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ABSTRACT

In this work, we focus our attention on developing a benchmark for instruction-
following where it is easy to verify both task performance as well as instruction-
following capabilities. We adapt existing knowledge benchmarks and augment
them with instructions that are a) conditional on correctly answering the knowl-
edge task or b) use the space of candidate options in multiple-choice knowledge-
answering tasks. This allows us to study model characteristics, such as their
change in performance on the knowledge tasks in the presence of answer-
modifying instructions and distractor instructions. In contrast to existing bench-
marks for instruction following, we not only measure instruction-following capa-
bilities but also use LLM-free methods to study task performance. We study a
series of openly available large language models of varying parameter sizes (1B-
405B) and closed source models namely GPT-4o-mini, GPT-4o. We find that even
large-scale instruction-tuned LLMs fail to follow simple instructions in zero-shot
settings. We release our dataset, the benchmark, code, and results for future work.

1 INTRODUCTION

The growth of increasingly powerful large language models has resulted in the development of end-
user applications including assistants for coding and software engineering (Ozkaya, 2023; Zhang
et al., 2023; Ross et al., 2023), workflow and business automations (Grohs et al., 2023; Wornow
et al., 2024), self-help assistants (Zhou et al., 2020; Shuster et al., 2022) and more. The need for
highly accurate and controllable systems that follow precise instructions have led to the development
of methods to improve reliability and consistency in the output for LLMs. Such methods include
few-shot prompting (Gao et al., 2020; Kojima et al., 2022b), reasoning with explanations (Wei et al.,
2022; Huang & Chang, 2022), checking for consistency/self-consistency (Wang et al., 2022), use of
intermediate evaluators or LLMs operating as judges (Zheng et al., 2023), etc.

While there has been a lot of focus on assessing the knowledge of LLMs (Brown et al., 2020; Heinz-
erling & Inui, 2021), logical reasoning (Hendrycks et al., 2021; Wei et al., 2022; Ma et al., 2024),
programmatic ability (Dakhel et al., 2023; Chen et al., 2021), problem solving ability (Lightman
et al., 2024), etc, the study of their ability to follow precise instructions is relatively nascent; works
such as FoFo (Xia et al., 2024), InFoBench (Qin et al., 2024), RuleBench (Sun et al., 2024), IFEval
(Zhou et al., 2023b) attempt to address this gap. While FoFo Xia et al. (2024) assesses the ability of
models to generate outputs conforming to existing real-world output formats such as the HL7-CDA
format used in Healthcare applications, RuleBench (Sun et al., 2024) assesses a model’s capabilities
on inferential rule-following using rules which can be encoded in instructions and first-order-logic.
On the other hand, benchmarks such as InFoBench (Qin et al., 2024) and IFEval (Zhou et al., 2023b)
assess the ability of LLMs to follow arbitrary task specific instructions though neither InFoBench
nor IFEval provide easy ways of verifying (i) task success and (ii) instruction following capabilities
simultaneously (see Section 2 for a detailed discussion). Constraints such as formatting style, length
are harder to verify along with task performance (not just instruction performance) while assessing
instruction-following with verfiable is limited.

In this work, we focus our attention on developing a benchmark for instruction-following where it is
easy to verify both task performance as well as instruction following capabilities. We adapt existing
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Table 1: Comparison with existing Instruction Following benchmarks

Benchmark Task Deterministic
Outputs

Content
Verification

QA-Conditioned
Instructions Evaluator

FoFo Eval (Xia et al., 2024) Format following ✓ ✗ ✗ LLM
IFEval (Zhou et al., 2023b) Instruction Following ✓ ✗ ✗ Direct
InFoBench (Qin et al., 2024) Instruction Following ✗ ✓ ✗ LLM
RuleBench (Qin et al., 2024) Inferential Rule Following ✓ ✓ ✓ Direct
This work Instruction Following ✓ ✓ ✓ Direct

commonly used knowledge benchmarks including MMLUPro (Wang et al., 2024), MathQA Amini
et al. (2019), Winogrande (Sakaguchi et al., 2021), BoolQ (Clark et al., 2019), PIQA Bisk et al.
(2020) and augment them with two broad classes of instructions: (i) Instructions that are conditional
on the answer to the question (ii) Instructions that are applied uniformly regardless of the answer
or task. We include a detailed study of multiple LLMs and find that even the largest models have
trouble following relatively simple instructions. Our list of instructions demonstrate: 1. Simple
changes of return text instead of labels results in a drop. 2. Simple tasks of counting, concatenation,
conditional exclusion/inclusion/application as well as distracting instructions all result in significant
drop in performance. To the best of our knowledge, there is no prior work that demonstrates this
with verifiable results and bench-marking of current models.

Our contributions are as follows: (i) We release the first benchmark that assesses the zero-shot
instruction-following performance of models using knowledge and reasoning question-answering
(QA) tasks. (ii) We employ multiple QA-conditioned instructions to examine instruction-following
performance across different instruction classes, including those dependent on answer-type. (iii) We
include instruction instances that serve as distractors for the original knowledge-tasks (iv) Unlike
previous studies, we use LLM-free evaluation metrics to assess both knowledge and instruction-
following abilities. (v) We offer automated error analysis measures, pre-classifying likely errors for
each instruction instance. (vi) Our benchmark creation method is easy to extend to new instructions
and datasets.

2 RELATED WORK

Evaluating the capabilities of large language models (LLMs) has been a significant area of research,
with studies focusing on various aspects of LLM performance. Researchers have developed multiple
benchmarks to assess factual knowledge Petroni et al. (2019); Roberts et al. (2020); Lin et al. (2022),
logical reasoning abilities Wei et al. (2022); Zhou et al. (2023a); Saparov et al. (2023), general
problem-solving capabilities Kojima et al. (2022a) and more.

Recently there have also been studies on instruction-following - for instance, FoFo Xia et al. (2024)
evaluates models on format-following tasks and studies the ability of LLMs to generate outputs in
existing real-world formats. In a similar vein, IFEval Zhou et al. (2023b) assesses LLMs’ ability
to follow arbitrary task-specific instructions (e.g.) based on response length, casing, etc, focusing
primarily on whether the instructions are followed rather than the correctness of the output for the
task. InFoBench Qin et al. (2024) advances this research by introducing a metric known as the ‘De-
composed Requirements Following Ratio’ (DRFR) which is based on each aspect of an instruction
that needs to be met. Along with 500 diverse instructions and 2, 250 decomposed questions, In-
FoBench offers performance evaluation using OpenAI’s GPT4, across multiple constraint categories
and highlights key areas where advanced LLMs can improve in complex instruction-following tasks.
LLMBar (Zeng et al., 2024) is another contribution to this area, as it provides a meta-evaluation
benchmark specifically designed to test an LLM evaluator’s ability to discern instruction-following
outputs. The benchmark consists of 419 manually curated pairs of outputs, where one output adheres
to instructions and the other, while potentially more engaging or deceptive, does not. Li et al. (2024)
propose a method to evaluate instruction following ability via verbalizer manipulation. Specifically,
they modify the classification task labels with different verbalizers which may or may not be seman-
tically relevant to the task. They observe that all models fail to follow instructions when they instruct
the model to flip the labels (unnatural setting). They evaluate the framework on mostly traditional
NLP tasks like Sentiment Analysis, textual entailment etc.
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Our work builds upon these efforts by developing a benchmark that allows for easy verification of
both task performance and instruction-following capabilities simultaneously. We augment existing
knowledge benchmarks by creating instructions that are conditional on answering the QA-based
knowledge task correctly. We also include instructions that are applied on the candidate space of
answers provided in these knowledge tasks. Our approach of applying instructions on knowledge
tasks provides an easy way of measuring performance. Further, it also allows us to study the inter-
actions between knowledge and instruction following, and to investigate whether instructions serve
as distractors for the original knowledge task when the instructions should result in no change to the
original answer of the knowledge task.

3 INSTRUCTION-FOLLOWING EVALUATION DATASET

We now describe the process for creating our evaluation dataset.

Design Principles: We develop our instructions keeping the following design principles in mind: (i)
We would like instructions to be unambiguous and be presented in a way that can be communicated
clearly - if humans cannot follow the instructions and agree on the same output, LLMs should and
likely would not be able to. (ii) We would like them to be easy to follow and not require complex
reasoning abilities to follow so that models at all scales have a fair chance of success, (iii) The
instructions need to have deterministic outputs that use the original answers of the knowledge-task
or the candidate space of answers, or both, so that they can be evaluated easily with instruction
specific scorers. (iv) We would like our benchmark to be based on a diverse mix of knowledge tasks,
and be easily extensible to new ones.

3.1 KNOWLEDGE AND REASONING TASKS

We select the following knowledge tasks that are commonly used in LLM evaluations as the basis for
our instruction-following benchmark. These datasets involve either binary classification or multiple-
choice-questions (MCQs) spanning different reasoning and problem-solving skills.

(i) MMLUPro (Wang et al., 2024): MMLUPro extends the MMLU dataset to make it more chal-
lenging by a) increasing the number of options from four to ten and b) increasing problem difficulty
by focusing on more reasoning oriented problems. We consider all 14 subjects in the MMLUPro
benchmark. We cap the maximum number of samples for each subject to be 150 samples.

(ii) MathQA (Amini et al., 2019): MathQA dataset consists of math word problems presented as
Multiple-Choice-Questions (MCQs). Given a math question and four options, the model has to
select the correct answer.

We also select a few common-sense and reasoning datasets:

(iii) BoolQ (Clark et al., 2019): BoolQ is a boolean question-answering dataset. Given a passage
and a boolean question around the passage, the model has to select either True or False.

(iv) PIQA (Bisk et al., 2020): Physical Interaction: Question Answering (PIQA) involves answering
questions that involve commonsense reasoning around physical objects. Given a question and two
options, the model has to select the most plausible option.

(v) Winogrande (Sakaguchi et al., 2021): Winogrande involves a fill-in-the-blank task with binary
options, the model has to select the correct option for a given sentence. The task involves reasoning
for pronoun resolution.

We select a subset of 1500 samples randomly from each of the above datasets.

3.2 INSTRUCTION CATEGORIES

Unlike datasets that require open-ended generation for answering, our selected tasks have a struc-
tured answer-space. This allows us to craft instructions using these answer-spaces in a way that can
be verified easily. We define the following instruction categories.
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Table 2: Categories of instructions and the number of instances of each in the Full and Lite subsets.

Instruction Group Name Definition # Instances
Full Lite

String Manipulation

alternate case correct answer Print the text corresponding to the correction candidate
answer of knowledge task in alternate case 7867 950

capitalize correct answer Print the text corresponding to the correct candidate answer
of the knowledge task in upper case. 7867 950

reverse correct answer alternate case Reverse the text corresponding to the correct candidate answer
of the knowledge task and print it in alternate case. 9573 1383

reverse correct answer Print the text corresponding to the correct answer in reverse 7868 951

Format Correct Answer
numformat numeric answer Apply a specified decimal formatting the correct answer if it

a is numeric quantity, otherwise print the correct answer as is. 11336 1600

print correct answer in words If the correct answer is a numeric quantity, display the numeric
quantity in words, otherwise print the correct answer as is. 9874 1320

print correct answer append string Append a pre-specified string to the text associated with the correct
candidate answer. 7867 950

Operations on List
(Conditional on Correct

Answer)

increment incorrect numeric answers by one
If the candidate answer values are numeric quantities
increment them by one and show them as a list.
Other value types are not modified.

7117 825

sort only incorrect answers Sort the candidate answers that are incorrect in ascending
order 7867 950

use incorrect options to create string
Sort the incorrect candidates in ascending order and
take the last character of the text associated with each incorrect
option to create a string

7868 951

Operations on List sort options to create string
Sort all candidate answers in ascending order and use the last
character of the text associated with each incorrect candidate
to create a string.

7867 950

Numeric Manipulation increment correct numeric answer by one If the correct answer is a numeric quantity, increment it by one,
otherwise print the correct answer as is. 9757 1352

(i) String Manipulation: This operation involves manipulating the characters within the correct
answer. We apply simple transformations like changing the case of the answer text or reversing the
answer text, etc.

(ii) Format Correct Answer: This operation involves displaying the correct answer in the specified
format. This involves printing any numeric answers in words or appending a string to the correct
answer, etc.

(iii) Numeric Manipulation: This instruction involves incrementing a numeric quantity by one
and has no effect on non-numeric answer text.

(iv) Operations on list (Conditional): This operation involves conditionally manipulating the
candidate answer space – for instance, incrementing incorrect answers by one, sorting the incorrect
answers, etc.

(v) Operations on list: These are simple instructions that do not depend on the correct answer
of the original knowledge tasks. Examples, include - sorting all candidate options, concatenating
characters from each candidate option, etc.

For each instruction category, we create multiple instructions. Table 2 presents the 13 instructions
we have included in our work. The task prompts (instructions) for each of the 13 instruction types
with an example are available in the Appendix (Section A.2).

Instruction Creation: To create each instruction, the authors iteratively refined them until all the
authors had complete agreement in the output when they followed them manually. Examples of
aspects of iterative improvement include - explicitly making clear what is not to be included in the
output, how the output is to be presented, etc. We then asked 2 computer science researchers to
follow and generate the output for 75 instructions across all our instruction types and datasets. We
found that both the researchers were able to follow our instructions successfully and generated the
same response for 93.33% of the instances. The first annotator generated the correct response for
98.67% of the instances, while the second annotator for 94.67% of the instances. Upon analyzing
their responses, we found the only instruction-following error was rounding off the decimal number
when truncating to two decimal places. We also found very few human errors in the annotator’s
response, specifically for instructions like reverse correct answer alternate case on datasets
with long output text such as PIQA.

Answering baseline-instructions: We additionally develop two baseline instructions – (1) printing
the correct answer option1 from the candidate space (print correct answer label), and (2) printing
only the text associated with the correct answer option (print correct answer text).

1We use ‘label’ and ‘option’ interchangeably to denote the candidates in a multiple-choice QA task.
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Instructions with no-effect: Certain instructions may be inapplicable for some knowledge
tasks. For example, in the MathQA dataset, some instances have none of these as the cor-
rect answer and are not numeric. Here, instructions such as numformat numeric answer
or increment correct numeric answer by one will not affect the existing answer of the
knowledge-task. We refer to these instructions as “distractor” instances and expect that in these
instances, models should perform as well as they do on the answering baseline-instructions. We
include details and statistics of such instructions in the Appendix (Section A.4 Tables 7 and 9).

3.3 METRICS

Exact Match: We report the model performance as exact match under two settings - strict and loose.
In the strict setting, we perform basic string parsing (removing beginning and ending whitespaces,
quotations, etc.) and compare the model prediction to the expected output for the applied instruction.

However, we observe that models often make errors when following the primary instruction. These
could be minor copying errors, such as missing a period or comma, or even fixing typos within the
provided options. On the other hand, they could also be instruction following mistakes, where for
instance the option label is added to the response even when the prompt explicitly states otherwise.
Given that we do not expect models to make such mistakes given clear instructions, we use the strict
metric in the majority of our evaluations.

However, we also define a relaxed version of the exact match called loose exact match, allowing for
a Levenshtein distance Levenshtein (1966) of two edit operations between the prediction and ground
truth. Additionally, we also perform whitespace-free matching as part of our loose criterion. Similar
to Zhou et al. (2023b), we consider our loose match as a complement to the strict one.

3.4 BENCHMARK DATASET

We create two versions of our benchmark dataset - ‘Full’ and ‘Lite’ (for lower inference costs).

Full Benchmark: We select a subset of 1500 samples randomly from each datasets and apply each
applicable instruction on the same. For MMLUPro, we consider a subset of 150 samples per subject
and apply each applicable instruction.

Lite Benchmark: We select a subset of 150 samples randomly from the full version created above
for each dataset and apply each applicable instruction on the same. For MMLUPro, we consider a
subset of 25 samples per subject and apply each applicable instruction. Statistics for the above two
versions are available in presented in Table 2 in the appendix. Detailed statistics for each dataset
and the instruction types are provided in the appendix section A.4. Additionally, each benchmark
includes a set of instances when instructions have no effect (called the no-effect subset).

3.4.1 BENCHMARK RANKING

An effective instruction-following model should not only be capable of following a variety of in-
structions across different knowledge-tasks but should also be unaffected by instructions when they
are inapplicable i.e, they should be robust to ‘distractors’. Therefore, we define an overall bench-
mark score for a model as its arithmetic mean of the following:

Exact-Match Score (µEM ): We compute the micro-average of the exact-match scores using all
instances of every instruction type in the benchmark.

Instruction Category Score (IC Score): We compute the micro-average exact-match scores for
every instance per instruction category and then compute the arithmetic mean.

Knowledge Task Subset Score: (KTS Score): We compute the micro-average exact-match scores
for every instance per knowledge-task, and then compute the arithmetic mean.

Exact Match Score on ‘Instructions with no-effect’ (µ
′

EM ): We compute the micro-average of all
instruction instances in the benchmark that have no effect on the original knowledge-task answers
(i.e.) ‘distractors’.
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Table 3: List of Models evaluated on our benchmark.

Small (< 7B parameters) Medium (7− 30B parameters) Large (> 30B parameters) Frontier
Llama-3.2-1B-Instruct (1B) Mistral-7B-Instruct-v0.3 (7B) Qwen2.5-32B-Instruct (32B) Llama-3.1-405B-Instruct (405B)
Qwen2.5-1.5B-Instruct (1.5B) Qwen2.5-7B-Instruct (7B) Llama-3.1-70B-Instruct (70B) GPT-4o-mini-2024-07-18
Llama-3.2-3B-Instruct (3B) Phi-3-small-8k-instruct (7B) Qwen2.5-72B-Instruct (72B) GPT-4o-2024-08-06
Qwen2.5-3B-Instruct (3.0B) Llama-3.1-8B-Instruct (8B)
Phi-3.5-mini-instruct - (3.8B) Gemma-2-9b-it (9B)

Phi-3-medium-4k-instruct (14B)
Qwen2.5-14B-Instruct (14B)
Gemma-2-27b-it (27B)

4 EVALUATION

We present an evaluation on our benchmark using a variety of models and study the following
research questions: (i) Do models display a difference in performance on the two simple baseline
instruction tasks? (ii) Do models display a variation in performance across our different instruction
categories? (iii) Are models robust to, or get distracted by instructions that do not apply to the task?
(iv) Does the size of a model impact its instruction-following capability?

4.1 MODELS AND INFERENCE

We evaluate our benchmark on a range of open instruction-tuned models and parameter sizes. For
ease of presentation, we categorize them based on their parameter count as shown in Table 3. Our
inference code uses vLLM Kwon et al. (2023) for running the evaluations. We use greedy decoding
for generations and bf16 as floating point precision. We generate a maximum of 1024 tokens per
instance. We use A100 80GB GPUs for running inference. We use an instance hosted by a cloud
provider for Llama-3.1-405B-Instruct, while we use OpenAI APIs for GPT4-o and GPT4-o-mini
models.

In all our experiments, we perform zero-shot Chain-of-Thought (CoT) Wei et al. (2024) reason-
ing. Models see the same prompt based on prompt guides for the original knowledge tasks in
lm-evaluation-harness framework Gao et al. (2024) and OpenAI evals.2 We instruct the model to
generate reasoning first and then the answer (See examples in Appendix Section A.2). We write
custom post-processing scripts to extract the model’s answer as described in the next section.

4.2 OUTPUT POST-PROCESSING

All our task prompt templates, as shown in Appendix A.2, explicitly instruct the model to provide
their final response after a ‘Response:’ keyword. As part of our strict evaluation metric (Section
3.3), we search for and extract the response after this keyword while computing the metrics.

However, we observe that models may not always follow this, and can instead generate a wide range
of other keywords (e.g.) ⟨the final answer is, the output is, etc⟩, or no keyword at all. Given the
diverse possible responses, we make a good-faith attempt to capture these patterns as part of our
loose evaluation to classify a wider range of model responses. In our subsequent results, we use the
loose evaluation for error analysis, and denote the specific type of strategy elsewhere.

4.3 RESULTS

We begin this section by first presenting our results on the answering baseline-instructions and then
proceed to our results on instruction-following for the different categories. We then look at the
impact of distractors and knowledge-task characteristics on model performance.

4.3.1 PRINTING THE CORRECT ANSWER

We begin our experiments with the simplest task – given a multiple-choice question with option
labels and their texts, we instruct the models to print the text associated with the correct answer
instead of the answer label. From a knowledge perspective, this task is no harder than selecting the

2https://github.com/openai/simple-evals
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Figure 1: Left: Average exact match performance across all tasks for the print correct answer and
print correct answer label instructions. Right: Knowledge and instruction following (IF) errors
across all tasks for the print correct answer instruction. A lower error is better. Both results shown
using Full Benchmark data. Lite Benchmark results can be found in Appendix Figure 5.

answer label. However, as shown on the left in Figure 1, we observe a significant drop (∼ 20%
on average) in knowledge-task performance when instructing the model to respond with the text
associated with the answer instead of its label. The pattern is consistent for frontier models like
GPT-4o on the Lite Benchmark (Figure 5).

We hypothesize that this drop in performance could, in part, be due to the training process resulting
in models being over-fit to certain input/output task formats, resulting in worse instruction following
for other formats. Some common issues we observed include models outright ignoring the instruc-
tion and continuing to generate labels, or generating only Chain-of-Thought reasoning without a
final answer, missing the output keyword specified in the prompt, etc, reflected by the knowledge
and instruction following errors in Figure 1 on the right.

We observe that the errors decrease as the inherent model capability and size increases. Note that
incorrect answers could correspond to both knowledge and instruction following errors. The figure
also shows that we capture most errors. Figures 26-28 show the error analysis for different model
families, where we observe larger models making fewer errors (20%−80% reduction) for the Llama
and Qwen models. The Phi model family however does not show this trend, calling for a closer look
at their instruction training methodology. Figures 29-32 takes a deep-dive at the error distribution
for each instruction category across model scales. We observe that models make the most errors
on string manipulation tasks, and model scale does little to mitigate this. For the other categories,
errors reduce as the model size increases. Inspired by this, and to further illustrate the challenges
that LLMs face on simple instruction-following, we study their performance when the final output
requires first inferring the correct answer, and then applying operations specified by the instructions
on the correct answer.

4.3.2 ANSWER-CONDITIONED INSTRUCTION PERFORMANCE

We present results from different model scales across our five instruction categories in Figures 2a-2d.
We compare this to their corresponding performance on the baseline task of print correct answer
(PCA).

Small-Scale and Medium-Scale models: We observe a 10%−40% drop in performance compared
to the baseline across all instruction categories (Figures . 2a and 2b). In particular, we notice that
all models struggle on our set of string and numeric manipulation instructions, suggesting a bias
towards certain input/output format instructions (see Figure 24a and 24b for instruction-specific
results for each model).

We further notice that models such as Qwen-2.5-14B and Llama-3.1-8B exhibit good loose evalu-
ation scores for numeric manipulations and formatting the correct answer, but suffer a large drop
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(d) Frontier Models: Lite Benchmark

Figure 2: Performance variation (strict and loose) of exact match scores across the different answer-
conditioned instruction categories (All) from Table 2 compared to corresponding performance on
print correct answer (PCA).

in the corresponding strict evaluation. This difference suggests that these models are able to grasp
the expectations from the instructions, but fail to follow them precisely. Examples of this include
incrementing an answer by 0.1 when asked to increment by one, or only returning the special string
when instructed to append it to the correct answer text, or even adding/missing characters from the
provided options when instructed to return them as is. Finally, all models also find the operations on
list categories to be challenging – where interestingly the performance of models across both sets -
conditional on correct answers vs. not, is similar.

Large-scale and Frontier models: The improved capabilities of these larger models are evident
from the absolute improvement in performance as shown in Figures 2c and 2d. We also observe a
smaller drop in performance between their loose evaluation and strict evaluation scores, reflecting
more precise instruction following. However, the trend of performance deterioration (5% − 40%)
across instructions, compared to their respective baseline knowledge-answering tasks, still persists
in these models, demonstrating opportunities to improve their instruction following.

4.3.3 EFFECT OF PARAMETER SIZE WITHIN A MODEL FAMILY

We report the performance on Full Benchmark for models from the Llama family and Qwen fam-
ily of models in Figures 33 and 34 in the appendix. We observe a consistent pattern of im-
provements in instruction following-ability with increase in model capacity for the Llama fam-
ily. However, this is not the case for Qwen family of models. Specifically, for some instructions
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(b) Lite Benchmark

Figure 3: Impact of distractor instructions on exact match performance across tasks and instructions,
compared to its corresponding print correct answer performance. A drop indicates the model
getting distracted by an inapplicable instruction.
like print correct answer, print correct answer label, sort only incorrect answers the Qwen 1.5B
model outperforms 3B model. Qwen 3B model is better than Qwen 7B and 14B variants for the
print correct answer append string instruction. We consistently see 32B and 72B variants outper-
forming other models by a significant margin.

4.3.4 INSTRUCTIONS AS DISTRACTORS

Our dataset also includes instructions that apply only when certain properties of a knowledge-task
answer are fulfilled. For instance, instructions for incrementing the correct answer by one if numeric,
formatting numeric values, and printing any numeric answers in words, do not apply on tasks with
textual answers. They serve as distractors, and we expect model performance to be unaffected since
these instructions are not applicable and do not alter the original knowledge-task answer.

However, from Figure 3, we observe that there is a 5-20% drop in small, medium, large, and frontier
scale models. In figures 39a, 39b, 39c we report details of how different model families (Llama,
Qwen and Phi) are affected by distractors, at different scales. We find that the Llama family and
Phi of models are extremely distracted by instructions that require reversing and casing text (even
though the instruction is inapplicable on numerical data), and report a drop of nearly 75-78% while
Qwen family of models (at all scales) is relatively robust to such distractors. On the other hand,
distractor instructions that are based on numeric operations lead to a minor drop in performance in
Llama and Qwen models but still affect Phi family of models significantly. While model failures in
the presence of distractors have been studied before (Shi et al., 2023; Feng et al., 2024), to the best
of our knowledge this is the first work to study them in an instruction-following setting.

4.3.5 KNOWLEDGE-TASK CHARACTERISTICS AND INSTRUCTION-FOLLOWING

As seen in Figure 4, the performance drop for models for an instruction category can also be depen-
dent on the nature of the knowledge-task. For instance, models appear to have a larger relative drop
on MathQA as compared to MMLUPro for the numeric manipulation instruction category. Mod-
els also struggle more on string manipulation operations on PIQA - probably because of the long
sentences that are part of answer candidates. Other knowledge-task and model scales have been
presented in Appendix Section A.6.

4.4 BENCHMARK

We report the strict scores of the medium, large and frontier models on the Lite Benchmark in
Table 4. Unsurprisingly, GPT4o model performs the best on our benchmark data while large and
medium-scale models like Llama-3.1 405B, Qwen2.5 72B, and, Qwen2.5 32B models appear to be
better than other openly available models including Llama-3.1-70B-instruct and the Gemma family
of models. We also include the results on the full benchmark in Appendix Table 5. We note that the
ranking of models is largely consistent and that small models are much weaker than larger models.
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(a) Medium Scale Models: Numeric Manipulation
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(b) Frontier Models: Numeric Manipulation

Figure 4: Performance variation (strict and loose) of exact match scores for the Numeric Manipu-
lation instruction category compared to its corresponding performance on print correct answer
(PCA).

Table 4: Performance of the Medium, Large and Frontier Models on our Lite Benchmark - models
ranked in order of performance using the average score (higher is better).

Models µEM
IC

Score
KTS
Score µ

′
EM

Average
Score

GPT-4o-2024-08-06 0.4790 0.4990 0.5543 0.5318 0.5161
Llama-3.1-405B 0.4236 0.4537 0.4920 0.4883 0.4644
Qwen2.5-72B 0.4021 0.4690 0.4548 0.4410 0.4417
Qwen2.5-32B 0.3710 0.4402 0.4311 0.4481 0.4226
Llama-3.1-70B 0.3394 0.3832 0.3946 0.4253 0.3856
GPT-4o-mini-2024-07-18 0.3601 0.3327 0.4299 0.3659 0.3722
Gemma-2-27b 0.3254 0.3673 0.3902 0.3430 0.3565
Qwen2.5-14B 0.2508 0.2996 0.2980 0.3620 0.3026
Phi-3-medium 0.2056 0.2250 0.2512 0.2932 0.2437
Gemma-2-9b 0.1716 0.1952 0.2133 0.3092 0.2223
Qwen2.5-7B 0.1700 0.1860 0.2029 0.2849 0.2109
Llama-3.1-8B 0.1568 0.1996 0.1840 0.2637 0.2010
Phi-3-small 0.1418 0.1535 0.1780 0.1970 0.1676
Mistral-7B 0.0566 0.0786 0.0755 0.1789 0.0974

5 DISCUSSION & CONCLUSION

In this work, we demonstrated how modern LLMs fail to follow simple instructions. We took a
novel approach to studying instruction-following by grounding instructions on existing knowledge
tasks. Our approach has the advantage of being easily extendable for new instruction types and
domains, while also enabling LLM-free evaluations with some degree of automated error analysis.
We demonstrated that not only do models fail to follow simple instructions (e.g.) printing the answer
text instead of the label, but their performance drops further when compound but simple, instructions
are included. Even when instructions that should have no effect on the knowledge-tasks are used,
models at all scales report a drop in performance, though the extent of deterioration varies. As
models are increasingly being viewed as agents and assistants, it is crucial that models have better
guarantees of following user instructions. As our benchmark demonstrates, there is a lot of scope for
improvement and we hope the community finds it helpful in improving the current state-of-the-art.

Lastly, before concluding, we would like to re-emphasize the choice of the strict measure to study
performance - if instructions specify how the task is to be completed then models should not add
extraneous text, respond by rephrasing the question as part of the final response, make copying
errors, etc. The nature of errors made by models as reflected in the difference between loose and
strict scores, the automated error analysis sets and the large amount of unclassified errors highlights
that instruction-tuning of LLMs requires special focus on instruction-following.
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A APPENDIX

We describe how we automatically classify errors in section A.1. We list all instructions with ex-
ample input, ground truth, and expected instruction output in A.2. We the report results on the
Full Benchmark in A.3. The detailed statistics of Full ad Lite Benchmark are presented in A.4.
Section A.5 presents the comparison between model’s performance on print correct answer and
print correct answer labels tasks on the Lite Benchmark. Section A.6 presents performance of dif-
ferent models for each instruction category in comparison with its corresponding performance on
print correct answer (PCA).

A.1 AUTOMATED CLASSIFICATION OF ERRORS

For each instruction in the ‘String Manipulation’, ‘Format Correct Answer’, and ‘Numeric Manipu-
lation’ instruction categories, we create a set of error classes that are based on the incorrect answers
to the original knowledge task and the subsequent application of the instruction on that incorrect
answer. We create ‘instruction-following’ error sets (IFError) and ‘knowledge-error sets’ (Knowl-
edgeError) as follows:

IFError: We inspected some representative model outputs and created a set of errors that LLMs
could plausibly make for each instruction. This set includes errors such as: (i) answering with an
answer label (option) when requiring/using the text, (ii) answering with any candidate answer text
without applying the instruction, (iii) a combination of these, (iv) instruction specific errors based
on these – for example, for the instruction alternate case correct answer such error cases could
include alternate casing starting with a lowercase character (the instruction text explicitly requires
that it start with upper case).

KnowledgeError: For every instruction instance, this set includes: (i) Answering with the incorrect
candidate answer – regardless of whether it is its label or text, (ii) Applying the instruction (when
applicable) on the incorrect candidate answer.

Note that these error sets are not mutually exclusive – a model response to the alternate casing in-
struction that starts with lowercase and is applied on the incorrect answer candidate is an ‘IFError’
as well as a ‘KnowledgeError’. Further, these error sets are meant to be high-precision to aid anal-
ysis and cannot reasonably expected to anticipate and cover everything LLMs might respond with.
Hence, there will be model errors that we cannot classify and we intend to continue to expand the
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benchmark’s error classification capabilities. We would also like to highlight that if models make a
lot of errors that are not classified, it is likely that those are more severe instruction-following errors.

A.2 PROMPTS

We now list the prompts for each instruction and dataset combination defined in our benchmark.

Dataset: Winogrande
Instruction: print correct answer append string

Given a sentence with a blank and 2 options namely ’A’ and ’B’, print the text associated
with the option label that answers the question correctly. Do not print the option label. With-
out including any additional characters, also append the following text string at the end of
the output:’ENDOFRESPONSE’. Do not add any special characters including quotations,
spaces, new lines etc in the response. Think step by step and in the end, finish your response
with ’Response:$RESPONSE’ where $RESPONSE (without quotes) is the final output ex-
pected.
Sentence: It is an article of faith that the paper is more important than the exam , even though
the weighs less heavily on the grade.
Options:
A. paper
B. exam
Ground Truth: A
Instruction Output: Response:paperENDOFRESPONSE

Dataset: Winogrande
Instruction: alternate case correct answer

Given a sentence with a blank and 2 options namely ’A’ and ’B’, answer the question by
printing the text associated with the correct option label in alternate case. The first character
should be in uppercase and the following characters should alternate between lowercase and
uppercase. Do not print the option label. Think step by step and in the end, finish your
response with ’Response:$RESPONSE’ where $RESPONSE (without quotes) is the final
output expected.
Sentence: The wooden doors at my friends work are worse than the wooden desks at my
work, because the material is stronger.
Options:
A. doors
B. desks
Ground Truth: B
Instruction Output: Response:DeSkS
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Dataset: MathQA
Instruction: numformat numeric answer

Given a mathematical question and 5 options namely ’a’, ’b’, ’c’, ’d’, and, ’e’, as candidate
answers, print the text associated with the option label that answers the question correctly.
If the answer is numeric print it in two decimal places as long as it contains no other string
or units of measurement. Do not print the option label. Think step by step and in the end,
finish your response with ’Response:$RESPONSE’ where $RESPONSE (without quotes) is
the final output expected.
Question: a man walking at the rate of 5 km / hr crosses a bridge in 15 minutes . the length
of the bridge ( in meters ) is :
Options:
a. 600
b. 750
c. 1000
d. 1250
e. none of these
Ground Truth: d
Instruction Output: Response:1250.00

Dataset: MathQA
Instruction: sort options to create string

Given a mathematical question and 5 options namely ’a’, ’b’, ’c’, ’d’, and, ’e’, as candidate
answers, sort the list of options using their values, in alphabetical order. Use only the text
associated with the option labels and not the option labels while sorting. Then, create a
string by concatenating the last character of the text associated with each option value. If the
last character is a special character (such as period, comma, quotation, etc) use the previous
character. Print only the final string and not the sorted list. Think step by step and in the end,
finish your response with ’Response:$RESPONSE’ where $RESPONSE (without quotes) is
the final output expected.
Question: marts income is 50 percent more than tims income and tims income is 40 percent
less than juans income . what percentage of juans income is marts income
Options:
a. 124 %
b. 120 %
c. 96 %
d. 90 %
e. 64 %
Ground Truth: d
Instruction Output: Response:40604

Dataset: PIQA
Instruction: reverse correct answer

Given a question and two answer candidates ’A’ and ’B’, answer the question by printing
the text associated with the correct option label, in reverse. Do not print the option label.
Think step by step and in the end, finish your response with ’Response:$RESPONSE’ where
$RESPONSE (without quotes) is the final output expected.
Question: Butcher Shop
Options:
A. will decimate fish from the ocean into digestible pieces
B. will decimate a full cow into digestible pieces
Ground Truth: B
Instruction Output: Response:seceip elbitsegid otni woc lluf a etamiced lliw
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Dataset: PIQA
Instruction: print correct answer

Given a question and two answer candidates ’A’ and ’B’, answer the question by select-
ing the value associated with the option label corresponding to the correct answer. Do not
print the option label. Think step by step and in the end, finish your response with ’Re-
sponse:$RESPONSE’ where $RESPONSE (without quotes) is the final output expected.
Question: how to avoid paint spill when adding paint to your brush
Options:
A. Put a rubber band on your paint can to get rid of that excess glue on your paint brush, this
will prevent spilling paint on the paint stir stick where the lid is.
B. Put a rubber band on your paint can to get rid of that excess glue on your paint brush, this
will prevent spilling paint on the edge where the lid is.
Ground Truth: B
Instruction Output: Response:Put a rubber band on your paint can to get rid of that excess
glue on your paint brush, this will prevent spilling paint on the edge where the lid is.

Dataset: Winogrande
Instruction: use incorrect options to create string

Given a sentence with a blank and 2 options namely ’A’ and ’B’, create a string by concate-
nating the last character of every option value, excluding the option value corresponding to
the correct answer. Use only the text associated with the option labels and not the option
labels while sorting. If the last character is a special character (such as period, comma,
quotation, etc) use the previous character. Think step by step and in the end, finish your
response with ’Response:$RESPONSE’ where $RESPONSE (without quotes) is the final
output expected.
Sentence: Fiction books were interesting and easy to read for Logan but not Brett because
enjoyed real tales.
Options:
A. Logan
B. Brett
Ground Truth: B
Instruction Output: Response:n

Dataset: PIQA
Instruction: reverse correct answer alternate case

Given a question and two answer candidates ’A’ and ’B’, reverse the text associated with
the answer label that correctly answers the question. Print this reversed text in alternate case
starting with upper case. Do not print the option label. Think step by step and in the end,
finish your response with ’Response:$RESPONSE’ where $RESPONSE (without quotes) is
the final output expected.
Question: What else should I add to a peanut butter sandwich?
Options:
A. Take some pasta sauce and put it onto the other piece of bread with a knife.
B. Take some jelly and put it onto the other piece of bread with a knife.
Ground Truth: B
Instruction Output: Response:.EfInK A HtIw dAeRb fO EcEiP ReHtO EhT OtNo tI TuP
DnA YlLeJ EmOs eKaT
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Dataset: Winogrande
Instruction: use options to create string

Given a sentence with a blank and 2 options namely ’A’ and ’B’, create a string by concate-
nating the last character of every option value (not option label). If the last character is a
special character (such as period, comma, quotation, etc) use the previous character. Think
step by step and in the end, finish your response with ’Response:$RESPONSE’ where $RE-
SPONSE (without quotes) is the final output expected.
Sentence: Megan focused less on proper posture than Lindsey because wanted to become
a model.
Options:
A. Megan
B. Lindsey
Ground Truth: B
Instruction Output: Response:ny

Dataset: MathQA
Instruction: print correct answer label

Given a mathematical question and 5 options namely ’a’, ’b’, ’c’, ’d’, and, ’e’, as candidate
answers, answer the question by selecting the option label corresponding to the correct an-
swer. Do not include the text associated with the option label in the answer. Think step by
step and in the end, finish your response with ’Response:$RESPONSE’ where $RESPONSE
(without quotes) is the final output expected.
Question: a reduction of 20 % in the price of salt enables a lady to obtain 2 kgs more for rs
. 100 , find the original price per kg ?
Options:
a. 12.6
b. 12.1
c. 12.5
d. 12.4
e. 12.7
Ground Truth: c
Instruction Output: Response:c

Dataset: PIQA
Instruction: increment correct numeric answer by one

Given a question and two answer candidates ’A’ and ’B’, print the text associated with the
option label that answers the question correctly. Note that if the correct answer is a numeric
quanity, including dollar values and percentages but contains no other string or units of
measurement, print the value after increasing its value by 1. Dollar values should be prefixed
with ’$’. Do not print the option label. Think step by step and in the end, finish your
response with ’Response:$RESPONSE’ where $RESPONSE (without quotes) is the final
output expected.
Question: how to winterize windows
Options:
A. put weather stripping around them to stop air from escaping and air from coming in
B. put weather stripping around them to stop air from escaping and air from coming into the
dishwasher
Ground Truth: A
Instruction Output: Response:put weather stripping around them to stop air from escaping
and air from coming in
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Dataset: MathQA
Instruction: sort only incorrect answers

Given a mathematical question and 5 options namely ’a’, ’b’, ’c’, ’d’, and, ’e’, as candidate
answers, excluding the option that answers the question correctly, print a sorted list (ascend-
ing order) of the incorrect options. Do not print the option labels. Use the text associated
with the option labels and not the option labels while sorting and printing. Think step by
step and in the end, finish your response with ’Response:$RESPONSE’ where $RESPONSE
(without quotes) is the final output expected.
Question: the sector of a circle has radius of 21 cm and central angle 108 o . find its perime-
ter ?
Options:
a. 81.6 cm
b. 85.9 cm
c. 90 cm
d. 92 cm
e. 95 cm
Ground Truth: a
Instruction Output: Response:[’85.9 cm’, ’90 cm’, ’92 cm’, ’95 cm’]

Dataset: PIQA
Instruction: print correct answer in words

Given a question and two answer candidates ’A’ and ’B’, print the text associated with the
option label that answers the question correctly. However, if the correct answer is a numeric
value with no additional text (including percentages, currency, units of measurement etc),
print the numeric answer in words. For example, if the answer is ’32’ print ’thirty-two’
without quotes. Do not print the option label. Think step by step and in the end, finish your
response with ’Response:$RESPONSE’ where $RESPONSE (without quotes) is the final
output expected.
Question: How do I make the pattern for the baby leather shoes?
Options:
A. Create a template on a piece of paper by placing your babies shoe on the paper and
drawing around it.
B. Create a template on a piece of paper by placing your babies foot on the paper and drawing
around it.
Ground Truth: A
Instruction Output: Response:Create a template on a piece of paper by placing your babies
shoe on the paper and drawing around it.
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Dataset: BoolQ
Instruction: increment incorrect numeric answers by one

Given a passage and a boolean question, and the possible answer candidates ’A’ or ’B’, print
the list of incorrect answers (not the answer label). Increase each value by 1 while printing
if it is a numeric quanity including dollar values, percentages but contains no other string
or units of measurement. Do not print the option labels. Think step by step and in the end,
finish your response with ’Response:$RESPONSE’ where $RESPONSE (without quotes) is
the final output expected.
Passage: A Star Is Born is an upcoming American musical romantic drama film produced
and directed by Bradley Cooper, in his directorial debut. Cooper also wrote the screenplay
with Will Fetters and Eric Roth. A remake of the 1937 film of the same name, it stars
Cooper, Lady Gaga, Andrew Dice Clay, Dave Chappelle, and Sam Elliott, and follows a
hard-drinking country musician (Cooper) who discovers and falls in love with a young singer
(Gaga). It marks the third remake of the original 1937 film (which featured Janet Gaynor
and Fredric March), which was adapted into a 1954 musical (starring Judy Garland and
James Mason) and then remade as a 1976 rock musical with Barbra Streisand and Kris
Kristofferson.
Question: is bradley cooper a star is born a remake
Options:
A. True
B. False
Ground Truth: A
Instruction Output: Response:[’False’]

Dataset: PIQA
Instruction: capitalize correct answer

Given a question and two answer candidates ’A’ and ’B’, answer the question by printing
the text associated with the correct option label in uppercase. Do not print the option label.
Think step by step and in the end, finish your response with ’Response:$RESPONSE’ where
$RESPONSE (without quotes) is the final output expected.
Question: wool
Options:
A. can be used to line cookie tins
B. can be used to line pants
Ground Truth: B
Instruction Output: Response:CAN BE USED TO LINE PANTS

A.3 FULL BENCHMARK LEADERBOARD

We report strict scores of the small, medium, and, large models on the Full Benchmark in Table
5. We observe that Qwen2.5 72B and 32B variants outperforms all other models. Llama-3.1 70B
is ranked third with a significant gap between the second best model Qwen2.5 32B. There is a
significant drop in performance as the parameter size decreases.

A.4 ADDITIONAL BENCHMARK STATISTICS

The following sections reports detailed statistics for the Full and Lite Benchmark. We report statis-
tics for both instruction following and Instructions with no-effect subsets. We observe that for some
dataset (knowledge tasks) and instruction combinations, the corresponding entries are zero indicat-
ing that there is no single instance where the instruction gets applied (Instructions with no-effect) or
there is no single instance where the instruction doesn’t get applied (instruction follow subset).
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Table 5: Performance of the Small, Medium, and Large Models on our Full Benchmark - models
ranked in order of performance using the average score (higher is better).

Models µEM
IC

Score
KTS
Score µ

′
EM

Average
Score

Qwen2.5-72B 0.4157 0.4827 0.4343 0.4697 0.4506
Qwen2.5-32B 0.3822 0.4501 0.4108 0.4846 0.4319
Llama-3.1-70B 0.3389 0.3532 0.3582 0.4623 0.3781
Gemma-2-27b 0.3392 0.3589 0.3727 0.3947 0.3664
Qwen2.5-14B 0.2545 0.2803 0.2767 0.3932 0.3012
Phi-3-medium 0.2013 0.1835 0.2167 0.3406 0.2355
Gemma-2-9b 0.1633 0.1583 0.1850 0.3409 0.2119
Qwen2.5-7B 0.1658 0.1515 0.1753 0.3366 0.2073
Llama-3.1-8B 0.1460 0.1741 0.1573 0.2927 0.1925
Phi-3-small 0.1352 0.1171 0.1568 0.2129 0.1555
Phi-3.5-mini 0.0883 0.0967 0.0932 0.1397 0.1045
Llama-3.2-3B 0.0704 0.0571 0.0780 0.1632 0.0922
Mistral-7B 0.0458 0.0541 0.0543 0.2093 0.0909
Qwen2.5-3B 0.0663 0.0704 0.0725 0.1090 0.0796
Qwen2.5-1.5B 0.0382 0.0347 0.0436 0.1223 0.0597
Llama-3.2-1B 0.0039 0.0037 0.0041 0.0184 0.0075
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A.5 PRINTING THE CORRECT ANSWER

We present the comparison between model’s performance on print correct answer and print correct
answer labels tasks on the Lite Benchmark in Table 5. We observe that all models show a drop in
performance when instructed to print correct answer instead of the label.
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Figure 5: Lite Benchmark: Performance of LLMs on Printing the correct answer task and
error comparison. PCA refers to print correct answer instruction and PCA label refers to
print correct answer label.

A.6 KNOWLEDGE-TASK CHARACTERISTICS AND INSTRUCTION-FOLLOWING

We now present performance of different models for each instruction category in comparison with
its corresponding performance on print correct answer (PCA). The patterns remains consistent.
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Figure 6: Small Scale Models: Performance variation (strict and loose) of exact match scores
for the Numeric Manipulation instruction category compared to its corresponding performance on
print correct answer (PCA).
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Figure 7: Large-Scale Models: Performance variation (strict and loose) of exact match scores
for the Numeric Manipulation instruction category compared to its corresponding performance on
print correct answer (PCA).

A.7 INSTRUCTION SPECIFIC RESULTS

In this section, we report results at the individual instruction level across knowledge tasks.

A.8 ERROR CLASSIFICATION

A.8.1 INFLUENCE OF PARAMETER SIZE

We report the performance on Full Benchmark for models from the Llama family and Qwen
family of models (Figures 33 and 34). We observe a consistent pattern of improvements
in instruction following-ability with increase in model capacity for the Llama family. How-
ever, this is not the case for Qwen family of models. Specifically, for some instructions
like print correct answer, print correct answer label, sort only incorrect answers the Qwen 1.5B
model outperforms 3B model. Qwen 3B model is better than Qwen 7B and 14B variants for the
print correct answer append string instruction. We consistently see 32B and 72B variants outper-
forming other models by a significant margin.

A.9 INFLUENCE OF DISTRACTORS
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Figure 8: Small-Scale Models: Performance variation (strict and loose) of exact match scores
for the String Manipulation instruction category compared to its corresponding performance on
print correct answer (PCA).
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Figure 9: Medium-Scale Models: Performance variation (strict and loose) of exact match scores
for the String Manipulation instruction category compared to its corresponding performance on
print correct answer (PCA).
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Figure 10: Large-Scale Models: Performance variation (strict and loose) of exact match scores
for the String Manipulation instruction category compared to its corresponding performance on
print correct answer (PCA).
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Figure 11: Frontier Models: Performance variation (strict and loose) of exact match scores
for the String Manipulation instruction category compared to its corresponding performance on
print correct answer (PCA).
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Figure 12: Small-Scale Models: Performance variation (strict and loose) of exact match scores
for the Format Correct Answer instruction category compared to its corresponding performance on
print correct answer (PCA).
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Figure 13: Medium-Scale Models: Performance variation (strict and loose) of exact match scores
for the Format Correct Answer instruction category compared to its corresponding performance on
print correct answer (PCA).
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Figure 14: Large-Scale Models: Performance variation (strict and loose) of exact match scores
for the Format Correct Answer instruction category compared to its corresponding performance on
print correct answer (PCA).
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Figure 15: Frontier-Scale Models: Performance variation (strict and loose) of exact match scores
for the Format Correct Answer instruction category compared to its corresponding performance on
print correct answer (PCA).
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Figure 16: Small-Scale Models: Performance variation (strict and loose) of exact match scores
for the Operations on List instruction category compared to its corresponding performance on
print correct answer (PCA).
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Figure 17: Medium-Scale Models: Performance variation (strict and loose) of exact match scores
for the Operations on List instruction category compared to its corresponding performance on
print correct answer (PCA).
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Figure 18: Large-Scale Models: Performance variation (strict and loose) of exact match scores
for the Operations on List instruction category compared to its corresponding performance on
print correct answer (PCA).
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Figure 19: Frontier Models: Performance variation (strict and loose) of exact match scores
for the Operations on List instruction category compared to its corresponding performance on
print correct answer (PCA).

31



1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685

Under review as a conference paper at ICLR 2025

Strict (All) Strict (PCA) Loose (All) Loose (PCA)
0.0

0.5

1.0
Ex

ac
t M

at
ch

0.
01

0.
01 0.

15 0.
28

0.
08

0.
39

0.
28 0.

39

0.
01

0.
03

0.
43 0.

53

0.
12

0.
11 0.

36

0.
120.
21 0.
23 0.
25 0.
30

BoolQ

Strict (All) Strict (PCA) Loose (All) Loose (PCA)
0.0

0.5

1.0

Ex
ac

t M
at

ch

0.
00 0.
02

0.
00 0.
06

0.
00 0.
06

0.
00 0.

12

0.
00 0.
06

0.
03 0.
10

0.
00 0.

11

0.
01 0.

18

0.
01 0.

14

0.
04 0.

28

MMLUPro

Strict (All) Strict (PCA) Loose (All) Loose (PCA)
0.0

0.5

1.0

Ex
ac

t M
at

ch

0.
00 0.
04

0.
00 0.

14

0.
01 0.

19

0.
05

0.
39

0.
03

0.
55

0.
22

0.
68

0.
05

0.
44

0.
10

0.
58

0.
10

0.
48

0.
25

0.
72

MathQA

Strict (All) Strict (PCA) Loose (All) Loose (PCA)
0.0

0.5

1.0

Ex
ac

t M
at

ch

0.
00

0.
00 0.
06 0.
110.
19

0.
45

0.
46

0.
46

0.
03 0.

19 0.
35 0.
40

0.
13 0.

37

0.
22 0.

38

0.
18

0.
60

0.
30

0.
62

Winogrande

Strict (All) Strict (PCA) Loose (All) Loose (PCA)
0.0

0.5

1.0

Ex
ac

t M
at

ch

0.
00

0.
00 0.
02

0.
000.

09

0.
01 0.

21

0.
03

0.
01 0.
05 0.
10 0.

28

0.
07 0.
15 0.

26

0.
52

0.
04 0.

13 0.
16

0.
42

Piqa

Llama-3.2-1B
Qwen2.5-1.5B
Qwen2.5-3B
Llama-3.2-3B
Phi-3.5-mini

Figure 20: Small-Scale Models: Performance variation (strict and loose) of exact match scores
for the Operations on List (Conditional) instruction category compared to its corresponding perfor-
mance on print correct answer (PCA).
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Figure 21: Medium-Scale Models: Performance variation (strict and loose) of exact match scores
for the Operations on List (Conditional) instruction category compared to its corresponding perfor-
mance on print correct answer (PCA).
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Figure 22: Large-Scale Models: Performance variation (strict and loose) of exact match scores
for the Operations on List (Conditional) instruction category compared to its corresponding perfor-
mance on print correct answer (PCA).
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Figure 23: Frontier Models: Performance variation (strict and loose) of exact match scores for the
Operations on List (Conditional) instruction category compared to its corresponding performance
on print correct answer (PCA).
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Figure 24: Performance variation of exact match scores on individual instructions across models on
Full Benchmark
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Figure 25: Performance variation of exact match scores on individual instructions across models on
Lite Benchmark
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Figure 26: Llama model family: Knowledge Errors and IFErrors
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Figure 27: Qwen model family: Knowledge Errors and IFErrors
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Figure 28: Phi model family: Knowledge Errors and IFErrors
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Figure 29: Small Scale Models: Knowledge Errors and IFErrors
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Figure 30: Medium Scale Models: Knowledge Errors and IFErrors
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Figure 31: Large Scale Models: Knowledge Errors and IFErrors
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Figure 32: Frontier Models: Knowledge Errors and IFErrors
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Figure 33: Performance variation (strict) of exact match scores for different instruction categories
for Llama family of models
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Figure 34: Performance variation (strict) of exact match scores for different instruction categories
for Qwen family of models
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Figure 35: Performance variation (strict) of exact match scores for different instruction categories
for Phi family of models
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Figure 36: Performance variation (strict) of exact match scores for different instruction categories
for Llama family of models on No Instruction following subset
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Figure 37: Performance variation (strict) of exact match scores for different instruction categories
for Qwen family of models on No Instruction following subset
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Figure 38: Performance variation (strict) of exact match scores for different instruction categories
for Phi family of models on No Instruction following subset
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(a) Distractors on Llama Family of Models
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(b) Distractors on Qwen Family of Models
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(c) Distractors on Phi Family of Models
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