the policy gradient objectives under each supervision
signal as:

∇θJR(πθ) = Es∼dπθ ,a∼πθ
[
∇θ log πθ(a | s) · ÂR(s, a)

]
,

∇θJQ(πθ) = Es∼dπθ ,a∼πθ
[
∇θ log πθ(a | s) · ÂQ(s, a)

]
,

where dπθ is the stationary distribution under policy πθ, and the advantage functions are defined as:

ÂR(s, a) = Q̃R
ϕ (s, a)− b(s), ÂQ(s, a) = Qψ(s, a)− b(s),

with b(s) as a baseline (e.g., state value function V (s)) to reduce variance. The estimate Q̃R
ϕ (s, a) is

computed by solving the Bellman equation using Rϕ, following standard value iteration procedures.
This structure parallels typical actor-critic methods, as discussed in (Sutton, 2018). In contrast,
Qψ(s, a) is a fixed global value model pretrained offline. This is a key distinction: unlike standard
actor-critic methods (e.g., PPO), where the value function is updated alongside the policy at each
training step.

3.4.2 EQUIVALENCE LEMMA.

We formalize the observation that, under fixed preference data, (reward pretraining + value estimation)
provides no additional information beyond direct value pretraining.

Lemma 3.1 (Equivalence under fixed feedback). Let D be a fixed preference dataset and let Rϕ be
a reward model trained on D. Assume: 1. For all (s, a) in D, |Rϕ(s, a)− r(s, a)| ≤ ϵR. 2. For the
same distribution, both the reward-induced value Q̃R

ϕ and the pretrained GVM Qψ satisfy∣∣Q̃R
ϕ (s, a)−Qπ(s, a)

∣∣ ≤ ϵQ,
∣∣Qψ(s, a)−Qπ(s, a)

∣∣ ≤ ϵQ.
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3. (Fixed feedback) No new rewards are observed during training. Then the induced policy gradients
satisfy ∥∥∥∇θJQ̃Rϕ (πθ)−∇θJQψ (πθ)

∥∥∥ ≤ κ(ϵR, ϵQ),

with κ(ϵR, ϵQ)→ 0 as ϵR, ϵQ→ 0. Thus, reward–critic training and direct value pretraining are
informationally equivalent on D.

The complete proof, including Bellman-based derivations and bounding arguments, is provided in
Appendix B.

Convergence Corollary. Building on Lemma 3.1, we now consider DVPO policy updates. If policy
updates are regularized (e.g., KL-clipped as in PPO) and the GVM approximation error is bounded,
then DVPO inherits the same monotonic improvement guarantee as PPO. In other words, replacing
the online critic with a fixed pretrained GVM does not weaken PPO’s local convergence properties,
while eliminating critic drift in practice.

4 EXPERIMENT

4.1 TRAINING DATASETS

Stage1: We collected offline trajectories data to train GVM. Specifically, we selected the Ul-
traFeedback dataset(Cui et al., 2023), in which, for a given prompt, multiple models generate
responses that are annotated with scalar scores. Training instances for GVM take the form
{prompt, responsei, rewardi}. We also explored training directly from pairwise preferences by
assigning a score of 1 to the chosen response and −1 to the rejected response. The resulting per-
formance was comparable to training with scalar rewards, highlighting GVM’s compatibility with
different supervision formats; see the Appendix G for details. Stage2: To prevent data leakage, we
conduct RL training on the 10K prompts retained from the previous step, with GVM providing
training feedback.

4.2 TRAINING SETTINGS

Base setting. We fine-tune a base model (LLaMA3-8B-Base and LLaMA3.2-3B-Base) to obtain an
SFT model. The data are split into three disjoint parts: SFT, reward-model training, and RL. We
then apply reinforcement learning to the SFT model. This setup follows the standard RL stage and is
transparent and reproducible.

Instruction setting. We select an off-the-shelf instruction-tuned model as the SFT model. To
facilitate comparison with related work(Li et al., 2023; Rafailov et al., 2024), we choose the Mistral-
7B-Instruct-v0.2 and LlaMA3-8B-Instruct. These models have undergone extensive instruction
fine-tuning processes based on the base model, resulting in stronger capabilities compared to the SFT
model in the Base setting. For more training details, please refer to Appendix C

4.3 BASELINE AND EVALUATION

Baseline. For GVM, we compare it with scalarRM trained on the same data. We also compare it
with the value model in PPO training. In PPO, scalarRM provides the supervision signal. For the
policy model, we compare it with the backbone model and with other RL algorithms, including PPO,
GRPO, DPO, and ReMax. In all these baselines, scalarRM provides the supervision signal.

Evaluation. To evaluate GVM, we use a held-out test set and reward-related benchmarks (e.g.,
RewardBench). Because GVM produces token-level estimates for each response, we recover a
response-level reward by applying a Bellman-style backup. We discuss our choice of evaluation
metrics in the Appendix. We evaluate the response quality of the policy models using the most popular
benchmarks: MT-Bench(Zheng et al., 2023), Arena-Hard(Li et al., 2024), and Alpaca-Eval(Dubois
et al., 2024). Additionally, we compare the LLM-as-a-judge win rate on the held-out test set.
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Table 1: Result of Base setting. Both methods were initialized from SFT and optimized. DVPO
achieved the best benchmark scores across models with different parameter sizes. MT-Bench scores
range from 0–10.

Model Llama3.2-3B-Base Llama3-8B-Base
Mtbench Arena hard AlpacaEval2 Mtbench Arena hard AlpacaEval2

SFT 5.22 10.4 8.19 4.87 10.3 9.79
PPO 5.33 13.5 11.54 4.98 11.7 11.14
Remax 5.23 12.2 12.02 4.94 8.9 9.62
GRPO 5.46 13.4 10.86 4.91 10.4 10.27
DVPO 5.73 15.1 12.33 5.01 11.8 11.33
∆ +5.10% +4.7% +4.14% +1.40% +1.5% +1.54%

5 EXPERIMENT RESULTS

5.1 DVPO ON BASE SETTING

As mentioned earlier, to clearly evaluate the feasibility of DVPO compared to existing methods, we
conducted experiments on publicly available datasets. The datasets were split proportionally for
supervised fine-tuning (SFT) and reward learning (value learning). Subsequently, the resulting reward
model (value model) was used to guide the policy optimization for preference learning. Given the
relatively small amount of data at each stage (with the RL phase accounting for approximately 20%
of the entire dataset), our focus in the Base setting is on relative improvement rather than absolute
performance metrics. The results are presented in Table 1.

DVPO demonstrates superior optimization performance. In experiments conducted on LLaMA3-
3B and LLaMA3-8B, DVPO consistently outperforms SFT significantly. Specifically, under the Base
setting of LLaMA3-8B, DVPO achieves improvements of 0.2 on MT-Bench, 1.5 on Arena-Hard, and
1.74 on Alpaca-Eval compared to the SFT model. The improvements are even more pronounced with
LLaMA3-3B, where DVPO achieves a 0.51 increase on MT-Bench, a 5-point increase on Arena-Hard,
and a 4.14-point increase on Alpaca-Eval. Similarly, as shown in Figure 2, on the held-out test set,
DVPO achieves a higher win rate compared to the SFT model. These results validate the robustness
and effectiveness of DVPO.

The pre-trained value model can provide a sufficiently high performance ceiling. According
to the experimental results in the Base setting, the final convergence performance of DVPO is very
close to that of standard PPO (and in some cases, slightly exceeds it), indicating that the supervision
signals provided by the pre-trained value model can support a sufficiently high performance ceiling.
As an actor-critic method, PPO trains the policy model and value model simultaneously, with the
reward model providing environmental feedback. The value model, as a bridge between immediate
rewards (sentence-level) and long-term returns, offers finer-grained supervision signals (token-level)
compared to immediate rewards alone. In DVPO, the global value model(GVM) is pre-trained on
responses from different policies, enabling it to provide supervision feedback to various policies
during the RL phase. The experimental results demonstrate that the fine-grained environmental
feedback provided by DVPO can achieve a performance ceiling comparable to that of the actor-critic
framework while significantly reducing training complexity and instability.

5.2 DVPO ON INSTRUCTION SETTING

To evaluate the effectiveness of DVPO in most RLHF scenarios (optimization starting from a
pre-aligned model), we selected Mistral-7B-Instruct-v0.2 and LlaMA3-8B-Instruct as the SFT
model. An existing UltraRM reward model was used to collect labeled data for training the value
model, value model also initialized from SFT model. The trained value model then guided the
preference optimization of the SFT model. The results are presented in Table 2. Experimental
findings demonstrate that our method exhibits significant advantages over other approaches. Our
main findings are as follows:
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Table 2: Result of Instruction setting. Instruction refers to Mistral-7B-Instruct-v0.2 and LlaMA3-
8B-Instruct. All methods are initialized from their respective instruction models. Results marked
with an (*) are sourced from the original paper or inference from the open-source release.

Method Mistral 7B Llama3 8B
Mtbench Arena hard AlpacaEval2 Mtbench Arena hard AlpacaEval2

Instruction 6.60* 12.6* 17.11* 6.90* 20.6* 34.38*
ReMax 6.67* 21.9* 20.55* 7.62 30.8 36.04
DPO 6.30 16.3 26.80 7.01 32.6 40.32
GRPO 6.31 21.8 27.19 7.53 34.1 35.17
PPO 6.55 19.4 19.62 7.55 36.3 34.98
DVPO 6.79 24.7 27.43 7.72 39.2 42.59
∆ +1.90% +12.1% +10.32% +8.20% +18.6% +8.21%

DVPO significantly enhances the performance of instruction models. Compared to the original
Mistral-7B-Instruct-v0.2, DVPO consistently demonstrates performance improvements across all
benchmarks. Specifically, it achieves a 0.19 improvement on MT-Bench and increases the win rate by
12.1% on Arena-Hard. Additionally, it enhances the length-controlled win rate by 10.32% on Alpaca-
Eval. Furthermore, compared to DPO, DVPO also exhibits notable advantages, on the Mistral setting,
outperforming 8.4% in Arena-Hard and 0.49 in MT-Bench. On the Llama setting, outperforming
0.71 in MT-Bench. These results indicate that the pre-trained value model can effectively and reliably
guide the optimization of policy models.

Finer-grained feedback signals lead to superior performance. Compared to reward-only methods
such as ReMax and GRPO, DVPO demonstrates significant performance advantages on Mt-Bench,
Arena-hard and Alpaca-Eval. In ReMax and GRPO, the feedback signal is at the sentence level
from the reward model, assigning a single reward score to the entire sentence and treating all tokens
as equally contributing to the overall score. This design prevents the policy model from learning
fine-grained preferences during the RL phase, resulting in suboptimal performance. In contrast,
the GVM—trained with TD-learning over prefixes—assigns different values to different parts of
a response; as shown in Figure 3, decisive reasoning tokens receive high values while misleading
continuations receive low values. By assigning a return value to each token, GVM facilitates more
effective training of the policy model. In addition to providing fine-grained returns, DVPO retains
the on-policy characteristics of the original PPO, enabling a larger exploration space and offering a
higher performance ceiling.

6 ANALYSIS

6.1 COMPARSION OF SCALAR RM IN REWARD BENCH

To verify that GVM can effectively learn state-value estimates from offline trajectories, we aggregate
its token-level values into a final, outcome-level reward and evaluate on reward-related benchmarks.
We also compare against scalar reward models (ScalarRM) trained on the same data. As shown in
Table 3, the average RewardBench (Lambert et al., 2024) scores of GVM and ScalarRM are compara-
ble overall, but their performance profiles differ. On the Chat (easy) subset, ScalarRM consistently
outperforms GVM, suggesting that sequence-level prediction with a pairwise Bradley–Terry (BT) loss
readily captures global objectives and models overall preference on easier cases. In contrast, on the
Chat-Hard subsets, GVM—trained with Bellman/temporal-difference (TD) learning for token-level
value estimation—generalizes better to more complex problems. In sum, given identical data, GVM
and ScalarRM achieve similar aggregate performance, but GVM provides finer-grained and more
accurate supervision at the token level; relative to distributing a single sequence-level reward down to
tokens, these direct value signals improve policy learning. Additionally, we provide illustrative GVM
case studies in Appendix D.

6.2 COMPARSION OF ACTOR-CRITIC VALUE MODEL

Beyond our comparison with ScalarRM, we also analyze the value model in the actor–critic paradigm.
As shown in Table 4, on in-distribution data GVM significantly outperforms the A/C value model,
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Table 3: In the RewardBench results, GVM and ScalarRM are
trained on the same data.

Model Method Chat Chat-Hard Safety Reason.

Llama3 8B GVM 88.3 67.5 66.8 79.2
SclarRM 95.5 58.5 73.9 65.4

Mistral 7B GVM 75.4 61.4 66.7 64.4
SclarRM 93.8 52.4 64.1 60.3

Table 4: Result of Ultrafeedback
testset. A/C denotes the PPO critic
(value model), evaluated at PPO
training convergence.

Method Llama3 8B Mistral 7B

GVM 68.1 64.5
A/C 60.6 57.6

Table 6: Memory footprint and computational cost analysis. Mtrain: training-time memory (parame-
ters, optimizer states, activations); Minfer: inference-time memory; Cgene: computational cost for
generating n responses; Cback: computational cost for backpropagation and optimizer update.

ScalarRM GVM PPO ReMax GRPO DVPO
Mtrain mtrain mtrain 2×mtrain mtrain mtrain mtrain

minfer − − 2×minfer 2×minfer 2×minfer 2×minfer

Cgene − − cgene 2× cgene n× cgene cgene
Cback cback cback 2× cback cback cback cback

indicating that a value model pretrained directly from preference data more effectively estimates
response state values than the critic jointly trained with PPO. Moreover, this advantage transfers across
different base (backbone) models. A/C value model is trained to fit returns under the current policy.
It is tightly coupled to the policy, and its data distribution shifts during training, so it best predicts
returns for outputs likely under that policy. In contrast, GVM learns from large-scale preferences
which state transitions increase or decrease reward. It is policy-agnostic and therefore yields more
accurate value estimates.In this sense, our value model is “global” in that (i) it is policy-agnostic
rather than coupled to a single behavior policy, and (ii) it evaluates each action from a trajectory-level
perspective by considering how the entire trajectory contributes to the final outcome.

Table 5: Result of HH-
RLHF testset.

Method Llama3 8B Mistral 7B

GVM 63.3 60.8
A/C 57.5 53.8

To further compare the performance of GVM and A/C under dis-
tribution shifts, we evaluate the GVM and A/C value model from
Ultrafeedback experiment on a new distribution, new prompts in the
test split of the HH-RLHF dataset. The result presented in Tabel 5,
We also compute the accuracy metrics. On the new distribution, both
GVM and A/C show lower performance, but GVM still leads. This
indicates that GVM’s pretrained value estimates remain robust under
shift. Pretraining on offline trajectories helps the value model learn
value estimation more faithfully and improves generalization.

6.3 COMPARSION OF COMPUTATION

As the Table 6 shows, training GVM and ScalarRM requires nearly the same GPU memory. Both
use the same base model with a single linear head (hidden size → 1). Their training time is also
similar, since each step performs one backpropagation. Overall, the compute budgets for GVM and
ScalarRM are essentially equivalent. Among RL methods, PPO is the most resource-intensive because
it trains two models in parallel (policy and value). ReMax, GRPO, and DVPO have comparable
memory costs, but group-based methods such as GRPO must generate multiple responses per prompt,
which increases training time. In sum, DVPO offers the best balance of memory and time and, with
token-level supervision from GVM, outperforms the other methods. We provide a detailed analysis
of computational resources and the training curves in the Appendix F.

7 DISCUSSION

Conclusion. We propose Decoupled Value Policy Optimization (DVPO), a framework that eliminates
joint actor-critic training in RLHF by leveraging a pretrained global value model (GVM). Our
theoretical analysis proves the functional equivalence of reward and value models under the constraint
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of no new reward feedback, justifying the use of a fixed GVM for efficient and scalable optimization.
Empirical results demonstrate that DVPO achieves comparable or surpasses performance to state-of-
the-art RLHF methods on multiple benchmarks. Future work will focus on refining the value model’s
training process to enhance estimation performance.

Limitations. DVPO assumes that the offline preference dataset provides adequate coverage of
relevant trajectories and that the Global Value Model (GVM) can approximate token-level returns
within bounded error. However, the need for sufficiently diverse preference data is inherent to reward
learning, not specific to the GVM. Unlike joint actor–critic training, DVPO does not adapt the critic
as the policy evolves; thus its guidance is fixed and may fail in highly non-stationary settings. Our
equivalence analysis also holds only under the constraint of no new reward signals—if additional
human or environment feedback becomes available during training, a static GVM cannot fully exploit
it. A promising future work to mitigate this limitation is to extend DVPO to a semi-online regime by
periodically refreshing the GVM with newly collected preference data, while carefully controlling
the update frequency to preserve the stability of the training dynamics. Finally, although DVPO
reduces computation and improves stability, it may inherit biases from the reward-preference data
itself, which remain an open challenge for all RLHF methods.

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. This study did not use personally identifiable information or
sensitive attributes, and involved no direct interaction with human subjects. Our institution determined
that the work does not constitute human-subjects research (or qualifies for exemption); therefore,
IRB approval was not required. There are no competing interests or sponsorships that could unduly
influence the results.

REPRODUCIBILITY STATEMENT

Our study uses open-source datasets; their names and download URLs are listed in the relevant
sections of the paper. Our complete training and evaluation code is provided in https://github.
com/microsoft/DKI_LLM/tree/main/dvpo. The appendix details the full hyperparameter
settings and dataset splits. Where permitted, we release model checkpoints to facilitate verification of
the reported results. A permanent public repository will be made available upon acceptance.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model solely for sentence-level copyediting (grammar, clarity, and fluency)
of text written by the authors. All LLM suggestions were reviewed and accepted by the authors, who
take full responsibility for the final content.

B PROOF

Proof. Converting Rϕ to a Value Function. Using the pretrained reward model Rϕ(s, a), we
compute a surrogate action-value function Q̃R

ϕ (s, a) by solving the Bellman equation offline:

Q̃R
ϕ (s, a) = Rϕ(s, a) + γ Es′∼P

[
Ea′∼πθ [ Q̃R

ϕ (s
′, a′)]

]
.

Under standard offline RL assumptions (including sufficient coverage of the state-action space),
Q̃R
ϕ (s, a) converges to an approximation of Qπ(s, a) with an additional error term ϵR2Q that depends

on ϵR.

Converting Qψ to an Approximate Reward Signal. Conversely, if Qψ(s, a) approximates Qπ(s, a),
then rearranging the Bellman equation yields an approximate reward:

R̃ψ(s, a) = Qψ(s, a)− γ Es′∼P, a′∼πθ [Qψ(s
′, a′)] .

The error in this reconstruction is bounded by ϵV 2R, which is a function of ϵQ.

Policy Gradient Equivalence. We now explicitly define the two policy gradient objectives used in
our analysis.

The policy gradient with a reward-derived value function, denoted as ∇θJR(πθ), is given by:

∇θJR(πθ) = Es∼dπθ , a∼πθ
[
∇θ log πθ(a | s) ·AR(s, a)

]
,

where the advantage is computed using a surrogate value function Q̃R
ϕ (s, a) obtained by solving the

Bellman equation using the pretrained reward model Rϕ(s, a):

AR(s, a) = Q̃R
ϕ (s, a)− b(s).

The policy gradient using a pretrained global value model, denoted as ∇θJQ(πθ), is defined similarly:

∇θJQ(πθ) = Es∼dπθ , a∼πθ
[
∇θ log πθ(a | s) ·AQ(s, a)

]
,

where the advantage is:
AQ(s, a) = Qψ(s, a)− b(s),

and Qψ is the pretrained global value model.

In both cases, b(s) is a baseline (e.g., state value or Monte Carlo average) used to reduce variance.
This aligns with standard actor-critic or REINFORCE-style policy gradient frameworks (Sutton,
2018). The gradients are computed using samples from the current policy πθ, and the fixed models
Rϕ and Qψ provide the learning signals.

We assume: ∣∣Q̃R
ϕ (s, a)−Qπ(s, a)

∣∣ ≤ ϵR2Q,
∣∣Qψ(s, a)−Qπ(s, a)

∣∣ ≤ ϵQ,

and thus the difference in advantage estimates is bounded:

∥AR(s, a)−AQ(s, a)∥ ≤ ϵR2Q + ϵQ.

Combining the expressions above, the policy gradients differ by:

∥∇θJR(πθ)−∇θJQ(πθ)∥ ≤ κ(ϵR, ϵQ),

where κ is a bounded, non-negative function of the approximation errors, satisfying κ(ϵR, ϵQ) → 0
as ϵR, ϵQ → 0.
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This formalizes our claim that, under no new reward feedback, the reward-derived and value-derived
gradients converge to the same update direction.

Static Supervision. Since no additional ground-truth rewards are collected, both Rϕ and Qψ remain
fixed throughout policy training. Consequently, their induced gradients remain constant over time,
ensuring that the policy updates they drive are equivalent up to the bounded error κ(ϵR, ϵQ).

The steps above demonstrate that, under our assumptions, the policy gradient updates based on the
pretrained reward model and the global value model are equivalent as the approximation errors vanish.
This completes the proof.
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Figure 2: Results of the model on the Ultrafeedback held-out testset. We employed GPT4o as a judge
to assess the quality of model-generated responses. Performance is measured using the win rate,
where Left represents DVPO, and Right represents the baseline model for comparison.

C TRAINING DETAILS

SFT training. We use the following hyperparameters for instruction fine-tuning training. We employ
a learning rate of 2e-5 with cosine decay, 2 warmup steps, and a batch size of 16. We calculate the
loss only for the target tokens rather than the full input sequence, and we train for 3 epochs on the
training data. we conduct the training on 8 NVIDIA A100 80G GPUs.

Reward training. To enable the model to learn the relative ranking among different responses, we
use a pair-wise loss. The task type is sequence classification. We use a learning rate of 2e-5 with
linear decay and the AdamW optimizer for training over 2 epochs, with a batch size of 4. We conduct
the training on 8 NVIDIA A100 80G GPUs .

DVPO and Baselines training. For PPO training, we use a learning rate of 2e-6 and set the maximum
generated sequence length to 1024. We employ a batch size of 8 and a mini-batch size of 2, with 4
PPO epochs and 2 gradient accumulation steps. The KL coefficient is set to 0.05, and in Appendix H
we conducted an ablation study on the KL coefficient. The target KL divergence KLtarget is set to
0.1. For a fair comparison, training for DVPO and other baselines was conducted using the same
hyperparameter settings (e.g., batch size, sequence length, etc.). For GRPO training, we roll out 5
responses for each prompt.

Global value model training. We initialize the value model from the SFT checkpoint and optimize a
token-level mean-squared error objective with a discount factor γ = 1. The training is conducted
with a batch size of 32, a sequence length of 1024, and a learning rate of 2e-6.
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As an island, is Beijing located in Asia?Question:

Response2:

_Be ij ing _is _not _an _island …

Value1: 0.20990.0333 -0.0821 -0.2597-0.1936 -0.4590 -0.1500 …

Response1:

_Be ij _is _an _island …ing _located

Value2: -0.4766-0.2493 0.1845 -0.6177-0.0883 -0.1289 -0.1526 …

Figure 3: An example of the supervisory signal provided by a Global Value Model (GVM). The
GVM is capable of providing token-level feedback. In this example, the GVM assigns a lower value
to the incorrect response (response2: “is an island") and a higher value to the critical token “not" in
the correct response (response1: “not an island").

D GVM CASE STUDY

For the same question, "As an island, is Beijing located in Asia?", the value model provides fine-
grained supervisory signals for two different responses. The GVM assigns specific values to each
token in the responses. These values represent the model’s assessment of the importance or correctness
of each token in the given context.

As shown in Figure 3. For Response 1, the critical token “not" is given a higher value (0.2099),
highlighting its significance in forming the correct response, "not an island." For Response 2, the
GVM assigns lower values to incorrect tokens, such as “is" (-0.6177) and "an" (-0.4766), indicating
their contribution to the incorrect response, “is an island." This token-level evaluation demonstrates
the GVM’s ability to guide learning by penalizing incorrect responses and reinforcing critical tokens
in correct responses, thereby enhancing training accuracy and interpretability.

E GVM PERFORMANCE

We evaluate the performance of the GVM from multiple perspectives. Specifically, we observe
that the GVM assigns higher value scores to good actions and lower value scores to bad actions, as
illustrated in Figure 3. We evaluate the global value model(GVM) on a held-out test set. For each
question, we expect the value model to assign higher values to good responses compared to bad ones.
We calculate the accuracy under various metrics (mean, P1, etc.) to assess the model’s performance.

Table 8 presents the performance metrics of the Global Value Model (GVM) initialized from different
size models. The metrics include the mean value, which indicates the average score assigned by the
GVM, and various percentiles (P1, P5, P10, P90, P95, and P99), representing the corresponding value
distributions. The accuracy metric evaluates the proportion of cases where the GVM correctly assigns
a higher value to a good response compared to a bad response, thereby reflecting the effectiveness of
the GVM in providing accurate feedback.

As shown in the table, the value model’s performance exhibits a clear scaling law, with larger
models achieving higher accuracy. Moreover, when trained on the same dataset, it delivers superior
optimization outcomes compared to the reward model. These results demonstrate the GVM’s ability
to provide reliable token-level evaluations.

F ANALYSIS OF COMPUTATION EFFICIENCY

DVPO improves upon RLHF by leveraging a pre-trained value model to provide environmental
feedback, resulting in enhanced computational efficiency, stability, and convergence speed.

Memory Efficiency. As shown in Table 7, the experimental setup for standard PPO and DVPO
was kept identical. Under standard training conditions, DVPO achieves approximately a 30-40%
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Table 7: Computational results under the Base setting. For the 3B model, we used Deepspeed Zero-1
strategy; for the 8B model, due to OOM issues with Zero-1, we used Zero-3. We report GPU memory
consumption per GPU (GB) and time per step (s) on an 8 × A100 setup.

Method Llama3-8B-Base Llama3.2-3B-Base

Mem (GB) Time (s) Mem (GB) Time (s)

PPO 78.96 70.24 41.43 23.00
ReMax 61.23 65.96 26.87 44.13
GRPO 64.35 57.93 28.20 22.17
DVPO 60.49 (-23.4%) 48.00 (-31.7%) 27.50 (-33.6%) 13.00 (-43.5%)

reduction in memory usage. For instance, with LLaMA-3B, we trained using Zero-1 on 8 A100 GPUs
with a batch size of 4. Standard PPO requires 41.43 GB of memory due to the need to simultaneously
load 4 models (policy model, critic model, reference model, and reward model), with two models
(policy model and critic model) requiring activation. In contrast, DVPO only requires 27.5 GB of
memory, as it only loads the policy model, global value model, and reference model, with only the
policy model being activated during training. For LLaMA-8B, we used DeepSpeed Zero-3 with a
batch size of 4. Even under this configuration, DVPO effectively reduces memory usage, enabling
support for larger batch sizes during training.

Time Efficiency. DVPO accelerates the training process, requiring only half the time per batch
compared to standard PPO under the same batch size. This improvement stems from the fact that,
during the generation phase, DVPO requires outputs from only three models, whereas standard PPO
relies on four. Additionally, during the backpropagation phase, PPO updates both the policy and value
models, while DVPO updates only the policy model. Overall, under identical settings (batch size),
DVPO achieves a 1.76x speedup in training (1.76 ≈ 23/13). By employing the GVM for advantage
estimation, DVPO requires fewer generated samples during the rollout phase and thus achieves faster
training compared to other memory-efficient RL algorithms (e.g., ReMax and GRPO).

Training Step. We observe that using a pre-trained value model to provide token-level fine-
grained environmental feedback enables faster model convergence, which aligns with the findings
in (Noukhovitch et al., 2024). Specifically, under identical experimental settings (same batch size,
experience replay count, etc.), DVPO requires only approximately 3/4 of the interaction steps to
converge. As shown in Figure 4, in the LLaMA3-8B experiment, the reward curve of PPO reaches its
peak at 1250 steps, whereas DVPO achieves optimal performance around 800 steps. Similarly, in
LLaMA3-3B, PPO reaches its peak at 600 steps, while DVPO converges in 350 steps. Since DVPO
provides token-level supervision feedback and is pre-trained in advance, it can be considered a form
of warm-starting, thereby accelerating policy convergence.

G ANALYSIS OF REWARDS ASSIGNED

We compared two distinct reward distribution schemes, and the resulting training performance is
shown in the Table 9.

From Reward Model For scenarios in which a reward model is available (used for a fair comparison
to PPO), we first leverage preference data (e.g., tuples of the form (Q, A1,A2)) to obtain scalar
scores S1 and S2 for A1 and A2 via the reward model. Each tuple (Q, A, S) is then treated as a
trajectory, with S serving as the scalar return, and the GVM is trained on this token-level data using
temporal-difference learning.

From Preference Data. For scenarios without a reward model (for broader applicability), we learn
the value model directly from preference data. Specifically, we assign +1 to the preferred response
and –1 to the less preferred one; these labels are treated as scalar returns to supervise the GVM
directly, obviating the need for any reward model.

With the same data and base model, the value model from reward model accuracy is 0.64, and the
value model from preference data is 0.67. The two training approaches produce virtually identical
outcomes, demonstrating the GVM’s tolerance for disparate data formats and its ability to be trained
for varying application scenarios.
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Figure 4: Learning curve of the policy model during the RL stage under the Base setting. DVPO
demonstrates faster and more stable convergence compared to other methods.
Table 8: Value model performance in different size models.Mean Value is the mean of the value
scores over the trajectory. Pk Value denotes the k-th percentile of the value distribution in trajectory.

METRIC LLAMA3 8B LLAMA2 13B LLAMA3 3B MISTRAL 7B
MEAN VALUE 68.05 70.55 63.61 64.51
P1 VALUE 57.15 63.80 55.00 56.02
P5 VALUE 60.24 65.90 57.15 58.46
P10 VALUE 62.50 67.70 58.45 59.83
P90 VALUE 66.23 69.05 64.40 61.47
P95 VALUE 67.95 67.55 62.55 60.30
P99 VALUE 66.3 64.75 56.99 59.94

H ABLATION ON THE KL COEFFICIENT

To search the suitable KL coefficient, we performing a grid search in the range {0.01, 0.05, 0.10}.
For each setting, we evaluate the resulting policy on MT-Bench, Arena-Hard, and AlpacaEval2. As
shown in Table 10, DVPO achieves consistently strong performance across all three values, and
remains superior to the baseline under every tested KL coefficient. We adopt 0.05 as the default value
in our main experiments, which is aligned with common practice in prior RLHF work.

I GPT4 EVALUATION PROMPT

A crucial element of our experimental framework is the evaluation of win rates using GPT-4. In this
section, we provide the prompts utilized to generate win rates for held-out test set in Ultrafeedback
dataset. All experiments were conducted using the gpt-4o-20240806 model. The sequence of
responses was randomized for each evaluation to ensure unbiased results.

GPT-4 as judge system prompt:

Review the user’s question and the corresponding response using the additive 5-pointscoring system
described below. Points are accumulated based on the satisfaction of each criterion:
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Table 9: Comparison of learning value models from reward data and preference data

ACCURACY FROM REWARD FROM PREFERENCE

MEAN VALUE 64.51 67.85
P1 VALUE 56.02 58.60
P5 VALUE 58.46 62.80
P10 VALUE 59.83 63.95
P90 VALUE 61.47 65.85
P95 VALUE 60.30 65.80
P99 VALUE 59.94 64.05

Table 10: Ablation on the KL coefficient for DVPO.

KL MT-Bench Arena-Hard AlpacaEval

0.01 8.50 37.50 41.66
0.05 7.72 39.20 42.59
0.10 7.73 38.60 40.96

- Add 1 point if the response is relevant and provides some information related to the user’s inquiry,
even if it is incomplete or contains some irrelevant content.

- Add another point if the response addresses a substantial portion of the user’s question, but does not
completely resolve the query or provide a direct answer.

- Award a third point if the response answers the basic elements of the user’s question in a useful way,
regardless of whether it seems to have been written by an Al Assistant or if it has elements typically
found in blogs or search results.

- Grant a fourth point if the response is clearly written from an Al Assistant’s perspective, addressing
the user’s question directly and comprehensively, and is well-organized and helpful, even if there is
slight room for improvement in clarity, conciseness or focus.

- Bestow a fifth point for a response that is impeccably tailored to the user’s question by an AI
Assistant, without extraneous information, refecting expert knowledge, and demonstrating a high-
quality, engaging, and insightful answer.

After examining the user’s instruction and the response, please first give the total score. Then provide
a brief explanation of your total score, up to 100 words. Output with the following format: Score:
<total score> Evaluation evidence: <your brief explanation here>

Remember to assess from the Al Assistant perspective, utilizing web search knowledge as necessary.
To evaluate the response in alignment with this additive scoring model, we’ll systematically attribute
points based on the outlined criteria.

User input prompt:

<Question>: {question}
<response>: {answer}
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Table 11: A case study for GPT4 evaluation: LLama3 8B SFT

Input Compare and contrast Harry Potter with Percy Jackson series.

Llama3 8B SFT Sure, I’d be happy to help you compare and contrast the Harry Potter and
Percy Jackson series!Both Harry Potter and Percy Jackson are popular fan-
tasy series that have captured the hearts of readers around the world. Here
are some key similarities and differences between the two:Similarities:1.
Magical elements: Both series feature a magical aspect, with Hogwarts
School of Witchcraft and Wizardry being the setting for Harry Potter and
Camp Half-Blood for Percy Jackson.2. Mythological references: Both series
draw heavily on Greek mythology, with Percy Jackson’s stories being based
on the Labors of Hercules and other Greek myths.3. Relatable protagonists:
Both Harry and Percy are relatable and charming protagonists that readers
can connect with.Differences:1. Setting: While both series take place in
magical worlds, the settings are quite different. Harry Potter’s stories take
place in a more traditional school setting, while Percy Jackson’s stories
take place in a summer camp atmosphere.2. Tone: Harry Potter is a more
lighthearted and comedic series, while Percy Jackson takes a darker and
more serious tone, exploring themes of mortality and responsibility.3. Plot
structure: Harry Potter has a more linear plot structure, with each book
building on the previous one’s events. Percy Jackson, on the other hand, has
a more episodic structure, with each book focusing on a different adventure
or challenge for the characters.4. Themes: While both series explore themes
of good and evil, Harry Potter focuses more on the importance of friendship
and loyalty, while Percy Jackson delves into the consequences of power
and responsibility.In conclusion, while both Harry Potter and Percy Jackson
share many similarities, their differences in setting, tone, plot structure, and
themes offer unique reading experiences for readers. Both series are highly
recommended for anyone looking for a magical and engaging read!

GPT4-as-Judge Score: 3
Evaluation evidence: The response provides a relevant comparison of the
Harry Potter and Percy Jackson series, highlighting key similarities and
differences in magical elements, settings, tone, plot structure, and themes.
It addresses the user’s question by outlining basic elements and offering
a useful comparison. However, the answer contains inaccuracies, such
as misrepresenting the tone of both series and the nature of mythological
references in Percy Jackson. Additionally, the response could be more
precise and direct, as some points are not entirely accurate or comprehensive.
Thus, it meets the criteria for a basic, useful response but lacks thoroughness
and precision for a higher score.
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Table 12: A case study for GPT4 evaluation: LLama3 8B PPO

Input Compare and contrast Harry Potter with Percy Jackson series.

Llama3 8B PPO Sure, I’d be happy to help you compare and contrast the Harry Potter and
Percy Jackson series!Both Harry Potter and Percy Jackson are popular fan-
tasy series that have captured the hearts of readers around the world. Here
are some key similarities and differences between the two:Similarities:1.
Magical elements: Both series feature a magical aspect, with Hogwarts
School of Witchcraft and Wizardry being the setting for Harry Potter and
Camp Half-Blood being the setting for Percy Jackson.2. Teenage protag-
onists: The main characters in both series are teenagers, navigating their
way through adolescence while also facing epic challenges and learning
valuable life lessons.3. Epic adventures: Both series involve the protagonists
on thrilling quests, battling mythical creatures, and uncovering secrets that
could change the course of history.4. Portal to another world: In both series,
there is a gateway to another world (Harry’s cupboard under the stairs and
the portal at Camp Half-Blood) that allows the protagonists access to a
realm filled with magical creatures and unparalleled adventure.Differences:1.
Setting: While both series take place in magical worlds, the settings are
quite different. Harry Potter is set in a medieval-style world with castles
and magical creatures, while Percy Jackson is set in a modern-day world
with technology and urban landscapes.2. Tone: The tone of the two series
is quite different. Harry Potter is lighthearted and comedic, while Percy
Jackson is darker and more serious, with themes of mortality and morality.3.
Mythological references: While both series draw on mythological references,
the specific myths and legends used are different. Harry Potter relies more
on European and British myths, while Percy Jackson draws on Greek and
Roman mythology.4. Magic systems: The magic systems in the two series
are also different. Harry Potter uses a spell-based magic system, while Percy
Jackson uses a more physical, athletic approach to magic.5. Protagonists:
The protagonists in the two series are quite different. Harry Potter is a boy
wizard who discovers his true identity and heritage, while Percy Jackson is
a demigod who must navigate the complexities of his divine heritage and
mortal life.6. Plots: The plots of the two series are distinct. Harry Potter
focuses on the battle between good and evil, with Harry as the prophesized
hero who must face off against Voldemort. Percy Jackson, on the other hand,
is about the struggles of the demigods and the impact of their mortal lives
on their divine heritage.In conclusion, both Harry Potter and Percy Jackson
are captivating fantasy series that share some similarities, but also differ in
many ways. While both offer engaging and entertaining reads, they appeal
to different audiences and perspectives.

GPT4-as-Judge Score: 3
Evaluation evidence: The response provides a relevant comparison of the
Harry Potter and Percy Jackson series, addressing the user’s question with
a mix of similarities and differences. It covers key aspects such as magical
elements, protagonists, and settings, offering a basic understanding of both
series. However, the response contains inaccuracies, particularly in tone
descriptions and settings, which detracts from its comprehensiveness and
accuracy. While it offers a useful comparison, it does not fully address the
user’s question with the depth or precision expected from an AI Assistant,
nor does it reflect expert knowledge or exceptional insight.
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Table 13: A case study for GPT4 evaluation: LLama3 8B DVPO

Input Compare and contrast Harry Potter with Percy Jackson series.

Llama3 8B DVPO Sure, I’d be happy to help! Both the Harry Potter and Percy Jackson series are
popular and successful book series that have captivated readers worldwide.
Here are some key similarities and differences between the two:Similarities:1.
Magical elements: Both series feature magical aspects, such as spells, wiz-
ards, and fantastical creatures.2. Young protagonists: The main characters
in both series are young and face challenges and adventures that come with
growing up in a magical world.3. Family themes: Both series emphasize the
importance of family and the bonds between family members.4. Friendship:
The series also highlight the importance of friendship and the power of hav-
ing loyal and supportive friends.Differences:1. Genre: While both series can
be classified as fantasy, Harry Potter is more traditionally fantasy-oriented,
while Percy Jackson is urban fantasy with a contemporary setting.2. Setting:
Harry Potter is set in a parallel universe where wizardry and magic are
prevalent, while Percy Jackson is set in present-day America and Greece.3.
Magic system: The magic systems in each series are different. In Harry
Potter, magic is cast using wands and spells, while in Percy Jackson, magic
is accessed through the use of magical coins and enchanted items.4. Gods
and myths: Harry Potter is based on the idea of witches and wizards living
among us, while Percy Jackson is based on Greek mythology and features
the gods and goddesses of ancient Greece.5. Tone: Harry Potter is written
in a more traditional, epic style, while Percy Jackson is written in a more
contemporary, humorous tone.Ultimately, both series offer engaging, imagi-
native storytelling that captures the hearts and minds of readers. While they
both explore similar themes, their unique settings, magic systems, and tones
make them distinct from one another. I hope this helps! Let me know if you
have any other questions.

GPT4-as-Judge Score: 5
Evaluation evidence: The response thoroughly addresses the user’s question
by comparing and contrasting the Harry Potter and Percy Jackson series. It
identifies key similarities, such as magical elements, young protagonists, and
themes of family and friendship. The response also effectively highlights
differences in genre, setting, magic systems, mythological influences, and
tone. The information is well-organized, relevant, and engaging, demonstrat-
ing a comprehensive understanding of both series. The response is tailored
specifically to the user’s inquiry, providing insightful and expert knowledge
without any extraneous information.
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