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Abstract

This work proposes A2GD, a novel adaptive accelerated gradient descent
method for convex and composite optimization. Smoothness and convexity
constants are updated via Lyapunov analysis. Inspired by stability analysis
in ODE solvers, the method triggers line search only when accumulated
perturbations become positive, thereby reducing gradient evaluations while
preserving strong convergence guarantees. By integrating adaptive step
size and momentum acceleration, A2GD outperforms existing first-order
methods across a range of problem settings.

1 Introduction

In this paper, we study the convex optimization problem

min
x∈Rd

f(x), (1)

where f is µ-strongly convex and L-smooth. When µ = 0, we additionally assume f is
coercive so that a global minimizer exists. We also consider the composite convex problem

min
x∈Rd

f(x) := h(x) + g(x), (2)

where h is L-smooth and g is convex, possibly non-smooth, with a proximal operator.

First-order methods, which rely only on gradient information, are widely used in machine
learning for their efficiency and scalability (Bottou et al., 2018). Among them, gradient
descent (GD), defined by

xk+1 = xk − αk∇f(xk), (3)

is fundamental. Despite its simplicity, GD faces two main challenges:

• Step size selection. Convergence depends heavily on the step size αk. Small αk slows
progress; large αk risks divergence. For L-smooth functions, αk = 1/L is standard, but
this global constant often mismatches local curvature.

• Slow convergence. Even with an optimal step size, GD is slow on ill-conditioned
problems, i.e., when L/µ� 1.

We briefly review strategies addressing these issues:

Backtracking line search Backtracking line search begins with a large step size αk and
reduces it until conditions such as the Armijo–Goldstein criterion (Armijo, 1966; Goldstein,
1962/63) or Wolfe condition (Wolfe, 1969) are satisfied. Extensions (Ito and Fukuda,
2021; Liu and Yang, 2017) adapt line search to composite settings. Guminov et al. (2019)
update parameters in Nesterov’s method with backtracking, while Lan et al. (2023) develop
a parameter-free method that attains optimal complexity bounds for both convex and
strongly convex problems, achieving the best known results for non-convex problems. An
adaptive variant (Cavalcanti et al., 2025) reduces backtracking steps, improving efficiency.
Despite robustness and simplicity, line search usually requires 3–4 extra function or gradient
evaluations per iteration, increasing cost.
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Adaptive step sizes Adaptive schemes such as the Barzilai–Borwein (BB) method (Barzi-
lai and Borwein, 1988) estimate step sizes from past iterates:

αk =
〈xk − xk−1,∇f(xk)−∇f(xk−1)〉

‖∇f(xk)−∇f(xk−1)‖2
, (4)

with low computational overhead. However, BB-type methods are heuristic, and may diverge
even for simple convex problems (Burdakov et al., 2019); guarantees are largely limited
to quadratic cases (Dai and Liao, 2002). Extensions (Zhou et al., 2006; Dai et al., 2015)
improve robustness but still lack general theory.

Polyak’s method (Polyak, 1969), foundational to adaptive approaches such as AdaGrad and
AMSGrad (Vaswani et al., 2020), ensures convergence but requires the optimal value f∗,
which is rarely available.

Line-search free methods. Recent years have seen growing interest in line-search free
adaptive methods. These algorithms keep the per-iteration cost of gradient descent while
often achieving faster convergence and lower sensitivity to hyperparameters. Malitsky and
Mishchenko (2020; 2024) introduced adaptive proximal gradient methods with theoretical
guarantees, though lack of acceleration can hinder performance on ill-conditioned problems.
Li and Lan (2024) and Cavalcanti et al. (2025) proposed adaptive NAG variants with
backtracking-free updates, though the rule in Li and Lan (2024) is relatively complex.

Acceleration Momentum-based methods accelerate convergence by leveraging past up-
dates. The heavy-ball method (Polyak, 1964) and Nesterov’s accelerated gradient (NAG) (Nes-
terov, 2003) achieve the optimal rate 1−

√
µ/L under strong convexity, assuming known L

and µ. In the convex case (µ = 0), NAG with step size 1/(k + 3) (Nesterov, 1983) achieves
the optimal O(1/k2) rate. Nesterov later extended this framework to composite problems by
incorporating line search into accelerated proximal methods (Nesterov, 2012), also attaining
O(1/k2).

In training deep neural networks, Adam (Adaptive Moment Estimation) (Kingma and Ba,
2015) is a widely used optimization algorithm that combines momentum and adaptive step
sizes for fast and stable convergence. However, the original Adam algorithm lacks convergence
guarantees, even for convex problems.

Contribution

• We develop A2GD, an adaptive accelerated gradient method with provable accelerated
linear convergence for smooth and composite convex optimization.

• We adapt stability analysis from ODE solvers to reduce line search overhead, activating it
only when accumulated perturbations are positive. The method is thus line-search reduced
rather than line-search free (Fig. 2), and it outperforms existing line-search free methods
in both theory and practice.

• We show numerically that A2GD also consistently outperforms AGD variants (where a
single A denotes either adaptivity or acceleration) and other methods combining adaptivity
and acceleration.

Limitations and Extensions While A2GD achieves adaptive acceleration with strong
theoretical guarantees, these results rely on convexity to ensure positivity of the Bregman
divergence. Extending the framework to nonconvex settings remains an open problem. We
provide preliminary evidence on a composite `1-2 problem, where the nonconvex regularizer
admits a closed-form proximal operator.

Although line search adds little overhead in practice—typically only a few extra evaluations—a
sharper theoretical bound on the number of triggered line search steps is an important future
direction.

Another extension is the stochastic setting. Developing a stochastic variant of A2GD
that preserves both adaptivity and acceleration under variance conditions would broaden
applicability to large-scale machine learning, providing a step toward a theoretical justification
of the empirical success of Adam.
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Background on convex functions Let f : Rd → R be differentiable. The Bregman
divergence between x, y ∈ Rd is defined as

Df (y, x) := f(y)− f(x)− 〈∇f(x), y − x〉.
The function f is µ-strongly convex if for some µ > 0,

Df (y, x) ≥
µ

2
‖y − x‖2, ∀x, y ∈ Rd.

It is L-smooth, for some L > 0, if its gradient is L-Lipschitz:

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ Rd.
The condition number is defined by κ = L/µ. Let SL,µ denote the class of all differentiable
functions that are both µ-strongly convex and L-smooth.

For f ∈ SL,µ, the Bregman divergence satisfies (Nesterov, 2003):

1

2L
‖∇f(x)−∇f(y)‖2 ≤ Df (x, y) ≤

1

2µ
‖∇f(x)−∇f(y)‖2, ∀x, y ∈ Rd. (5)

Taking y = x∗, where x∗ minimizes f and ∇f(x∗) = 0, yields:

‖∇f(x)‖2 ≥ 2µ(f(x)− f(x∗)), ∀x ∈ Rd. (6)

2 Adaptive Gradient Descent Method

We illustrate our main idea using gradient descent and later extend it to accelerated gradient
descent. The steepest descent step chooses

α∗k = argmin
α>0

f(xk − α∇f(xk)), (7)

which entails solving a one-dimensional convex problem. While conceptually simple, this can
be costly unless a closed form is available.

For L-smooth functions, the fixed step size αk = 1/L guarantees convergence, but is often
overly conservative when local curvature is much smaller than L. To improve efficiency, we
design step sizes that adapt to local geometry using f(xk) and ∇f(xk).
We estimate the local Lipschitz constant Lk through Lyapunov analysis of the gradient
descent method (3). Consider the Lyapunov function

Ek = f(xk)− f(x∗), (8)

where x∗ ∈ argmin f(x) and f(x∗) = min f . Expanding f at xk+1 gives

Ek+1 − Ek = f(xk+1)− f(xk)
= 〈∇f(xk+1), xk+1 − xk〉 −Df (xk, xk+1)

= −αk 〈∇f(xk+1),∇f(xk)〉 −Df (xk, xk+1)

= −αk
2
‖∇f(xk+1)‖2 −

αk
2
‖∇f(xk)‖2

+
αk
2
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1).

Applying (6) to ‖∇f(xk+1)‖2 and rearranging yields

(1 + µαk)Ek+1 ≤ Ek −
αk
2
‖∇f(xk)‖2 +

αk
2
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1). (9)

If we use a line search to choose a small enough αk such that

αk =
1

Lk
≤ 2Df (xk, xk+1)

‖∇f(xk+1)−∇f(xk)‖2
, (10)

then dropping the negative terms in (9) gives the linear convergence

Ek+1 ≤ (1 + µ/Lk)
−1Ek.

3
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Since αk = 1/Lk, choosing a smaller αk is equivalent to using a larger Lk. By (5), the
criterion (10) holds once Lk ≥ L. Standard backtracking starts with an initial estimate of Lk
and increases it iteratively by a factor r > 1 until (10) is satisfied. This procedure requires
at most O(| logL/ log r|) iterations. A more adaptive and efficient backtracking scheme was
recently proposed in Cavalcanti et al. (2025), which we adapt for our purposes and briefly
recall below.

Rewriting the stopping criterion (10) gives

v =
2LkDf (xk, xk+1)

‖∇f(xk+1)−∇f(xk)‖2
≥ 1.

If v < 1, the criterion is not satisfied. Instead of increasing Lk by a fixed ratio, we update it
as Lk ← rLk/v, where r > 1 is a base ratio (e.g., r = 3). This adaptive scaling adjusts to
the gap between the current condition and the stopping criterion, improving both efficiency
and accuracy.

Line search adds computational overhead, since each update of Lk requires reevaluating
∇f(xk+1) and/or f(xk+1), which is often the dominant cost in gradient-based methods. To
reduce this cost and avoid line search, line-search free approaches have been proposed; see
the literature review in the introduction.

However, enforcing line-search free updates is often too rigid and restrictive. In contrast,
we reduce the number of line-search steps to a small fraction, achieving comparable cost to
line-search free methods. Our approach is inspired by stability analysis in ODE solvers. The
following result can be established by induction.
Lemma 2.1 (A variant of Lemma 5.7.1. in Gautschi (2011)). Let {Ek} be a positive sequence
satisfying

Ek+1 ≤ δk(Ek + bk), k = 0, 1, . . . ,

where δk > 0 and bk ∈ R. Then

Ek+1 ≤

(
k∏
i=0

δi

)
E0 + pk, k = 0, 1, . . . ,

where the accumlated perturbation

pk =

k∑
i=0

 k∏
j=i

δj

 bi, satisfying pk = δk(pk−1 + bk).

We use an adaptive gradient descent method (ad-GD) to illustrate our main idea and refer
to Appendix A for the detailed algorithmic formulation. Applying Lemma 2.1 to GD under
the Lyapunov analysis equation 9 gives

δk = (1 + µ/Lk)
−1, bk = b

(1)
k + b

(2)
k ,

b
(1)
k =

1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1),

b
(2)
k = − 1

2Lk
‖∇f(xk)‖2.

The strong convexity constant µ may be unknown in practice. In implementation, we replace
it by the upper bound µk = min1≤i≤k Lk.

In the line-search criterion (10), Lk is chosen so that b(1)
k < 0, ensuring bk < 0 at each step.

Enforcing negativity step by step is sufficient but not necessary. Instead, we perform line
search only when pk > 0, and update Lk until the weighted sum pk ≤ 0. Once this condition
holds, exponential decay follows:

Ek+1 ≤
k∏
i=0

(
1 +

µ

Li

)−1

E0, if pk ≤ 0.

4
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In the early iterations, when iterates are far from optimal and ‖∇f(xk)‖ is large, the negative
terms b(2)

k accumulate and can offset positive terms later. Line search is triggered only if the
accumlated perturbation pk becomes positive. In other words, classical line search enforces
bk < 0 in the `∞ sense for {bk}, while our relaxation allows a weighted `2 sense. Figures 1
and 2 illustrate this idea.
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Figure 1: The accumlated perturbation pk
(red curve) remains negative and approaches
zero. The actual values of Ek (blue curve)
decay faster than the theoretical exponen-
tial rate

(∏k
i=0 δi

)
E0 (black curve) due to

the negative perturbation pk. Additionally,
Ek decays more rapidly in the early itera-
tions because of the large magnitude of the
negative term b

(2)
k = − 1

2Lk
‖∇f(xk)‖2.
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Number of Gradient Evaluations

10-6

10-4

10-2

100

Ad-GD (Algorithm 2)
Grad Eval for line search
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Figure 2: For a logistic regression problem
with `2 regularizer (14), gradient descent
with line search enforcing b

(1)
k ≤ 0 (top

curve) performs backtracking every 3–4 iter-
ations on average. In contrast, ad-GD (Al-
gorithm 2 in Appendix A) with line search
targeting pk ≤ 0 (bottom curve) incurs only
few additional gradient evaluations. Red
dots indicate iterations where extra gradient
evaluations occur during line search.

Theorem 2.2. Assume f ∈ SL,µ. Let {xk} be the sequence generated by gradient descent
method (3) with line search ensuring pk ≤ 0. Then we have

Ek ≤
k−1∏
i=0

1

1 + µ/Li
E0 ≤

(
1

1 + µ/(crL)

)k
E0.

Proof. As pk ≤ 0 for all k, linear convergence follows from (9). By (5), the stopping
criterion (10) is satisfied once Lk ≤ crL with at most O(| logL/ log r|) search steps, where
cr ≥ 1 depends on the line-search scaling factor. Since µk ≥ µ, the desired linear convergence
rate follows.

Remark 2.1. To improve efficiency, we set the next step size as αk+1 =
2Df (xk,xk+1)

‖∇f(xk+1)−∇f(xk)‖2 .

The gradient ∇f(xk+1) can be reused in the following gradient descent step. However,
computing Df (xk, xk+1) requires function evaluations f(xk) and f(xk+1), which may be
costly. To avoid these evaluations, we approximate 2Df (xk, xk+1) by its symmetrized form:

2Df (xk, xk+1) ≈ Df (xk, xk+1) +Df (xk+1, xk) = 〈∇f(xk+1)−∇f(xk), xk+1 − xk〉.

This reduces the ratio to the form used in the BB gradient method (4). In contrast to BB,
convergence of ad-GD is guaranteed by enforcing pk ≤ 0.

Remark 2.2. There are several variants depending on how we define δk and split b(1)
k and

b
(2)
k . For example, we can use δk = 1− µ/Lk, b(2)

k = 0, and the rest is b(1)
k . Then b(1)

k ≤ 0 is
equivalent to the criteria proposed by (Nesterov, 2012) (Appendix A).

3 Adaptive Accelerated Gradient Descent Method

In this section, we apply our adaptive strategy to accelerated gradient methods. We derive
an identity for the difference of the Lyapunov function and adaptively adjust Lk and µk to
ensure the accumulated perturbation satisfies pk ≤ 0. The perturbation term b

(1)
k remains

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

unchanged, while b(2)
k includes additional terms and is used to adjust µk. The contraction

rate δk improves from (1 + µk/Lk)
−1 to (1 +

√
µk/Lk)

−1.

We will use the Hessian-based Nesterov accelerated gradient (HNAG) flow proposed in Chen
and Luo (2019) 

x′ = y − x− β∇f(x),

y′ = x− y − 1

µ
∇f(x),

(11)

where β is a parameter. An implicit and explicit (IMEX) discretization of (11) is
xk+1 − xk = αk (yk − xk+1)−

1

Lk
∇f(xk),

yk+1 − yk = − αk
µk
∇f(xk+1) + αk (xk+1 − yk+1) ,

(12)

where αk > 0 is the time step size and Lk := (αkβk)
−1. Denote by z = (x, y)ᵀ. Introduce

the Lyapunov function

E(z;µ) := f(x)− f(x∗) + µ

2
‖y − x∗‖2 .

The proof of the following identity can be found in Appendix B.
Lemma 3.1. We have the identity

(1 + αk)E(zk+1;µk)− E(zk;µk)

=
1

2

(
α2
k

µk
− 1

Lk

)
‖∇f(xk+1)‖2∗ (I)

+
1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1) (II)

− 1

2Lk
‖∇f(xk)‖2∗ +

αkµk
2

(
‖xk+1 − x∗‖2 −

1

µk
Df (x

∗, xk+1)− (1 + αk) ‖xk+1 − yk+1‖2
)

(III).

We can simply set αk =
√

µk
Lk

so that (I) = 0. To control (II) and (III), define perturbations

b
(1)
k =

1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1),

b
(2)
k = − 1

2Lk
‖∇f(xk)‖2 +

αkµk
2

(
R2
k − (1 + αk) ‖xk+1 − yk+1‖2

)
,

pk =
1

1 + αk

(
pk−1 + b

(1)
k + b

(2)
k

)
, ∀k ≥ 1 and p0 = 0.

(13)

The term b
(1)
k measures deviation from the Lipschitz condition and is used to adjust Lk,

while b(2)
k measures deviation from the strong convexity assumption and is used to adjust µk.

To enforce the lower bound µk ≥ µ when µ > 0, we introduce

R2
k := (1− µ/µk)R2,

using the inequality Df (x
∗, xk+1) ≥ µ

2 ‖xk+1 − x∗‖2 and an upper bound R such that
‖xk+1 − x∗‖2 ≤ R2. If µk < µ, then b(2)

k < 0 and no further reduction of µk is allowed. The
parameter µ can be a conservative estimate of the true convexity constant and serves as a
lower bound for µk.

Line search is triggered only when pk > 0. If b(1)
k > 0, Lk is updated using adaptive

backtracking Cavalcanti et al. (2025). If b(2)
k > 0, the convexity is not strong enough to

support a large step, so we reduce µk. In the limiting case µk = 0, we have b(2)
k ≤ 0.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

To update µk more precisely, we solve b(2)
k = 0, treating Lk as known and using the

fixed rule αk =
√
µk/Lk for the step size. The leading term in the second part of b(2)

k is
αkµkR

2
k = µ

3/2
k R2

k/L
1/2
k , and the equation essentially reduces to a non-trivial scaling

µ
3/2
k R2

k

L
1/2
k

≈ ‖∇f(xk)‖
2

Lk
⇒ µk ∝

‖∇f(xk)‖4/3

L
1/3
k R

4/3
k

.

To preserve decay of the Lyapunov function, we enforce

µk+1 ≤ µk ⇒ E(zk+1;µk+1) ≤ E(zk+1;µk).

To establish convergence guarantee, the parameter µk cannot decay too fast. To control
the decay rate of µk, we adopt the perturbation idea proposed in Chen et al. (2025). We
introduce a parameter ε and impose the lower bound µk ≥ ε in the update formulas (line 12
and line 16 in Algorithm 1).

To ensure monotonic descent, updates with f(xk+1) > f(xk) are rejected by setting xk+1 = xk.
When ‖yk − x?‖ � ‖xk − x?‖, the Lyapunov function E may decrease primarily due to
‖yk − x?‖, while f(xk) stagnates. To mitigate this, a restart is triggered by setting yk = xk
if f(xk) fails to decrease over five consecutive iterations. These monitoring steps are omitted
from Algorithm 1, but are used in practice to enhance stability.

Algorithm 1: Adaptive Accelerated Gradient Method (A2GD)
Input: x0, y0 ∈ Rn, L0 > 0, µ0 > 0, R > 0, 0 < tol� 1, ε > 0, m ≥ 1

1 while ‖∇f(xk)‖ > tol‖∇f(x0)‖ do
2 αk ←

√
µk/Lk;

3 xk+1 ← 1
αk+1xk +

αk
αk+1yk −

1
Lk(αk+1)∇f(xk);

4 yk+1 ← αk
αk+1xk+1 +

1
αk+1yk −

αk
µk(αk+1)∇f(xk+1);

5 b
(1)
k ←

1
2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1);

6 b
(2)
k ← −

1
2Lk
‖∇f(xk)‖2∗ +

αkµk
2

(
R2
k − (1 + αk)‖xk+1 − yk+1‖2

)
;

7 pk ← 1
1+αk

(pk−1 + b
(1)
k + b

(2)
k );

8 if pk > 0 then
9 if b(1)

k > 0 then
10 v ← 2LkDf (xk,xk+1)

‖∇f(xk+1)−∇f(xk)‖2 , Lk ← 3Lk/v;

11 if b(2)
k > 0 then

12 µk ← max

{
ε,min

{
µk,

‖∇f(xk)‖4/3

L
1/3
k (R2

k−(1+αk)‖xk+1−yk+1‖2)
2/3

}}
;

13 Go to line 2;
14 else
15 Lk+1 ← ‖∇f(xk+1)−∇f(xk)‖2

2Df (xk,xk+1) ;

16 µk+1 ← max

{
ε,min

{
µk,

‖∇f(xk)‖4/3

L
1/3
k (R2

k−(1+αk)‖xk+1−yk+1‖2)
2/3

}}
;

17 if decay condition then
18 ε← ε/2;
19 m← b

√
2 ·mc+ 1;

20 k ← k + 1;

To reduce sensitivity to initialization, we include a warm-up phase using the adaptive proximal
gradient descent (AdProxGD) method from Malitsky and Mishchenko (2024). Starting from
x0, we perform 10 iterations of AdProxGD and initialize A2GD with x0 = y0 := x10 and
µ0 := min1≤k≤10{Lk}, and set R = 100‖∇f(x0)‖/µ0. Although dynamical update of R may
improve convergence, the method is typically robust with a fixed R.

7
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The lower bound ε of µk is halved if certain decay conditions are met: if either Ek/E0 ≤
(R2 + 1)ε/2, or the iteration steps for one fixed ε are larger than m. Since Ek is not
directly computable, we can replace Ek/E0 with ‖∇f(xk)‖2/‖∇f(x0)‖2. If µ > 0, then
Ek/E0 ≤ (R2 + 1)ε/2 will be satisfied in O(| log ε|) steps. If µ = 0, the maximal iteration
steps for one fixed ε is bounded by m. We thus obtain the following convergence results.
Theorem 3.2. Let (xk, yk) be the iterates generated by the above algorithm. Assume function
f is µ-strongly convex with µ ≥ 0. Let ks be the total number of steps after halving ε exactly
s times, i.e. ε = 2−sε0.

1. When µ = 0, ther exists a constant C > 0 so that

Eks
E0
≤ R2 + 1(

Cks + ε
−1/2
0

)2 = O
(

1

k2
s

)

So O(
√

1/tol) iteration steps can acheive Eks/E0 ≤ tol.

2. When µ > 0, the iteration number to achieve Eks/E0 ≤ (R2 + 1)2−sε0 ≤ tol is bounded
by O(

√
L/µ ln tol).

4 Numerical Experiments

We test A2GD on smooth convex minimization tasks and compare it with several leading
first-order methods, grouped into two categories:

• Accelerated but non-adaptive methods: Nesterov’s accelerated gradient (NAG) with
step size 1/(k+3) (Nesterov, 1983), accelerated over-relaxation heavy ball (AOR-HB) (Wei
and Chen, 2025), and the triple momentum method (TM) (Van Scoy et al., 2018).

• Adaptive methods: adaptive proximal gradient descent (AdProxGD) (Malitsky and
Mishchenko, 2024), the auto-conditioned fast gradient method (AC-FGM) (Li and Lan,
2024), and NAGfree (Cavalcanti et al., 2025).

For all examples, we set the tolerance to tol = 10−6 and use the stopping criterion ‖∇f(xk)‖ ≤
tol · ‖∇f(x0)‖. All experiments were run in MATLAB R2023a on a desktop with an Intel
Core i5-7200U CPU (2.50 GHz) and 8 GB RAM.

Regularized Logistic Regression We report numerical simulations on a logistic regres-
sion problem with an `2 regularizer:

min
x∈Rn

{
m∑
i=1

log
(
1 + exp(−bia>i x)

)
+
λ

2
‖x‖2

}
, (14)

where (ai, bi) ∈ Rn × {−1, 1} for i = 1, 2, . . . ,m.

200 400 600 800 1000
Number of Gradient Evaluations

10-10

10-5

100

(f
(x

)-
f*
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(x
0)-

f*
)

Figure 3: A2GD compared to non-
adaptive accelerated gradient methods.
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Number of Gradient Evaluations

10-5

100
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(x
0)-

f*
)

Figure 4: A2GD compared to adaptive
methods.

For this problem, µ = λ and L = λmax

(∑m
i=1 aia

>
i

)
+ λ. We use (ai, bi) from the Adult

Census Income dataset. After removing entries with missing values, the dataset contains
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30,162 samples. The Lipschitz constant is 6.30× 104. With regularization parameter λ = 0.1,
the condition number is κ = 6.30× 105.

We can extend the algorithm A2GD and convergence analysis to the composite case and leave
the details in Appendix C. We compare the performance of A2GD with other first-order prox-
imal methods: (1) the Adaptive Proximal Gradient descent (AdProxGD) method (Malitsky
and Mishchenko, 2024); (2) Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck
and Teboulle, 2009); (3) AOR-HB with perturbation Chen et al. (2025). We still use
tol = 10−6 but the stopping criterion is changed to ‖∇h(xk) + qk‖ ≤ tol‖∇h(x0)‖ for all
examples.

Maximum Likelihood Estimate of the Information Matrix We consider the maxi-
mum likelihood estimation problem from (Boyd and Vandenberghe, 2004, (7.5)):

minimize
X∈Rn×n

f(X) := − log detX + tr(XY ),

subject to λmin ≤ λ(X) ≤ λmax,
(15)

where X is symmetric positive definite and λmin, λmax > 0 are given bounds. The condition
number of f is κ = λ2

max/λ
2
min.

Problem (15) has a composite form, combining the smooth part f(X) with a nonsmooth
indicator g(X) enforcing spectral constraints. The proximal operator of g requires eigen-
decomposition, projection of eigenvalues onto [λmin, λmax], and matrix reconstruction—steps
that dominate the cost. Thus, reducing gradient and proximal evaluations, especially during
backtracking, is critical for efficiency.

200 400 600 800
Number of Gradient Evaluations

10-5

100

(f
(x

)-
f*

)/
(f

(x
0
)-

f*
)

Figure 5: Error curves under setting (1). Figure 6: Error curves under setting (2).

Following Malitsky and Mishchenko (2024), we construct the data matrix Y as follows:
sample a random vector y ∈ Rn, and define yi = y + δi for i = 1, . . . ,M , with δi ∼ N (0, In).
Then set Y = 1

M

∑M
i=1 yiy

>
i . We test our algorithm under two settings: (1) n = 100, M = 50,

λmin = 0.1, λmax = 10; (2) n = 50, M = 100, λmin = 0.1, λmax = 103.

500 1000 1500
Number of Gradient Evaluations

10-5

100

(f
(x

)-
f*

)/
(f

(x
0
)-

f*
)

Figure 7: L2-error curves for `1-2
problem with n = 500, p = 1000.

`1-2 nonconvex minimization problem We con-
sider the `1-2 minimization problem

min
x∈Rn

1

2
‖Ax− b‖2 + λ(‖x‖1 − ‖x‖2), (16)

introduced by Yin et al. (2015), promotes sparser solu-
tions than standard convex penalties.
The matrix A ∈ Rn×p is generated from a standard
Gaussian distribution, and the ground truth x∗ ∈ Rp
has sparsity 50. The observation vector is constructed
as b = Ax∗. We set the regularization parameter λ = 1
and consider two problem sizes: n = 500, p = 1000.
The initial point is sampled as x0 = y0 ∼ 10N (0, Ip).

Across all tests, our A2GD method consistently outperforms baseline algorithms. A repre-
sentative error trajectory is shown in Fig. 4, where A2GD curve (in blue) decays much faster
than others.
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Appendix A: Adaptive Gradient Descent Method

We present an algorithm for adaptive gradient descent method (Ad-GD) which is a simplified
version of A2GD without momentum.

Algorithm 2: Adaptive Gradient Descent Method (Ad-GD)
Input: Initial point x0 ∈ Rn, initial step size L0 > 0, initial strong convexity estimate

µ0 > 0
Output: Sequence {xk}

1 for k = 0, 1, 2, . . . do
2 xk+1 ← xk − 1

Lk
∇f(xk);

3 b
(1)
k ←

1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1);

4 b
(2)
k ← −

1

2Lk
‖∇f(xk)‖2;

5 pk ←
(
1 + µk

Lk

)−1 (
pk−1 + b

(1)
k + b

(2)
k

)
;

6 if pk > 0 then
7 Use adaptive backtracking to update Lk so that b(1)

k ≤ 0;

8 Lk ←
‖∇f(xk)−∇f(xk+1)‖2

2Df (xk, xk+1)
;

9 µk ← min{µk, Lk};

There are several variants of Ad-GD depending on how we define δk and split b(1)
k and b(2)

k .
For example, we can use δk = 1− µ/Lk, b(2)

k = 0, and

b
(1)
k :=

1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1)−

1

2Lk
‖∇f(xk+1)‖2. (17)

The inequality b(1)
k ≤ 0 is equivalent to the criteria proposed by Nesterov in Nesterov (2012).

Proposition 4.1. The inequality b(1)
k ≤ 0 is equivalent to

mLk(xk+1;xk) ≥ f(xk+1), (18)

where mLk(y;x) = f(x) + 〈∇f(x), y − x〉+ Lk
2 ‖y − x‖

2, xk+1 = argminymLk(y;xk).

Proof. First, we have the identity

f(xk)− f(xk+1)−
αk
2
‖∇f(xk)‖2

=
αk
2
‖∇f(xk+1)‖2 −

αk
2
‖∇f(xk+1)−∇f(xk)‖2 +Df (xk, xk+1).

Notice that xk+1 = argminymLk(y;xk)⇔ xk+1 = xk − 1
Lk
∇f(xk), so

mLk(xk+1;xk) ≥ f(xk+1)

⇔f(xk) +
〈
∇f(xk),−

1

Lk
∇f(xk)

〉
+
Lk
2

∥∥∥∥ 1L∇f(xk)
∥∥∥∥2

≥ f(xk+1)

⇔f(xk)− f(xk+1)−
1

2Lk
‖∇f(xk)‖2 ≥ 0

⇔ 1

2Lk
‖∇f(xk+1)‖2 +

1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1) ≥ 0.

Thus, equivalence is proved.

12
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Appendix B: Identities of Accelerated Gradient Methods

We will use the Hessian-based Nesterov accelerated gradient (HNAG) flow proposed in Chen
and Luo (2019) 

x′ = y − x− β∇f(x),

y′ = x− y − 1

µ
∇f(x).

(19)

Denote by z = (x, y)ᵀ and G(z) the right hand side of (11), which now becomes z′ = G(z).
In the notation ∇E , we consider µ as a fixed parameter and take derivative with respect to
z.
Lemma 4.2. We have the identity

−∇E(z) · G(z) = E(z) + β ‖∇f(x)‖2∗ +
µ

2
‖y − x‖2 +Df (x

∗, x)− µ

2
‖x− x?‖2 . (20)

Proof. A direct computation gives

−∇E(z) · G(z) =
(
∇f(x)

µ(y − x?)

)(
(x− x?)− (y − x?) + β∇f(x)
(y − x?)− (x− x?) + 1

µ∇f(x)

)
= 〈∇f(x), x− x?〉+ β ‖∇f(x)‖2∗ + µ ‖y − x?‖2 − µ(y − x?, x− x?)

= E(z) + β ‖∇f(x)‖2∗ +Df (x
∗, x) +

µ

2
‖y − x‖2 − µ

2
‖x− x?‖2 .

(21)

Lemma 4.3. We have the identity

(1 + αk)E(zk+1;µk)− E(zk;µk)

= (I)
1

2

(
α2
k

µk
− 1

Lk

)
‖∇f(xk+1)‖2∗

(II) +
1

2Lk
‖∇f(xk+1)−∇f(xk)‖2 −Df (xk, xk+1)

(III)− 1

2Lk
‖∇f(xk)‖2∗ +

αkµk
2

(
‖xk+1 − x?‖2 −

2

µk
Df (x

?, xk+1)− (1 + αk) ‖xk+1 − yk+1‖2
)
.

Proof. Treat µk as a fixed parameter. We expand the difference

E(zk+1;µk)− E(zk;µk) = 〈∇E(zk+1;µk), zk+1 − zk〉 −DE(zk, zk+1;µk), (22)

where the negative term −DE(zk, zk+1;µk) is expanded as −Df (xk, xk+1)− µk
2 ‖yk−yk+1‖2.

Using the identity (21) in the continuous level, we have

〈∇E(zk+1;µk), αkG(zk+1, µk)〉 = −αkE(zk+1, µk)

− 1

Lk
‖∇f(xk+1)‖2∗ − αkDf (x

∗, xk+1) +
αkµk
2

(
‖xk+1 − x?‖2 − ‖xk+1 − yk+1‖2

)
.

The difference between the scheme and the implicit Euler method is

zk+1 − zk − αkG(zk+1, µk) = αk

(
yk − yk+1 + βk(∇f(xk+1)−∇f(xk))

0

)
.

which will bring more terms

〈∇xE(zk+1, µk), zk+1 − zk − αkG(zk+1, µk)〉

=
1

Lk
(∇f(xk+1),∇f(xk+1)−∇f(xk)) + αk 〈∇f(xk+1), yk − yk+1〉 .

13
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We then use the identity of squares for the cross term of gradients

1

Lk
(∇f(xk+1),∇f(xk+1)−∇f(xk))

=− 1

2Lk
‖∇f(xk)‖2∗ +

1

2Lk
‖∇f(xk+1)‖2∗ +

1

2Lk
‖∇f(xk+1)−∇f(xk)‖2∗.

As expected, this cross term brings more positive squares but also contribute a negative one.

On the second term, we write as

αk 〈∇f(xk+1), yk − yk+1〉 =
〈
αk√
µk
∇f(xk+1),

√
µk(yk − yk+1)

〉
=

α2
k

2µk
‖∇f(xk+1)‖2∗ +

µk
2
‖yk − yk+1‖2 −

1

2

∥∥∥∥ αk√
µk
∇f(xk+1)−

√
µk(yk − yk+1)

∥∥∥∥2

=
α2
k

2µk
‖∇f(xk+1)‖2∗ +

µk
2
‖yk − yk+1‖2 −

1

2
α2
kµk ‖xk+1 − yk+1‖2 .

Combining altogether, we get the desired identity.

Proof of Theorem 3.2

First, we prove convergence of Algorithm 1 within a single inner iteration, i.e. ε is fixed, in
the following lemma. It bears similarity to (Chen et al., 2025, Theorem 8.3), and is a direct
result of Lemma 4.3.
Lemma 4.4. Suppose f is convex and L-smooth. Let zk = (xk, yk) be the iterates generated
by Algorithm 1 within an inner iteration where µ = ε. Assume that there exists R > 0 such
that

‖xk − x∗‖ ≤ R, ∀ k ≥ 0,

and that there exists l ∈ (ε, L) such that Lk ≥ l for all k ≥ 0. Then the Lyapunov function
exhibits linear convergence up to a perturbation:

E(zk; ε) ≤

(
1

1 +
√
ε/(rL)

)k
E(z0; ε) +

ε

2
R2,

where r is the backtracking ratio (in Algorithm 1, r = 3).

Proof. By Lemma 4.3, we have

E(zk+1;µk+1) ≤
1

1 + αk
E(zk;µk) +

1

1 + αk

(
b
(1)
k + b

(2)
k

)
+

αkµk
2(1 + αk)

R2.

Since l ≤ Lk ≤ rL, it follows that √
ε
rL ≤ αk ≤

√
ε
l .

Therefore,

E(zk+1;µk+1) ≤
1

1 +
√
ε/(rL)

E(zk;µk) +
1

1 + αk

(
b
(1)
k + b

(2)
k

)
+

ε
√
ε/l

2
(
1 +

√
ε/l
)R2.

Iterating the inequality yields

E(zk+1) ≤

(
1

1 +
√
ε/(rL)

)k+1

E(z0) + pk+1 +
ε
√
ε/l

2
(
1 +

√
ε/l
) k∑
i=0

(
1

1 +
√
ε/l

)i
R2,

where pk+1 is the accumulated perturbation. By Algorithm 1, we have pk+1 ≤ 0.

14
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Finally, the geometric sum is bounded as
k∑
i=0

(
1

1 +
√
ε/l

)i
≤

1 +
√
ε/l√

ε/l
.

Substituting this estimate gives the claimed bound

E(zk+1; ε) ≤

(
1

1 +
√
ε/(rL)

)k+1

E(z0; ε) +
ε

2
R2.

Proof of Theorem 3.2. We distinguish between the convex case (µ = 0) and the strongly
convex case (µ > 0).

If µ = 0, in this case, the proof of (Chen et al., 2025, Theorem 8.4) applies directly, once the
single-inner-iteration convergence relation (Lemma 4.4) is established. Therefore, no further
argument is needed.

If instead, µ > 0, recall that in the algorithm the effective radius is updated as

R2
k =

(
1− µ

µk

)
R2.

Thus, whenever µk ≥ µ, we obtain R2
k ≤ 0, which implies that further reduction of µk is

no longer admissible. In particular, µk will stop decreasing once the tolerance parameter ε
satisfies ε ≤ µ.
Since ε is halved at each outer stage, the final value of µk is therefore bounded below by
µ/2. At the same time, the smoothness parameter satisfies Lk ≤ rL by construction. Hence,
in the terminal stage we obtain an effective condition number bounded by

κeff =
Lk
µk
≤ rL

µ/2
=

2rL

µ
.

Applying the convergence estimate from Lemma 4.4 in this regime, the Lyapunov function
contracts linearly:

Eks ≤

(
1

1 +
√
µk/Lk

)ks
E0 ≤

(
1

1 +
√
µ/2rL

)ks
E0.

Therefore, to ensure that Eks ≤ tol · E0, it suffices to take

ks ≥
ln(1/tol)

ln
(
1 +

√
µ/2rL

) = O
(√

2rL/µ ln(1/tol)
)
.

This establishes the desired complexity bound in both cases.

Appendix C: Composite Convex Optimization

We derive the continuous time analogy to Lemma 3.1. First, define the composite right hand
side update

G(z) =
(
y − x− β(∇h(x) + q), x− y − 1

µ
(∇h(x) + q)

)T

,

where q ∈ ∂g(x). Let Eh(z;µ) = h(x)−h(x∗)+ µ
2 ‖y−x

∗‖2, then E(z;µ) = Eh(z;µ)+(g(x)−
g(x∗)) is splitted into a smooth part and a non-smooth part.
Lemma 4.5. We have the following inequality

−
〈
∇Eh(x) +

(
q

0

)
,G(z)

〉
≥ E(z) + β‖∇h(x) + q‖2∗ +

µ

2
‖y− x‖2 +Dh(x

∗, x)− µ

2
‖x− x∗‖2.

15
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Proof. A direct computation gives

−
〈
∇Eh(x) +

(
q

0

)
,G(z)

〉
=

(
∇h(x) + q
µ(y − x?)

)(
(x− x?)− (y − x?) + β(∇h(x) + q)
(y − x?)− (x− x?) + 1

µ (∇h(x) + q)

)
= 〈∇h(x) + q, x− x?〉+ β ‖∇h(x) + q‖2∗ + µ ‖y − x?‖2 − µ(y − x?, x− x?)

≥ E(z) + β ‖∇h(x) + q‖2∗ +Dh(x
∗, x) +

µ

2
‖y − x‖2 − µ

2
‖x− x?‖2 ,

(23)
the last inequality following from q ∈ ∂g(x).

Lemma 4.6. We have the following inequality
(1 + αk)E(zk+1;µk)− E(zk;µk)

≤ (I)
1

2

(
α2
k

µk
− 1

Lk

)
‖∇h(xk+1) + qk+1‖2∗

(II) +
1

2Lk
‖∇h(xk+1)−∇h(xk)‖2 −Dh(xk, xk+1)

(III)− 1

2Lk
‖∇h(xk) + qk+1‖2∗ +

αkµk
2

(
‖xk+1 − x?‖2 −

2

µk
Dh(x

?, xk+1)− (1 + αk) ‖xk+1 − yk+1‖2
)
.

Proof. The proof is similar to the smooth convex case. Expand the difference of E at zk+1,

E(zk+1;µk)− E(zk;µk) ≤ 〈∇Eh(zk+1;µk) +

(
qk+1

0

)
, zk+1 − zk〉 −DEh(zk, zk+1;µk), (24)

where the negative term −DEh(zk, zk+1;µk) is expanded as −Dh(xk, xk+1)− µk
2 ‖yk−yk+1‖2.

The inequality is due to the definition of the subgradient.

From Lemma 4.5, we have

〈∇Eh(zk+1;µk) +

(
qk+1

0

)
, αkG(zk+1, µk)〉 ≤ −αkE(zk+1, µk)

− 1

Lk
‖∇h(xk+1) + qk+1‖2∗ − αkDh(x

∗, xk+1) +
αkµk
2

(
‖xk+1 − x?‖2 − ‖xk+1 − yk+1‖2

)
.

The difference between the scheme and the implicit Euler method is

zk+1 − zk − αkG(zk+1, µk) = αk

(
yk − yk+1 + βk(∇h(xk+1)−∇h(xk))

0

)
.

which will bring more terms
〈∇xEh(zk+1, µk) + qk+1, zk+1 − zk − αkG(zk+1, µk)〉

=
1

Lk
(∇h(xk+1) + qk+1,∇h(xk+1)−∇h(xk)) + αk 〈∇h(xk+1) + qk+1, yk − yk+1〉 .

For the first term, we use the identity of squares
1

Lk
(∇h(xk+1) + qk+1,∇h(xk+1)−∇h(xk))

=− 1

2Lk
‖∇h(xk) + qk+1‖2∗ +

1

2Lk
‖∇h(xk+1) + qk+1‖2∗ +

1

2Lk
‖∇h(xk+1)−∇h(xk)‖2∗.

As expected, this cross term brings more positive squares but also contribute a negative one.

For the second term, we rewrite as

αk 〈∇h(xk+1) + qk+1, yk − yk+1〉 =
〈
αk√
µk
∇h(xk+1) + qk+1,

√
µk(yk − yk+1)

〉
=

α2
k

2µk
‖∇h(xk+1) + qk+1‖2∗ +

µk
2
‖yk − yk+1‖2 −

1

2

∥∥∥∥ αk√
µk

(∇h(xk+1) + qk+1)−
√
µk(yk − yk+1)

∥∥∥∥2

=
α2
k

2µk
‖∇h(xk+1) + qk+1‖2∗ +

µk
2
‖yk − yk+1‖2 −

1

2
α2
kµk ‖xk+1 − yk+1‖2 .

Combining altogether, we get the desired inequality.
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Algorithm 3: A2GD method for composite optimization
Input: x0, y0 ∈ Rn, L0, µ0, R > 0, tol > 0, ε > 0, m ≥ 1

1 while k = 0 or ‖∇f(xk) + qk‖ > tol‖∇f(x0)‖ do
2 αk ←

√
µk/Lk;

3 wk+1 ← 1
αk+1xk +

αk
αk+1yk −

1
Lk(αk+1)∇h(xk);

4 xk+1 ← prox 1
Lk(αk+1)

g(wk+1);
5 qk+1 ← Lk(αk + 1)(wk+1 − xk+1);
6 yk+1 ← αk

αk+1xk+1 +
1

αk+1yk −
αk

µk(αk+1) (∇h(xk+1) + qk+1);

7 b
(1)
k ←

1
2Lk
‖∇h(xk+1)−∇h(xk)‖2 −Dh(xk, xk+1);

8 b
(2)
k ← −

1
2Lk
‖∇h(xk) + qk+1‖2∗ +

αkµk
2

(
R2 − (1 + αk)‖xk+1 − yk+1‖2

)
;

9 pk ← 1
1+αk

(pk−1 + b
(1)
k + b

(2)
k );

10 if pk > 0 then
11 if b(1)

k > 0 then
12 v ← 2LkDf (xk,xk+1)

‖∇f(xk+1)−∇f(xk)‖2 , Lk ← 3Lk/v;

13 if b(2)
k > 0 then

14 µk ← max

{
ε,min

{
µk,

‖∇h(xk)+qk+1‖4/3

L
1/3
k (R2−(1+αk)‖xk+1−yk+1‖2)2/3

}}
;

15 Go to line 2;
16 else
17 Lk ← ‖∇h(xk+1)−∇h(xk)‖2

2Dh(xk,xk+1) ;

18 µk+1 ← max

{
ε,min

{
µk,

‖∇h(xk)+qk+1‖4/3

L
1/3
k (R2−(1+αk)‖xk+1−yk+1‖2)2/3

}}
;

19 if decay condition then
20 ε← ε/2;
21 m← b

√
2 ·mc+ 1;

22 k ← k + 1;

Theorem 4.7. Let (xk, yk) be the iterates generated by Algorithm 3. Assume function f is
µ-convex with µ ≥ 0. Assume there exists R > 0 such that

‖xk − x∗‖ ≤ R, ∀ k ≥ 0.

Let ks be the total number of steps after halving ε exactly s times, i.e. ε = 2−sε0.

1. When µ = 0, ther exists a constant C > 0 so that

Eks
E0
≤ R2 + 1(

Cks + ε
−1/2
0

)2 = O
(

1

k2
s

)

2. When µ > 0, the iteration number to achieve Eks/E0 ≤ (R2 + 1)2−sε0 ≤ tol is bounded
by O(

√
L/µ ln tol),

where Ek = E(zk;µk) = f(xk)− f(x?) + µk
2 ‖yk − x

?‖2 .

LLM usage

In preparing this manuscript, large language models (LLMs) were employed exclusively
to assist with language-related tasks, such as improving readability, grammar, and style.
The models were not used for research ideation, development of methods, data analysis, or
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