
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Adaptive Accelerated Gradient Descent
Methods for Convex Optimization

Anonymous authors
Paper under double-blind review

Abstract

This work proposes A2GD, a novel adaptive accelerated gradient descent
method for convex and composite optimization. Smoothness and convexity
constants are updated via Lyapunov analysis. Inspired by stability analysis
in ODE solvers, the method triggers line search only when accumulated
perturbations become positive, thereby reducing gradient evaluations while
preserving strong convergence guarantees. By integrating adaptive step
size and momentum acceleration, A2GD outperforms existing first-order
methods across a range of problem settings.

1 Introduction

In this paper, we study the convex optimization problem

min
x∈Rd

f(x), (1)

where f is µ-strongly convex and L-smooth. When µ = 0, we additionally assume f is
coercive so that a global minimizer exists. We also consider the composite convex problem

min
x∈Rd

f(x) := h(x) + g(x), (2)

where h is L-smooth and g is convex, possibly non-smooth, with a proximal operator.

First-order methods, which rely only on gradient information, are widely used in machine
learning for their efficiency and scalability (Bottou et al., 2018). Among them, gradient
descent (GD), defined by

xk+1 = xk − αk∇f(xk), (3)

is fundamental. Despite its simplicity, GD faces two main challenges:

• Step size selection. Convergence depends heavily on the step size αk. Small αk slows
progress; large αk risks divergence. For L-smooth functions, αk = 1/L is standard, but
this global constant often mismatches local curvature.

• Slow convergence. Even with an optimal step size, GD is slow on ill-conditioned
problems, i.e., when L/µ� 1.

We briefly review strategies addressing these issues:

Backtracking line search Backtracking line search begins with a large step size αk and
reduces it until conditions such as the Armijo–Goldstein criterion (Armijo, 1966; Goldstein,
1962/63) or Wolfe condition (Wolfe, 1969) are satisfied. Extensions (Ito and Fukuda,
2021; Liu and Yang, 2017) adapt line search to composite settings. Guminov et al. (2019)
update parameters in Nesterov’s method with backtracking, while Lan et al. (2023) develop
a parameter-free method that attains optimal complexity bounds for both convex and
strongly convex problems, achieving the best known results for non-convex problems. An
adaptive variant (Cavalcanti et al., 2025) reduces backtracking steps, improving efficiency.
Despite robustness and simplicity, line search usually requires 3–4 extra function or gradient
evaluations per iteration, increasing cost.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Adaptive step sizes Adaptive schemes such as the Barzilai–Borwein (BB) method (Barzi-
lai and Borwein, 1988) estimate step sizes from past iterates:

αk =
〈xk − xk−1,∇f(xk)−∇f(xk−1)〉

‖∇f(xk)−∇f(xk−1)‖2
, (4)

with low computational overhead. However, BB-type methods are heuristic, and may diverge
even for simple convex problems (Burdakov et al., 2019); guarantees are largely limited
to quadratic cases (Dai and Liao, 2002). Extensions (Zhou et al., 2006; Dai et al., 2015)
improve robustness but still lack general theory.

Polyak’s method (Polyak, 1969), foundational to adaptive approaches such as AdaGrad and
AMSGrad (Vaswani et al., 2020), ensures convergence but requires the optimal value f∗,
which is rarely available.

Line-search free methods. Recent years have seen growing interest in line-search free
adaptive methods. These algorithms keep the per-iteration cost of gradient descent while
often achieving faster convergence and lower sensitivity to hyperparameters. Malitsky and
Mishchenko (2020; 2024) introduced adaptive proximal gradient methods with theoretical
guarantees, though lack of acceleration can hinder performance on ill-conditioned problems.
Li and Lan (2024) and Cavalcanti et al. (2025) proposed adaptive NAG variants with
backtracking-free updates, though the rule in Li and Lan (2024) is relatively complex.

Acceleration Momentum-based methods accelerate convergence by leveraging past up-
dates. The heavy-ball method (Polyak, 1964) and Nesterov’s accelerated gradient (NAG) (Nes-
terov, 2003) achieve the optimal rate 1−

√
µ/L under strong convexity, assuming known L

and µ. In the convex case (µ = 0), NAG with step size 1/(k + 3) (Nesterov, 1983) achieves
the optimal O(1/k2) rate. Nesterov later extended this framework to composite problems by
incorporating line search into accelerated proximal methods (Nesterov, 2012), also attaining
O(1/k2).

In training deep neural networks, Adam (Adaptive Moment Estimation) (Kingma and Ba,
2015) is a widely used optimization algorithm that combines momentum and adaptive step
sizes for fast and stable convergence. However, the original Adam algorithm lacks convergence
guarantees, even for convex problems.

Contribution

• We develop A2GD, an adaptive accelerated gradient method with provable accelerated
linear convergence for smooth and composite convex optimization.

• We adapt stability analysis from ODE solvers to reduce line search overhead, activating it
only when accumulated perturbations are positive. The method is thus line-search reduced
rather than line-search free (Fig. 2), and it outperforms existing line-search free methods
in both theory and practice.

• We show numerically that A2GD also consistently outperforms AGD variants (where a
single A denotes either adaptivity or acceleration) and other methods combining adaptivity
and acceleration.

Limitations and Extensions While A2GD achieves adaptive acceleration with strong
theoretical guarantees, these results rely on convexity to ensure positivity of the Bregman
divergence. Extending the framework to nonconvex settings remains an open problem. We
provide preliminary evidence on a composite `1-2 problem, where the nonconvex regularizer
admits a closed-form proximal operator.

Although line search adds little overhead in practice—typically only a few extra evaluations—a
sharper theoretical bound on the number of triggered line search steps is an important future
direction.

Another extension is the stochastic setting. Developing a stochastic variant of A2GD
that preserves both adaptivity and acceleration under variance conditions would broaden
applicability to large-scale machine learning, providing a step toward a theoretical justification
of the empirical success of Adam.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Background on convex functions Let f : Rd → R be differentiable. The Bregman
divergence between x, y ∈ Rd is defined as

Df (y, x) := f(y)− f(x)− 〈∇f(x), y − x〉.
The function f is µ-strongly convex if for some µ > 0,

Df (y, x) ≥
µ

2
‖y − x‖2, ∀x, y ∈ Rd.

It is L-smooth, for some L > 0, if its gradient is L-Lipschitz:

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ Rd.
The condition number is defined by κ = L/µ. Let SL,µ denote the class of all differentiable
functions that are both µ-strongly convex and L-smooth.

For f ∈ SL,µ, the Bregman divergence satisfies (Nesterov, 2003):

1

2L
‖∇f(x)−∇f(y)‖2 ≤ Df (x, y) ≤

1

2µ
‖∇f(x)−∇f(y)‖2, ∀x, y ∈ Rd. (5)

Taking y = x∗, where x∗ minimizes f and ∇f(x∗) = 0, yields:

‖∇f(x)‖2 ≥ 2µ(f(x)− f(x∗)), ∀x ∈ Rd. (6)

2 Adaptive Gradient Descent Method

We illustrate our main idea using gradient descent and later extend it to accelerated gradient
descent. The steepest descent step chooses

α∗k = argmin
α>0

f(xk − α∇f(xk)), (7)

which entails solving a one-dimensional convex problem. While conceptually simple, this can
be costly unless a closed form is available.

For L-smooth functions, the fixed step size αk = 1/L guarantees convergence, but is often
overly conservative when local curvature is much smaller than L. To improve efficiency, we
design step sizes that adapt to local geometry using f(xk) and ∇f(xk).
We estimate the local Lipschitz constant Lk through Lyapunov analysis of the gradient
descent method (3). Consider the Lyapunov function

Ek = f(xk)− f(x∗), (8)

where x∗ ∈ argmin f(x) and f(x∗) = min f . Expanding f at xk+1 gives

Ek+1 − Ek = f(xk+1)− f(xk)
= 〈∇f(xk+1), xk+1 − xk〉 −Df (xk, xk+1)

= −αk 〈∇f(xk+1),∇f(xk)〉 −Df (xk, xk+1)

= −αk
2
‖∇f(xk+1)‖2 −

αk
2
‖∇f(xk)‖2

+
αk
2
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1).

Applying (6) to ‖∇f(xk+1)‖2 and rearranging yields

(1 + µαk)Ek+1 ≤ Ek −
αk
2
‖∇f(xk)‖2 +

αk
2
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1). (9)

If we use a line search to choose a small enough αk such that

αk =
1

Lk
≤ 2Df (xk, xk+1)

‖∇f(xk+1)−∇f(xk)‖2
, (10)

then dropping the negative terms in (9) gives the linear convergence

Ek+1 ≤ (1 + µ/Lk)
−1Ek.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Since αk = 1/Lk, choosing a smaller αk is equivalent to using a larger Lk. By (5), the
criterion (10) holds once Lk ≥ L. Standard backtracking starts with an initial estimate of Lk
and increases it iteratively by a factor r > 1 until (10) is satisfied. This procedure requires
at most O(| logL/ log r|) iterations. A more adaptive and efficient backtracking scheme was
recently proposed in Cavalcanti et al. (2025), which we adapt for our purposes and briefly
recall below.

Rewriting the stopping criterion (10) gives

v =
2LkDf (xk, xk+1)

‖∇f(xk+1)−∇f(xk)‖2
≥ 1.

If v < 1, the criterion is not satisfied. Instead of increasing Lk by a fixed ratio, we update it
as Lk ← rLk/v, where r > 1 is a base ratio (e.g., r = 3). This adaptive scaling adjusts to
the gap between the current condition and the stopping criterion, improving both efficiency
and accuracy.

Line search adds computational overhead, since each update of Lk requires reevaluating
∇f(xk+1) and/or f(xk+1), which is often the dominant cost in gradient-based methods. To
reduce this cost and avoid line search, line-search free approaches have been proposed; see
the literature review in the introduction.

However, enforcing line-search free updates is often too rigid and restrictive. In contrast,
we reduce the number of line-search steps to a small fraction, achieving comparable cost to
line-search free methods. Our approach is inspired by stability analysis in ODE solvers. The
following result can be established by induction.
Lemma 2.1 (A variant of Lemma 5.7.1. in Gautschi (2011)). Let {Ek} be a positive sequence
satisfying

Ek+1 ≤ δk(Ek + bk), k = 0, 1, . . . ,

where δk > 0 and bk ∈ R. Then

Ek+1 ≤

(
k∏
i=0

δi

)
E0 + pk, k = 0, 1, . . . ,

where the accumlated perturbation

pk =

k∑
i=0

 k∏
j=i

δj

 bi, satisfying pk = δk(pk−1 + bk).

We use an adaptive gradient descent method (ad-GD) to illustrate our main idea and refer
to Appendix A for the detailed algorithmic formulation. Applying Lemma 2.1 to GD under
the Lyapunov analysis equation 9 gives

δk = (1 + µ/Lk)
−1, bk = b

(1)
k + b

(2)
k ,

b
(1)
k =

1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1),

b
(2)
k = − 1

2Lk
‖∇f(xk)‖2.

The strong convexity constant µ may be unknown in practice. In implementation, we replace
it by the upper bound µk = min1≤i≤k Lk.

In the line-search criterion (10), Lk is chosen so that b(1)
k < 0, ensuring bk < 0 at each step.

Enforcing negativity step by step is sufficient but not necessary. Instead, we perform line
search only when pk > 0, and update Lk until the weighted sum pk ≤ 0. Once this condition
holds, exponential decay follows:

Ek+1 ≤
k∏
i=0

(
1 +

µ

Li

)−1

E0, if pk ≤ 0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In the early iterations, when iterates are far from optimal and ‖∇f(xk)‖ is large, the negative
terms b(2)

k accumulate and can offset positive terms later. Line search is triggered only if the
accumlated perturbation pk becomes positive. In other words, classical line search enforces
bk < 0 in the `∞ sense for {bk}, while our relaxation allows a weighted `2 sense. Figures 1
and 2 illustrate this idea.

0 20 40 60 80 100
Number of Iteration

-200

-100

0

100

200

300

L
ya

pu
no

v
fu

nc
tio

n
va

lu
e

Figure 1: The accumlated perturbation pk
(red curve) remains negative and approaches
zero. The actual values of Ek (blue curve)
decay faster than the theoretical exponen-
tial rate

(∏k
i=0 δi

)
E0 (black curve) due to

the negative perturbation pk. Additionally,
Ek decays more rapidly in the early itera-
tions because of the large magnitude of the
negative term b

(2)
k = − 1

2Lk
‖∇f(xk)‖2.

0 50 100 150
Number of Gradient Evaluations

10-6

10-4

10-2

100

Ad-GD (Algorithm 2)
Grad Eval for line search
Ad-GD with line search

Figure 2: For a logistic regression problem
with `2 regularizer (14), gradient descent
with line search enforcing b

(1)
k ≤ 0 (top

curve) performs backtracking every 3–4 iter-
ations on average. In contrast, ad-GD (Al-
gorithm 2 in Appendix A) with line search
targeting pk ≤ 0 (bottom curve) incurs only
few additional gradient evaluations. Red
dots indicate iterations where extra gradient
evaluations occur during line search.

Theorem 2.2. Assume f ∈ SL,µ. Let {xk} be the sequence generated by gradient descent
method (3) with line search ensuring pk ≤ 0. Then we have

Ek ≤
k−1∏
i=0

1

1 + µ/Li
E0 ≤

(
1

1 + µ/(crL)

)k
E0.

Proof. As pk ≤ 0 for all k, linear convergence follows from (9). By (5), the stopping
criterion (10) is satisfied once Lk ≤ crL with at most O(| logL/ log r|) search steps, where
cr ≥ 1 depends on the line-search scaling factor. Since µk ≥ µ, the desired linear convergence
rate follows.

Remark 2.1. To improve efficiency, we set the next step size as αk+1 =
2Df (xk,xk+1)

‖∇f(xk+1)−∇f(xk)‖2 .

The gradient ∇f(xk+1) can be reused in the following gradient descent step. However,
computing Df (xk, xk+1) requires function evaluations f(xk) and f(xk+1), which may be
costly. To avoid these evaluations, we approximate 2Df (xk, xk+1) by its symmetrized form:

2Df (xk, xk+1) ≈ Df (xk, xk+1) +Df (xk+1, xk) = 〈∇f(xk+1)−∇f(xk), xk+1 − xk〉.

This reduces the ratio to the form used in the BB gradient method (4). In contrast to BB,
convergence of ad-GD is guaranteed by enforcing pk ≤ 0.

Remark 2.2. There are several variants depending on how we define δk and split b(1)
k and

b
(2)
k . For example, we can use δk = 1− µ/Lk, b(2)

k = 0, and the rest is b(1)
k . Then b(1)

k ≤ 0 is
equivalent to the criteria proposed by (Nesterov, 2012) (Appendix A).

3 Adaptive Accelerated Gradient Descent Method

In this section, we apply our adaptive strategy to accelerated gradient methods. We derive
an identity for the difference of the Lyapunov function and adaptively adjust Lk and µk to
ensure the accumulated perturbation satisfies pk ≤ 0. The perturbation term b

(1)
k remains

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

unchanged, while b(2)
k includes additional terms and is used to adjust µk. The contraction

rate δk improves from (1 + µk/Lk)
−1 to (1 +

√
µk/Lk)

−1.

We will use the Hessian-based Nesterov accelerated gradient (HNAG) flow proposed in Chen
and Luo (2019) 

x′ = y − x− β∇f(x),

y′ = x− y − 1

µ
∇f(x),

(11)

where β is a parameter. An implicit and explicit (IMEX) discretization of (11) is
xk+1 − xk = αk (yk − xk+1)−

1

Lk
∇f(xk),

yk+1 − yk = − αk
µk
∇f(xk+1) + αk (xk+1 − yk+1) ,

(12)

where αk > 0 is the time step size and Lk := (αkβk)
−1. Denote by z = (x, y)ᵀ. Introduce

the Lyapunov function

E(z;µ) := f(x)− f(x∗) + µ

2
‖y − x∗‖2 .

The proof of the following identity can be found in Appendix B.
Lemma 3.1. We have the identity

(1 + αk)E(zk+1;µk)− E(zk;µk)

=
1

2

(
α2
k

µk
− 1

Lk

)
‖∇f(xk+1)‖2∗ (I)

+
1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1) (II)

− 1

2Lk
‖∇f(xk)‖2∗ +

αkµk
2

(
‖xk+1 − x∗‖2 −

1

µk
Df (x

∗, xk+1)− (1 + αk) ‖xk+1 − yk+1‖2
)

(III).

We can simply set αk =
√

µk
Lk

so that (I) = 0. To control (II) and (III), define perturbations

b
(1)
k =

1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1),

b
(2)
k = − 1

2Lk
‖∇f(xk)‖2 +

αkµk
2

(
R2
k − (1 + αk) ‖xk+1 − yk+1‖2

)
,

pk =
1

1 + αk

(
pk−1 + b

(1)
k + b

(2)
k

)
, ∀k ≥ 1 and p0 = 0.

(13)

The term b
(1)
k measures deviation from the Lipschitz condition and is used to adjust Lk,

while b(2)
k measures deviation from the strong convexity assumption and is used to adjust µk.

To enforce the lower bound µk ≥ µ when µ > 0, we introduce

R2
k := (1− µ/µk)R2,

using the inequality Df (x
∗, xk+1) ≥ µ

2 ‖xk+1 − x∗‖2 and an upper bound R such that
‖xk+1 − x∗‖2 ≤ R2. If µk < µ, then b(2)

k < 0 and no further reduction of µk is allowed. The
parameter µ can be a conservative estimate of the true convexity constant and serves as a
lower bound for µk.

Line search is triggered only when pk > 0. If b(1)
k > 0, Lk is updated using adaptive

backtracking Cavalcanti et al. (2025). If b(2)
k > 0, the convexity is not strong enough to

support a large step, so we reduce µk. In the limiting case µk = 0, we have b(2)
k ≤ 0.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

To update µk more precisely, we solve b(2)
k = 0, treating Lk as known and using the

fixed rule αk =
√
µk/Lk for the step size. The leading term in the second part of b(2)

k is
αkµkR

2
k = µ

3/2
k R2

k/L
1/2
k , and the equation essentially reduces to a non-trivial scaling

µ
3/2
k R2

k

L
1/2
k

≈ ‖∇f(xk)‖
2

Lk
⇒ µk ∝

‖∇f(xk)‖4/3

L
1/3
k R

4/3
k

.

To preserve decay of the Lyapunov function, we enforce

µk+1 ≤ µk ⇒ E(zk+1;µk+1) ≤ E(zk+1;µk).

To establish convergence guarantee, the parameter µk cannot decay too fast. To control
the decay rate of µk, we adopt the perturbation idea proposed in Chen et al. (2025). We
introduce a parameter ε and impose the lower bound µk ≥ ε in the update formulas (line 12
and line 16 in Algorithm 1).

To ensure monotonic descent, updates with f(xk+1) > f(xk) are rejected by setting xk+1 = xk.
When ‖yk − x?‖ � ‖xk − x?‖, the Lyapunov function E may decrease primarily due to
‖yk − x?‖, while f(xk) stagnates. To mitigate this, a restart is triggered by setting yk = xk
if f(xk) fails to decrease over five consecutive iterations. These monitoring steps are omitted
from Algorithm 1, but are used in practice to enhance stability.

Algorithm 1: Adaptive Accelerated Gradient Method (A2GD)
Input: x0, y0 ∈ Rn, L0 > 0, µ0 > 0, R > 0, 0 < tol� 1, ε > 0, m ≥ 1

1 while ‖∇f(xk)‖ > tol‖∇f(x0)‖ do
2 αk ←

√
µk/Lk;

3 xk+1 ← 1
αk+1xk +

αk
αk+1yk −

1
Lk(αk+1)∇f(xk);

4 yk+1 ← αk
αk+1xk+1 +

1
αk+1yk −

αk
µk(αk+1)∇f(xk+1);

5 b
(1)
k ←

1
2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1);

6 b
(2)
k ← −

1
2Lk
‖∇f(xk)‖2∗ +

αkµk
2

(
R2
k − (1 + αk)‖xk+1 − yk+1‖2

)
;

7 pk ← 1
1+αk

(pk−1 + b
(1)
k + b

(2)
k);

8 if pk > 0 then
9 if b(1)

k > 0 then
10 v ← 2LkDf (xk,xk+1)

‖∇f(xk+1)−∇f(xk)‖2 , Lk ← 3Lk/v;

11 if b(2)
k > 0 then

12 µk ← max

{
ε,min

{
µk,

‖∇f(xk)‖4/3

L
1/3
k (R2

k−(1+αk)‖xk+1−yk+1‖2)
2/3

}}
;

13 Go to line 2;
14 else
15 Lk+1 ← ‖∇f(xk+1)−∇f(xk)‖2

2Df (xk,xk+1) ;

16 µk+1 ← max

{
ε,min

{
µk,

‖∇f(xk)‖4/3

L
1/3
k (R2

k−(1+αk)‖xk+1−yk+1‖2)
2/3

}}
;

17 if decay condition then
18 ε← ε/2;
19 m← b

√
2 ·mc+ 1;

20 k ← k + 1;

To reduce sensitivity to initialization, we include a warm-up phase using the adaptive proximal
gradient descent (AdProxGD) method from Malitsky and Mishchenko (2024). Starting from
x0, we perform 10 iterations of AdProxGD and initialize A2GD with x0 = y0 := x10 and
µ0 := min1≤k≤10{Lk}, and set R = 100‖∇f(x0)‖/µ0. Although dynamical update of R may
improve convergence, the method is typically robust with a fixed R.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The lower bound ε of µk is halved if certain decay conditions are met: if either Ek/E0 ≤
(R2 + 1)ε/2, or the iteration steps for one fixed ε are larger than m. Since Ek is not
directly computable, we can replace Ek/E0 with ‖∇f(xk)‖2/‖∇f(x0)‖2. If µ > 0, then
Ek/E0 ≤ (R2 + 1)ε/2 will be satisfied in O(| log ε|) steps. If µ = 0, the maximal iteration
steps for one fixed ε is bounded by m. We thus obtain the following convergence results.
Theorem 3.2. Let (xk, yk) be the iterates generated by the above algorithm. Assume function
f is µ-strongly convex with µ ≥ 0. Let ks be the total number of steps after halving ε exactly
s times, i.e. ε = 2−sε0.

1. When µ = 0, ther exists a constant C > 0 so that

Eks
E0
≤ R2 + 1(

Cks + ε
−1/2
0

)2 = O
(

1

k2
s

)

So O(
√

1/tol) iteration steps can acheive Eks/E0 ≤ tol.

2. When µ > 0, the iteration number to achieve Eks/E0 ≤ (R2 + 1)2−sε0 ≤ tol is bounded
by O(

√
L/µ ln tol).

4 Numerical Experiments

We test A2GD on smooth convex minimization tasks and compare it with several leading
first-order methods, grouped into two categories:

• Accelerated but non-adaptive methods: Nesterov’s accelerated gradient (NAG) with
step size 1/(k+3) (Nesterov, 1983), accelerated over-relaxation heavy ball (AOR-HB) (Wei
and Chen, 2025), and the triple momentum method (TM) (Van Scoy et al., 2018).

• Adaptive methods: adaptive proximal gradient descent (AdProxGD) (Malitsky and
Mishchenko, 2024), the auto-conditioned fast gradient method (AC-FGM) (Li and Lan,
2024), and NAGfree (Cavalcanti et al., 2025).

For all examples, we set the tolerance to tol = 10−6 and use the stopping criterion ‖∇f(xk)‖ ≤
tol · ‖∇f(x0)‖. All experiments were run in MATLAB R2023a on a desktop with an Intel
Core i5-7200U CPU (2.50 GHz) and 8 GB RAM.

Regularized Logistic Regression We report numerical simulations on a logistic regres-
sion problem with an `2 regularizer:

min
x∈Rn

{
m∑
i=1

log
(
1 + exp(−bia>i x)

)
+
λ

2
‖x‖2

}
, (14)

where (ai, bi) ∈ Rn × {−1, 1} for i = 1, 2, . . . ,m.

200 400 600 800 1000
Number of Gradient Evaluations

10-10

10-5

100

(f
(x

)-
f*

)/
(f

(x
0)-

f*
)

Figure 3: A2GD compared to non-
adaptive accelerated gradient methods.

100 200 300 400
Number of Gradient Evaluations

10-5

100

(f
(x

)-
f*

)/
(f

(x
0)-

f*
)

Figure 4: A2GD compared to adaptive
methods.

For this problem, µ = λ and L = λmax

(∑m
i=1 aia

>
i

)
+ λ. We use (ai, bi) from the Adult

Census Income dataset. After removing entries with missing values, the dataset contains

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

30,162 samples. The Lipschitz constant is 6.30× 104. With regularization parameter λ = 0.1,
the condition number is κ = 6.30× 105.

We can extend the algorithm A2GD and convergence analysis to the composite case and leave
the details in Appendix C. We compare the performance of A2GD with other first-order prox-
imal methods: (1) the Adaptive Proximal Gradient descent (AdProxGD) method (Malitsky
and Mishchenko, 2024); (2) Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck
and Teboulle, 2009); (3) AOR-HB with perturbation Chen et al. (2025). We still use
tol = 10−6 but the stopping criterion is changed to ‖∇h(xk) + qk‖ ≤ tol‖∇h(x0)‖ for all
examples.

Maximum Likelihood Estimate of the Information Matrix We consider the maxi-
mum likelihood estimation problem from (Boyd and Vandenberghe, 2004, (7.5)):

minimize
X∈Rn×n

f(X) := − log detX + tr(XY),

subject to λmin ≤ λ(X) ≤ λmax,
(15)

where X is symmetric positive definite and λmin, λmax > 0 are given bounds. The condition
number of f is κ = λ2

max/λ
2
min.

Problem (15) has a composite form, combining the smooth part f(X) with a nonsmooth
indicator g(X) enforcing spectral constraints. The proximal operator of g requires eigen-
decomposition, projection of eigenvalues onto [λmin, λmax], and matrix reconstruction—steps
that dominate the cost. Thus, reducing gradient and proximal evaluations, especially during
backtracking, is critical for efficiency.

200 400 600 800
Number of Gradient Evaluations

10-5

100

(f
(x

)-
f*

)/
(f

(x
0
)-

f*
)

Figure 5: Error curves under setting (1). Figure 6: Error curves under setting (2).

Following Malitsky and Mishchenko (2024), we construct the data matrix Y as follows:
sample a random vector y ∈ Rn, and define yi = y + δi for i = 1, . . . ,M , with δi ∼ N (0, In).
Then set Y = 1

M

∑M
i=1 yiy

>
i . We test our algorithm under two settings: (1) n = 100, M = 50,

λmin = 0.1, λmax = 10; (2) n = 50, M = 100, λmin = 0.1, λmax = 103.

500 1000 1500
Number of Gradient Evaluations

10-5

100

(f
(x

)-
f*

)/
(f

(x
0
)-

f*
)

Figure 7: L2-error curves for `1-2
problem with n = 500, p = 1000.

`1-2 nonconvex minimization problem We con-
sider the `1-2 minimization problem

min
x∈Rn

1

2
‖Ax− b‖2 + λ(‖x‖1 − ‖x‖2), (16)

introduced by Yin et al. (2015), promotes sparser solu-
tions than standard convex penalties.
The matrix A ∈ Rn×p is generated from a standard
Gaussian distribution, and the ground truth x∗ ∈ Rp
has sparsity 50. The observation vector is constructed
as b = Ax∗. We set the regularization parameter λ = 1
and consider two problem sizes: n = 500, p = 1000.
The initial point is sampled as x0 = y0 ∼ 10N (0, Ip).

Across all tests, our A2GD method consistently outperforms baseline algorithms. A repre-
sentative error trajectory is shown in Fig. 4, where A2GD curve (in blue) decays much faster
than others.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References

Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives.
Pacific J. Math., 19(3):1–3, 1966. URL http://dml.mathdoc.fr/item/1102995080.

Jonathan Barzilai and Jonathan Borwein. Two-point step size gradient methods. IMA
Journal of Numerical Analysis, 8(1):141–148, 01 1988. ISSN 0272-4979. doi: 10.1093/
imanum/8.1.141. URL https://doi.org/10.1093/imanum/8.1.141.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Léon Bottou, Frank Curtis, and Jorge Nocedal. Optimization Methods for Large-Scale
Machine Learning. SIAM Review, 60(2):223–311, January 2018. ISSN 0036-1445, 1095-
7200. doi: 10.1137/16M1080173.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

Oleg Burdakov, Yuhong Dai, and Na Huang. Stabilized Barzilai-Borwein method. Journal
of Computational Mathematics, 37(6):916–936, 2019. ISSN 1991-7139. doi: https://
doi.org/10.4208/jcm.1911-m2019-0171. URL https://global-sci.com/article/84452/
stabilized-barzilai-borwein-method.

Joao Cavalcanti, Laurent Lessard, and Ashia Wilson. Adaptive backtracking for faster
optimization. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=SrGP0RQbYH.

Long Chen and Hao Luo. First order optimization methods based on Hessian-driven Nesterov
accelerated gradient flow, 2019. URL https://arxiv.org/abs/1912.09276.

Long Chen, Luo Hao, and Jingrong Wei. Accelerated gradient methods through variable
and operator splitting, 2025. URL https://arxiv.org/abs/2505.04065.

Yu Hong Dai, Mehiddin Al-Baali, and Xiaoqi Yang. A positive Barzilai-Borwein-like stepsize
and an extension for symmetric linear systems. In Numerical Analysis and Optimization,
NAO-III 2014, volume 134, pages 59–75, United States, January 2015. Springer New York
LLC. ISBN 9783319176888. doi: 10.1007/978-3-319-17689-5_3.

Yu-Hong Dai and Li-Zhi Liao. R-linear convergence of the Barzilai and Borwein gradient
method. IMA Journal of Numerical Analysis, 22(1):1–10, 01 2002. ISSN 0272-4979. doi:
10.1093/imanum/22.1.1. URL https://doi.org/10.1093/imanum/22.1.1.

Walter Gautschi. Numerical analysis. Springer Science & Business Media, 2011.

A.A. Goldstein. Cauchy’s method of minimization. Numerische Mathematik, 4:146–150,
1962/63. URL http://eudml.org/doc/131525.

Sergey Guminov, Yu Nesterov, Pavel Dvurechensky, and Alexander Gasnikov. Accel-
erated primal-dual gradient descent with linesearch for convex, nonconvex, and non-
smooth optimization problems. Doklady Mathematics, 99:125–128, 03 2019. doi:
10.1134/S1064562419020042.

Masaru Ito and Mituhiro Fukuda. Nearly Optimal First-Order Methods for Convex Opti-
mization under Gradient Norm Measure: an Adaptive Regularization Approach. Journal
of Optimization Theory and Applications, 188(3):770–804, March 2021. doi: 10.1007/
s10957-020-01806-7. URL https://ideas.repec.org/a/spr/joptap/v188y2021i3d10.
1007_s10957-020-01806-7.html.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015. URL https://arxiv.org/abs/
1412.6980.

10

http://dml.mathdoc.fr/item/1102995080
https://doi.org/10.1093/imanum/8.1.141
https://global-sci.com/article/84452/stabilized-barzilai-borwein-method
https://global-sci.com/article/84452/stabilized-barzilai-borwein-method
https://openreview.net/forum?id=SrGP0RQbYH
https://arxiv.org/abs/1912.09276
https://arxiv.org/abs/2505.04065
https://doi.org/10.1093/imanum/22.1.1
http://eudml.org/doc/131525
https://ideas.repec.org/a/spr/joptap/v188y2021i3d10.1007_s10957-020-01806-7.html
https://ideas.repec.org/a/spr/joptap/v188y2021i3d10.1007_s10957-020-01806-7.html
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guanghui Lan, Yuyuan Ouyang, and Zhe Zhang. Optimal and parameter-free gradient mini-
mization methods for convex and nonconvex optimization. arXiv preprint arXiv:2310.12139,
2023.

Tianjiao Li and Guanghui Lan. A simple uniformly optimal method without line search for
convex optimization, 2024. URL https://arxiv.org/abs/2310.10082.

Mingrui Liu and Tianbao Yang. Adaptive accelerated gradient converging method
under Hölderian error bound condition. In I. Guyon, U. Von Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
2612aa892d962d6f8056b195ca6e550d-Paper.pdf.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent.
In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 6702–6712. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
malitsky20a.html.

Yura Malitsky and Konstantin Mishchenko. Adaptive proximal gradient method for convex
optimization. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=qlH21Ig1IC.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O
(

1
k2

)
. Doklady Akademii Nauk, 269(3):543–547, 1983.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

Yurii Nesterov. Gradient methods for minimizing composite functions. Mathematical
Programming, 140:125 – 161, 2012. URL https://api.semanticscholar.org/CorpusID:
18206201.

B. Polyak. Minimization of unsmooth functionals. USSR Computational Mathematics and
Mathematical Physics, 9(3):14–29, 1969. ISSN 0041-5553. doi: https://doi.org/10.1016/
0041-5553(69)90061-5. URL https://www.sciencedirect.com/science/article/pii/
0041555369900615.

Boris Polyak. Some methods of speeding up the convergence of iteration methods. Ussr
computational mathematics and mathematical physics, 4(5):1–17, 1964.

Bryan Van Scoy, Randy A. Freeman, and Kevin M. Lynch. The Fastest Known Globally
Convergent First-Order Method for Minimizing Strongly Convex Functions. IEEE Control
Systems Letters, 2(1):49–54, January 2018. ISSN 2475-1456. doi: 10.1109/LCSYS.2017.
2722406.

Sharan Vaswani, Frederik Kunstner, Issam Hadj Laradji, Si Yi Meng, Mark W. Schmidt,
and Simon Lacoste-Julien. Adaptive gradient methods converge faster with over-
parameterization (and you can do a line-search). ArXiv, abs/2006.06835, 2020. URL
https://api.semanticscholar.org/CorpusID:219636069.

Jingrong Wei and Long Chen. Accelerated over-relaxation heavy-ball method: Achieving
global accelerated convergence with broad generalization. ICLR, 2025.

Philip Wolfe. Convergence conditions for ascent methods. SIAM Rev., 11(2):226–235, April
1969. ISSN 0036-1445. doi: 10.1137/1011036. URL https://doi.org/10.1137/1011036.

Penghang Yin, Yifei Lou, Qi He, and Jack Xin. Minimization of `1−2 for compressed sensing.
SIAM Journal on Scientific Computing, 37(1):A536–A563, 2015. doi: 10.1137/140952363.
URL https://doi.org/10.1137/140952363.

Bin Zhou, Li Gao, and Yu-Hong Dai. Gradient methods with adaptive step-sizes. Computa-
tional Optimization and Applications, 35:69–86, 09 2006. doi: 10.1007/s10589-006-6446-0.

11

https://arxiv.org/abs/2310.10082
https://proceedings.neurips.cc/paper_files/paper/2017/file/2612aa892d962d6f8056b195ca6e550d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/2612aa892d962d6f8056b195ca6e550d-Paper.pdf
https://proceedings.mlr.press/v119/malitsky20a.html
https://proceedings.mlr.press/v119/malitsky20a.html
https://openreview.net/forum?id=qlH21Ig1IC
https://api.semanticscholar.org/CorpusID:18206201
https://api.semanticscholar.org/CorpusID:18206201
https://www.sciencedirect.com/science/article/pii/0041555369900615
https://www.sciencedirect.com/science/article/pii/0041555369900615
https://api.semanticscholar.org/CorpusID:219636069
https://doi.org/10.1137/1011036
https://doi.org/10.1137/140952363

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Appendix A: Adaptive Gradient Descent Method

We present an algorithm for adaptive gradient descent method (Ad-GD) which is a simplified
version of A2GD without momentum.

Algorithm 2: Adaptive Gradient Descent Method (Ad-GD)
Input: Initial point x0 ∈ Rn, initial step size L0 > 0, initial strong convexity estimate

µ0 > 0
Output: Sequence {xk}

1 for k = 0, 1, 2, . . . do
2 xk+1 ← xk − 1

Lk
∇f(xk);

3 b
(1)
k ←

1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1);

4 b
(2)
k ← −

1

2Lk
‖∇f(xk)‖2;

5 pk ←
(
1 + µk

Lk

)−1 (
pk−1 + b

(1)
k + b

(2)
k

)
;

6 if pk > 0 then
7 Use adaptive backtracking to update Lk so that b(1)

k ≤ 0;

8 Lk ←
‖∇f(xk)−∇f(xk+1)‖2

2Df (xk, xk+1)
;

9 µk ← min{µk, Lk};

There are several variants of Ad-GD depending on how we define δk and split b(1)
k and b(2)

k .
For example, we can use δk = 1− µ/Lk, b(2)

k = 0, and

b
(1)
k :=

1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1)−

1

2Lk
‖∇f(xk+1)‖2. (17)

The inequality b(1)
k ≤ 0 is equivalent to the criteria proposed by Nesterov in Nesterov (2012).

Proposition 4.1. The inequality b(1)
k ≤ 0 is equivalent to

mLk(xk+1;xk) ≥ f(xk+1), (18)

where mLk(y;x) = f(x) + 〈∇f(x), y − x〉+ Lk
2 ‖y − x‖

2, xk+1 = argminymLk(y;xk).

Proof. First, we have the identity

f(xk)− f(xk+1)−
αk
2
‖∇f(xk)‖2

=
αk
2
‖∇f(xk+1)‖2 −

αk
2
‖∇f(xk+1)−∇f(xk)‖2 +Df (xk, xk+1).

Notice that xk+1 = argminymLk(y;xk)⇔ xk+1 = xk − 1
Lk
∇f(xk), so

mLk(xk+1;xk) ≥ f(xk+1)

⇔f(xk) +
〈
∇f(xk),−

1

Lk
∇f(xk)

〉
+
Lk
2

∥∥∥∥ 1L∇f(xk)
∥∥∥∥2

≥ f(xk+1)

⇔f(xk)− f(xk+1)−
1

2Lk
‖∇f(xk)‖2 ≥ 0

⇔ 1

2Lk
‖∇f(xk+1)‖2 +

1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1) ≥ 0.

Thus, equivalence is proved.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix B: Identities of Accelerated Gradient Methods

We will use the Hessian-based Nesterov accelerated gradient (HNAG) flow proposed in Chen
and Luo (2019) 

x′ = y − x− β∇f(x),

y′ = x− y − 1

µ
∇f(x).

(19)

Denote by z = (x, y)ᵀ and G(z) the right hand side of (11), which now becomes z′ = G(z).
In the notation ∇E , we consider µ as a fixed parameter and take derivative with respect to
z.
Lemma 4.2. We have the identity

−∇E(z) · G(z) = E(z) + β ‖∇f(x)‖2∗ +
µ

2
‖y − x‖2 +Df (x

∗, x)− µ

2
‖x− x?‖2 . (20)

Proof. A direct computation gives

−∇E(z) · G(z) =
(
∇f(x)

µ(y − x?)

)(
(x− x?)− (y − x?) + β∇f(x)
(y − x?)− (x− x?) + 1

µ∇f(x)

)
= 〈∇f(x), x− x?〉+ β ‖∇f(x)‖2∗ + µ ‖y − x?‖2 − µ(y − x?, x− x?)

= E(z) + β ‖∇f(x)‖2∗ +Df (x
∗, x) +

µ

2
‖y − x‖2 − µ

2
‖x− x?‖2 .

(21)

Lemma 4.3. We have the identity

(1 + αk)E(zk+1;µk)− E(zk;µk)

= (I)
1

2

(
α2
k

µk
− 1

Lk

)
‖∇f(xk+1)‖2∗

(II) +
1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1)

(III)− 1

2Lk
‖∇f(xk)‖2∗ +

αkµk
2

(
‖xk+1 − x?‖2 −

2

µk
Df (x

?, xk+1)− (1 + αk) ‖xk+1 − yk+1‖2
)
.

Proof. Treat µk as a fixed parameter. We expand the difference

E(zk+1;µk)− E(zk;µk) = 〈∇E(zk+1;µk), zk+1 − zk〉 −DE(zk, zk+1;µk), (22)

where the negative term −DE(zk, zk+1;µk) is expanded as −Df (xk, xk+1)− µk
2 ‖yk−yk+1‖2.

Using the identity (21) in the continuous level, we have

〈∇E(zk+1;µk), αkG(zk+1, µk)〉 = −αkE(zk+1, µk)

− 1

Lk
‖∇f(xk+1)‖2∗ − αkDf (x

∗, xk+1) +
αkµk
2

(
‖xk+1 − x?‖2 − ‖xk+1 − yk+1‖2

)
.

The difference between the scheme and the implicit Euler method is

zk+1 − zk − αkG(zk+1, µk) = αk

(
yk − yk+1 + βk(∇f(xk+1)−∇f(xk))

0

)
.

which will bring more terms

〈∇xE(zk+1, µk), zk+1 − zk − αkG(zk+1, µk)〉

=
1

Lk
(∇f(xk+1),∇f(xk+1)−∇f(xk)) + αk 〈∇f(xk+1), yk − yk+1〉 .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We then use the identity of squares for the cross term of gradients

1

Lk
(∇f(xk+1),∇f(xk+1)−∇f(xk))

=− 1

2Lk
‖∇f(xk)‖2∗ +

1

2Lk
‖∇f(xk+1)‖2∗ +

1

2Lk
‖∇f(xk+1)−∇f(xk)‖2∗.

As expected, this cross term brings more positive squares but also contribute a negative one.

On the second term, we write as

αk 〈∇f(xk+1), yk − yk+1〉 =
〈
αk√
µk
∇f(xk+1),

√
µk(yk − yk+1)

〉
=

α2
k

2µk
‖∇f(xk+1)‖2∗ +

µk
2
‖yk − yk+1‖2 −

1

2

∥∥∥∥ αk√
µk
∇f(xk+1)−

√
µk(yk − yk+1)

∥∥∥∥2

=
α2
k

2µk
‖∇f(xk+1)‖2∗ +

µk
2
‖yk − yk+1‖2 −

1

2
α2
kµk ‖xk+1 − yk+1‖2 .

Combining altogether, we get the desired identity.

Proof of Theorem 3.2

First, we prove convergence of Algorithm 1 within a single inner iteration, i.e. ε is fixed, in
the following lemma. It bears similarity to (Chen et al., 2025, Theorem 8.3), and is a direct
result of Lemma 4.3.
Lemma 4.4. Suppose f is convex and L-smooth. Let zk = (xk, yk) be the iterates generated
by Algorithm 1 within an inner iteration where µ = ε. Assume that there exists R > 0 such
that

‖xk − x∗‖ ≤ R, ∀ k ≥ 0,

and that there exists l ∈ (ε, L) such that Lk ≥ l for all k ≥ 0. Then the Lyapunov function
exhibits linear convergence up to a perturbation:

E(zk; ε) ≤

(
1

1 +
√
ε/(rL)

)k
E(z0; ε) +

ε

2
R2,

where r is the backtracking ratio (in Algorithm 1, r = 3).

Proof. By Lemma 4.3, we have

E(zk+1;µk+1) ≤
1

1 + αk
E(zk;µk) +

1

1 + αk

(
b
(1)
k + b

(2)
k

)
+

αkµk
2(1 + αk)

R2.

Since l ≤ Lk ≤ rL, it follows that √
ε
rL ≤ αk ≤

√
ε
l .

Therefore,

E(zk+1;µk+1) ≤
1

1 +
√
ε/(rL)

E(zk;µk) +
1

1 + αk

(
b
(1)
k + b

(2)
k

)
+

ε
√
ε/l

2
(
1 +

√
ε/l
)R2.

Iterating the inequality yields

E(zk+1) ≤

(
1

1 +
√
ε/(rL)

)k+1

E(z0) + pk+1 +
ε
√
ε/l

2
(
1 +

√
ε/l
) k∑
i=0

(
1

1 +
√
ε/l

)i
R2,

where pk+1 is the accumulated perturbation. By Algorithm 1, we have pk+1 ≤ 0.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Finally, the geometric sum is bounded as
k∑
i=0

(
1

1 +
√
ε/l

)i
≤

1 +
√
ε/l√

ε/l
.

Substituting this estimate gives the claimed bound

E(zk+1; ε) ≤

(
1

1 +
√
ε/(rL)

)k+1

E(z0; ε) +
ε

2
R2.

Proof of Theorem 3.2. We distinguish between the convex case (µ = 0) and the strongly
convex case (µ > 0).

If µ = 0, in this case, the proof of (Chen et al., 2025, Theorem 8.4) applies directly, once the
single-inner-iteration convergence relation (Lemma 4.4) is established. Therefore, no further
argument is needed.

If instead, µ > 0, recall that in the algorithm the effective radius is updated as

R2
k =

(
1− µ

µk

)
R2.

Thus, whenever µk ≥ µ, we obtain R2
k ≤ 0, which implies that further reduction of µk is

no longer admissible. In particular, µk will stop decreasing once the tolerance parameter ε
satisfies ε ≤ µ.
Since ε is halved at each outer stage, the final value of µk is therefore bounded below by
µ/2. At the same time, the smoothness parameter satisfies Lk ≤ rL by construction. Hence,
in the terminal stage we obtain an effective condition number bounded by

κeff =
Lk
µk
≤ rL

µ/2
=

2rL

µ
.

Applying the convergence estimate from Lemma 4.4 in this regime, the Lyapunov function
contracts linearly:

Eks ≤

(
1

1 +
√
µk/Lk

)ks
E0 ≤

(
1

1 +
√
µ/2rL

)ks
E0.

Therefore, to ensure that Eks ≤ tol · E0, it suffices to take

ks ≥
ln(1/tol)

ln
(
1 +

√
µ/2rL

) = O
(√

2rL/µ ln(1/tol)
)
.

This establishes the desired complexity bound in both cases.

Appendix C: Composite Convex Optimization

We derive the continuous time analogy to Lemma 3.1. First, define the composite right hand
side update

G(z) =
(
y − x− β(∇h(x) + q), x− y − 1

µ
(∇h(x) + q)

)T

,

where q ∈ ∂g(x). Let Eh(z;µ) = h(x)−h(x∗)+ µ
2 ‖y−x

∗‖2, then E(z;µ) = Eh(z;µ)+(g(x)−
g(x∗)) is splitted into a smooth part and a non-smooth part.
Lemma 4.5. We have the following inequality

−
〈
∇Eh(x) +

(
q

0

)
,G(z)

〉
≥ E(z) + β‖∇h(x) + q‖2∗ +

µ

2
‖y− x‖2 +Dh(x

∗, x)− µ

2
‖x− x∗‖2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. A direct computation gives

−
〈
∇Eh(x) +

(
q

0

)
,G(z)

〉
=

(
∇h(x) + q
µ(y − x?)

)(
(x− x?)− (y − x?) + β(∇h(x) + q)
(y − x?)− (x− x?) + 1

µ (∇h(x) + q)

)
= 〈∇h(x) + q, x− x?〉+ β ‖∇h(x) + q‖2∗ + µ ‖y − x?‖2 − µ(y − x?, x− x?)

≥ E(z) + β ‖∇h(x) + q‖2∗ +Dh(x
∗, x) +

µ

2
‖y − x‖2 − µ

2
‖x− x?‖2 ,

(23)
the last inequality following from q ∈ ∂g(x).

Lemma 4.6. We have the following inequality
(1 + αk)E(zk+1;µk)− E(zk;µk)

≤ (I)
1

2

(
α2
k

µk
− 1

Lk

)
‖∇h(xk+1) + qk+1‖2∗

(II) +
1

2Lk
‖∇h(xk+1)−∇h(xk)‖2 −Dh(xk, xk+1)

(III)− 1

2Lk
‖∇h(xk) + qk+1‖2∗ +

αkµk
2

(
‖xk+1 − x?‖2 −

2

µk
Dh(x

?, xk+1)− (1 + αk) ‖xk+1 − yk+1‖2
)
.

Proof. The proof is similar to the smooth convex case. Expand the difference of E at zk+1,

E(zk+1;µk)− E(zk;µk) ≤ 〈∇Eh(zk+1;µk) +

(
qk+1

0

)
, zk+1 − zk〉 −DEh(zk, zk+1;µk), (24)

where the negative term −DEh(zk, zk+1;µk) is expanded as −Dh(xk, xk+1)− µk
2 ‖yk−yk+1‖2.

The inequality is due to the definition of the subgradient.

From Lemma 4.5, we have

〈∇Eh(zk+1;µk) +

(
qk+1

0

)
, αkG(zk+1, µk)〉 ≤ −αkE(zk+1, µk)

− 1

Lk
‖∇h(xk+1) + qk+1‖2∗ − αkDh(x

∗, xk+1) +
αkµk
2

(
‖xk+1 − x?‖2 − ‖xk+1 − yk+1‖2

)
.

The difference between the scheme and the implicit Euler method is

zk+1 − zk − αkG(zk+1, µk) = αk

(
yk − yk+1 + βk(∇h(xk+1)−∇h(xk))

0

)
.

which will bring more terms
〈∇xEh(zk+1, µk) + qk+1, zk+1 − zk − αkG(zk+1, µk)〉

=
1

Lk
(∇h(xk+1) + qk+1,∇h(xk+1)−∇h(xk)) + αk 〈∇h(xk+1) + qk+1, yk − yk+1〉 .

For the first term, we use the identity of squares
1

Lk
(∇h(xk+1) + qk+1,∇h(xk+1)−∇h(xk))

=− 1

2Lk
‖∇h(xk) + qk+1‖2∗ +

1

2Lk
‖∇h(xk+1) + qk+1‖2∗ +

1

2Lk
‖∇h(xk+1)−∇h(xk)‖2∗.

As expected, this cross term brings more positive squares but also contribute a negative one.

For the second term, we rewrite as

αk 〈∇h(xk+1) + qk+1, yk − yk+1〉 =
〈
αk√
µk
∇h(xk+1) + qk+1,

√
µk(yk − yk+1)

〉
=

α2
k

2µk
‖∇h(xk+1) + qk+1‖2∗ +

µk
2
‖yk − yk+1‖2 −

1

2

∥∥∥∥ αk√
µk

(∇h(xk+1) + qk+1)−
√
µk(yk − yk+1)

∥∥∥∥2

=
α2
k

2µk
‖∇h(xk+1) + qk+1‖2∗ +

µk
2
‖yk − yk+1‖2 −

1

2
α2
kµk ‖xk+1 − yk+1‖2 .

Combining altogether, we get the desired inequality.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 3: A2GD method for composite optimization
Input: x0, y0 ∈ Rn, L0, µ0, R > 0, tol > 0, ε > 0, m ≥ 1

1 while k = 0 or ‖∇f(xk) + qk‖ > tol‖∇f(x0)‖ do
2 αk ←

√
µk/Lk;

3 wk+1 ← 1
αk+1xk +

αk
αk+1yk −

1
Lk(αk+1)∇h(xk);

4 xk+1 ← prox 1
Lk(αk+1)

g(wk+1);
5 qk+1 ← Lk(αk + 1)(wk+1 − xk+1);
6 yk+1 ← αk

αk+1xk+1 +
1

αk+1yk −
αk

µk(αk+1) (∇h(xk+1) + qk+1);

7 b
(1)
k ←

1
2Lk
‖∇h(xk+1)−∇h(xk)‖2 −Dh(xk, xk+1);

8 b
(2)
k ← −

1
2Lk
‖∇h(xk) + qk+1‖2∗ +

αkµk
2

(
R2 − (1 + αk)‖xk+1 − yk+1‖2

)
;

9 pk ← 1
1+αk

(pk−1 + b
(1)
k + b

(2)
k);

10 if pk > 0 then
11 if b(1)

k > 0 then
12 v ← 2LkDf (xk,xk+1)

‖∇f(xk+1)−∇f(xk)‖2 , Lk ← 3Lk/v;

13 if b(2)
k > 0 then

14 µk ← max

{
ε,min

{
µk,

‖∇h(xk)+qk+1‖4/3

L
1/3
k (R2−(1+αk)‖xk+1−yk+1‖2)2/3

}}
;

15 Go to line 2;
16 else
17 Lk ← ‖∇h(xk+1)−∇h(xk)‖2

2Dh(xk,xk+1) ;

18 µk+1 ← max

{
ε,min

{
µk,

‖∇h(xk)+qk+1‖4/3

L
1/3
k (R2−(1+αk)‖xk+1−yk+1‖2)2/3

}}
;

19 if decay condition then
20 ε← ε/2;
21 m← b

√
2 ·mc+ 1;

22 k ← k + 1;

Theorem 4.7. Let (xk, yk) be the iterates generated by Algorithm 3. Assume function f is
µ-convex with µ ≥ 0. Assume there exists R > 0 such that

‖xk − x∗‖ ≤ R, ∀ k ≥ 0.

Let ks be the total number of steps after halving ε exactly s times, i.e. ε = 2−sε0.

1. When µ = 0, ther exists a constant C > 0 so that

Eks
E0
≤ R2 + 1(

Cks + ε
−1/2
0

)2 = O
(

1

k2
s

)

2. When µ > 0, the iteration number to achieve Eks/E0 ≤ (R2 + 1)2−sε0 ≤ tol is bounded
by O(

√
L/µ ln tol),

where Ek = E(zk;µk) = f(xk)− f(x?) + µk
2 ‖yk − x

?‖2 .

LLM usage

In preparing this manuscript, large language models (LLMs) were employed exclusively
to assist with language-related tasks, such as improving readability, grammar, and style.
The models were not used for research ideation, development of methods, data analysis, or

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

interpretation of results. All scientific content, including problem formulation, theoretical
analysis, and experimental validation, was conceived, executed, and verified entirely by the
authors. The authors bear full responsibility for the accuracy and integrity of the manuscript.

Ethics statement

This work is purely theoretical and algorithmic, focusing on convex optimization methods. It
does not involve human subjects, sensitive data, or applications that raise ethical concerns
related to privacy, security, fairness, or potential harm. All experiments are based on publicly
available datasets or synthetic data generated by standard procedures. The authors believe
that this work fully adheres to the ICLR Code of Ethics.

Reproducibility statement

We have taken several measures to ensure the reproducibility of our results. All theoretical
assumptions are explicitly stated, and complete proofs are provided in the appendix. For
the experimental evaluation, we describe the setup, parameter choices, and baselines in
detail in the main text. The source code for our algorithms and experiments are available as
supplementary materials. Together, these resources should allow others to reproduce and
verify our theoretical and empirical findings.

18

	Introduction
	Adaptive Gradient Descent Method
	Adaptive Accelerated Gradient Descent Method
	Numerical Experiments

