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Abstract

Language diversity presents a significant chal-001
lenge in speech-to-text (S2T) tasks, such as002
automatic speech recognition and translation.003
Traditional multitask training approaches aim004
to address this by jointly optimizing multiple005
speech recognition and translation tasks across006
various languages. While models like Whisper,007
built on these strategies, demonstrate strong008
performance, they still face issues of high com-009
putational cost, language interference, subop-010
timal training configurations, and limited ex-011
tensibility. To overcome these challenges, we012
introduce LoRS-Merging (low-rank and sparse013
model merging), a novel technique designed to014
efficiently integrate models trained on differ-015
ent languages or tasks while preserving perfor-016
mance and reducing computational overhead.017
LoRS-Merging combines low-rank and sparse018
pruning to retain essential structures while elim-019
inating redundant parameters, mitigating lan-020
guage and task interference, and enhancing ex-021
tensibility. Experimental results across a range022
of languages demonstrate that LoRS-Merging023
reduces the word error rate by 10% and im-024
proves BLEU scores by 4% compared to con-025
ventional multilingual multitask training base-026
lines. Our findings suggest that model merging,027
particularly LoRS-Merging, is a scalable and ef-028
fective complement to traditional multilingual029
training strategies for S2T applications.030

1 Introduction031

Language diversity poses a significant challenge032

in speech-to-text (S2T) tasks, such as automatic033

speech recognition (ASR) (Prabhavalkar et al.,034

2023) and speech translation (ST) (Xu et al., 2023).035

With over 7,000 languages spoken worldwide, de-036

veloping robust S2T systems that generalise across037

varied linguistic structures remains a fundamental038

research goal (Liu and Niehues, 2024; Cheng et al.,039

2023; Sun et al., 2023; Saif et al., 2024; Wang et al.,040

2021; Le et al., 2021). The advent of end-to-end041

(E2E) models (Chan et al., 2016; Gulati et al., 2020; 042

Barrault et al., 2023) has marked a paradigm shift 043

in S2T tasks, enabling direct mapping from speech 044

to text across multiple languages within a unified 045

framework. A prominent example is Whisper (Rad- 046

ford et al., 2023), an advanced multi-lingual speech 047

model trained on a large-scale, diverse dataset cov- 048

ering multiple languages and tasks. Despite these 049

advances, existing multi-lingual models still en- 050

counter significant challenges in scalability, effi- 051

ciency, and performance trade-offs. 052

To address these challenges, multi-lingual train- 053

ing strategies (Saif et al., 2024; Xiao et al., 2021; 054

Bai et al., 2018) have been adopted, aiming to 055

enhance model generalisation across languages. 056

These approaches typically rely on joint optimisa- 057

tion of diverse S2T tasks across multiple languages, 058

leveraging shared representations to improve per- 059

formance. Nevertheless, multi-lingual training is 060

subject to inherent limitations, including substan- 061

tial training costs, complex model configurations, 062

and limited access to training data across multiple 063

languages and tasks. Moreover, when handling new 064

languages, the training methods typically require 065

training from scratch. 066

To mitigate these issues, this paper proposes 067

to use model merging (Ilharco et al., 2023; Yang 068

et al., 2024a; Khan et al., 2024) to integrate models 069

trained on different languages or tasks while main- 070

taining performance and reducing computational 071

overhead. Model merging merges the parameters 072

of multiple separate models with different capa- 073

bilities to build a universal model. With its high 074

flexibility, model merging enables the seamless in- 075

corporation of new languages or tasks without the 076

need for retraining the entire model. Additionally, 077

since model merging allows models for different 078

languages or tasks to be trained independently, it 079

can effectively alleviate negative transfer issues 080

(Wang et al., 2019; Zhang et al., 2022b; Wang 081

et al., 2020b) commonly observed in multi-lingual 082
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training. This training independence also enables083

the use of optimal training configurations for each084

language or task instead of the unified settings re-085

quired in multi-lingual training.086

Moreover, we propose Low-Rank and Sparse087

model Merging (LoRS-Merging), which uses a088

low-rank component to capture the compact struc-089

ture and a sparse component to capture the scat-090

tered details in the weights. LoRS-Merging retains091

effective parts of structure and details while re-092

ducing redundant parts to reduce task interference.093

Specifically, coarse-grained singular value prun-094

ing is used to retain the low-rank structure, while095

fine-grained magnitude pruning is used to remove096

redundant details. The main contribution of this097

paper can be summarised as follows.098

• We propose LoRS-Merging, a low-rank and099

sparse model merging method for multi-lingual100

ASR and speech translation. To the best of our101

knowledge, LoRS-Merging is the first work that102

explores model merging for speech models.103

• LoRS-Merging exploits the combination of low-104

rank structure and sparsity of language-specific105

and task-specific weights in model merging, min-106

imising the parameter redundancy and conflicts107

as well as providing an efficient way to incor-108

porate new knowledge from a task or language-109

specialised model.110

• Experiments are performed across 10 different111

languages where LoRS-Merging achieves 10%112

relative WER reduction and 4% relative BLEU113

increase compared to the multi-lingual multi-task114

training baseline. Moreover, we show that neg-115

ative interference largely exists in multi-lingual116

training and LoRS-Merging alleviates this issue.117

2 Related Work118

2.1 Multi-Lingual ASR and ST119

Multi-lingual speech models inherently face a120

trade-off between knowledge sharing and negative121

interference. Early studies adopted hand-picked122

sub-network sharing strategies, such as language-123

specific decoders (Dong et al., 2015), attention124

heads (Zhu et al., 2020), and layer norm/linear125

transformation (Zhang et al., 2020). Recent re-126

search has shifted toward approaches such as127

mixture-of-experts (Kwon and Chung, 2023; Wang128

et al., 2023), adapters (Le et al., 2021; Kannan129

et al., 2019), and pruning (Lu et al., 2022; Lai et al.,130

2021). To enhance multi-lingual representation131

learning, language tokens (Johnson et al., 2017), 132

embeddings (Di Gangi et al., 2019) or output fac- 133

torizations (Zhang et al., 2023) are introduced to 134

encode language identity, helping the model distin- 135

guish between languages. 136

The more effective approach is to adopt multi- 137

lingual training strategies, such as multi-objective 138

optimisation (Saif et al., 2024; Zhang et al., 2022a), 139

adversarial learning (Xiao et al., 2021), meta learn- 140

ing (Hsu et al., 2020), and reinforcement learn- 141

ing (Bai et al., 2018). Moreover, large-scale pre- 142

training by leveraging massive amounts of multi- 143

lingual and multi-task data enables models to learn 144

robust and transferable representations across lan- 145

guages, e.g. Whisper (Radford et al., 2023), Seam- 146

lessM4T (Barrault et al., 2023), and AudioPaLM 147

(Rubenstein et al., 2023). LoRS-Merging, as an ef- 148

ficient post-training method proposed in this paper, 149

further advances multi-lingual ASR and ST based 150

on pre-trained speech models. 151

2.2 Model Merging 152

Model merging (Yang et al., 2024a; Khan et al., 153

2024) is an efficient post-training technique that 154

integrates knowledge from models trained on dif- 155

ferent domains. One stream of research focuses 156

on the loss landscape geometry (Khan et al., 2024) 157

and studies the linear mode connectivity (LMC) 158

(Frankle et al., 2020; Draxler et al., 2018) prop- 159

erty that demonstrates the existence of a linearly 160

connected path between local minima within the 161

same loss basin. Many studies (Nagarajan and 162

Kolter, 2019; Izmailov et al., 2018; Frankle et al., 163

2020) indicate that if two neural networks share 164

part of their optimisation trajectory, such as dif- 165

ferent finetuned models from the same pretrained 166

model, they typically satisfy LMC, allowing inter- 167

polation without sacrificing accuracy and forming 168

the basis of our model merging method. For local 169

minima in different loss basins, inspired by the per- 170

mutation invariance (Entezari et al., 2021) of neural 171

networks, neuron alignment techniques (Ainsworth 172

et al., 2022; Singh and Jaggi, 2020; Tatro et al., 173

2020) can be used to place them into the same 174

basin, thereby reducing merging loss. 175

Another stream considers the model spaces, in- 176

cluding activation spaces and weight spaces. Re- 177

search on activation spaces seeks to align the out- 178

put representations or loss of the merged model 179

with those of each single model as closely as pos- 180

sible (Yang et al., 2024b; Wei et al., 2025; Xiong 181

et al., 2024). Studies based on weight spaces aim 182
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to remove redundant parameters or localise effec-183

tive parameters to resolve task interference. TIES-184

Merging (Yadav et al., 2024) and DARE (Yu et al.,185

2024) perform magnitude or random pruning on186

each single model to significantly remove redun-187

dant parameters. TALL-masks (Wang et al., 2024)188

and Localise-and-Stitch (He et al., 2024) optimise189

binary masks to localise sparse and effective task-190

specific parameters. In contrast, LoRS-Merging191

explores weight space merging by considering not192

only the detailed parameter redundancy as well as193

maintaining the effective structure of the weight194

space via low-rank pruning.195

3 Methodology196

3.1 Preliminaries197

3.1.1 Task Arithmetic198

Among diverse model merging methods, Task199

Arithmetic (TA) (Ilharco et al., 2023) has become200

a fundamental technique in this field due to its201

simplicity and effectiveness. TA introduces the202

concept of "task vector", defined as the delta pa-203

rameter derived by subtracting pretrained weights204

from finetuned weights. By performing simple205

arithmetic operations on task vectors, TA enables206

task learning, forgetting, and analogising.207

Assume that θ = {Wl}Ll=1 represents the pa-208

rameters of the model, where Wl is the weight209

of l-th layer, and L is the total number of lay-210

ers. Given a pretrained model θ0 and a model θi211

finetuned on task ti, the task vector is computed212

as τi = θi − θ0. Multiple task vectors can be213

summed to form a multi-task model, expressed as214

θmerged = θ0 + λ
∑n

i=1 τi, where λ is a scaling215

coefficient for the task vectors.216

3.1.2 Pruning217

Given that neural networks are typically over-218

parameterised and exhibit high redundancy, a con-219

siderable number of neurons or connections can be220

pruned without affecting accuracy (LeCun et al.,221

1989). In model merging, pruning methods can re-222

duce redundant parameters to mitigate task interfer-223

ence, thereby improving the merging performance.224

Magnitude Pruning (MP) is an unstructured225

pruning method that prunes connections based on226

the magnitude of parameters as a measure of im-227

portance. Specifically, MP prunes the parameters228

according to a specific ratio p, as follows.229

Mij =

{
1 if |wij | ∈ top p%

0 o.w.
(1)230

Wpruned = M ⊙W (2) 231

where W,M ∈ Rd×k, and ⊙ denotes the element- 232

wise multiplication. However, MP only focuses on 233

the redundancy at the parameter level, overlooking 234

the crucial structural information, which may lead 235

to the disruption of the weight structure. 236

Singular Value Pruning (SVP) is a structured 237

pruning method that removes smaller singular val- 238

ues and their corresponding singular vectors. In 239

particular, SVP retains only the top r singular val- 240

ues while discarding the others. 241

W = UΣV T (3) 242

243
Wpruned = UrΣrV

T
r (4) 244

where U ∈ Rd×d and V ∈ Rk×k are the left and 245

right singular vector matrices of W , and Ur, Vr de- 246

note their first r columns. Although SVP preserves 247

a compact weight structure, its coarse pruning gran- 248

ularity makes it challenging to reduce redundancy 249

at a fine-grained parameter level. 250

3.2 Model Merging for Speech Models 251

The model merging process for speech model on 252

S2T tasks with LoRS-Merging as an example is 253

shown in Fig. 1, which comprises four steps. In 254

step 1, a suitable pre-trained speech model is se- 255

lected. In step 2, for each target language and 256

target task combination, e.g. Catalan ASR, the pre- 257

trained model is finetuned with the task-language- 258

specific data and the delta weight is obtained. In 259

step 3, weight pruning is applied to remove redun- 260

dant and conflicting delta parameters. In step 4, 261

task arithmetic is applied to combine pruned delta 262

weights into each single merged matrix and hence 263

obtain the merged model. 264

Model merging allows new language or task 265

knowledge to be integrated into the model in a flex- 266

ible post-training manner. When a new set of data 267

for a specific language is obtained, model merging 268

incorporates such knowledge by fine-tuning with 269

the new data alone with data-specific configuration, 270

which also releases the burden of requiring other 271

data to avoid catastrophic forgetting. This benefit 272

is thoroughly demonstrated in our experiments. 273

3.3 Low-Rank and Sparse Model Merging 274

The weights of neural networks contain informa- 275

tion on both structure and details. Structural infor- 276

mation is coherent, compact, and coarse-grained, 277

whereas detail information is incoherent, scattered, 278
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Figure 1: Model merging process with the proposed LoRS-Merging for speech models on multi-lingual ASR and
ST tasks. In step 1, a suitable pre-trained speech model is selected. In step 2, the pre-trained model is finetuned with
the task-language-specific data. In step 3, apply LoRS to the delta parameters to reduce model redundancy. In step
4, merge the delta parameters to get a multi-lingual and multi-task merged model.

SVD

SVP

+ 
MP

Low-Rank SparseResidual

Figure 2: Illustration of LoRS-Merging method in detail.
SVD stands for singular value decomposition and SVP
for singular value pruning. MP is magnitude pruning
operating on residual of the original weight matrix and
the low-rank matrix.

and fine-grained. Both structural and detail infor-279

mation include effective and redundant parts. To280

reduce redundant parts in both the structure and de-281

tail aspects of the weights while retaining effective282

parts, the LoRS-Merging method is introduced as283

shown in detail in Fig. 2, which exploits the com-284

bination of low-rank structure by SVP and sparsity285

by MP. SVP performs coarse-grained pruning at286

the structure level, while MP enables fine-grained287

pruning at the detail level.288

In the implementation, we approximate the orig-289

inal weights as the sum of a low-rank component290

and a sparse component, where the low-rank com-291

ponent captures the compact structure, and the292

sparse component captures the scattered details,293

as shown in Eqn. (5). 294

W ≈ L+ S (5) 295

where L represents the low-rank component, and S 296

represents the sparse component. Specifically, L is 297

the low-rank matrix obtained by retaining the top 298

r singular values and their corresponding singular 299

vectors from W : 300

L = UrΣrV
T
r (6) 301

and S is the sparse matrix obtained by performing 302

MP on the residual of W and L: 303

S = M ⊙ (W − L) (7) 304

To simplify the description, we refer to this entire 305

process as LoRS(·). In this manner, SVP decouples 306

the structure and details of the weight, preserving a 307

compact structure while allowing fine-grained MP 308

to remove redundant parts in the details. 309

For each model finetuned on single specific 310

language or task data, we apply LoRS(·) to its 311

task vector as a preprocessing step to reduce lan- 312

guage or task interference in model merging. A 313

multi-lingual or multi-task model can be achieved 314

through simple merging, expressed as: 315

θmerged = θ0 + λ

n∑
i=1

LoRS(τi) (8) 316

Compared to multi-lingual or multi-task training 317

methods, model merging is a simpler and more ef- 318

ficient approach, enabling the seamless incorpora- 319

tion of new languages or tasks without the need for 320
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retraining. Additionally, due to its training indepen-321

dence, it mitigates negative transfer and provides322

optimal training configurations for each language323

or task to improve performance.324

4 Experimental Setup325

4.1 Data326

CoVoST-2 (Wang et al., 2020a) is a large-scale327

multi-lingual ST corpus based on Common Voice.328

It covers translations from English into 15 lan-329

guages and from 21 languages into English, with330

a total of 2,880 hours of speech from 78k speak-331

ers. We selected 5 high-resource languages and332

5 low-resource languages as two language sets to333

investigate their ASR tasks and the from X to En-334

glish ST tasks. The high-resource language set335

includes Catalan (ca), German (de), Spanish (es),336

French (fr), and Italian (it), while the low-resource337

language set includes Indonesian (id), Dutch (nl),338

Portuguese (pt), Russian (ru), and Swedish (sv).339

Due to the more abundant data in the high-resource340

language set, our main experimental results are341

obtained on the high-resource language set, while342

the low-resource language set serves as an auxil-343

iary validation set. To balance the amount of data344

across different languages, we fixed the duration345

of traning data for each language, with 5 hours for346

the high-resource language set and 1 hour for the347

low-resource language set. The dev and test sets of348

both language sets are 1 hour in duration.349

4.2 Model and Training Specifications350

Whisper (Radford et al., 2023) is a general-purpose351

multi-lingual ASR and ST model, a Transformer-352

based model trained on 680k hours of diverse audio.353

We chose the small version as the foundation model354

for the experiments because it achieves a good bal-355

ance between performance and cost. It has 244356

million parameters, with the encoder and decoder357

each consisting of 12 Transformer blocks. The358

weight matrices of the attention layers are all 768359

by 768, and the MLP layers are 768 by 3072.360

For each language-specific or task-specific fine-361

tuned model, we use a different, optimal learning362

rate for each during training, and these models are363

subsequently used for model merging. Finetuning364

involves updating all parameters. We choose Adam365

as the optimiser, set the batch size to 8, the accu-366

mulation iterations to 4, and train for 10 epochs.367

We also select the proportions of low-rank param-368

eters retained by SVP from {1%, 2%, 3%, 5%}369

and sparse parameters retained by MP from {10%, 370

20%, 40%, 60%}. The beam size for decoding is 371

set to 20 across all languages and tasks. We use 372

Sclite and SacreBLEU tools to score the ASR and 373

ST results, respectively. See Appendix A for more 374

details on hyper-parameter settings. Our experi- 375

ments are performed on a single RTX 4090 GPU 376

where training on one language and one task with 377

5 hours of speech data requires 1 hour. 378

4.3 Baseline and Merging Methods 379

We use Multi-lingual and multi-task training 380

as the baseline for comparison with model merg- 381

ing methods, where training is conducted on data 382

mixed from both multi-lingual and multi-task sets. 383

To ensure a fair comparison, the same amount of 384

training data is used from each language and each 385

task. Note that for 5 different languages with both 386

ASR and ST tasks, multi-lingual and multi-task 387

training is performed on 10 times more data and 388

hence 10 times more computational resources. 389

In addition to LoRS-Merging, we investigate the 390

following model merging methods: 391

Weight Averaging (WA) merges multiple sin- 392

gle models by and unweighted averaging of their 393

weights, θmerged = 1
n

∑n
i=1 θi. 394

Task Arithmetic (TA) uses a scaling factor to 395

weight multiple task vectors estimated on a small 396

development set, θmerged = θ0 + λ
∑n

i=1 τi. 397

MP-Merging performs fine-grained magnitude 398

pruning on task vectors to reduce redundancy at 399

the detail level, θmerged = θ0 + λ
∑n

i=1 MP(τi). 400

SVP-Merging performs coarse-grained singu- 401

lar value pruning on task vectors to reduce re- 402

dundancy at the structure level, θmerged = θ0 + 403

λ
∑n

i=1 SVP(τi). (see Section 3.1.2). 404

Moreover, we compare methods against the per- 405

formance of fine-tuning on each language-task 406

combination. This is the topline of all merging 407

methods since the model is completely adapted to a 408

specific language for a specific task with optimised 409

configurations and without any language conflicts. 410

5 Evaluation Results and Analysis 411

5.1 Multi-Lingual Model Merging 412

First, we investigate the merging of finetuned mod- 413

els for different languages on the same task, which 414

corresponds to multi-lingual single-task learning. 415

Language knowledge interference yields im- 416

balanced improvements: Table 1 shows the multi- 417

lingual results of the ASR task with the high- 418
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Table 1: Multi-lingual ASR model merging. Finetuned
is the topline where the model is finetuned on each lan-
guage independently, and Avg. averages WER directly.

System WER↓
ca de es fr it Avg.

Pretrained 20.6 19.6 14.7 24.5 19.4 19.88
Finetuned 19.5 19.7 14.4 22.1 19.2 19.05

Multi-lingual training 17.1 21.8 15.1 22.6 21.9 19.69

Weight Averaging 19.1 19.1 14.2 24.5 20.3 19.55
Task Arithmetic 19.1 18.8 13.9 24.0 19.8 19.23
MP-Merging 19.4 19.3 14.0 23.8 18.1 19.03
SVP-Merging 19.5 19.3 14.2 23.6 18.4 19.11
LoRS-Merging 19.0 18.8 13.9 23.5 18.5 18.85

Table 2: Multi-lingual ST model merging. Finetuned
is the topline where the model is finetuned on each lan-
guage independently, and Avg. averages BLEU directly.

System BLEU↑
ca de es fr it Avg.

Pretrained 21.1 24.1 28.6 26.8 26.8 25.48
Finetuned 22.6 24.6 29.2 27.2 27.3 26.18

Multi-lingual training 21.4 24.4 28.8 26.8 27.2 25.72

Weight Averaging 22.3 24.1 28.6 27.2 26.9 25.82
Task Arithmetic 22.1 24.3 28.9 27.3 26.8 25.88
MP-Merging 22.1 24.7 28.9 27.3 26.9 25.98
SVP-Merging 22.1 24.7 29.0 27.4 26.8 26.00
LoRS-Merging 22.2 24.8 29.0 27.5 26.9 26.08

resource language set. On average, multi-lingual419

training slightly improves the pretrained model but420

significantly underperforms the finetuned models421

and merging methods. This may be due to nega-422

tive interference between the knowledge of differ-423

ent languages, leading to gradient conflicts during424

training (Wang et al., 2020b). From a per-language425

perspective, it is observed that ca and fr achieve the426

largest improvements during fine-tuning while still427

showing significant improvements in multi-lingual428

training, whereas languages with smaller improve-429

ments during finetuning exhibit a substantial perfor-430

mance drop in multi-lingual training, even worse431

than the pretrained model. This indicates a strong432

language conflict in multi-lingual training, with433

ca and fr dominating. Additionally, we observe434

that the optimal learning rates for finetuned models435

vary significantly across languages (see Appendix436

A), while the unified learning rate configuration437

required by multi-lingual training prevents each438

language from reaching its optimal performance.439

Model merging mitigates language conflicts:440

In contrast, model merging methods show obvi-441

ous improvements across almost all languages,442

demonstrating reduced conflict and better stability.443

Table 3: Multi-task model merging performed on each
language independently and WER/BLEU scores are
averaged across languages. Finetuned is the topline
where the model is finetuned on each language and task
combination independently. Per-language results are
shown in Appendix C.

System Avg. WER↓ Avg. BLEU↑

Pretrained 19.88 25.48
Finetuned 19.05 26.18

Multi-task training 19.00 25.90

Weight Averaging 18.84 26.18
Task Arithmetic 18.76 26.30
MP-Merging 18.62 26.40
SVP-Merging 18.72 26.38
LoRS-Merging 18.45 26.48

Among model merging methods, TA outperforms 444

WA due to its flexible scaling factor. Both MP- 445

Merging and SVP-Merging further improve the 446

performance of TA by reducing redundancy, and 447

MP-Merging slightly outperforms SVP-Merging 448

due to its finer-grained pruning. Combining the ad- 449

vantages of SVP and MP, LoRS-Merging achieves 450

the best performance. 451

Table 2 provides the multi-lingual results on 452

ST task with the high-resource language set. The 453

main conclusion is consistent with the ASR task: 454

model merging methods still significantly outper- 455

form multi-lingual training, with LoRS-Merging 456

achieving the best performance. 457

5.2 Multi-Task Model Merging 458

Next, we merge finetuned models for different tasks 459

(ASR and ST) with the same language which cor- 460

responds to multi-task single-language learning. 461

ASR and ST tasks for the same language 462

can mutually benefit from each other: Table 463

3 presents the multi-task results with the high- 464

resource language set. In general, multi-task train- 465

ing performs similarly to finetuned models on ASR 466

but is a lot worse on ST. This is likely due to the 467

substantial differences in optimal hyper-parameter 468

configurations between the two tasks. Model merg- 469

ing methods clearly outperform finetuned models, 470

which not only demonstrates their effectiveness but 471

also shows the mutual benefits between ASR and 472

ST. In terms of performance gains, the improve- 473

ment in ASR is greater than in ST. We attribute this 474

to the fact that ASR is inherently simpler than ST 475

and can be viewed as a step in the ST task. Further- 476

more, as before, model merging methods combined 477

with pruning further improve performance, and the 478
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Table 4: Multi-lingual multi-task model merging. Finetuned is the topline where the model is finetuned on each
language and task combination independently, and Avg. averages WER or BLEU scores directly.

System WER↓ BLEU↑
ca de es fr it Avg. ca de es fr it Avg.

Pretrained 20.6 19.6 14.7 24.5 19.4 19.88 21.1 24.1 28.6 26.8 26.8 25.48
Finetuned 19.5 19.7 14.4 22.1 19.2 19.05 22.6 24.6 29.2 27.2 27.3 26.18

ML and MT training 20.5 19.7 14.6 24.5 19.4 19.86 21.3 24.3 28.3 27.1 26.9 25.58

ML and MT Task Arithmetic 18.9 19.2 14.1 23.7 18.4 18.96 22.2 24.4 29.0 27.3 26.9 25.96
ML and MT LoRS-Merging 18.7 19.1 14.0 23.8 18.0 18.82 22.2 24.8 29.0 27.5 27.0 26.10

MT training 17.0 19.7 14.4 24.2 19.4 19.00 22.3 24.6 28.7 27.0 26.9 25.90
↪→ + ML Task Arithmetic 18.1 19.0 14.2 24.5 20.6 19.37 22.7 24.7 28.6 27.3 26.5 25.96
↪→ + ML LoRS-Merging 18.1 19.0 14.1 24.2 20.3 19.23 22.4 24.5 29.1 27.6 26.7 26.06

ML training 17.1 21.8 15.1 22.6 21.9 19.69 21.4 24.4 28.8 26.8 27.2 25.72
↪→ + MT Task Arithmetic 17.1 18.5 13.3 22.7 18.0 18.00 22.6 25.0 29.2 27.5 26.9 26.24
↪→ + MT LoRS-Merging 16.9 18.3 13.3 22.4 17.8 17.82 22.8 25.2 29.3 27.6 27.0 26.38

proposed LoRS-Merging achieves the best perfor-479

mance across the table.480

5.3 Multi-Lingual Multi-Task Model Merging481

Then, we investigate the merging of finetuned mod-482

els for both different languages and tasks, which483

correspond to multi-lingual (ML) and multi-task484

(MT) learning. Specifically, we explore 4 different485

training and merging settings:486

ML and MT training: Fine-tuning on all lan-487

guages and both tasks jointly.488

ML and MT merging: Fine-tuning on each489

language for each task separately and merging all.490

MT training and ML merging: Fine-tuning491

both tasks jointly for each language, and merging492

models from different languages.493

ML training and MT merging: Fine-tuning on494

all languages jointly for each task, and merging495

models from different tasks.496

Table 4 displays the multi-lingual and multi-497

task results with the high-resource language set.498

Multi-lingual and multi-task training shows little499

improvement over the pretrained model, due to500

negative interference during training and the use of501

a unified training configuration for all languages502

and tasks. Nevertheless, the performance of multi-503

lingual and multi-task merging is on par with that504

of finetuned models, further underscoring the su-505

periority of model merging. As a result, LoRS-506

Merging achieved the best performance when per-507

forming ML training followed by MT merging,508

which consistently outperforms Task Arithmetic.509

Overall, 10% relative WER reduction and 4% rel-510

ative BLEU increase are achieved using LoRS-511

Merging compared to ML and MT training base-512

W
ER

B
LE

U

Number of Languages Number of Languages

Figure 3: WER and BLEU against the number of lan-
guages. Performance is averaged across all languages
and all training runs of language combinations.

line. We provide additional experiments on a set of 513

low-resource languages in Appendix B to demon- 514

strate the robustness and generalizability of model 515

merging and LoRS-Merging. 516

5.4 Effect of Numbers of Languages 517

To further demonstrate the robustness of LoRS- 518

Merging to language selection, experiments are 519

performed using different numbers of languages. 520

Figure 3 shows the average performance across 521

all languages and all training runs with possible 522

combinations of 2, 3, 4 or 5 languages. 523

LoRS-Merging improvements are consistent 524

across different numbers of languages: As the 525

number of languages increases, the performance 526

of both TA and LoRS-Merging degrades due to 527

negative interference between languages. LoRS- 528

Merging consistently outperforms TA in both ASR 529

and ST tasks, and even surpasses the finetuned 530

models in the ASR task. This is likely due to 531

LoRS-Merging further reducing model redundancy, 532

therefore alleviating negative interference. Addi- 533

tionally, we observe that the optimal learning rate 534
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Training Data Size (Hours)

Training Data Size (Hours)

W
ER

B
LE

U
Fine-tuned

Multilingual/Multitask Training

TA Merging

LoRS-Merging

Figure 4: Performance variation against different train-
ing data sizes (number of hours for each language) on
ASR (top) and ST (bottom) tasks.

for the finetuned ASR model is significantly larger535

compared to the ST task. This may lead to over-536

fitting, whereas LoRS-Merging improves model537

generalization through model merging while reduc-538

ing language interference, thus outperforming the539

finetuned models for the ASR task.540

5.5 Effect of Language Data Scale541

We then demonstrate the robustness of merging542

methods to different training data sizes for both543

tasks. Fig. 4 shows the WER (top) and BLEU544

(bottom) scores for ASR and ST at different data545

scales, respectively. As the data scale increases, the546

performance of multi-lingual training does not al-547

ways improve. This may be because the pretrained548

model already performs well, and the significant549

language interference and conflict in multi-lingual550

training hinder the effective improvement of multi-551

language performance. Furthermore, the perfor-552

mance loss of model merging increases with data553

scale, compared to finetuned models. It can be ex-554

plained by the fact that larger training data tends555

to increase the divergence in the optimisation tra-556

jectories of different finetuned models, resulting in557

the breakdown of linear mode connectivity, which558

leads to a greater performance loss. Moreover,559

LoRS-Merging still achieves obvious and stable560

1 0.8 0.6 0.4 0.2 0.1 0.05 0.02 0.01
Ratio

17.5

18.0

18.5

19.0

W
ER

SVP
5 hours
10 hours
20 hours

1 0.8 0.6 0.4 0.2 0.1
Ratio

16.5

17.0

17.5

18.0

18.5

19.0

W
ER

MP
5 hours
10 hours
20 hours

Figure 5: Model performance against the retain ratio
(1 means to retain all weights and 0 means to prune all
weights) in SVP (left) and MP (right) for ASR finetuned
models. Three different training data sizes are used.

improvement compared to TA. 561

5.6 Analysis of Model Redundancy 562

Furthermore, we justify the necessity of SVP and 563

MP to remove model redundancy by showing the 564

model performance against the pruning ratio of 565

finetuned models for ASR as shown in Fig. 5. As 566

shown, both SVP and MP significantly improve the 567

performance of finetuned models, indicating the 568

presence of substantial redundancy in the structure 569

and details of the finetuned models, respectively. 570

The model performance reaches the best at a high 571

pruning level, indicating that the redundancy is 572

particularly large for ASR. We observed a much 573

smaller redundancy in ST, which also explains 574

the observation that LoRS-Merging achieves more 575

salient improvement on ASR than ST. Moreover, 576

redundancy increases with training data, possibly 577

due to the accumulation of gradient noise during 578

training. MP achieves greater performance gains 579

than SVP, indicating more redundancy at the detail 580

level, which is better addressed by fine-grained MP. 581

6 Conclusion 582

This paper explores model merging for multi- 583

lingual ASR and ST on pre-trained speech models 584

and proposes the LoRS-Merging approach. LoRS- 585

Merging combines low-rank and sparse pruning 586

to retain essential structures, eliminate redundant 587

parameters and mitigate language and task inter- 588

ference. Experiments across five languages show 589

that LoRS-Merging effectively alleviates language 590

interference, and achieves a 10% relative WER 591

reduction and a 4% relative BLEU score improve- 592

ment compared to multi-lingual multi-task training 593

baselines. 594
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7 Limitations595

There are three main limitations of this work. First,596

as a common limitation of all model merging meth-597

ods, the same model structure is required across598

all tasks and languages. This is less of a concern599

under the current trend of using the same Trans-600

former structure, but methods need to be developed601

in the future to accommodate subtle structural dif-602

ferences. Second, reasonably-sized training sets603

are required for each language, and low-resource604

languages may suffer from reduced improvements.605

Third, this work mainly explores the two most pop-606

ular S2T tasks. Other possible tasks can be ex-607

plored in future work, including spoken language608

understanding and speaker adaptation.609
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A Hyper-parameter Details868

The detailed hyper-parameter settings for each lan-869

guage are shown in Table 5 for ASR and Table 6870

for ST, respectively.871

Table 5: ASR hyper-parameters for high-resource lan-
guages.

System ASR
ca de es fr it

Finetuned
learning rate 1× 10−6 5× 10−8 1× 10−7 1× 10−6 5× 10−6

Multi-lingual training
learning rate 1× 10−5

Task Arithmetic
scaling factor λ 0.15

LoRS-Merging
scaling factor λ 0.15
SVP ratio r 5% 3% 2% 1% 1%
MP ratio p 40% 60% 40% 10% 10%

Table 6: ST hyper-parameters for high-resource lan-
guages.

System ST
ca de es fr it

Finetuned
learning rate 1× 10−6 2× 10−8 2× 10−8 5× 10−8 5× 10−8

Multi-lingual training
learning rate 5× 10−9

Task Arithmetic
scaling factor λ 0.15

LoRS-Merging
scaling factor λ 0.15
SVP ratio r 5% 3% 5% 2% 1%
MP ratio p 60% 40% 20% 20% 20%

B Results of Low-Resource Language Set872

The results of the low-resource language set are873

shown in this section. Specifically, Table 7 and874

8 show the multi-lingual single task training and875

merging for ASR and ST respectively.876

Table 7: Multi-lingual ASR model merging. Finetuned
is the topline where the model is finetuned on each lan-
guage independently, and Avg. averages WER directly.

System WER↓
id nl pt ru sv Avg.

Pretrained 16.9 16.0 10.1 17.1 17.1 15.43
Finetuned 15.0 14.8 9.7 16.8 14.7 14.20

Multi-lingual training 16.7 15.5 10.0 17.0 16.6 15.14

Weight Averaging 15.7 15.2 10.1 17.1 15.8 14.77
Task Arithmetic 15.7 15.1 9.9 17.0 15.8 14.69
MP-Merging 15.7 15.1 10.0 16.7 15.7 14.63
SVP-Merging 15.7 15.1 9.9 16.9 15.7 14.65
LoRS-Merging 15.7 15.1 9.7 16.8 15.6 14.57

Table 8: Multi-lingual ST model merging. Finetuned
is the topline where the model is finetuned on each lan-
guage independently, and Avg. averages BLEU directly.

System BLEU↑
id nl pt ru sv Avg.

Pretrained 32.5 31.6 43.3 35.5 32.1 35.00
Finetuned 35.2 34.0 43.8 36.7 37.6 37.46

Multi-lingual training 32.3 33.2 43.5 35.4 34.3 35.74

Weight Averaging 33.6 32.2 43.2 35.3 34.2 35.70
Task Arithmetic 33.9 32.8 43.1 35.5 34.3 35.92
MP-Merging 33.8 32.8 43.5 35.8 34.0 35.98
SVP-Merging 33.6 32.6 43.4 35.6 34.3 35.90
LoRS-Merging 33.9 32.8 43.2 35.9 34.5 36.06

Then, Table 9 shows the uni-lingual multi-task 877

training and merging performance (c.f. compare to 878

3 for high-resource languages). 879

Last, Table 10 shows the results of multi-lingual 880

and multi-task training and merging results for low- 881

resource languages (compare to Table 4 for high- 882

resource languages.). LoRS-Merging achieved the 883

best performance across all merging and training 884

methods in all tables. 885

C Detailed Results on Multi-task merging 886

Detailed per-language results of Table 3 are shown 887

in Table 11. 888

12



Table 9: Multi-task model merging. Finetuned is the topline where the model is finetuned on each language and task
combination independently, and Avg. averages WER or BLEU scores directly.

System WER↓ BLEU↑
id nl pt ru sv Avg. id nl pt ru sv Avg.

Pretrained 16.9 16.0 10.1 17.1 17.1 15.43 32.5 31.6 43.3 35.5 32.1 35.00
Finetuned 15.0 14.8 9.7 16.8 14.7 14.20 35.2 34.0 43.8 36.7 37.6 37.46

Multi-task training 15.4 15.0 9.3 16.6 14.3 14.12 35.3 33.7 43.6 36.2 35.8 36.92

Weight Averaging 14.7 14.9 9.3 16.6 13.8 13.88 35.4 33.9 44.1 36.3 35.9 37.12
Task Arithmetic 14.6 14.9 9.3 16.5 14.0 13.88 35.3 33.8 44.3 36.1 36.4 37.18
MP-Merging 14.4 14.7 9.4 16.5 13.8 13.78 35.7 33.9 44.3 36.1 36.1 37.22
SVP-Merging 14.6 14.8 9.2 16.4 13.9 13.80 35.3 33.9 44.3 36.2 36.3 37.20
LoRS-Merging 14.4 14.7 9.2 16.4 13.8 13.72 35.6 33.9 44.3 36.3 36.4 37.30

Table 10: Multi-lingual multi-task model merging. Finetuned is the topline where the model is finetuned on each
language and task combination independently, and Avg. averages WER or BLEU scores directly.

System WER↓ BLEU↑
id nl pt ru sv Avg. id nl pt ru sv Avg.

Pretrained 16.9 16.0 10.1 17.1 17.1 15.43 32.5 31.6 43.3 35.5 32.1 35.00
Finetuned 15.0 14.8 9.7 16.8 14.7 14.20 35.2 34.0 43.8 36.7 37.6 37.46

ML and MT training 16.9 15.7 9.6 17.0 16.3 15.08 32.8 32.9 43.3 35.4 32.6 35.40

ML and MT Task Arithmetic 16.4 15.5 9.6 16.8 15.7 14.79 33.7 33.1 43.2 35.7 34.9 36.12
ML and MT LoRS-Merging 16.1 15.5 9.5 16.8 15.7 14.72 33.7 33.2 43.5 35.8 34.9 36.22

MT training 15.4 15.0 9.3 16.6 14.3 14.12 35.3 33.7 43.6 36.2 35.8 36.92
↪→ + ML Task Arithmetic 16.0 15.5 9.5 16.9 15.4 14.66 34.1 32.8 43.7 35.6 33.3 35.90
↪→ + ML LoRS-Merging 16.1 15.3 9.4 16.8 15.3 14.57 34.2 32.7 43.8 35.8 33.5 36.00

ML training 16.7 15.5 10.0 17.0 16.6 15.14 32.3 33.2 43.5 35.4 34.3 35.74
↪→ + MT Task Arithmetic 17.1 15.5 9.5 17.0 15.5 14.89 32.1 33.1 43.6 35.7 33.6 35.62
↪→ + MT LoRS-Merging 16.9 15.5 9.4 16.8 15.5 14.80 32.6 33.2 43.6 35.9 33.6 35.78

Table 11: Multi-task model merging. Finetuned is the topline where the model is finetuned on each language and
task combination independently, and Avg. averages WER or BLEU scores directly.

System WER↓ BLEU↑
ca de es fr it Avg. ca de es fr it Avg.

Pretrained 20.6 19.6 14.7 24.5 19.4 19.88 21.1 24.1 28.6 26.8 26.8 25.48
Finetuned 19.5 19.7 14.4 22.1 19.2 19.05 22.6 24.6 29.2 27.2 27.3 26.18

Multi-task training 17.0 19.7 14.4 24.2 19.4 19.00 22.3 24.6 28.7 27.0 26.9 25.90

Weight Averaging 17.1 19.6 13.9 23.7 19.6 18.84 22.9 24.4 29.0 27.7 26.9 26.18
Task Arithmetic 17.2 19.3 14.0 23.3 19.7 18.76 23.4 24.5 28.9 27.7 27.0 26.30
MP-Merging 17.8 19.5 14.4 23.8 17.2 18.62 23.1 24.5 29.1 27.9 27.4 26.40
SVP-Merging 18.0 19.4 14.4 23.7 17.7 18.72 22.9 24.7 29.1 27.8 27.4 26.38
LoRS-Merging 17.5 19.4 14.2 23.1 17.7 18.45 23.1 24.5 29.3 27.9 27.6 26.48
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