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ABSTRACT

This work proposes A2GD, a novel adaptive accelerated gradient descent
method for convex and composite optimization. Smoothness and convexity
constants are updated via Lyapunov analysis. Inspired by stability analysis
in ODE solvers, the method triggers line search only when accumulated
perturbations become positive, thereby reducing gradient evaluations while
preserving strong convergence guarantees. By integrating adaptive step
size and momentum acceleration, A2GD outperforms existing first-order
methods across a range of problem settings.

1 INTRODUCTION

In this paper, we study the convex optimization problem

min f(x), 1
i () (1)
where f is p-strongly convex and L-smooth. When p = 0, we additionally assume f is
coercive so that a global minimizer exists. We also consider the composite convex problem

;Iel]iRI‘li f(z) = h(z) + g(z), (2)

where h is L-smooth and g is convex, possibly non-smooth, with a proximal operator.

First-order methods, which rely only on gradient information, are widely used in machine
learning for their efficiency and scalability (Bottou et al., |2018)). Among them, gradient
descent (GD), defined by

Tp1 = ok — aV f(zp), (3)
is fundamental. Despite its simplicity, GD faces two main challenges:

e Step size selection. Convergence depends heavily on the step size ai. Small oy slows
progress; large ay, risks divergence. For L-smooth functions, o = 1/L is standard, but
this global constant often mismatches local curvature.

e Slow convergence. Even with an optimal step size, GD is slow on ill-conditioned
problems, i.e., when L/u > 1.

We briefly review strategies addressing these issues:

Backtracking line search Backtracking line search begins with a large step size oy and
reduces it until conditions such as the Armijo—Goldstein criterion (Armijo, |1966; |Goldstein,
1962/63) or Wolfe condition (Wolfel [1969) are satisfied. Extensions (Ito and Fukuda,
2021} [Liu and Yang}, |2017) adapt line search to composite settings. |(Guminov et al.| (2019))
update parameters in Nesterov’s method with backtracking, while [Lan et al.| (2023) develop
a parameter-free method that attains optimal complexity bounds for both convex and
strongly convex problems, achieving the best known results for non-convex problems. An
adaptive variant (Cavalcanti et al.| [2025) reduces backtracking steps, improving efficiency.
Despite robustness and simplicity, line search usually requires 3—4 extra function or gradient
evaluations per iteration, increasing cost.
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Adaptive step sizes Adaptive schemes such as the Barzilai-Borwein (BB) method (Barzi;
lai and Borweinl [1988) estimate step sizes from past iterates:

<$k B xk—17 Vf(xk?) — vf(xk—1)> (4)
IVf(zr) = V(e-0)I*

with low computational overhead. However, BB-type methods are heuristic, and may diverge

even for simple convex problems (Burdakov et al., 2019)); guarantees are largely limited

to quadratic cases (Dai and Liaol 2002)). Extensions (Zhou et al., 2006; [Dai et al., 2015)
improve robustness but still lack general theory.

o =

Polyak’s method (Polyak, [1969), foundational to adaptive approaches such as AdaGrad and
AMSGrad (Vaswani et al., [2020]), ensures convergence but requires the optimal value f*,
which is rarely available.

Line-search free methods. Recent years have seen growing interest in line-search free
adaptive methods. These algorithms keep the per-iteration cost of gradient descent while
often achieving faster convergence and lower sensitivity to hyperparameters. Malitsky and
Mishchenko| (2020} 2024) introduced adaptive proximal gradient methods with theoretical
guarantees, though lack of acceleration can hinder performance on ill-conditioned problems.
Li and Lan (2024) and |Cavalcanti et al.| (2025) proposed adaptive NAG variants with
backtracking-free updates, though the rule in |Li and Lan| (2024) is relatively complex.

Acceleration Momentum-based methods accelerate convergence by leveraging past up-
dates. The heavy-ball method (Polyak, 1964) and Nesterov’s accelerated gradient (NAG) (Nes-
terov}, 2003) achieve the optimal rate 1 — y/u/L under strong convexity, assuming known L
and p. In the convex case (u = 0), NAG with step size 1/(k + 3) (Nesterovl, |1983) achieves
the optimal O(1/k?) rate. Nesterov later extended this framework to composite problems by
incorporating line search into accelerated proximal methods (Nesterovl |2012)), also attaining

O(1/k2).

In training deep neural networks, Adam (Adaptive Moment Estimation) (Kingma and Ba)
2015) is a widely used optimization algorithm that combines momentum and adaptive step
sizes for fast and stable convergence. However, the original Adam algorithm lacks convergence
guarantees, even for convex problems.

CONTRIBUTION

e We develop A2GD, an adaptive accelerated gradient method with provable accelerated
linear convergence for smooth and composite convex optimization.

e We adapt stability analysis from ODE solvers to reduce line search overhead, activating it
only when accumulated perturbations are positive. The method is thus line-search reduced
rather than line-search free (Fig. , and it outperforms existing line-search free methods
in both theory and practice.

e We show numerically that A2GD also consistently outperforms AGD variants (where a
single A denotes either adaptivity or acceleration) and other methods combining adaptivity
and acceleration.

Limitations and Extensions While A2GD achieves adaptive acceleration with strong
theoretical guarantees, these results rely on convexity to ensure positivity of the Bregman
divergence. Extending the framework to nonconvex settings remains an open problem. We
provide preliminary evidence on a composite £1_5 problem, where the nonconvex regularizer
admits a closed-form proximal operator.

Although line search adds little overhead in practice—typically only a few extra evaluations—a
sharper theoretical bound on the number of triggered line search steps is an important future
direction.

Another extension is the stochastic setting. Developing a stochastic variant of A2GD
that preserves both adaptivity and acceleration under variance conditions would broaden
applicability to large-scale machine learning, providing a step toward a theoretical justification
of the empirical success of Adam.
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Background on convex functions Let f: R? — R be differentiable. The Bregman
divergence between z,y € R? is defined as

Dy(y,x) := fy) = f(x) = (V[(2),y —2).

The function f is u-strongly convex if for some p > 0,
Dily.2) > Elly —al? Va,y e R
It is L-smooth, for some L > 0, if its gradient is L-Lipschitz:
IVf(y) = V@) < Llly — |, Ve.yeR"

The condition number is defined by k = L/u. Let S, denote the class of all differentiable
functions that are both u-strongly convex and L-smooth.

For f € Sp,,, the Bregman divergence satisfies (Nesterov, |2003):

1 1
STAMA A VIiI® < Dg(x,y) < ﬂllvf(x) - VIiWIP, Vz,yeR™ (5)
Taking y = z*, where z* minimizes f and V f(z*) = 0, yields:

IVf(@)|? = 2u(f(z) — f(z*)), VzeR% (6)
2 ADAPTIVE GRADIENT DESCENT METHOD

We illustrate our main idea using gradient descent and later extend it to accelerated gradient
descent. The steepest descent step chooses

aj = argmin f(zr — aV f(xg)), (7)
a>0

which entails solving a one-dimensional convex problem. While conceptually simple, this can
be costly unless a closed form is available.

For L-smooth functions, the fixed step size ay, = 1/L guarantees convergence, but is often
overly conservative when local curvature is much smaller than L. To improve efficiency, we
design step sizes that adapt to local geometry using f(zx) and V f(zy).

We estimate the local Lipschitz constant Lj through Lyapunov analysis of the gradient
descent method . Consider the Lyapunov function

Ey = f(zr) — f(2"), (8)
where * € argmin f(z) and f(z*) = min f. Expanding f at xx11 gives

Epv1 — Ep = f(xr1) — f(zn)
= (Vf(®ps1), Thopr — Tp) — Df(l'k, Th+1)
= —ap (V[f(2r41), Vf(2r)) — Dy(Tr, Tg1)

~ SNV @) = IV fan)]?

+ SV @rr1) = V@) |2 = Dy, wi).

Applying (6) to |V f(zrs1)]|? and rearranging yields

(14 pog) Exy1 < By — %va(xk)ﬂz + %”Vf(mlﬁl) = Vf(@)l|? = Dy(@r, wrgr)- (9)

If we use a line search to choose a small enough «; such that
A
kT IV (k) = V()|

then dropping the negative terms in @ gives the linear convergence

Eii1 < (1+ p/Ly) " Ey.

(10)
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Since ay = 1/Ly, choosing a smaller «y is equivalent to using a larger L;. By , the
criterion holds once Ly > L. Standard backtracking starts with an initial estimate of Ly
and increases it iteratively by a factor » > 1 until is satisfied. This procedure requires
at most O(|log L/ logr|) iterations. A more adaptive and efficient backtracking scheme was
recently proposed in |Cavalcanti et al.| (2025), which we adapt for our purposes and briefly
recall below.

Rewriting the stopping criterion gives

2L D
v kDg(Th, Try1) > 1

IVf(@rt1) = Vf(zp)]?
If v < 1, the criterion is not satisfied. Instead of increasing Ly by a fixed ratio, we update it
as Ly < rLi/v, where r > 1 is a base ratio (e.g., r = 3). This adaptive scaling adjusts to
the gap between the current condition and the stopping criterion, improving both efficiency
and accuracy.

Line search adds computational overhead, since each update of Lj requires reevaluating
V f(xk41) and/or f(zxy1), which is often the dominant cost in gradient-based methods. To
reduce this cost and avoid line search, line-search free approaches have been proposed; see
the literature review in the introduction.

However, enforcing line-search free updates is often too rigid and restrictive. In contrast,
we reduce the number of line-search steps to a small fraction, achieving comparable cost to
line-search free methods. Our approach is inspired by stability analysis in ODE solvers. The
following result can be established by induction.

Lemma 2.1 (A variant of Lemma 5.7.1. in|Gautschi| (2011))). Let {Ex} be a positive sequence
satisfying
Ek+1 Sék(Ek_Fbk)v k:O,l,...,

where 0, > 0 and by, € R. Then

k
Ek+1§ <H61>E0+pk7 k:Oal7"'7

=0

where the accumlated perturbation

k k
Pk = Z H(Sj b, satisfying  pr = Ok(pr—1 + bk)-

i=0 \ j=i

We use an adaptive gradient descent method (ad-GD) to illustrate our main idea and refer
to Appendix A for the detailed algorithmic formulation. Applying Lemma to GD under
the Lyapunov analysis equation [J] gives

0 = (1+M/Lk)_1, by Zb,(cl)-‘rbl(f),

1
b = 51V @) = V@I = Dyl wig).

@___ 1 2
T

The strong convexity constant 4 may be unknown in practice. In implementation, we replace
it by the upper bound pj, = minj<;<y L.

In the line-search criterion 7 Ly, is chosen so that bg) < 0, ensuring b < 0 at each step.
Enforcing negativity step by step is sufficient but not necessary. Instead, we perform line
search only when pr > 0, and update Lj until the weighted sum py < 0. Once this condition
holds, exponential decay follows:

k —1
B < H (1 + 5) Ey, ifpp <0.
i=0 v
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In the early iterations, when iterates are far from optimal and |V f(z)|| is large, the negative

terms bgf) accumulate and can offset positive terms later. Line search is triggered only if the
accumlated perturbation pg becomes positive. In other words, classical line search enforces
bi < 0 in the ¢, sense for {b;}, while our relaxation allows a weighted ¢5 sense. Figures
and @l illustrate this idea.

300

10°

n
o
o

k— -
1= - Eo 107?

=
o
o

o

104

——Ad-GD (Algorithm 2)
+ Grad Eval for line search
——Ad-GD with line search

I

—

0 50 100 150
Number of Gradient Evaluations

Lyapunov function value

Pk

10°®

(f(x) = £(@")/(f (20) — f(z"))

0 20 40 60 80 100
Number of Iteration

Figure 1: The accumlated perturbation pg
(red curve) remains negative and approaches
zero. The actual values of Ej, (blue curve)
decay faster than the theoretical exponen-

tial rate (H?:o (2) Ey (black curve) due to

the negative perturbation pi. Additionally,
FE. decays more rapidly in the early itera-
tions because of the large magnitude of the

Figure 2: For a logistic regression problem
with /5 regularizer , gradient descent

with line search enforcing bg) < 0 (top
curve) performs backtracking every 3—4 iter-
ations on average. In contrast, ad-GD (Al-
gorithm |2/ in Appendix A) with line search
targeting pr, < 0 (bottom curve) incurs only
few additional gradient evaluations. Red
dots indicate iterations where extra gradient

negative term b,(f) = —iHV flxp)]?. evaluations occur during line search.

Theorem 2.2. Assume f € St .. Let {x}} be the sequence generated by gradient descent
method (@ with line search ensuring pr < 0. Then we have

k—1 1 1 k
E. < — < ———— ) E).
k—}]owm °—<1+u/<crL>> ’

Proof. As p;, < 0 for all k, linear convergence follows from @ By , the stopping
criterion is satisfied once Ly < ¢,.L with at most O(|log L/logr|) search steps, where
¢ > 1 depends on the line-search scaling factor. Since pg > u, the desired linear convergence
rate follows. O
2Dy (xp,Tr41)

(Tr+1)=V (x|
The gradient Vf(zr41) can be reused in the following gradient descent step. However,
computing Dy (zy, Tx+1) requires function evaluations f(zx) and f(zg+1), which may be
costly. To avoid these evaluations, we approximate 2Df(xy, Zx+1) by its symmetrized form:

Remark 2.1. To improve efficiency, we set the next step size as a1 = o7

2D¢(wk, Trt1) = Dy (h, Th1) + D (@p1, k) = (Vf(@he1) — VI (@k), Toar — k).
This reduces the ratio to the form used in the BB gradient method . In contrast to BB,
convergence of ad-GD is guaranteed by enforcing py < 0.

Remark 2.2. There are several variants depending on how we define §; and split bg) and

b;f). For example, we can use 6 = 1 — u/ Ly, b,(f) = 0, and the rest is bg). Then b;cl) <0is
equivalent to the criteria proposed by (Nesterov} 2012) (Appendix A).

3 ADAPTIVE ACCELERATED GRADIENT DESCENT METHOD

In this section, we apply our adaptive strategy to accelerated gradient methods. We derive
an identity for the difference of the Lyapunov function and adaptively adjust Ly and py to

ensure the accumulated perturbation satisfies pi, < 0. The perturbation term bg) remains
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unchanged, while b,(f) includes additional terms and is used to adjust ux. The contraction
rate 8 improves from (1 + pp/Li) ™t to (1 + \/pr/Li) L.

We will use the Hessian-based Nesterov accelerated gradient (HNAG) flow proposed in |Chen
and Luo| (2019)

o' =y—x—pBVf(z),

1 (11)
y =z —y——Vf(z),
1
where 3 is a parameter. An implicit and explicit (IMEX) discretization of is
1
Tpy1 — T = ok (Yo — Thot1) — fvf($k)7
o ¢ (12)

Yk+1 — Yk = — ﬁvf(fﬂkﬂ) + ok (Tht1 — Yrt1) s

where oy > 0 is the time step size and Ly, := (ax8) L. Denote by z = (x,y)T. Introduce
the Lyapunov function

* M *
Ez:p) = (@)~ o) + By~ P
The proof of the following identity can be found in Appendix B.
Lemma 3.1. We have the identity
(L4 )& (zhr1; ) — E (25 i)

B 1 ai 1 2
! <Mk - Lk) Vi)l (1)

oIV (i) = V@I ~ Dyon,zesn) - (1D
k

1 o N 1 "
~ap IVF@RIE + 5 (w7 = Dy i) = (Ut i) anen =i |*) (11D,
2L, 2 M
We can simply set a, = /7% so that (I) = 0. To control (II) and (III), define perturbations

1
b](:) = mHVf(ka) — Vf(xp)|]? — Df(zg, Tpi1),

1 «
b = — 5 IV f@e)|? + 5 (RE = (1+ o) lonss — el (13)
2Ly 2
1 1 2
Pr = 1+ o (pk—1+b](€)+b§€)>, Vk > 1 and py = 0.

The term bg) measures deviation from the Lipschitz condition and is used to adjust Ly,

while b,(f) measures deviation from the strong convexity assumption and is used to adjust py.
To enforce the lower bound pg > p when p > 0, we introduce

R2 = (1 - M/Mk) R27

using the inequality Dy(z*,2541) > 4llzks1 — 2*||* and an upper bound R such that
lzki1 — 2| < R2. If pg < i, then b,(f) < 0 and no further reduction of puy, is allowed. The
parameter u can be a conservative estimate of the true convexity constant and serves as a
lower bound for p.

Line search is triggered only when p; > 0. If b;cl) > 0, Lj is updated using adaptive
backtracking (Cavalcanti et al.| (2025). If b,(f) > 0, the convexity is not strong enough to
support a large step, so we reduce pg. In the limiting case pg = 0, we have b,(f) <0.
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To update ujr more precisely, we solve b,(f) = 0, treating L; as known and using the

fixed rule ay = /ux /Ly for the step size. The leading term in the second part of b;f) is

apprR2 = uz/ QR% / Li/ 2, and the equation essentially reduces to a non-trivial scaling
3/2
A 7S R 4 4]
L}t/2 Ly Li/3R:/3

To preserve decay of the Lyapunov function, we enforce

pre1 < pe = E(Zrg; 1) < E(Zryrs o)

To establish convergence guarantee, the parameter pj cannot decay too fast. To control
the decay rate of uk, we adopt the perturbation idea proposed in |Chen et al.| (2025). We
introduce a parameter € and impose the lower bound u; > € in the update formulas (line 12
and line 16 in Algorithm .

To ensure monotonic descent, updates with f(zx11) > f(xy) are rejected by setting xx11 = x.
When ||y — 2*|| > ||zx — x*||, the Lyapunov function £ may decrease primarily due to
llyx — x*||, while f(z)) stagnates. To mitigate this, a restart is triggered by setting y, = xx
if f(xy) fails to decrease over five consecutive iterations. These monitoring steps are omitted
from Algorithm [I} but are used in practice to enhance stability.

Algorithm 1: Adaptive Accelerated Gradient Method (A2GD)

Input: zg,y0 € R", Lo >0, uo >0, R>0,0<tol < 1,e >0, m>1
while |V f(z1)|| > tol||V f(z0)| do

ag < /pr/L;

Tyl < ak1+1xk + afj—lyk _ Lk(oélk—i-l) Vf(l'k),

Y1 ¢ GebpThen T ol — et VI (@rr);

b ¢ g [V f (@) — VI @)l2 = Dy, @rg);

b =g V()2 + 288 (B2 — (14 on) | wrss — yeia]|2);
P+ T (e + 0 + b))

if p; > 0 then

if b") > 0 then

2LkDf(wk7wk+1) .
| v e e 3Le/v

if b”) > 0 then

; IV £ (@)]*?
L < Mmax < &, min < uy :
L H { ’ {'u ’L;/S(Ri7(1+ak)‘|1k+17yk+1H2)2/3 ’

| Go to line 2;

else

IVf(@h41) =V (i)l
2Df(:vk.,:ck+1) ?

Liq1

; V£ (@e]*?
k41 ¢ max < e, min < pg e ;
’ T L2 (R = (o) |zt —yrs [12) / ’

ifT decay condition then
€<+ ¢/2;
| m I_\/§ -m] +1;

| k< k+1;

To reduce sensitivity to initialization, we include a warm-up phase using the adaptive proximal
gradient descent (AdProxGD) method from Malitsky and Mishchenko| (2024). Starting from
zg, we perform 10 iterations of AdProxGD and initialize A“GD with zg = yg := 19 and
po = miny<k<10{Lx}, and set R = 100||V f(zo)||/po. Although dynamical update of R may
improve convergence, the method is typically robust with a fixed R.
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The lower bound e of uy is halved if certain decay conditions are met: if either £ /&) <
(R? 4+ 1)g/2, or the iteration steps for one fixed ¢ are larger than m. Since & is not
directly computable, we can replace &/ with ||V f(zk)|?/[IVf(z0)]|?>. If u > 0, then
Ex/E0 < (R?* + 1)g/2 will be satisfied in O(|loge|) steps. If u = 0, the maximal iteration
steps for one fixed ¢ is bounded by m. We thus obtain the following convergence results.

Theorem 3.2. Let (xy,yx) be the iterates generated by the above algorithm. Assume function
f is p-strongly convex with > 0. Let ks be the total number of steps after halving € exactly
s times, i.e. € =27 %¢g.

1. When p =0, ther exists a constant C > 0 so that

Ek, R*+1 1
& ~ 12\ © k2
0 (Cks +¢&g ) s

So O(y/1/tol) iteration steps can acheive &, [Ey < tol.

2. When u > 0, the iteration number to achieve &, /Ey < (R? 4+ 1)27%¢g < tol is bounded

by O(\/L/p Intol).
4 NUMERICAL EXPERIMENTS

We test A2GD on smooth convex minimization tasks and compare it with several leading
first-order methods, grouped into two categories:

e Accelerated but non-adaptive methods: Nesterov’s accelerated gradient (NAG) with
step size 1/(k+3) (Nesterov, |[1983)), accelerated over-relaxation heavy ball (AOR-HB) (Wei
and Chen| [2025]), and the triple momentum method (TM) (Van Scoy et al., 2018).

e Adaptive methods: adaptive proximal gradient descent (AdProxGD) (Malitsky and
Mishchenko), 2024)), the auto-conditioned fast gradient method (AC-FGM) (Li and Lan)
2024), and NAGfree (Cavalcanti et al., 2025).

For all examples, we set the tolerance to tol = 107% and use the stopping criterion ||V f(z)| <
tol - |V f(xo)||. All experiments were run in MATLAB R2023a on a desktop with an Intel
Core i5-7200U CPU (2.50 GHz) and 8 GB RAM.

Regularized Logistic Regression We report numerical simulations on a logistic regres-
sion problem with an {5 regularizer:

m
) A
min {Zlog (1 + eXp(—bia;rx)) + Zlz)? 3, (14)
zER™ P 2
where (a;,b;) € R" x {—1,1} fori =1,2,...,m.
0
100 —A’GD { 10 —— A%GD-weaklyconvex
o~ \/ {\ - Line Search Step — § - Line Search Step
pg NAG pg ——AdProxGD
\>§O F ——AORHB . AC-FGM
E 5 T}\'I u;—: NAGfree
g 10 l l‘}ll £ 10° q
& g W\ N
E E \
\
100 ‘ i \

200 400 600 800 1000 100 200 300 400

Number of Gradient Evaluations Number of Gradient Evaluations

Figure 3: A2GD compared to non- Figure 4: A2GD compared to adaptive
adaptive accelerated gradient methods. methods.

For this problem, = XA and L = A\a, (Z?ll aia;r) + A. We use (a;,b;) from the Adult
Census Income dataset. After removing entries with missing values, the dataset contains
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30,162 samples. The Lipschitz constant is 6.30 x 10*. With regularization parameter A = 0.1,
the condition number is x = 6.30 x 10°.

We can extend the algorithm A2GD and convergence analysis to the composite case and leave
the details in Appendix C. We compare the performance of A2GD with other first-order prox-
imal methods: (1) the Adaptive Proximal Gradient descent (AdProxGD) method (Malitsky
and Mishchenkol [2024)); (2) Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck
and Teboulle, [2009); (3) AOR-HB with perturbation |[Chen et al.| (2025). We still use
tol = 107° but the stopping criterion is changed to [|[Vh(zy) + x| < tol|[Vh(zg)] for all
examples.

Maximum Likelihood Estimate of the Information Matrix We consider the maxi-
mum likelihood estimation problem from (Boyd and Vandenberghel (2004} (7.5)):

minimize f(X) := —logdet X + tr(XY),
XeRnxn (15)
subject t0  Amin < MX) < Amaxs

where X is symmetric positive definite and Anin, Amax > 0 are given bounds. The condition

number of fis k= A2 /A2, .

Problem (|15)) has a composite form, combining the smooth part f(X) with a nonsmooth
indicator g(X) enforcing spectral constraints. The proximal operator of g requires eigen-
decomposition, projection of eigenvalues onto [Amin, Amax], and matrix reconstruction—steps

that dominate the cost. Thus, reducing gradient and proximal evaluations, especially during
backtracking, is critical for efficiency.

0 10° e
10 —___A2GD i ——A?GD
= - Line Search Step — | - Line Search Step
by —— AdProxGD g 2 f —— AdProxGD
2 FISTA x> 10 FISTA i
= AOR-HB(u) = - { AOR-HB(p)
= = —
& gl_ 4 T—
X 10° % 10 ]
= e
S 108
200 400 600 800 1000 2000 3000 4000 5000
Number of Gradient Evaluations Number of Gradient Evaluations

Figure 5: Error curves under setting (1). Figure 6: Error curves under setting (2).

Following Malitsky and Mishchenko| (2024)), we construct the data matrix Y as follows:
sample a random vector y € R™, and define y; =y + 6; for i = 1,..., M, with §; ~ N (0, I,).
Then set Y = 3 Zf\il yiy, . We test our algorithm under two settings: (1) n = 100, M = 50,
Amin = 0.1, Amax = 10; (2) n = 50, M = 100, Amin = 0.1, Amax = 103.

/1.5 nonconvex minimization problem We con-
0

10 —aap | sider the ¢ minimization problem
= - Line Search Step 1
by —— AdProxGD . 2
) FISTA min  S{|Az — bl|* + A(l|z[l1 — [lz[l2), (16)
= i AOR-HB(1) zeR™ 2
& . introduced by [Yin et al.| (2015]), promotes sparser solu-
< 10" . .
E tions than standard convex penalties.
\ The matrix A € R"*P is generated from a standard
500 1000 1500  Gaussian distribution, and the ground truth z* € RP
Number of Gradient Evaluations has sparsity 50. The observation vector is constructed

) as b= Az*. We set the regularization parameter \ = 1
Figure 7: Lg—error curves for 1.2 and consider two problem sizes: n = 500, p = 1000.
problem with n = 500, p = 1000. The initial point is sampled as zg = yo ~ 10N(0, I,,).

Across all tests, our A2GD method consistently outperforms baseline algorithms. A repre-
sentative error trajectory is shown in Fig. 4] where A?GD curve (in blue) decays much faster
than others.
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APPENDIX A: ADAPTIVE GRADIENT DESCENT METHOD

We present an algorithm for adaptive gradient descent method (Ad-GD) which is a simplified
version of A2GD without momentum.

Algorithm 2: Adaptive Gradient Descent Method (Ad-GD)

Input: Initial point o € R”, initial step size Ly > 0, initial strong convexity estimate
po >0
Output: Sequence {zj}
1 for k=0,1,2,... do
2 | @ppr e we = V(@)

1
o | 0 IV @) = VA@OIP = Dyl zi);

1
2
R R ALl

-1

5 Dk (1 + %’;) (pkﬂ + b,(:) + b,(f));

6 if p;, > 0 then

7 L Use adaptive backtracking to update Ly so that b;cl) < 0;
IV f(@r) = VI (@ra)?

QDf(JZk,’I]H_l) ’
9 ME < min{uk,Lk};

8 Ly +

There are several variants of Ad-GD depending on how we define d; and split b,(cl) and b,(f).
For example, we can use 0y = 1 — u/ Ly, bgf) =0, and

1 1
B i= o IV f@nsn) = VI@OIE = Dy(orsann) = 5 19 @) 2 (17)
k k

The inequality b,(cl) < 0 is equivalent to the criteria proposed by Nesterov in |Nesterov| (2012).

Proposition 4.1. The inequality b,(:) < 0 s equivalent to

mrp, (Tee1; k) > f(Trg1), (18)

where my, (y;2) = f(2) +(Vf(2),y = 2) + Blly — @I, 21 = argmin, my, (y;21).

Proof. First, we have the identity
F@x) = Flaren) = SV o)
= SV @) =GNV @) = V@0l + Dy (i nr).
Notice that zg41 = argmin, mr, (Y;Tk) € Tpp1 = T — L%_Vf(xk), SO

mp, (Try1;2k) 2> f(@Tr41)

2
L > f(zr41)

S f(rg) + <Vf(xk), —levf(xk)> + 2k

1
5 ||z V)

(o)~ fonn) = 51T @IP >0
k
ﬁﬁllvf(xm)lﬁ + i”vf(xk+1) — Vf(xp)|]? — Dp(wg, v541) > 0.

Thus, equivalence is proved. O
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APPENDIX B: IDENTITIES OF ACCELERATED GRADIENT METHODS

We will use the Hessian-based Nesterov accelerated gradient (HNAG) flow proposed in [Chen
and Luo| (2019)

xlzyfxfﬂvf(z)a
'=x— _1 T
y=x—y qu( )-

Denote by z = (z,y)T and G(z) the right hand side of (1)), which now becomes 2z’ = G(z).
In the notation V&, we consider p as a fixed parameter and take derivative with respect to
z.

Lemma 4.2. We have the identity

(19)

~VE=)-G(2) = £2) + BIVI@I2+ Ly — ol + Dy ) - Lo —aIP. (20)

Proof. A direct computation gives

(V) (x—2*) = (y —2*) + BV f(z)
—VE(z)-G(z) = (,u(y _ x*)) ((y B e ivf(l’)>

= (Vf(@)x—a*) + BIVF@S + plly = 2*° = ply — =*,x =) @1)
= &(2) + BIVF@)I + Dy(a*,2) + & lly 2l = 5 llo — 2|

Lemma 4.3. We have the identity
(1 + ar)€(zpt1; pr) — E (215 o)

2
—0 5 (% - L) Il
(D) 4 5119 f(ra) = V)| — Dy (e zis)
k

Qe
2

1 . 2
(1D = 5 1912 + 2% (o =17 = 2Dy ) = (1t ) s = o)

Proof. Treat py, as a fixed parameter. We expand the difference
E(zpt1s ) — E(zis i) = (VE (2t k), 2rr1 — 2k) — De(2hs zigrs i), (22)
where the negative term —Deg (2, 2i41; pu) is expanded as —Dg(zy, Trt1) — 5 [|yk — e -

Using the identity in the continuous level, we have

(VE(zrr1; pn), G (Zhs1, i) = = (21, i)
1 Qg fk
Lr 2

2 * 2 2
IVF @il = @Dy wasn) + 5% (fwass =2 = lanss — s )

The difference between the scheme and the implicit Euler method is

i <yk — Ykt1 + Bk(vé(xk+l) - Vf@«”k))) .

Zkt1 — 2k — kG (Zpt1, i) = @

which will bring more terms
(Val(Zig1, bik)s Zrs1 — 2k — G (Zhg1, k)
1
I (Vf(@rs1), V(@) = VI (2r) + arx (VI (@Trt1), Yk — Y1) -

13
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We then use the identity of squares for the cross term of gradients
L

Ly,

_ IV f )12 + . IV f(@ren) |2 + _ IV f(@ht1) = Vf ()l

=—— x — T — x — x .

2Lk k)|l% 2Lk k+1 * 2Lk k+1 k)«

(Vf(@rs1), VI (@hg1) = V(1))

As expected, this cross term brings more positive squares but also contribute a negative one.
On the second term, we write as

ag

\/kavf(mkH)7 Vi (Y — yk+1)>

ar (Vf(@ht1), Yk — Y1) = <

2

ag 1| o
= S o)+ = o = | V) = VG = )

2
o Lk g 1 2
=5 SV f (zrgn) 12+ > e — yrsall” — §aiﬂk lzrs1 — e ll”
M

Combining altogether, we get the desired identity. O

PROOF OF THEOREM

First, we prove convergence of Algorithm [I] within a single inner iteration, i.e. ¢ is fixed, in
the following lemma. It bears similarity to (Chen et all 2025, Theorem 8.3), and is a direct
result of Lemma (43

Lemma 4.4. Suppose f is convex and L-smooth. Let z, = (xk,yr) be the iterates generated
by Algorithm [1] within an inner iteration where p = e. Assume that there exists R > 0 such
that

leg — || < R, Vk>0,

and that there exists | € (e, L) such that Ly > 1 for all k > 0. Then the Lyapunov function
exhibits linear convergence up to a perturbation:

k
E(z;e) ) E(z058) + %RQ,

1
= (1 ++/¢e/(rL)

where 1 is the backtracking ratio (in Algorithm|1, r = 3).
Proof. By Lemma we have

1
E(2ps1: pry1) <

LR CORMINE) Ok o
b+ b R2.
< v k(k +0;7) +

Erim) + 15 2(1 + az)

Since [ < Ly, < rL, it follows that

Therefore,

(b0 4 4@y ¢ Vg

1 1
€ ; < ——————=E8(=; + .
(Zersiper) < 7 +/z/(rL) (i o) + e by 2(1+ /2/])

Iterating the inequality yields

. k+1 eVl & 1 ‘
S — z 1 ’
E(zp41) < <1+\/W> E(20) + pr+ +2(1+\/57/l);<1+\/57/l> R?,

where pj41 is the accumulated perturbation. By Algorithm [T} we have py4q < 0.

14
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Finally, the geometric sum is bounded as

i 1 /|
Z(l—l—@) = e/l

=0

Substituting this estimate gives the claimed bound

k+1
1 € o
E(zk4158) < (H—E/(TL)) E(z05¢) + iR .

O

Proof of Theorem[3.34 We distinguish between the convex case (1 = 0) and the strongly
convex case (pu > 0).

If u =0, in this case, the proof of (Chen et al., 2025, Theorem 8.4) applies directly, once the
single-inner-iteration convergence relation (Lemma[4.4)) is established. Therefore, no further
argument is needed.

If instead, p > 0, recall that in the algorithm the effective radius is updated as
R = (1- 2R
122

Thus, whenever jy > p1, we obtain R7 < 0, which implies that further reduction of sy, is
no longer admissible. In particular, us will stop decreasing once the tolerance parameter
satisfies ¢ < p.

Since ¢ is halved at each outer stage, the final value of uy is therefore bounded below by
/2. At the same time, the smoothness parameter satisfies Ly < rL by construction. Hence,
in the terminal stage we obtain an effective condition number bounded by

Ly rL 2rL
Keff = — < —0— = —.
N A

Applying the convergence estimate from Lemma in this regime, the Lyapunov function
contracts linearly:
ks

&

ks
1 1
ke S <1+«/uk/Lk> b = <1+\/u/27“L)

Therefore, to ensure that &, < tol- &, it suffices to take

In(1/tol) B " a(1/toD).
o In(1+y/u/20L) = O(Vark/imiifron)

This establishes the desired complexity bound in both cases. O

APPENDIX C: COMPOSITE CONVEX OPTIMIZATION

We derive the continuous time analogy to Lemma 3.1. First, define the composite right hand
side update

T
G(:) = (y — o= B(THE) + )~y (Vh(E) + q>) ,

where ¢ € dg(z). Let & (z; p) = h(x) — h(z*) + §lly — *||?, then E(z; u) = En(z; p) + (g9(x) —
g(z*)) is splitted into a smooth part and a non-smooth part.

Lemma 4.5. We have the following inequality

= (e + (£).06) ) 2 £+ BIVA) +all + Gl ol + Daa® ) = o - P

15
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Proof. A direct computation gives

q Vh(z) +q\ (& —2%) = (y =) + B(Vh(z) +q)
~(var+ ()-90) = (U2 ) (6=~ 029 L i o)
= (Vh(z) + g,z — ") + BIIVh(x) + g} + ply — 2* | = ply — 2%, 2 — 2*)
> £(2) + BIIVh(@) + |2 + Dala®,2) + 5 lly = all’ = 5l — 2|,
(23)
the last inequality following from ¢ € dg(z). O

Lemma 4.6. We have the following inequality
(14 ar)&(zrs1; r) — E(2x5 )

1 /a2 1
<) 5 <u: _ Lk> IVh(xrs1) + qrial

1
() + 5 IVA@k) = Vh(zp)lI* = Dp(k, wrs1)

1 a 2
(II) — 2L, IVh(zk) + qesa |l + kTMk <||93k+1 — |~ ﬁDh(x*,ka) = (1 +ag) |zre1 — yk+1||2) -

Proof. The proof is similar to the smooth convex case. Expand the difference of £ at zp1,
dk
E(zr1; ) — E(zrs ) < (VER(Zh1; 1r) + ( Jl>,zk+1 = zi) — De, (2, Ze415 pr), (24)

where the negative term —Dg, (2k, Zx+1; tix) is expanded as —Dp, (wx, Tr41) — 55 | Yr —Yrt1 I|%.
The inequality is due to the definition of the subgradient.

From Lemma 4.5 we have

(VEn(Zrt1; 1) + (qk(;rl),oékg(zkﬂ,lik» < —ap€(Zrt1, Lk)
1

— — [[Vh(zg41) + Qk+1Hi — o Dp (2", Tpy1)

QO Lo
Ly +

2 2
2 (s = I = o =y ).

The difference between the scheme and the implicit Euler method is

— h —Vh
Zht — 20 — kG (Zhet i) = (yk Yr+1 + 5k(vo($k+1) \Y (ﬂfk))) '

which will bring more terms
(Valn(zry1s e) + qer1s Ze1 — 21 — G (Zpp1; k)

1
= I, (VM @kt1) + @or1, VR(Trg1) — VR(xk)) + ar (VR(Tr41) + Got1, Yk — Yrt1) -

For the first term, we use the identity of squares

1
E(Vh($k+1) + @ry1, Vh(zp 1) — Vh(2r))

1 1 1
=— —|Vh 24+ —|IVh 24+ —||Vh —Vh 2.
5 V() + el + 5 [Vh(i) + g2+ 5 Vh(@is) = Vi)l
As expected, this cross term brings more positive squares but also contribute a negative one.

For the second term, we rewrite as

677
ap (VA(Trg1) + Qo1 Uk — Y1) = <MVh($k+1) + Qrr1, Vik (ke — yk+1)>
2 2
« k 1 AL
= T/ZCHVh(IIH-l) + Qg |7 + % gk — i ||” — 3 ‘ ﬁ(Vh(xkﬂ) + qer1) — Vi (Yr — Yrer1)
a2 Mk 2 1 2
= ﬁHVh(l‘kH) + qre1 |2 + > e — yrall” — 50@% [Zk+1 — Yeall”
Combining altogether, we get the desired inequality. O
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Algorithm 3: A2GD method for composite optimization

Input: zg,y9 € R™, Lo, 9, R >0,tol >0,e >0, m>1
while £ =0 or ||V f(zr) + qi| > tol||V f(zo)|| do

ap < /pk/Li;

Wra1 < ak1+1:z:k + O/Sj—lyk - Lk(a?[k_‘_l)Vh(xk);

Thy1 proka(alkH)g(wkH);

Q1+ Li(ok + 1) (We 1 — Te41);

Ykl & i1 The1 + aklﬂyk T CTEsy (Vh(zrs1) + qrsr);

b 3 IVh(zri) = Vh(ze) |2 = Dalzr, 2xi1);

b = = [Vh(n) + grall? + 24 (B2 = (1+ a)llzrss — yesal]?)s
P+ i (e + 01+ b);

if pr > 0 then

if b") > 0 then

2L Df(xk,Tr41) .
| v ot L 3Ly/v;

if b”) > 0 then

: VA (zr) +aria[*/?
E < max< e, min < jg :
L ! { 7 {'u LR (1 ag) ek —yera 12)2/3 f f7
Go to line 2;

else
Lk — ‘

[Vh(ze1)=Vh(ze)| .
2Dp (T, Tri1) ’

. Vh(zk)+q 4/3 )
Hk+1 < max {€,mln {:u‘ka i3 I (@)t i | )
k

(R?—(14ap) okt —yr412)?/3

if decay condition then
€+ /2

| m < L\/§ -m] +1;

| k< k+1;

Theorem 4.7. Let (xk,yx) be the iterates generated by Algorithm @ Assume function f is
w-convex with > 0. Assume there exists R > 0 such that

lzr — "] < R, vV k>0.
Let ks be the total number of steps after halving € exactly s times, i.e. € = 27 %¢g.

1. When p =0, ther exists a constant C' > 0 so that

&k, R*+1 1
& = —1/2)\2 =0 <k:2>
0 (Ck:S + &4 ) s

2. When u > 0, the iteration number to achieve &, /Ey < (R? 4+ 1)27%¢g < tol is bounded

by O(\/L/u Intol),
where &, = E(zx; i) = f(wr) — f(2%) + L& [lyp — 2|2
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ETHICS STATEMENT

This work is purely theoretical and algorithmic, focusing on convex optimization methods. It
does not involve human subjects, sensitive data, or applications that raise ethical concerns
related to privacy, security, fairness, or potential harm. All experiments are based on publicly
available datasets or synthetic data generated by standard procedures. The authors believe
that this work fully adheres to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. All theoretical
assumptions are explicitly stated, and complete proofs are provided in the appendix. For
the experimental evaluation, we describe the setup, parameter choices, and baselines in
detail in the main text. The source code for our algorithms and experiments are available as
supplementary materials. Together, these resources should allow others to reproduce and
verify our theoretical and empirical findings.

18



	Introduction
	Adaptive Gradient Descent Method
	Adaptive Accelerated Gradient Descent Method
	Numerical Experiments

