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Abstract
Recent years have witnessed the proliferation001
of offensive content online such as fake news,002
propaganda, misinformation, and disinforma-003
tion. While initially this was mostly about004
textual content, over time images and videos005
gained popularity, as they are much easier to006
consume, attract more attention, and spread fur-007
ther than simple text. As a result, researchers008
started leveraging different modalities and com-009
binations thereof to combat online multimodal010
offensive content. In this study, we offer a sur-011
vey that carefully studies the state-of-the-art012
on multimodal disinformation detection cover-013
ing various combinations of modalities: text,014
images, speech, video, social media network015
structure, and temporal information. Moreover,016
while some studies focused on factuality, others017
investigated how harmful the content is. While018
these two components in the definition of disin-019
formation – (i) factuality, and (ii) harmfulness,020
are equally important, they are typically stud-021
ied in isolation. Thus, we argue for the need to022
tackle disinformation detection by taking into023
account multiple modalities as well as both fac-024
tuality and harmfulness, in the same framework.025
Finally, we discuss current challenges and fu-026
ture research directions.027

1 Introduction028

The proliferation of online social media has en-029

couraged individuals to freely express their opin-030

ions and emotions. On one hand, the freedom of031

speech has led to a massive growth of online con-032

tent which, if systematically mined, can be used033

for citizen journalism, public awareness, political034

campaigning, etc. On the other hand, its misuse035

has given rise to the proliferation of hostility online036

(Brooke, 2019; Joksimovic et al., 2019), resulting037

in offensive content in the form of fake news, hate038

speech (Schmidt and Wiegand, 2017a; Davidson039

et al., 2017), propaganda (Da San Martino et al.,040

2019), cyberbullying (Van Hee et al., 2015), etc.041

Indeed, researchers have argued that this situation042

has set the dawn of the Post-Truth Era, dominated 043

by emotions and “alternative facts” (Lewandowsky 044

et al., 2017; Cooke, 2018; Nakov and Da San Mar- 045

tino, 2020). More recently, with the emergence of 046

the COVID-19 pandemic, a new blending of med- 047

ical and political false information has given rise 048

to the first global infodemic (Paka et al., 2021a; 049

Zarocostas, 2020; Patwa et al., 2021).1 050

The term “fake news” is commonly used, e.g., 051

it was declared Word of the Year 2017 by Collins 052

dictionary. Yet, it is very generic, and misleads 053

people to focus only on veracity. That is why in- 054

ternational organizations such as the UN, WHO, 055

EU, and NATO prefer the term disinformation (Ire- 056

ton and Posetti, 2018), which refers to information 057

that is (i) fake and also (ii) spreads deliberately 058

to deceive and harm others. The latter aspect of 059

the disinformation (i.e., harmfulness) is often ig- 060

nored, but it is equally important. A related term 061

is misinformation, which also refers to false con- 062

tent, but lacks the underlying intention to do harm. 063

This is illustrated by the definitions of these no- 064

tions by First Draft,2 (Ireton and Posetti, 2018) 065

where misinformation is defined as “unintentional 066

mistakes such as inaccurate photo captions, dates, 067

statistics, translations, or when satire is taken se- 068

riously”, while disinformation is “fabricated or 069

deliberately manipulated textual/speech/visual con- 070

text, and also intentionally created conspiracy the- 071

ories or rumors”. 072

In our survey, we will focus on disinformation, 073

and we will study both the factuality and harmful- 074

ness aspects of the problem, with focus on different 075

modalities. Note that there are posts that can be 076

harmful but factually true or non-factual but harm- 077

ful (e.g., hate speech); our study also covers some 078

related work on them. The term factuality refers to 079

automatically evaluating the solidity of the report- 080

1https://www.who.int/health-topics/infodemic
2http://firstdraftnews.org/wp-content/uploads/2018/07/

Types-of-Information-Disorder-Venn-Diagram.png

1

https://www.who.int/health-topics/infodemic
http://firstdraftnews.org/wp-content/uploads/2018/07/Types-of-Information-Disorder-Venn-Diagram.png
http://firstdraftnews.org/wp-content/uploads/2018/07/Types-of-Information-Disorder-Venn-Diagram.png


ing/social media statements in terms of facts and081

figures (Ireton and Posetti, 2018). The harmfulness082

or harmful content typically refers to “anything083

online which causes a person distress or harm”.3084

Figure 2, in Appendix, gives examples of such con-085

tent. Alam et al. (2021) addressed both aspects of086

disinformation using social media content related087

to the COVID-19 infodemic. They demonstrated088

a correlation between factuality and harmfulness,089

which varies across languages even in the same090

country, e.g., for Arabic, 56% of the false content091

was harmful, while for English, it was 24%.092

Disinformation often spreads as text. However,093

Internet and social media allow the use of differ-094

ent modalities, which can make a disinformation095

message attractive as well as impactful, e.g., a096

meme or a video is much easier to consume, at-097

tracts much more attention, is perceived as more098

credible (Hameleers et al., 2020), spreads further099

than simple text (Zannettou et al., 2018), and can100

be weaponized (Olsen, 2018).101

Notably, multimodality remains under-explored102

in disinformation detection. Bozarth and Budak103

(2020) performed a meta-review of 23 fake news104

models and the data modality they leveraged, and105

found that 91.3% used text, 47.8% looked into106

social media network structure, 26% relied on tem-107

poral data, and only a handful made use of images108

or videos. Moreover, while there has been research109

on trying to detect whether an image or a video110

has been manipulated, the attempt is less in a truly111

multimodal setting (Hirschberg et al., 2005; Pérez-112

Rosas et al., 2015; Tan et al., 2020).113

Here we survey research on multimodal disin-114

formation detection covering various combinations115

of modalities: text, images, speech, video, social116

media network structure, and temporal information.117

The data sources include social media (e.g., Twitter,118

Reddit, WhatsApp), news, video recordings (e.g.,119

courtroom trials), and TV shows. We further ar-120

gue for the need to cover multiple modalities in the121

same framework, while taking both factuality and122

harmfulness into account.123

While there have been a number of surveys on124

“fake news” (Shu et al., 2017; Kumar and Shah,125

2018; Cardoso Durier da Silva et al., 2019; Zhou126

and Zafarani, 2020), misinformation (Islam et al.,127

2020), fact-checking (Thorne and Vlachos, 2018;128

Kotonya and Toni, 2020a), truth discovery (Li et al.,129

2016), rumour detection (Bondielli and Marcelloni,130

3https://swgfl.org.uk/services/report-harmful-content/

2019) and propaganda detection (Martino et al., 131

2020), none of them had multimodality as the main 132

focus. Moreover, they targeted either factuality 133

(most surveys above), or harmfulness (the latter sur- 134

vey), but not both. Here, we aim to bridge this gap. 135

Therefore, in the present survey, we analyze the lit- 136

erature covering various aspects of multimodality 137

(text, image, speech, video, network, and tempo- 138

ral), with a focus on the two aspects of disinforma- 139

tion: factuality and harmfulness, as illustrated in 140

Figure 1. Section 4 presents the modeling details. 141

We discuss the major challenges (Section 5 and 142

Section F in Appendix) that lie ahead, forecasting 143

about the likely future development (Section 6), 144

and the lessons learned (Section E in Appendix). 145

Figure 1: Our envision of multimodality to interact with
harmfulness and factuality in this survey.

2 Multimodal Factuality Prediction 146

In this section, we focus on the first aspect of dis- 147

information – factuality. Automatic detection of 148

factual claims is important to debunk the spread 149

of misleading information, as it is crucial to de- 150

tect the factuality of statements that can mislead 151

people. A large body of work has been devoted to 152

fact-checking textual claims but such claims are of- 153

ten expressed and disseminated together with other 154

modalities such as images, speech, and video, and 155

are further propagated through social networks. We 156

summarize relevant studies that explore all modali- 157

ties, as shown in Appendix, Table 1. 158

2.1 Text 159

Due to the availability of large amounts of textual 160

content, research on the text modality is compar- 161

atively richer than for other modalities. Notable 162

work in this direction covers fake news spread on 163
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social media (Vosoughi et al., 2018a), fake news164

and fact-checking on news media (Rashkin et al.,165

2017), fact-checking such as fact-checked URL166

recommendation model (Vo and Lee, 2018) to re-167

duce the spread, fact-checking with stance detec-168

tion (Baly et al., 2018b), factuality of media out-169

lets (Baly et al., 2020, 2018a), generating justifica-170

tions for verdicts on claims (Atanasova et al., 2020),171

and fact-checking claims from Wikipedia (Sathe172

et al., 2020). There have also been recent efforts for173

fact-checking from political debates (Shaar et al.,174

2020, 2021a,b), fact-checking with evidence rea-175

soning (Si et al., 2021; Jiang et al., 2021; Wan176

et al., 2021) and fact-checking by claim matching177

(Kazemi et al., 2021). Given that there have been178

surveys on the text modality for fake news/disinfor-179

mation detection and fact-checking, here we will180

not go in more detail about individual studies.181

2.2 Image182

Textual with visual content (e.g., images) in so-183

cial media is more prominent as it is more intuitive;184

thus, it is easier to consume, it spreads faster, it gets185

18% more clicks, 89% more likes, and 150% more186

retweets (Zhang et al., 2018). Due to the growing187

number of claims disseminated with images, in the188

current literature, there have been various studies189

that address the visual content with text for predict-190

ing misleading information (Volkova et al., 2019),191

fake images (Gupta et al., 2013), images shared192

with misinformation in political groups (Garimella193

and Eckles, 2020), and fauxtography (Zhang et al.,194

2018; Wang et al., 2021). Some of these studies195

attempt to understand how two different modalities196

are used. Their analyses show that the extension197

of text with images increases the effectiveness of198

misleading content.199

Gupta et al. (2013) highlighted the role of Twit-200

ter to spread fake images. This study reports that201

86% tweets spreading fake images are retweets.202

Garimella and Eckles (2020) manually annotated203

a sample of 2,500 images collected from public204

WhatsApp groups, and labeled them as misinforma-205

tion, not misinformation, misinformation already206

fact-checked, and unclear; however, experiments207

were conducted with binary labels: misinformation208

vs. not-misinformation. The authors found that209

violent and graphic images spread faster. Naka-210

mura et al. (2020) developed a multimodal dataset211

containing 1M posts including text, images, meta-212

data, and comments collected from Reddit. The213

dataset was labeled with 2, 3, and 6-ways labels. 214

Volkova et al. (2019) proposed models for detecting 215

misleading information using images and text. 216

Fauxtography is defined as “visual images, es- 217

pecially news photographs, which convey a ques- 218

tionable (or outright false) sense of the events they 219

seem to depict” (Cooper, 2007). It is also com- 220

monly used in social media in different forms such 221

as a fake image with false claims, a true image with 222

false claims. In the context of social media Zhang 223

et al. (2018) defined that “a post is a fauxtogra- 224

phy if the image of the post (i) directly supports a 225

false claim, or (ii) conveys misinformation of a true 226

claim.” An example of such a social media post is 227

shown in Figure 2. Zhang et al. (2018) developed 228

FauxBuster to detect fauxtographic social media 229

content, which uses social media comments in ad- 230

dition to the content in the images and the texts. 231

Zlatkova et al. (2019) investigated the factuality of 232

claims with respect to images and compared the per- 233

formance of different feature groups between text 234

and images. Wang et al. (2021) analyzed fauxtog- 235

raphy images in social media posts and found that 236

posts with doctored images increase user engage- 237

ment in the form of re-shares, likes, and comments, 238

specifically in Twitter and Reddit. They pointed 239

out that doctored images are often used as memes 240

to mislead or as a means of satire, and that they 241

have a ‘clickbait’ power to drive engagement. 242

2.3 Speech/Audio 243

There have been attempts to use acoustic signals 244

to predict the factuality of claims in political de- 245

bates (Kopev et al., 2019; Shaar et al., 2020), left- 246

center-right bias in YouTube channels (Dinkov 247

et al., 2019), and deception in speech (Hirschberg 248

et al., 2005). Kopev et al. (2019) found that the 249

acoustic signal helps in improving the performance 250

compared to using only textual and metadata fea- 251

tures. Similarly, Dinkov et al. (2019) reported that 252

the use of speech signal improves the performance 253

of the system for detecting the political bias (i.e., 254

left, center, right) of Youtube channels. More- 255

over, a large body of work was done on deception 256

detection using the acoustic signal. Hirschberg 257

et al. (2005) created the Columbia-SRI-Colorado 258

(CSC) corpus by eliciting within-speaker deceptive 259

and non-deceptive speech. Their experiments con- 260

sist of the use of acoustic, prosodic, and a variety 261

of lexical features including 68 LIWC categories, 262

filled pauses, and paralinguistic information (e.g., 263
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speaker information, gender, field-pause ). Using264

the same corpus, an evaluation campaign was or-265

ganized, where different multimodal approaches266

were proposed, such as fusion of different acoustic,267

prosodic, lexical, and phonotactics representations268

(Levitan et al., 2016; Kaya and Karpov, 2016).269

2.4 Video270

In addition to textual, imagery, and speech content,271

the information in video plays an important role in272

capturing cues of deceptive behavior. Such cues273

in videos (e.g., facial expression, gestures) have274

been investigated in several studies (Pérez-Rosas275

et al., 2015; Krishnamurthy et al., 2018; Soldner276

et al., 2019) for deception detection. Pérez-Rosas277

et al. (2015) developed a real-life courtroom trial278

dataset, which includes 61 deceptive and 60 truthful279

videos. They explored the use of n-gram features280

from transcripts and non-verbal features (i.e., fa-281

cial expressions, eyebrows, eyes, mouth openness,282

mouth lips, and head movements, hand gestures) to283

classify liars and truth-tellers. Krishnamurthy et al.284

(2018) explored textual, speech, and visual features285

for deception detection. They used a 3D CNN286

to extract visual features from each frame, spatio-287

temporal features, and facial expressions such as288

smile, fear, or stress. Soldner et al. (2019) de-289

veloped a multimodal deception dataset using TV290

shows and experimented with textual, visual and291

dialog features.292

2.5 Network and Temporal Information293

The rationale for leveraging network information294

stems from early work (Shao et al., 2018; Vosoughi295

et al., 2018b) that showed that propagation and in-296

teraction networks of fake news are deeper and297

wider than those of real news. Vosoughi et al.298

(2018b) further found that fake information spreads299

faster than factual one, thus advocating for the use300

of temporal information.301

Propagation networks can be homogeneous or302

heterogeneous (e.g., encompassing news articles,303

publishers, users, and posts) and they can be ana-304

lyzed at different scales (e.g., node-level, ego-level,305

triad-level, community-level and the overall net-306

work, as shown in Figure 3, in Appendix) (Zhou307

and Zafarani, 2019). Shu et al. (2020) tackled the308

fake news classification task by proposing an ap-309

proach based on hierarchical propagation networks.310

At both micro- and macro-scale, they extracted311

and jointly considered network features, temporal312

features, and linguistic features. Experiments on313

PolitiFact and GossipCop datasets revealed that 314

temporal features have maximum contribution, fol- 315

lowed by network and linguistic features. Shu et al. 316

(2019) provided one of the most thorough mul- 317

timodal frameworks for fake news classification. 318

Their experimental results suggest that social con- 319

text (i.e., network-derived) features are more infor- 320

mative than news content ones. 321

Vosoughi et al. (2017) proposed Rumor Gauge, 322

a system that jointly exploits temporal and propa- 323

gation features, in conjunction with linguistic and 324

user credibility features, for checking the verac- 325

ity of rumors. In particular, Rumor Gauge lever- 326

ages text, and network propagation. The temporal 327

modality does not directly provide features, but is 328

instead considered by recomputing all other fea- 329

tures at regular time steps, thus yielding multiple 330

time series. Results by Vosoughi et al. (2017) and 331

Kwon et al. (2017) also demonstrated that the con- 332

tribution of the different data modalities change 333

over time. 334

To mitigate the “cold start” problem of 335

propagation-based early detection of fake news, 336

Liu and Wu (2018) proposed an approach that is 337

primarily based on user and temporal information. 338

First, they built a propagation path of each news as 339

a time series of user representations. The time se- 340

ries for a given news only contains the ordered rep- 341

resentations of those users that shared such news. 342

Then, they learned two vector representations of 343

each propagation path via GRUs and CNNs, respec- 344

tively. Zannettou et al. (2018) analyzed different 345

aspects of memes, such as how they evolve and 346

propagate in different mainstream and fringe web 347

communities, and variants of memes that propa- 348

gate. Finally, Nguyen et al. (2020) proposed Fac- 349

tual News Graph (FANG) to exploit the social struc- 350

ture and the engagement patterns of users for fake 351

news detection. 352

3 Multimodal Harmful Content Detection 353

In this section, we focus on the second aspect of 354

disinformation: harmfulness. It is essential to fil- 355

ter or to flag online harmful content. The harm- 356

ful content includes child abuse material, violent 357

and extreme content, hate speech, graphic content, 358

sexual content, and spam content (Banko et al., 359

2020).4 In recent years, the ability to recognize 360

harmful content within online communities has re- 361

ceived a lot of attention by researchers (Pramanick 362

4https://swgfl.org.uk/services/report-harmful-content/
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et al., 2021a,b) and policymakers that aim to keep363

users safe in the digital world. Studies in this direc-364

tion include detecting harmful contents in network365

science (Ribeiro et al., 2018), natural language pro-366

cessing (Waseem et al., 2017; Schmidt and Wie-367

gand, 2017b; Fortuna and Nunes, 2018) and com-368

puter vision (Yang et al., 2019a; Vijayaraghavan369

et al., 2021; Gomez et al., 2020; Dimitrov et al.,370

2021b). In Table 2, we provide a list of relevant371

work addressing different types of harmful content,372

modalities, source of data, annotation approach,373

language of the content and the methods.374

3.1 Text375

In the past few years there has been signifi-376

cant research effort on detecting harmful con-377

tent (e.g., hate speech) from social media posts378

(Van Hee et al., 2015; Waseem and Hovy, 2016;379

Waseem et al., 2017; Schmidt and Wiegand, 2017b).380

Waseem and Hovy (2016) developed a dataset of381

hate speech consisting of 16K tweets, and reported382

a baseline results using char- and word- ngrams383

and a logistic regression classifier. (Davidson384

et al., 2017) distinguished between hate speech,385

and offensive language. They developed a dataset386

of ∼24K labeled tweets with categories such as387

hate speech, offensive language and neither. Qian388

et al. (2018) took a different approach to clas-389

sic hate speech classification. Instead of binary390

classes, they proposed 13 fine-grained hate cate-391

gories such as nationalist, anti-immigrant, racist392

skinhead, among others, providing a dataset of393

tweets collected from 40 hate groups. Ribeiro et al.394

(2018) proposed an approach to find hateful users395

on Twitter. Mathew et al. (2019) analyzed 341K396

users and 21M posts collected from Gab to under-397

stand the diffusion dynamics of hateful content.398

Their findings suggest that the posts from hateful399

user diffuse faster, wider, and have a greater out-400

reach compared to the posts from non-hateful ones.401

3.2 Image402

Among different types of harmful content, cyber-403

bullying is one of the major growing problems,404

affecting teens significantly. Hosseinmardi et al.405

(2015) investigated Instagram images and their as-406

sociated comments for detecting cyberbullying and407

online harassment. They developed a manually la-408

beled dataset using CrowdFlower (which is now409

Appen), where they followed standard procedures410

for the annotation: using annotation guidelines,411

qualification tests, gold standard evaluation and412

quality control criteria such as minimum annota- 413

tion time. The annotated dataset consists of 998 414

media sessions (images and their associated com- 415

ments). A key finding of this study is that a large 416

fraction of the annotated posts (48%) with a high 417

percentage of negative words have not been la- 418

beled as cyberbullying. To train and to evaluate 419

the model, the authors used n-grams from text, 420

meta-data (e.g., the number of followers, followees, 421

likes, and shared media), and image categories as 422

features and experimented with Naïve Bayes and 423

SVM classifiers. Their study suggests that com- 424

bining multiple modalities helps to improve the 425

performance of the SVM classifier. 426

Hate speech is another important problem that 427

spreads over social media. The “Hateful Memes 428

Challenge” is an important milestone to advance 429

the research on this topic and the tasks is to detect 430

hateful memes (Kiela et al., 2020). Das et al. (2020) 431

proposed different approaches for hatefulness de- 432

tection in memes such as (i) extract the caption 433

and include this information with the multimodal 434

model, (ii) use sentiment as an additional feature 435

with multimodal representations. For hate speech 436

detection, Yang et al. (2019a) explored different 437

fusion techniques such as concatenation, bilinear, 438

gated summation, and attention, and reported that 439

combining the text with image embedding boosted 440

the performance in all cases. Vijayaraghavan et al. 441

(2021) proposed methods for interpreting multi- 442

modal hate speech detection models, where the 443

modalities consist of text and socio-cultural infor- 444

mation rather than images. Concurrently, Gomez 445

et al. (2020) introduced a larger dataset of 150K 446

tweets for multimodal hate speech detection, con- 447

sisting of six categories such as no attacks to any 448

community, racist, sexist, homophobic, religion 449

based attacks, and attacks to other communities. 450

Propaganda is another topic that has been ex- 451

plored in multimodal settings. Seo (2014) showed 452

how Twitter was used as a propaganda tool during 453

the 2012 Gaza conflict to build international sup- 454

port for each side of the conflict. Dimitrov et al. 455

(2021b) addressed the detection of persuasion tech- 456

niques in memes. Their analysis of the dataset 457

showed that while propaganda is not always fac- 458

tually false or harmful, most memes are used to 459

damage the reputation of a person or a group of 460

people. Dimitrov et al. (2021a) highlighted the 461

importance of both modalities for detecting fine- 462

grained propaganda techniques, with VisualBERT 463

5



yielding 19% improvement compared to using the464

image modality only (with ResNet-152), and 11%465

improvement compared to using the text modal-466

ity only (with BERT). Similar observations were467

made by (Kiela et al., 2020) for hateful meme de-468

tection. Glenski et al. (2019) explored multilingual469

multimodal content and categorizes disinformation,470

propaganda, conspiracy, hoax, and clickbait.471

3.3 Speech/Audio472

Cues in spoken content can represent harmful be-473

haviors and those cues can be used to automatically474

detect such content. Due to the lack of data, studies475

using the speech-only modality are comparatively476

lower than other modalities even though it plays a477

major role in many contexts. For example, for de-478

tecting violent content such as screaming and gun-479

shots, the speech modality can play an important480

role, which other modalities might not be able to of-481

fer. This is important as most often user-generated482

contents are posted on newspapers or their social483

media accounts without verifying the content of the484

post, which can have serious consequences (Harkin485

et al., 2012; Rauchfleisch et al., 2017).486

Giannakopoulos (2009) studied the audio seg-487

mentation approaches for segmenting violent (e.g.,488

gunshots, screams) and non-violent (e.g., music,489

speech) content in movies. The studies related to490

violent content detection using acoustic features491

also include (Acar et al., 2013), where the focus492

was on finding violent content in movies.493

Liang et al. (2017) proposed Localized Self-494

Paced Reranking (LSPaR) for detecting gunshots495

and explosion in videos using acoustic features.496

Soni and Singh (2018) investigated audio, visual497

and textual features for cyberbullying detection.498

Their findings suggest that audio and visual fea-499

tures are associated with the occurrence of cyber-500

bullying, and both these features complement tex-501

tual features.502

3.4 Video503

There are multiple studies on detecting cyberbul-504

lying in video-based social networks such as Vine505

(Rafiq et al., 2015) and YouTube (Dadvar and Eck-506

ert, 2018). These studies show that although the507

percentage of cyberbullying in video sessions is508

quite low, automatic detection of these types of con-509

tent is very challenging. Wang et al. (2020) used510

textual, visual, and other meta-information to de-511

tect social media posts with bullying topics. Their512

proposed method was evaluated on publicly avail-513

able multimodal cyberbullying datasets. Abd Kadir 514

et al. (2016) investigated the relationship between 515

emotion and propaganda techniques in Youtube 516

videos. Their findings suggest that propaganda 517

techniques in Youtube videos affect emotional re- 518

sponses. Content (e.g., Youtube videos) can also 519

be attacked by hateful users via posting hateful 520

comments through a coordinated effort. Mariconti 521

et al. (2019) investigated whether a video is likely 522

to be attacked using different modalities such as 523

metadata, audio transcripts, and thumbnails. 524

There has been a recent interest from different 525

government agencies to stop the spread of violent 526

content. Constantin et al. (2020) developed a mul- 527

timodal dataset, which consists of more than 96 528

hours of Hollywood and YouTube videos and high 529

variability of content. Their study suggests that 530

multimodal approaches with audio and images per- 531

form better. 532

3.5 Network and Temporal Information 533

The use of network data for predicting factuality 534

was motivated by results showing different propaga- 535

tion patterns for fake vs. real content. Such results 536

are lacking for harmful content. However, the in- 537

tention to harm in social media is often pursued 538

via coordinated actions, for instance, by groups of 539

users (e.g., social bots and trolls (Cresci, 2020)) 540

that target certain people or minorities. These col- 541

laborative harmful actions, perpetrated to increase 542

the efficacy of the harm, are best addressed using 543

network analysis to detect likely coordinated harm- 544

ful campaigns. 545

Chatzakou et al. (2019) focused on detecting 546

cyberbullying and cyberaggression by training ma- 547

chine learning models for detecting: (i) bullies, 548

(ii) aggressors, (iii) spammers, and (iv) normal 549

users on Twitter. To solve these tasks, they lever- 550

aged a combination of 38 features extracted from 551

user profiles, the textual content of their posts, and 552

network information (e.g., user degree and central- 553

ity measures in the social graph). Orthogonal and 554

in synergy with respect to the detection of disin- 555

formation, scholars have recently focused on the 556

novel task of detecting Coordinated Inauthentic Be- 557

havior (CIB) (Nizzoli et al., 2021). CIB is defined 558

as coordinated activities that aim to mislead and 559

manipulate others.5 560

Detecting CIB typically involves analyzing both 561

5https://medium.com/1st-draft/how-to-improve-our-
analysis-of-coordinated-inauthentic-behavior-a4ec62ce9bff
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interaction networks to detect suspicious coordi-562

nation, as well as the coordinated users and the563

content they shared to detect inauthentic users564

and harmful content (Nizzoli et al., 2021, 2020;565

Pacheco et al., 2021). Given the importance of co-566

ordination in CIB, the analysis typically starts from567

the available network data by applying community568

detection algorithms, and subsequently moving to569

the analysis of textual data (e.g., social media posts570

or news articles). Weber and Neumann (2020) also571

considered the timings of actions to detect coordi-572

nation, thus leveraging both network and temporal573

data modalities.574

4 Modeling Techniques575

In this section, we discuss modeling techniques576

for both factuality and harmfulness. To combine577

multiple modalities, there have been several ap-578

proaches: (i) early-fusion, where low-level features579

from different modalities are learned, fused, and580

fed into a single prediction model (Jin et al., 2017b;581

Yang et al., 2018; Zhang et al., 2019; Singhal et al.,582

2019; Zhou et al., 2020; Kang et al., 2020); (ii)583

late-fusion, where unimodal decisions are fused584

with some mechanisms such as averaging and vot-585

ing (Agrawal et al., 2017; Qi et al., 2019), and (iii)586

hybrid-fusion, where a subset of learned features587

are passed to the final classifier (early-fusion), and588

the remaining modalities are fed to the classifier589

later (late-fusion) (Jin et al., 2017a). Within these590

fusion strategies, the learning setup can also be591

divided into unsupervised, semi-supervised, super-592

vised and self-supervised methods.593

Dimitrov et al. (2021b) investigated different594

fusion strategies (e.g., early- and late-fusion and595

self-supervised models) for propaganda detectionm596

using VisualBERT (Li et al., 2019), MMBT (Kiela597

et al., 2019), and ViLBERT (Lu et al., 2019). Their598

findings suggest that self-supervised joint learning599

models, such as MMBT, ViLBERT, and Visual-600

BERT perform better in increasing order, respec-601

tively, compared to the other fusion methods. As602

a part of “Hateful Memes Challenge” to classify603

hateful vs. non-hateful memes, several such models604

have been investigated by Kiela et al. (2020), who605

also experimented with other models such as Gated606

Multimodal Unit (GMU) (Arevalo et al., 2017) and607

ConcatBERT (Kiela et al., 2020). These models608

learn individual and non-overlapping training ob-609

jectives for each modality.610

Attempts to design unsupervised models are lim-611

ited. Müller-Budack et al. (2020) introduced Cross- 612

modal Consistency Verification Tool (CCVT) to 613

check the coherence between images and associ- 614

ated texts. Yang et al. (2019b) defined trust of 615

news and credibility of users who spread the news 616

and used Bayesian learning to iteratively update 617

these quantities. News with low trustworthiness is 618

returned as fake news. Gangireddy et al. (2020) 619

proposed GTUT, a graph-based approach that ex- 620

ploits the underlying bipartite network of users and 621

news articles to detect the dense communities of 622

fake news and fraud users. 623

Due to the scarcity of labeled data, a few studies 624

attempted to design semi-supervised methods by 625

leveraging an ample amount of unlabelled data. 626

Helmstetter and Paulheim (2018); Gravanis et al. 627

(2019) presented weak-supervision for fake news 628

detection. Guacho et al. (2018) presented a tensor- 629

decomposition semi-supervised method for fake 630

content detection. Dong et al. (2020) developed a 631

deep semi-supervised model via two-path learning 632

(one path uses a limited labeled data, the other path 633

explores the unlabelled data) for timely fake news 634

detection. Paka et al. (2021a) presented, Cross- 635

SEAN, a cross-stitch semi-supervised end-to-end 636

neural attention model for COVID-19 fake news 637

detection. They further extended it by combining 638

exogenous and endogenous signals with a semi- 639

supervised co-attention network for early detection 640

of fake news (Paka et al., 2021b). 641

Within a supervised learning setup, two other 642

types of learning method have also been explored 643

for disinformation detection such as adversarial 644

learning and autoencoder based. Adversarial 645

learning models for fake news detection include 646

EANN (Wang et al., 2018), an event adversar- 647

ial neural network to detect emerging and time- 648

critical fake news, and SAME (Cui et al., 2019), 649

a sentiment-aware multimodal embedding method 650

which, along with multiple modalities, leverages 651

the sentiment expressed by readers in their com- 652

ments. 653

5 Major Challenges 654

Recently, several initiatives were undertaken by 655

major companies and government entities to com- 656

bat disinformation in social media (DIGI, 2021),6 657

However, automatic detection of misleading and 658

harmful content poses a number of challenges as 659

discussed below and in Appendix (Section F). 660

6For example, http://digi.org.au/disinformation-code/
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Models Combining Multiple Modalities. The ma-661

jor challenge is to devise a mechanism to combine662

multiple modalities in a systematic way so that one663

modality complements the others. Current state-664

of-the-art primarily adopts early and late fusion,665

which are limited and do not always yield strong666

results (Dimitrov et al., 2021a). Very recently,667

jointly trained multimodal transformer-based mod-668

els (e.g., ViLBERT (Lu et al., 2019), Visual BERT669

(Lin et al., 2014) and Multimodal Bitransformers670

(MMBT) (Kiela et al., 2019)) have shown strong671

potential (Dimitrov et al., 2021b,a; Kiela et al.,672

2020). However, such models are trained con-673

sidering only two modalities (textual and visual),674

while fact-checking or disinformation-related con-675

tent consists of more than two modalities e.g., text,676

speech, video, network, etc. (Baly et al., 2020).677

Hence, there is a room for improvement in devel-678

oping multimodal models that involve additional,679

and potentially more than two, modalities. Another680

important problem is cross-modal inconsistency681

in social media content, as shown in Figure 2(c),682

which poses a challenge in a multimodal setting683

(Tan et al., 2020).684

Datasets. One of the major challenges when work-685

ing with such diverse modalities, i.e., text, image,686

speech, video, and network, is to get access to687

an appropriate dataset, and moreover to one that688

considers both factuality and harmfulness. Further-689

more, there is a need to integrate data from multiple690

platforms (e.g., news, posts from Twitter, Reddit691

and Instagram) as different data sources present692

different styles and focus on different topics.693

6 Future Directions694

Based on the aforementioned challenges, we fore-695

cast the following research directions:696

Explainability. Model interpretation remains697

largely unexplored. This can be addressed in future698

studies to understand the general capability of the699

models. Providing evidence of why certain claims700

are false is also important. There has been work in701

this direction such as TabFact (Chen et al., 2020)702

and FEVER (Hanselowski et al., 2018). However,703

such approaches rely on existing knowledge bases704

(e.g., Wikipedia) and may fail for a new problem705

such as disinformation about COVID-19. It is also706

important to understand what models learn, e.g.,707

lexical or semantic concepts or a set of neurons may708

learn one aspect better than the others. Moreover,709

while current studies on explainable fact-checking710

focus on explaining the predictions, very few focus 711

on model explanations (Kotonya and Toni, 2020b). 712

Beyond Content and Network Signals. State-of- 713

the-art methods for multimodal factuality predic- 714

tion and harmful content detection are primarily 715

based on content signals and network structure. 716

However, the information in these signals is lim- 717

ited and does not include personal preferences or 718

cultural aspects. In the future, we envision multi- 719

modal techniques for disinformation detection that 720

would go beyond content and network and would 721

include signals like common sense and informa- 722

tion about the user. Moreover, multimodal models 723

will become larger with more heterogeneous sig- 724

nals as input, and they would be pre-trained on a 725

wider variety of tasks to shelter both aspects of 726

disinformation: factuality and harmfulness. 727

Knowledge-based Method. The use of 728

knowledge-based approaches to check the factu- 729

ality of claims based on what has been checked 730

before could be ideal solutions as some claims are 731

often repeated by politicians. Current approaches 732

in this direction are limited and this can be ex- 733

plored further by creating a common repository 734

of previously fact-checked claims and harmful 735

content. Relevant studies include detecting pre- 736

viously fact-checked claims (Shaar et al., 2020), 737

studying the role of context at the sentence level 738

(Shaar et al., 2021a) or at the document level (Shaar 739

et al., 2021b), and claim matching across languages 740

(Kazemi et al., 2021). 741

7 Conclusion 742

We surveyed the state-of-the-art in multimodal dis- 743

information detection based on prior work on differ- 744

ent modalities, focusing on disinformation, i.e., in- 745

formation that is both false and intents to do harm. 746

We covered the major research topics of factuality 747

and disinformation. Our survey brought several 748

interesting research challenges for multimodal dis- 749

information detection, such as combining various 750

modalities, which are often not aligned and are in 751

different representations (e.g., text vs. speech vs. 752

network structure), and the lack of such datasets to 753

foster future research. In addition to highlighting 754

the challenges, we also pointed to several research 755

directions. While doing so, we argued for the need 756

to tackle disinformation detection by taking into ac- 757

count multiple modalities as well as both factuality 758

and harmfulness in the same framework. 759
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Appendix1554

A Examples of Factuality and Harmful1555

Content1556

In Figure 2, we provide examples textual and visual1557

content that are harmful and false, true image with1558

false claim, and harmful meme.1559

Figure 2: Examples of textual and visual contents that
show (a) fauxotographic content (which is both harmful
and false), 7 (b) harmful content promoting bad cure
(text-only, and false), (c) true image with a false claim
about it (malicious), and (d) harmful content, where the
text and the image collectively appeal to fear.

B Multimodal Factuality Prediction1560

In Table 1, we summarize related studies on fac-1561

tuality prediction that covers different modalities.1562

In Figure 3, we provide an example of a social net-1563

work structure, consisting of node, ego, triad and1564

the whole network.1565

C Multimodal Harmful Content1566

Detection1567

In Table 2, we summarize related studies on harm-1568

ful content detection that covers different modali-1569
7https://www.snopes.com/fact-check/abe-lincoln-racist-

protest-sign/

Figure 3: Example of social network with users. Node:
A node can be a users or a spreader. Ego: “Ego” is
an individual “focal” node (central user) and the nodes
that are directly connected to it are called “alters/spread-
ers.” Triad: It (a set of three connected users) is the
most basic subgraph of the network. Community: A
community structure refers to the occurrence of groups
of nodes in a network that are more densely connected
internally than with the rest of the network.

ties. 1570

D Modeling Techniques 1571

Figure 4 shows various multimodal approaches that 1572

have been proposed in the literature. 1573

Figure 4: Multimodal approaches, including early and
late fusion, and joint modal learning. The hybrid ap-
proach (combining early and late fusion) is not shown.

E Lessons Learned 1574

1. A lot of progress has been made on the problem, 1575

but the two components in the definition of disin- 1576

formation (falseness and harmfulness) have been 1577

considered mostly in isolation. We argue that there 1578

is a need for tight integration of the factuality and 1579

the intentional harmfulness into the same detection 1580

model. These two aspects have been addressed 1581

together in (Alam et al., 2021), which shows that 1582

56% of Arabic false content is also harmful. From 1583

Tables 1 and 2, we observe that most multimodal 1584

datasets cover just 2–3 modalities, which combine 1585
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Ref. Task Modality Data/Source Anno. Lang Method

T I V N S

(Baly et al., 2020) Bias, factuality ✓ ✓ MBFC M En SVM, BERT
(Dinkov et al., 2019) Bias ✓ ✓ MBFC M En MM deep learning architecture
(Baly et al., 2018a) Bias, factuality ✓ MBFC M En SVM
(Shao et al., 2018) Credibility∗ ✓ Articles and tweets M En Statistical analysis
(Sen et al., 2020) Deception ✓ CTD: 121 videos M En RF, SVM and NN classifiers
(Soldner et al., 2019) Deception ✓ TV Show M En RF

(Volkova et al., 2019) Deception ✓ ✓
Twitter; T1: 2,485,
T2-T3: 56,691,
T4: 496,929

M En Feature fusion with AdaBoost/NN

(Krishnamurthy et al., 2018) Deception ✓ CTD: 121 videos M En MLP
(Kaya and Karpov, 2016) Deception ✓ CSC: 25 videos M En PLS/ELM based model
(Levitan et al., 2016) Deception ✓ CSC: 25 videos M En SMO, Bagging, Dagging, BN and NB
(Pérez-Rosas et al., 2015) Deception ✓ CTD: 121 videos M En DT and RF
(Hirschberg et al., 2005) Deception ✓ CSC: 25 videos M En Rule-based classifier
(Kazemi et al., 2021) Facuality ✓ FEVER M En Deep Q-learning network
(Atanasova et al., 2020) Factuality ✓ Liar-Plus M En DistilBERT
(Sathe et al., 2020) Facuality ✓ WikiFactCheck M En SVM, Decomposable attention model

(Shaar et al., 2020) Facuality ✓ Political debates M En
Learning-to-rank approach, BM25,
BERT, RoBERTa, sentence-BERT

(Kopev et al., 2019) Facuality ✓ ✓ Political debates M En MM fusion: concatenation

(Vo and Lee, 2018) Facuality ✓

Fact-checked tweets from:
Snopes.com, Politifact.com,
FactCheck.org, OpenSecrets.org,
TruthOrfiction.com and
Hoax-slayer.net

M En
BPRMF , MF, CoFactor, CTR,
proposed a joint model

(Baly et al., 2018b) Facuality ✓ Claims from Verify and Reuters M Ar
Gradient boosting, multilayer perceptron,
softmax layer, end-to-end memory network

(Rashkin et al., 2017) Facuality ✓ Politifact M En LSTM, MaxEnt, NB

(Nguyen et al., 2020) Fake news ✓ ✓
PHEME ,
Twitter (snopes.com), Weibo,
FakeNewsNet

M En Graphical social context

(Nakamura et al., 2020) Fake news ✓ ✓ Reddit: 1m posts DS En MM fusion
(Shu et al., 2020) Fake news ✓ ✓ PolitiFact and GossipCop M En GNB, DT, LR, and RF

(Shu et al., 2019) Fake news ✓ ✓ BuzzFeed and PolitiFact M En
LR, NB, DT,
XGBoost, AdaBoost, and GB

(Vosoughi et al., 2018b) Fake news ✓ ✓ Twitter: 126,000 posts M En Statistical analysis, Topic modeling

(Liu and Wu, 2018) Fake news ✓ ✓
Weibo: 4,664 (Ma et al., 2016),
Twitter15: 1,490 (Ma et al., 2017),
Twitter16: 818 (Ma et al., 2017)

M En DT, SVM, GRU, RF, RNN, CNN

(Rashkin et al., 2017) Fake news ✓
Gigaword corpus, articles from
seven unreliable news sites

M En MaxEnt

(Boididou et al., 2016) Fake ✓ ✓ Social media M En -
(Gupta et al., 2013) Fake news ✓ Twitter: 16,117 tweets M En DT on balanced dataset, NB
(Wang et al., 2021) Fauxtography ✓ ✓ Twitter, 4chan, and Reddit M En Analytical
(Zhang et al., 2018) Fauxtography ✓ ✓ Reddit: 91, Twitter: 390 M En Feature fusion with XGBoost
(Heller et al., 2018) Image tampering∗∗ ✓ Reddit: 102,028 images A - -
(Garimella and Eckles, 2020) Misinformation∗∗ ✓ WhatsApp: 2,500 images M - -
(Zannettou et al., 2018) Memes propagation ✓ ✓ Twitter, Reddit, 4chan, and Gab DS - Memes analysis

(Vosoughi et al., 2017) Rumor ✓ ✓ Twitter: 113 false and 96 true M En
Temporal, propagation
linguistic, and user
credibility features

(Kwon et al., 2017) Rumor ✓ ✓
Twitter, snopes.com, and
urban-legends.about.com

M En RF

Table 1: Summary of the existing most relevant work on factuality, covering different modalities and tasks. T:Text,
I: Image, V:Video, N:Network, S:Speech. CTD: Courtroom trial dataset, CSC: Columbia/SRI/Colorado Corpus.
Anno.: Annotation, M: manual annotation; DS: distant supervision. MM: Multimodal, SVM: Support Vector
Machine, RF: Random Forest, DT: Decision Tree; NN: Neural Network, MLP: Multi-layer Perceptron, PLS: Partial
Least Squares regression; ELM: Extreme Learning Machines, NB: Naïve Bayes, BN: BayesNet, BPRMF: Bayesian
Personalized Ranking Matrix Factorization, , MF: Matrix Factorization, CTR: Collaborative Filtering Regression,
GNB: Gaussian Naive Bayes; LR: Logistic Regression; GB: Gradient Boosting, GRU: Gated Recurrent Units, RNN:
Recurrent Neural Networks, CNN: Convolutional Neural Networks. ∗ Also include botometer features. T1-T4
represents different tasks. ∗∗ dataset only.

some approaches depicted in Figure 4. Moreover,1586

no multimodal dataset looks at both aspects of dis-1587

information: factuality and harmfulness. While1588

Alam et al. (2021) did address both aspects, they1589

only covered the text modality.1590

2. In the early phase of (dis)information spreading,1591

user and content features are those that provide the 1592

highest contribution for detecting factuality. In- 1593

deed, at that time, a few interactions with content 1594

are available and the propagation network is small 1595

and sparse. As information spreads, the contribu- 1596

tion of content-derived features remains constant, 1597
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Ref Task Modality Data/Source Anno. Lang Method

T I V N S

(Nizzoli et al., 2021) CIB ✓ Twitter: 1.1m users, 11m tweets DS En Statistical and similarity analysis
Weber and Neumann (2020) CIB ✓ Twitter – En Statistical and network analysis
(Wang et al., 2020) Cyberbullying ✓ ✓ Posts: Vine (970), Instagram (2,218) M En SVM, NB, LR, RF, LSTM, CNN
(Soni and Singh, 2018) Cyberbullying ✓ ✓ ✓ Vine videos M En KNN, SVM, LR, RF, GNB
(Dadvar and Eckert, 2018) Cyberbullying ✓ Youtube 54k posts M En LSTM, BiLSTM, CNN
Hosseinmardi et al. (2015) Cyberbullying ✓ ✓ ✓ Instagram M En SVM
(Rafiq et al., 2015) Cyberbullying ✓ ✓ Vine videos M En NB, AdaBoost, DT and RF
(Van Hee et al., 2015) Cyberbulling ✓ Ask.fm: 85k QA pairs M Nl SVM

(Chatzakou et al., 2019)
Cyberbullying,
Cyberaggression

✓ ✓ Twitter: 1,303 users, 9,484 tweets M En
NB, RF, AdaBoost,
Ensemble, NN

(Liang et al., 2017) Gunshots ✓
Videos: freesound.com, Youtube;
Test: CSV, TRECVID Gunshot,
UrbanSound Gunshot

DS En Localized self-paced reranking

(Mariconti et al., 2019) Hate attacks ✓ ✓ ✓ Youtube videos (428) M En Ensemble, CNN, RNN

(Kiela et al., 2020) Hate speech ✓ ✓ FB: Hateful Memes Challenge M En
Late fusion, Concat BERT, MMBT,
ViLBERT, VisualBERT

(Das et al., 2020) Hate speech ✓ ✓ FB: Hateful Memes Challenge M En VisualBERT, MM fusion
(Gomez et al., 2020) Hate speech ✓ ✓ Twitter: MMHS150K M En Inception v3, LSTM, and MM fusion
(Yang et al., 2019a) Hate speech ✓ ✓ FB: train+dev 378k, test 53k M En Fusion: text + image embedding
(Waseem and Hovy, 2016) Hate speech ✓ Twitter: 16,914 tweets M En LR
(Davidson et al., 2017) Hate speech ✓ Twitter: 24,802 tweets M En LR, SVM, NB, DT, RF
(Qian et al., 2018) Hate speech ✓ Twitter: 40 accounts, 3.5m tweets DS En LR, SVM, Char-CNN, BiLSTM, HCVAE
(Ribeiro et al., 2018) Hate speech ✓ ✓ Twitter: 4,972 users M En GradBoost, AdaBoost, GraphSage
(Mathew et al., 2019) Hate speech ✓ ✓ Gab: 21m posts by 341k users DS En Lexicon based filtering, DeGroot

Dimitrov et al. (2021b) Propaganda ✓ ✓
FB: SemEval-2021 task 6:
950 Facebook memes

M En MM fusion, MM joint representation

(Vijayaraghavan et al., 2021) Hate speech ✓ ✓
In-house developed and
curated datasets

M En
MM late fusion, LR, SVM,
CNN, BiGRU, BiLSTM

(Constantin et al., 2020) Violence ✓ ✓ ✓ VSD96: Hollywood, Youtube M En
MM Early fusion; SVM, HMM, GMM,
Bayesian, MLP, QDA, PLDA, CNN,
KNN, unsupervised, hybrid

(Acar et al., 2013) Violence ✓ ✓ MediaEval VSD M En SVM (mid-level audio + low-level visual)
(Giannakopoulos, 2009) Violence ✓ Movies M - BN, kNN

Table 2: Summary of the existing most relevant work on harmful content. T:Text, I: Image, V:Video, N:Network,
S:Speech, Anno.: Annotation, CIB: Coordinated Inauthentic Behavior, QA: Question-answer, CSV: Real-life
Conflict Scene Videos, VSD: Violent Scene Detection. Nl: Dutch. KNN: k-Nearest Neighbors, LSTM: Long
Short-Term Memory, BiLSTM: Bidirectional LSTM, MMBT: MultiModal BiTransformers, HCVAE: Hierarchical
Conditional Variational Autoencoder, QDA: Quadratic Discriminant Analysis, PLDA: Probabilistic Linear Discrimi-
nant Analysis.

while propagation-derived features become richer1598

and more informative. In summary, early predic-1599

tion of factuality and veracity must necessarily rely1600

heavily on users and content – be it text, image,1601

audio or video. Instead, analyses carried out at1602

later times benefit more from network and tem-1603

poral data. In the past decade, research on multi-1604

modality has shown its potential in several fields,1605

which include audio-visual fusion (Mroueh et al.,1606

2015; Zhu et al., 2021; Song et al., 2019), emotion1607

recognition (Chen et al., 2021), image and video1608

captioning (Liu et al., 2021), multimedia retrieval1609

and visual question answering (Summaira et al.,1610

2021). For factuality, Baly et al. (2020) showed1611

that combining different modalities such as text,1612

speech, and metadata yields improved performance1613

compared to using individual modalities. Simi-1614

lar phenomena have been observed for other tasks1615

such as hateful memes (Kiela et al., 2020), and1616

propaganda detection (Dimitrov et al., 2021b).1617

F More Challenges 1618

Contextualization. Existing methods of disinfor- 1619

mation detection are mostly non-contextualized, 1620

i.e., the broader context of a news article in terms 1621

of the responses of the readers and how the users 1622

perceive them are not captured. We argue that the 1623

response thread under a news, the underlying social 1624

network among users, the propagation dynamics of 1625

the news and its mentions across social media need 1626

suitable integration to better capture the overall 1627

perspective on the news. 1628

Meta Information. Along with the news and the 1629

context, other information such as the authenticity 1630

of the news, the credibility of the authors of the 1631

news, the factuality of the news also play an impor- 1632

tant role for disinformation detection. Moreover, 1633

detecting whether the disinformation attack is a 1634

coordinated effort or an individual activity would 1635

also help understanding its severity. 1636

Bias, Region, and Cultural Awareness. The per- 1637

19



formance of most of the existing systems is limited1638

to the underlying dataset, particularly to the de-1639

mography and the underlying cultural aspects. For1640

instance, a model trained on an Indian political1641

dataset may not generalize well to a US health-1642

related dataset (Fortuna et al., 2021).1643

Disinformation on Evolving Topics. Often,1644

claims or harmful content are disseminated based1645

on the current event; information about COVID-1646

19 and vaccines are examples of such use cases.1647

Existing models might fail on such use cases, and1648

thus zero-shot or few-shot learning might be an1649

important future avenue to explore.1650

Transparent and Accountable Models. The de-1651

tection models should be designed in a way that1652

their outcomes are unbiased and more accountable1653

to ethical considerations. The models for disin-1654

formation detection should present the outcome in1655

such a way that a practitioner can interpret it and1656

understand why a piece of information is flagged as1657

disinformation, what is the related real news based1658

on which the judgment was made, and which part1659

of the information was counterfeit. There is also a1660

lack of datasets containing disinformation with ex-1661

planations and the corresponding real information.1662

Fine-grained Detection. Existing disinforma-1663

tion detection models are mostly binary classifiers:1664

given a piece of news, they aim to detect whether1665

it is a disinformation or not. Such binary signals1666

might be enough in certain cases. However, in1667

many other cases, more fine-grained labels can help1668

to make a better decision. For example, whether a1669

social media post is fake or genuine can help fact-1670

checkers, but having more fine-grained information1671

such as true, satire/parody, misleading, manipu-1672

lated, false connection, or imposter content can be1673

even more helpful (Nakamura et al., 2020). There-1674

fore, rather than a binary classification, one could1675

cast the problem as a multi-class classification task1676

or even an ordinal regression, or just a regression1677

task. This would also help prioritize disinformation1678

for reactive measurements.1679
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