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Abstract

The burgeoning capabilities of advanced large001
language models (LLMs) such as ChatGPT002
have led to an increase in synthetic content003
generation with implications across a variety of004
sectors, including media, cybersecurity, public005
discourse, and education. As such, the ability to006
detect LLMs-generated content has become of007
paramount importance. We aim to provide a de-008
tailed overview of existing detection strategies009
and benchmarks, scrutinizing their differences010
and identifying key challenges and prospects011
in the field, advocating for more adaptable and012
robust models to enhance detection accuracy.013
We also posit the necessity for a multi-faceted014
approach to defend against various attacks to015
counter the rapidly advancing capabilities of016
LLMs. To the best of our knowledge, this work017
is the first comprehensive survey on the detec-018
tion in the era of LLMs. We hope it will provide019
a broad understanding of the current landscape020
of LLMs-generated content detection, and we021
have maintained a website to consistently up-022
date the latest research as a guiding reference023
for researchers and practitioners.024

1 Introduction025

With the rapid development of powerful AI tools,026

the risk of LLMs-generated content has raised con-027

siderable concerns, such as misinformation spread028

(Bian et al., 2023; Hanley and Durumeric, 2023;029

Pan et al., 2023), fake news (Oshikawa et al., 2018;030

Zellers et al., 2019; Dugan et al., 2022), gender bias031

(Sun et al., 2019), education (Perkins et al., 2023;032

Vasilatos et al., 2023), and social harm (Kumar033

et al., 2023; Yang et al., 2023c).034

We also find on the Google search trend, that035

the concerns about AI-written text have witnessed036

a significant increase since the release of the lat-037

est powerful Large Langue Models (LLMs) such038

as ChatGPT (Schulman et al., 2022) and GPT-4039

(OpenAI, 2023b). Humans are already unable to040

directly distinguish between LLMs- and human- 041

written text, with the fast advancement of the model 042

size, data scale, and AI-human alignment (Brown 043

et al., 2020; Ouyang et al., 2022). Concurrently, 044

growing interests are shown to detectors, like the 045

commercial tool GPTZero (Tian, 2023), or Ope- 046

nAI’s own detector (OpenAI, 2023a) since humans 047

can be easily fooled by improvements in decoding 048

methods (Ippolito et al., 2019). However, the mis- 049

use of detectors also raises protests from students 050

on the unfair judgment on their homework and es- 051

says (Herbold et al., 2023; Liu et al., 2023b) and 052

popular detectors perform poorly on code detec- 053

tion (Wang et al., 2023a). Alongside these advance- 054

ments, there has been a proliferation of detection al- 055

gorithms aimed at identifying LLMs-generated con- 056

tent. However, there remains a dearth of compre- 057

hensive surveys encompassing the latest method- 058

ologies, benchmarks, and attacks on LLMs-based 059

detection systems. 060

Earlier work on text detection dates back to fea- 061

ture engineering (Badaskar et al., 2008). For exam- 062

ple, GTLR (Gehrmann et al., 2019a) assumes the 063

generated word comes from the top distribution on 064

small LMs like BERT (Devlin et al., 2019) or GPT- 065

2 (Radford et al., 2019). Recently, there has been 066

an increasing focus on detecting ChatGPT (Weng 067

et al., 2023; Liu et al., 2023b; Desaire et al., 2023), 068

to mitigate ChatGPT misuse or abuse (Sison et al., 069

2023). In particular, it has recently been called for 070

regulation1 on powerful AI like ChatGPT usage 071

(Hacker et al., 2023; Wahle et al., 2023). 072

Therefore, we firmly believe that the timing is 073

ideal for a comprehensive survey on the detection 074

of LLMs-generated content. It would serve to invite 075

further exploration of detection approaches, offer 076

valuable insights into the strengths and weaknesses 077

of previous research, and highlight potential chal- 078

1https://www.nytimes.com/2023/05/16/technology/openai-
altman-artificial-intelligence-regulation.html
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lenges and opportunities for the research commu-079

nity to address. Our paper is organized as follows:080

we first briefly describe the problem formulation,081

including the task definition, metrics, and datasets082

in Section 2. In Section 3, we classify detection083

by their working mechanism and scope of applica-084

tion. In section 4, we summarize the three popular085

detection methods: training-based, zero-shot and086

watermarking. We also investigate various attacks087

in Section A.2 since defending against attacks is088

of increasing importance and point out some chal-089

lenges in Section A.3. Finally, in Section 5 we090

provide additional insights into this topic on poten-091

tial future directions, as well as the conclusion in092

Section 6.093

2 Problem formulation094

2.1 Overview095

We refer to any textual outputs from LLMs follow-096

ing specific inputs as LLMs-Generated Content. It097

can be generally classified into natural languages098

like news, essays, reviews, and reports, or program-099

ming languages like codes of Python, C++, and100

Java. Current research usually aims at the detection101

of content with moderate length and specific topics.102

It is meaningless to detect a short sentence describ-103

ing some facts like EMNLP started in 1996 or sim-104

ple coding question def hello_world(): print(’Hello105

World’), to be human or AI written.106

Formally, consider an LLM denoted as LLM ,107

which generates a candidate text S of length |S|108

based on an input prompt. Let f() represent a poten-109

tial detector we aim to use for classification, assign-110

ing f(S) to 0 or 1, where 0 and 1 signify human or111

machine, respectively. The LLM can be classified112

into unknown (Black-box), fully known (White-113

box), or partially known (known model name with114

unknown model parameters) to the detectors. In115

practice, we are usually given a candidate corpus116

C comprising both human and LLMs-generated117

content to test f().118

Apart from the standard definition, machine-119

generated content can undergo additional modi-120

fications in practical scenarios, including rephras-121

ing by humans or other AI models. Besides, it is122

also possible that the candidate text is a mix of123

human and machine-written text. For example, the124

first several sentences are written by humans, and125

the remaining parts by machines, or vice versa.126

When a text undergoes revisions, the community127

often perceives it as paraphrasing and treats it as128

either machine- or human-generated text, depend-129

ing on the extent of these modifications and the 130

intent behind them. However, it is important to 131

highlight that if a substantial majority of the text 132

is authored by humans, or if humans have exten- 133

sively revised machine-generated text, it becomes 134

challenging to maintain the assertion that the text 135

is purely machine-generated. Hence, in this survey, 136

we adhere to the traditional definition by consider- 137

ing machine-generated content as text that has not 138

undergone significant modifications, and we con- 139

sistently classify such text as machine-generated. 140

2.2 Metrics 141

Previous studies (Mitchell et al., 2023; Sadasivan 142

et al., 2023) predominantly used the Area Under 143

the Receiver Operating Characteristic (AUROC) 144

score to gauge the effectiveness of detection algo- 145

rithms. As a binary classification problem, AUROC 146

shows the results under different thresholds, and 147

the F1 score is also helpful. Krishna et al. (2023); 148

Yang et al. (2023b) suggest that AUROC may not 149

consistently provide a precise evaluation, particu- 150

larly as the AUROC score nears the optimal limit 151

of 1.0 since two detectors with identical AUROC 152

score of 0.99 could exhibit substantial variations in 153

detection quality from a user’s perspective. From a 154

practical point of view, ensuring a high True Pos- 155

itive Rate (TPR) is imperative while keeping the 156

False Positive Rate (FPR) to a minimum. As such, 157

current research (Krishna et al., 2023; Yang et al., 158

2023b) both report TPR scores at a fixed 1% FPR, 159

along with the AUROC. Other work (Sadasivan 160

et al., 2023) also refer to Type I and Type II er- 161

rors following the binary hypothesis test and even 162

report TPR at 10−6 FPR (Fernandez et al., 2023). 163

2.3 Datasets 164

In this section, we discuss the common datasets 165

used for this task. The corpus is usually adopted 166

from previous NLP tasks, and reconstructed by 167

prompting LLMs to generate new outputs as candi- 168

date machine-generated text. Usually, there are two 169

prompting methods: 1). prompting LLMs with the 170

questions in some question-answering datasets. 2). 171

prompting LLMs with the first 20 to 30 tokens to 172

continue writing in datasets without specific ques- 173

tions. Specifically, several datasets have been com- 174

piled and utilized in the field. Some noteworthy 175

datasets include TURINGBENCH (Uchendu et al., 176

2021), HC3 (Guo et al., 2023), CHEAT (Yu et al., 177

2023a), Ghostbuster (Verma et al., 2023), OpenG- 178

PTText (Chen et al., 2023c), M4 (Wang et al., 179
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Training-based
Methods
(§4.1)

Black-box (§4.1.1)

Known Source

Mixed sources OpenAI text classifier (OpenAI, 2023a), GPTZero (Tian, 2023), G3Detector (Zhan et al., 2023),
GPT-Sentinel (Chen et al., 2023c)

Mixied decoding (Ippolito et al., 2020), GPT-Pat (Yu et al., 2023b)

Mixed strategies

Graph structure and contrastive learning CoCo (Liu et al., 2022),

Proxy perplexity LLMDet (Wu et al., 2023a)

Positive unlabeled training MPU (Tian et al., 2023)

Adversarial training RADAR (Hu et al., 2023)

Unknown Source

Cross-domain transfer (Pu et al., 2023), GPTZero (Tian, 2023), Conda (Bhattacharjee et al., 2023),
Model family (Antoun et al., 2023)

Surrogate model Ghostbuster (Verma et al., 2023),

Detection in the wild Deepfake text detection (Li et al., 2023b), (Wang et al., 2024)

White-box (§4.1.2)

Full access Word rank GLTR (Gehrmann et al., 2019a),

Partial access
Logits as waves SeqXGPT (Wang et al., 2023b)

Contrastive logits feature Sniffer (Li et al., 2023a)

Zero-shot
Methods
(§4.2)

Black-box (§4.2.1)

Known Source

Database Retrieval (Krishna et al., 2023)

Uncommon n-grams (Grechnikov et al., 2009), (Badaskar et al., 2008)

Probability curve DetectGPT (Mitchell et al., 2023), (Liu et al., 2024; Hans et al., 2024)

N-gram divergence DNA-GPT (Yang et al., 2023b)

Smaller model as a proxy (Mireshghallah et al., 2023; Shi et al., 2024)

Rewriting Raidar (Mao et al., 2024)

Codes detection DetectGPT4Code (Yang et al., 2023d)

Unknown Source Intrinsic dimension Persistent homology dimension estimator (Tulchinskii et al., 2023)

White-box (§4.2.2)

Full access Log-Rank ratio DetectLLM-LRR (Su et al., 2023a)

Partial access

Traditional methods

Entropy (Lavergne et al., 2008)

Perplexity (Beresneva, 2016)

Log probability GLTR (Gehrmann et al., 2019a)

Recent methods

Probability curvature on perturbations DetectGPT (Mitchell et al., 2023)

Conditional probability divergence DNA-GPT (Yang et al., 2023b)

Conditional probability curvature Fast-DetectGPT (Bao et al., 2023)

Uniform information density GPT-who (Venkatraman et al., 2023)

Bayesian surrogate model (Deng et al., 2023)

Watermarking
Methods
(§4.3)

Black-box (§4.3.1) Known Source

Traditional methods Paraphrasing (Atallah et al., 2003), Syntax tree manipulations (Topkara et al., 2005),
(Meral et al., 2009), Synonym substitution (Topkara et al., 2006)

Latest methods BERT-based lexical (Yang et al., 2022) and synonyms (Yang et al., 2023a) substitution

White-box (§4.3.2) Known Source

Training-free watermark

Gumbel watermark (Aaronson, 2022; Zhao et al., 2024)

Hashing of blocks (Christ et al., 2023)

Logits deviation w/ green-red list Soft watermark (Kirchenbauer et al., 2023a)

Logits deviation w/ fixed split Unigram-Watermark (Zhao et al., 2023a)

Sampling w/ randomized number (Kuditipudi et al., 2023)

Sentence-level w/ rejection sampling SemStamp (Hou et al., 2023),

Reweight strategy w/ ciphers DiPmark (Wu et al., 2023b),

Publicly-verifiable key (Fairoze et al., 2023)

Optimal statistical watermarking UMP (Huang et al., 2023)

Training-based watermark

Logits deviation w/ semantic embeddings Training-free (Fu et al., 2023),
Training-based (Liu et al., 2023a)

Message encoding w/ reparameterization REMARK-LLM (Zhang et al., 2023b),

Multi-bit watermark

Invariant features (Yoo et al., 2023a),

Color-listing COLOR (Yoo et al., 2023b)

Secret key or error code (Fernandez et al., 2023; Qu et al., 2024)

Figure 1: Taxonomy on detection methods. We list the most representative approaches for each category.
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2023c), MGTBench (He et al., 2023), and MULTI-180

TuDE (Macko et al., 2023) and some other datasets181

not explicitly built for detection have also been182

used, such as C4 (Raffel et al., 2019), shareGPT183
2, and alpaca (Taori et al., 2023), as summarized184

in Table 2. For text detection, we only list datasets185

explicitly built for detection, while some general186

datasets like C4 (Raffel et al., 2019) or alpaca187

(Taori et al., 2023) can also be used. For code de-188

tection, we only list datasets that have been used189

in previous code detection work (Lee et al., 2023;190

Yang et al., 2023d). And other codegeneration cor-191

pora can also be adopted. The detailed description192

is included in Appendix A.7.193

Data Contamination. Despite those released194

standard datasets, we argue that static evaluation195

benchmarks might not be desirable for this prob-196

lem with the rapid progress of LLMs trained, tuned,197

or aligned on large amounts of data across the198

whole internet. On the one hand, Aaronson (2022)199

mentioned that some text from Shakespeare or the200

Bible is often classified as AI-generated because201

such classic text is frequently used in the training202

datasets for generative language models. On the203

other hand, many detectors did not fully disclose204

their training data, especially commercial tools like205

GPTZero (Tian, 2023). It is natural to worry that206

those standard evaluation benchmarks would face207

a serious test data contamination problem, consid-208

ering the commercial detectors would consistently209

improve their products for profits. So, with the210

rapid evolution of LLMs and detectors, the tradi-211

tional paradigm of providing standard benchmarks212

might no longer be suitable for AI-generated text213

detection. We provide a unique solution to this:214

ð Utilize the most latest human-written con-215

tent to reduce data contamination problem by216

collecting such content from the most updated217

open-source websites, which themselves explic-218

itly forbid posting AI-written posts.219

3 Detection Scenarios220
The findings of previous research, such as221

(Gehrmann et al., 2019b) and (Dugan et al., 2022),222

highlight the general difficulty faced by humans223

in distinguishing between human- and machine-224

generated text, motivating the development of auto-225

matic solutions. The detection process can be classi-226

fied into black-box or white-box detection based on227

whether the detector has access to the source model228

output logits. In black-box detection, there are two229

2https://sharegpt.com/

Black-box
Known sourcing

White-box
Full access

Black-box
Unknown sourcing

White-box
Partial access

Increasing transparency

Increasing transparency

Increasing difficulty

Increasing difficulty

Watermark

Training-based

Zero-shot

Three categories of detectors

Figure 2: Three categories of detectors and four detec-
tion scenarios: as the transparency decreases, the detec-
tion difficulty increases.

distinct cases: 1). when the source model name is 230

known, such as GPT-4; 2). when the source model 231

name is unknown, and the content might have been 232

generated by models like GPT-4, Bard, or other 233

undisclosed models. On the other hand, white-box 234

detection also encompasses two cases: 1). the detec- 235

tor only has access to the model’s output logits or 236

partial logits, such as the top-5 token log probabil- 237

ity in text-davinci-003; 2). the detector has 238

access to the entire model weights. Table 2 shows 239

four categories according to application scenarios 240

and three detector methods. Specifically, we can 241

categorize the usage of detecting LLM-generated 242

content into four distinct scenarios based on their 243

application: These categorizations highlight the dif- 244

ferent levels of information available to the detec- 245

tors, ranging from limited knowledge to complete 246

access and demonstrate the various scenarios en- 247

countered in detecting machine-generated content. 248

3.1 Black-Box Detection with Unknown 249

Model Source 250

This scenario closely resembles real-world applica- 251

tions, particularly when users, such as students, uti- 252

lize off-the-shelf AI services to assist them in writ- 253

ing their essays. In such cases, teachers are often 254

unaware of the specific AI service being employed. 255

Consequently, this situation poses the greatest chal- 256

lenge as very limited information is available to 257

identify instances of deception. 258

3.2 Black-Box Detection with Known Model 259

Source 260

In this scenario, we possess knowledge regarding 261

the specific model from which the text originates, 262

yet we lack access to its underlying parameters. 263

This aspect carries considerable significance due 264

to the market domination of major language model 265
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providers such as OpenAI and Google. Many users266

rely heavily on their services, enabling us to make267

informed assumptions about the model sources.268

3.3 White-Box Detection with Full Model269

Parameters270

While access to the most powerful LLMs, such as271

Anthropic’s Claude or OpenAI’s ChatGPT, is typi-272

cally limited, assuming full access to the model pa-273

rameters is an active research area. This approach274

is reasonable, considering that researchers often275

encounter resource constraints, making it challeng-276

ing to experiment with large-scale models. For277

instance, watermarking-based methods (Kirchen-278

bauer et al., 2023a) typically require full access279

to the model parameters. This technique manipu-280

lates the next token prediction at each sampling281

position by modifying the distribution. Although282

this approach necessitates access to the complete283

model parameters, it has shown promise and could284

potentially be adapted for practical use.285

3.4 White-Box Detection with Partial Model286

Information287

This corresponds to the scenarios when only the288

partial model outputs, like the top-5 token logits289

are provided by text-davinci-003. Previous290

work like DetectGPT (Mitchell et al., 2023) and291

DNA-GPT (Yang et al., 2023b) both utilize such292

probability to perform detection.293

3.5 Model Sourcing294

Furthermore, another aspect related to detection295

goes beyond distinguishing between human and296

machine-generated content. This task involves de-297

termining which specific model may have gener-298

ated the content and is referred to as authorship299

attribution (Uchendu et al., 2020), origin tracing300

(Li et al., 2023a), or model sourcing (Yang et al.,301

2023b). We consider this task as a special scenario302

since it is slightly different from other detection303

tasks.304

4 Detection Methodologies305

In this section, we delve into further details about306

the detection algorithms. Based on their distinguish-307

ing characteristics, existing detection methods can308

be categorized into three classes: 1) Training-based309

classifiers, which typically fine-tune a pre-trained310

language model on collected binary data - both311

human and AI-generated text distributions. 2) Zero-312

shot detectors leverage the intrinsic properties of313

typical LLMs, such as probability curves or rep- 314

resentation spaces, to perform self-detection. 3) 315

Watermarking involves hiding identifying informa- 316

tion within the generated text that can later be used 317

to determine if the text came from a specific lan- 318

guage model, rather than detecting AI-generated 319

text in general. We summarize the representative 320

approaches in Figure 1 as classified by the scenar- 321

ios listed in Section 3. 322

4.1 Training-based 323

The earlier work of training a detection classifier 324

focuses on fake review (Bhagat and Hovy, 2013), 325

fake news (Zellers et al., 2019) or small models (So- 326

laiman et al., 2019; Bakhtin et al., 2019; Uchendu 327

et al., 2020) detection. Subsequently, growing in- 328

terest in this line of research turns to detecting 329

high-quality text brought by LLMs. 330

4.1.1 Black-box 331

The first line of work focuses on black-box detec- 332

tion. When the model source is known, some work 333

use the text generated by 1 mixed sources and 334

subsequently train a classifier together for detection. 335

For example, OpenAI (OpenAI, 2023a) collects 336

text generated from different model families and 337

trains a robust detector for detection text with more 338

than 1,000 tokens. GPTZero (Tian, 2023) also col- 339

lects their human-written text spans student-written 340

articles, news articles, and Q&A datasets spanning 341

multiple disciplines from a variety of LLMs. Simi- 342

larly, G3Detector (Zhan et al., 2023) claims to be a 343

general GPT-Generated text detector by finetuning 344

RoBERTa-large (Liu et al., 2019) and explores the 345

effect of the use of synthetic data on the training 346

process. GPT-Sentinel (Chen et al., 2023c) trains 347

the RoBERTa and T5 (Raffel et al., 2020) classi- 348

fiers on their constructed dataset OpenGPTText. 349

2 Mixed decoding is also utilized by incorpo- 350

rating text generated with different decoding pa- 351

rameters to account for the variance. Ippolito et al. 352

(2020) find that, in general, discriminators transfer 353

poorly between decoding strategies, but training on 354

a mix of data can help. GPT-Pat (Yu et al., 2023b) 355

train a siamese network to compute the similarity 356

between the original text and the re-decoded text. 357

Besides, 3 mixed strategies involves additional 358

information, such as graph structure and contrastive 359

learning in CoCo (Liu et al., 2022), proxy model 360

perplexity in LLMDet (Wu et al., 2023a), positive 361

unlabeled training in MPU (Tian et al., 2023) and 362

adversarial training in RADAR (Hu et al., 2023). 363
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On the other hand, when the source model is364

unknown, OpenAI text classifier (OpenAI, 2023a)365

and GPTZero (Tian, 2023) still works by 1 cross-366

domain transfer. Other works like (Pu et al., 2023;367

Antoun et al., 2023), Conda (Bhattacharjee et al.,368

2023) also rely on the zero-shot generalization abil-369

ity of detectors trained on a variety of model fami-370

lies and tested on unseen models. Besides, Ghost-371

buster (Verma et al., 2023) directly uses outputs372

from known 2 surrogate model as the signal373

for training a classifier to detect unknown model.374

Additionally, 3 detection in the wild (Li et al.,375

2023b) contributes a wild testbed by gathering texts376

from various human writings and deepfake texts377

generated by different LLMs for detection without378

knowing their sources.379

4.1.2 White-box380

The second kind of work lies in the white-box sit-381

uation when the model’s full or partial parame-382

ters are accessible. For example, when we have383

full access to the model, GLTR (Gehrmann et al.,384

2019a) trains a logistic regression over absolute385

word ranks in each decoding step. When only par-386

tial information like the model output logits are387

available, SeqXGPT (Wang et al., 2023b) intro-388

duce a sentence-level detection challenge by syn-389

thesizing a dataset that contains documents that are390

polished with LLMs and propose to detect it with391

logits as waves from white-box LLMs. Sniffer (Li392

et al., 2023a) utilizes the contrastive logits between393

models as a typical feature for training to perform394

both detection and origin tracking.395

4.2 Zero-Shot396

In the zero-shot setting, we do not require exten-397

sive training data to train a discriminator. Instead,398

we can leverage the inherent distinctions between399

machine-generated and human-written text, mak-400

ing the detector training-free. The key advantage401

of training-free detection is its adaptability to new402

data distributions without the need for additional403

data collection and model tuning. It’s worth noting404

that while watermarking methods can also be con-405

sidered zero-shot, we treat them as an independent406

track. Previous work utilizes entropy (Lavergne407

et al., 2008), average log-probability score (So-408

laiman et al., 2019), perplexity (Beresneva, 2016),409

uncommon n-gram frequencies (Grechnikov et al.,410

2009; Badaskar et al., 2008) obtained from a lan-411

guage model as the judge for determining its origin.412

However, those simple features fail as LLMs are413

becoming diverse and high-quality text generators. 414

Similarly, there are also black- and white-box de- 415

tection, as summarized below. 416

4.2.1 Black-Box 417

When the source of the black-box model is known, 418

DNA-GPT (Yang et al., 2023b) achieves superior 419

performance by utilizing N-Gram divergence be- 420

tween the continuation distribution of re-prompted 421

text and the original text. Besides, DetectGPT 422

(Mitchell et al., 2023) also investigates using an- 423

other surrogate model to replace the source model 424

but achieves unsatisfactory results. In contrast, 425

Mireshghallah et al. (2023) proves that a smaller 426

surrogate model like OPT-125M (Zhang et al., 427

2022) can serve as a universal black-box text detec- 428

tor, achieving close or even better detection perfor- 429

mance than using the source model. Additionally, 430

Krishna et al. (2023) suggests building a database 431

of generated text and detecting the target text by 432

comparing its semantic similarity with all the text 433

stored in the database. Finally, DetectGPT4Code 434

(Yang et al., 2023d) also investigates detecting 435

codes generated by ChatGPT through a proxy small 436

code generation models by conditional probability 437

divergence and achieves significant improvements 438

on code detection tasks. 439

When the source of the model is unknown, PHD 440

(Tulchinskii et al., 2023) observes that real text ex- 441

hibits a statistically higher intrinsic dimensionality 442

compared to machine-generated texts across vari- 443

ous reliable generators by employing the Persistent 444

Homology Dimension Estimator (PHD) as a means 445

to measure this intrinsic dimensionality, combined 446

with an additional encoder like Roberta to facilitate 447

the estimation process. 448

4.2.2 White-Box 449

When the partial access to the model is given, tradi- 450

tional methods use the features such as entropy 451

(Lavergne et al., 2008), average log-probability 452

score (Solaiman et al., 2019) for detection. How- 453

ever, these approaches struggle to detect text from 454

the most recent LLMs. Then, the pioneer work De- 455

tectGPT (Mitchell et al., 2023) observes that LLM- 456

generated text tends to occupy negative curvature 457

regions of the model’s log probability function and 458

leverages the curvature-based criterion based on 459

random perturbations of the passage. DNA-GPT 460

(Yang et al., 2023b) utilizes the probability differ- 461

ence between the continuous distribution among 462

re-prompted text and original text and achieves 463
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state-of-the-art performance. Later, Deng et al.464

(2023) improves the efficiency of DetectGPT with a465

Bayesian surrogate model by selecting typical sam-466

ples based on Bayesian uncertainty and interpolat-467

ing scores from typical samples to other ones. Fur-468

thermore, similar to DNA-GPT (Yang et al., 2023b)469

on using the conditional probability for discrimina-470

tion, Fast-DetectGPT (Bao et al., 2023) builds an471

efficient zero-shot detector by replacing the prob-472

ability in DetectGPT with conditional probability473

curvature and witnesses significant efficiency im-474

provements. Additionally, GPT-who (Venkatraman475

et al., 2023) utilizes Uniform Information Density476

(UID) based features to model the unique statisti-477

cal signature of each LLM and human author for478

accurate authorship attribution.479

When the full access to the model is given,480

Su et al. (2023a) leverages the log-rank informa-481

tion for zero-shot detection through one fast and482

efficient DetectLLM-LRR (Log-Likelihood Log-483

Rank ratio) method, and another more accurate484

DetectLLM-NPR (Normalized perturbed log rank)485

method, although slower due to the need for pertur-486

bations.487

4.3 Watermarking488

Text watermarking injects algorithmically de-489

tectable patterns into the generated text while ide-490

ally preserving the quality and diversity of lan-491

guage model outputs. Although the concept of wa-492

termarking is well-established in vision, its appli-493

cation to digital text poses unique challenges due494

to the text’s discrete and semantic-sensitive nature495

(Kutter et al., 2000). Early works are edit-based496

methods that modify a pre-existing text. The earli-497

est work can be dated back to Atallah et al. (2001),498

which designs a scheme for watermarking natural499

language text by embedding small portions of the500

watermark bit string in the syntactic structure of501

the text, followed by paraphrasing (Atallah et al.,502

2003), syntax tree manipulations (Topkara et al.,503

2005; Meral et al., 2009) and synonym substitu-504

tion (Topkara et al., 2006). Besides, text water-505

marking has also been used for steganography and506

secret communication (Fang et al., 2017; Ziegler507

et al., 2019; Abdelnabi and Fritz, 2021), and in-508

tellectual property protection (He et al., 2022a,b;509

Zhao et al., 2022, 2023b), but this is out the scope510

of this work. In light of growing ethical considera-511

tions, text watermarking has been increasingly used512

to ascertain the origin of textual content and detect513

AI-generated content (Grinbaum and Adomaitis,514

2022). The primary focus of this paper is on the 515

use of text watermarking to detect AI-generated 516

text. 517

In general, watermarking for text detection can 518

also be classified into white-box and black-box wa- 519

termarking. Watermarking is designed to determine 520

whether the text is coming from a specific language 521

model rather than universally detecting text gener- 522

ated by any potential model. As such, knowledge 523

of the model source is always required in text wa- 524

termarking for detection. 525

4.3.1 Black-Box Watermarking 526

In black-box setting, such as API-based appli- 527

cations, the proprietary nature of the language 528

models used by LLM providers precludes down- 529

stream users from accessing the sampling process 530

for commercial reasons. Alternatively, a user may 531

wish to watermark human-authored text via post- 532

processing. In such cases, black-box watermarking 533

aims to automatically manipulate generated text to 534

embed watermarks readable by third parties. Tradi- 535

tional works designed complex linguistic rules such 536

as paraphrasing (Atallah et al., 2003), syntax tree 537

manipulations (Topkara et al., 2005; Meral et al., 538

2009) and synonym substitution (Topkara et al., 539

2006), but lack scalability. Later work turns to pre- 540

trained language models for efficient watermarking. 541

For example, Yang et al. (2022) proposes a natural 542

language watermarking scheme based on context- 543

aware lexical substitution (LS). Specifically, they 544

employ BERT (Devlin et al., 2019) to suggest LS 545

candidates by inferring the semantic relatedness 546

between the candidates and the original sentence. 547

Yang et al. (2023a) first defines a binary encoding 548

function to compute a random binary encoding cor- 549

responding to a word. The encodings computed 550

for non-watermarked text conform to a Bernoulli 551

distribution, wherein the probability of a word rep- 552

resenting bit-1 is approximately 0.5. To inject a 553

watermark, they alter the distribution by selectively 554

replacing words representing bit-0 with context- 555

based synonyms that represent bit-1. A statistical 556

test is then used to identify the watermark. 557

4.3.2 White-Box Watermarking 558

The most popular 1 training-free watermark di- 559

rectly manipulates the decoding process when the 560

model is deployed. In the efforts of watermarking 561

GPT outputs, Aaronson (2022) works with Ope- 562

nAI to first develop a technique for watermarking 563

language models using exponential minimum sam- 564
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pling to sample text from the model, where the565

inputs to the sampling mechanism are a hash of the566

previous k consecutive tokens through a pseudo-567

random number generator. By Gumbel Softmax568

(Jang et al., 2016) rule, their method is proven to569

ensure guaranteed quality. Besides, Christ et al.570

(2023) provides the formal definition and con-571

struction of undetectable watermarks. Their cryp-572

tographically inspired watermark design proposes573

watermarking blocks of text from a language model574

by hashing each block to seed a sampler for the575

next block. However, there are only theoretical con-576

cepts for this method without experimental results.577

Another pioneering work of training-free water-578

mark (Kirchenbauer et al., 2023a) embeds invisible579

watermarks in the decoding process by dividing580

the vocabulary into a “green list” and a “red list”581

based on the hash of prefix token and subtly in-582

creases the probability of choosing from the green583

list. Then, a third party, equipped with knowledge584

of the hash function and random number gener-585

ator, can reproduce the green list for each token586

and monitor the violation of the green list rule.587

Subsequently, Zhao et al. (2023a) simplifies the588

scheme by consistently using a fixed green-red list589

split, showing that the new watermark persists in590

guaranteed generation quality and is more robust591

against text editing. Kuditipudi et al. (2023) cre-592

ate watermarks that are distortion-free by utilizing593

randomized watermark keys to sample from token594

probability distribution by inverse transform sam-595

pling and exponential minimum sampling. Hou596

et al. (2023) propose a sentence-level semantic wa-597

termark based on locality-sensitive hashing (LSH),598

which partitions the semantic space of sentences.599

The advantage of this design is its enhanced robust-600

ness against paraphrasing attacks. DiPmark (Wu601

et al., 2023b) is an unbiased distribution-preserving602

watermark that preserves the original token distri-603

bution during watermarking and is robust to mod-604

erate changes of tokens by incorporating a novel605

reweight strategy, combined with a hash function606

that assigns unique i.i.d. ciphers based on the con-607

text. Drawn on the drawbacks of random green-red608

list splitting, Fu et al. (2023) uses input sequence to609

get semantically related tokens for watermarking610

to improve certain conditional generation tasks.611

Despite training-free watermarking, text water-612

marks can also be injected through pre-inference613

training or post-inference training: 2 training-614

based watermark. One example of pre-inference615

training is REMARK-LLM (Zhang et al., 2023b),616

which injects the watermark by a message encod- 617

ing module to generate a dense token distribution, 618

following a message decoding module to extract 619

messages from the watermarked textual and repa- 620

rameterization is used as a bridge to connect the 621

dense distribution with tokens’ one-hot encoding. 622

The drawback is that training is required on source 623

data and might not generalize well to unseen text 624

data. On the contrary, post-inference training in- 625

volves adding a trained module to assist in inject- 626

ing watermarks during inference. For instance, Liu 627

et al. (2023a) proposes a semantic invariant robust 628

watermark for LLMs, by utilizing another embed- 629

ding LLM to generate semantic embeddings for all 630

preceding tokens. However, it is not training-free 631

since these semantic embeddings are transformed 632

into the watermark logits through their trained wa- 633

termark model. 634

Despite from 0-bit watermark, there is also 3 635

multi-bit watermarking. For example, Yoo et al. 636

(2023a) designs a multi-bit watermarking following 637

a well-known proposition from image watermark- 638

ing that identifies natural language features invari- 639

ant to minor corruption and proposes a corruption- 640

resistant infill model. COLOR (Yoo et al., 2023b) 641

subsequently designs another multi-bit watermark 642

by embedding traceable multi-bit information dur- 643

ing language model generation while allowing 644

zero-bit detection simultaneously. Fernandez et al. 645

(2023) also consolidates watermarks for LLMs 646

through more robust statistical tests and multi-bit 647

watermarking. 648

5 Attack, Challenges, Future Outlook 649

The detection of LLM-generated content is an 650

evolving field. Detection attacks can be found in 651

Appendix A.2 and we also summarize the chal- 652

lenges in Appendix A.3. Additionally, we list some 653

potential avenues for future work (details are in- 654

cluded in Appendix A.8): 1). robust and scalable de- 655

tection techniques; 2). rigorous and standard evalu- 656

ation; 3). fine-grained detection; 4). user education 657

and awareness; 5). transparency and explainability. 658

6 Conclusion 659

We comprehensively survey LLMs-generated con- 660

tent detection over existing task formulation, bench- 661

mark datasets, evaluation metrics, and different de- 662

tection methods to help the research community 663

quickly learn the progress in this field. 664
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Limitations665

Despite conducting a comprehensive literature re-666

view on AI-generated content detection, we ac-667

knowledge the potential for omissions due to in-668

complete searches.669

Ethics Statement670

The utilization of AI detection presents significant671

ethical considerations, particularly when it comes672

to the detection of plagiarism among students. Mis-673

classifications in this context can give rise to sub-674

stantial concerns. This survey aims to summarize675

the current techniques employed in this field com-676

prehensively. However, it is important to note that677

no flawless detectors have been developed thus far.678

Consequently, users should exercise caution when679

interpreting the detection outcomes, and it should680

be understood that we cannot be held accountable681

for any inaccuracies or errors that may arise.682
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A Appendix1429

A.1 Commercial Detection Tool1430

Despite from academic research, AI text detection1431

also draws considerable attention from commer-1432

cial companies. Table 1 summarizes the popular1433

commercial detectors. Although the majority of1434

them simultaneously claim to be the most accu-1435

rate AI detectors on the homepage of their website,1436

it is essential to evaluate their performance based1437

on various factors such as accuracy, speed, robust-1438

ness, and compatibility with different platforms and1439

frameworks. Regrettably, a dearth of articles exists1440

that explicitly delve into the comparative analysis1441

of the aforementioned properties among popular1442

commercial detectors.1443

A.2 Detection Attack1444

Despite the progress of detection work, there are1445

also continuous efforts to evade existing detectors,1446

and we summarize the main streams in this section.1447

1448

A.2.1 Paraphrasing Attack1449

Paraphrasing could be performed by human writers1450

or other LLMs, and even by the same source model.1451

Paraphrasing can also undergo several rounds, in-1452

fluenced by a mixture of different models. Current1453

research mostly focuses on the simple paraphrase1454

case where another model rewrites a machine-1455

generated text for one round. For instance, Kr-1456

ishna et al. (2023) trains a T5-11b model for para-1457

phrasing text and discovers that all detectors ex-1458

perience a significant drop in quality when faced1459

with paraphrased text. Additionally, simple para-1460

phrasing attacks involve word substitutions (Shi1461

et al., 2023). Moreover, paraphrasing can also be1462

achieved through translation attacks. However, con-1463

ducting more in-depth analysis and research on1464

complex paraphrasing techniques in the future is1465

crucial. Becker et al. (2023) systemically examines1466

different classifiers encompassing both classical ap-1467

proaches and Transformer techniques for detecting1468

machine (like T5) or human paraphrased text.1469

A.2.2 Adversarial Attack1470

Though the adversarial attack is popular for general1471

NLP tasks (Alzantot et al., 2018), there has been lit-1472

tle work specifically addressing adversarial attacks1473

on detectors for LLM-generated content. However,1474

we can consider the following two types of attacks1475

for further investigation and exploration:1476

Adversarial Examples: Attackers can generate 1477

specially crafted inputs by making subtle modifi- 1478

cations to the text that fool the AI text detectors 1479

while remaining mostly unchanged to human read- 1480

ers (Shi et al., 2023). These modifications can in- 1481

clude adding or removing certain words or charac- 1482

ters, introducing synonyms, or leveraging linguis- 1483

tic tricks to deceive the detector. Evasion attacks 1484

aim to manipulate the AI text detector’s behavior 1485

by exploiting its vulnerabilities. Attackers can use 1486

techniques such as obfuscation, word permutation, 1487

or introducing irrelevant or misleading content to 1488

evade detection. The goal is to trigger false nega- 1489

tives and avoid being flagged as malicious or inap- 1490

propriate. 1491

Model Inversion Attacks: Attackers can launch 1492

model inversion attacks by exploiting the responses 1493

of AI text detectors. They might submit carefully 1494

crafted queries and observe the model’s responses 1495

to gain insights into its internal workings, architec- 1496

ture, or training data, which can be used to create 1497

more effective attacks or subvert the system’s de- 1498

fenses. 1499

A.2.3 Prompt Attack 1500

Current LLMs are vulnerable to prompts (Zhu 1501

et al., 2023), thus, users can utilize smartly de- 1502

signed prompts to evade established detectors. For 1503

example, Shi et al. (2023) examines instructional 1504

prompt attacks by perturbing the input prompt to 1505

encourage LLMs to generate texts that are difficult 1506

to detect. Lu et al. (2023) also show that LLMs 1507

can be guided to evade AI-generated text detection 1508

by a novel substitution-based In-Context example 1509

Optimization method (SICO) to automatically gen- 1510

erate carefully crafted prompts, enabling ChatGPT 1511

to evade six existing detectors by a significant 0.54 1512

AUC drop on average. Nevertheless, limited atten- 1513

tion has been devoted to this topic, indicating a 1514

notable research gap that merits significant schol- 1515

arly exploration in the immediate future. Notably, a 1516

recent work (Chakraborty et al., 2023a) introduces 1517

the Counter Turing Test (CT2), a benchmark con- 1518

sisting of techniques aiming to evaluate the robust- 1519

ness of existing six detection techniques compre- 1520

hensively. Their empirical findings unequivocally 1521

highlight the fragility of almost all the proposed 1522

detection methods under scrutiny. Despite the hard 1523

prompt attack, Kumarage et al. (2023) first creates 1524

an evasive soft prompt tailored to a specific PLM 1525

through prompt tuning; and then, they leverage 1526

the transferability of soft prompts to transfer the 1527
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Product Name Website Price API available
Originality.AI https://app.originality.ai/api-access $0.01/100 words Yes

Quil.org https://aiwritingcheck.org/ Free website version No
Sapling https://sapling.ai/ai-content-detector 1 million chars at $25/month Yes

OpenAI text classifier https://openai-openai-detector.hf.space/ Free website version Yes
Crossplag https://crossplag.com/ai-content-detector/ Free website version No
GPTZero https://gptzero.me/ 0.5 million words at $14.99/mo Yes
ZeroGPT https://www.zerogpt.com/ Free website version No

CopyLeaks https://copyleaks.com/ai-content-detector 25000 words at $10.99/Month No

Table 1: A summary of popular commercial tools to detect AI-generated text.

learned evasive soft prompt from one PLM to an-1528

other and find the universal efficacy of the evasion1529

attack.1530

A.3 Challenges1531

A.3.1 Theorical Analysis1532

Inspired by the binary hypothesis test in (Polyan-1533

skiy and Wu, 2022), (Sadasivan et al., 2023) claims1534

that machine-generated text will become indistin-1535

guishable as the total variance between the distri-1536

butions of human and machine approaches zero. In1537

contrast, Chakraborty et al. (2023b) demonstrates1538

that it is always possible to distinguish them by1539

curating more data to make the detection of AU-1540

ROC increase exponentially with the number of1541

training instances. Additionally, DNA-GPT (Yang1542

et al., 2023b) demonstrates the difficulty of ob-1543

taining a high TPR while maintaining a low FPR.1544

Nevertheless, a dearth of theoretical examination1545

persists regarding the disparities in intrinsic char-1546

acteristics between human-written language and1547

LLMs. Scholars could leverage the working mech-1548

anisms of GPT models to establish a robust theo-1549

retical analysis, shedding light on detectability and1550

fostering the development of additional detection1551

algorithms.1552

A.3.2 LLM-Generated Code Detection1553

Previous detectors usually only focus on the text,1554

but LLMs-generated codes also show increasing1555

quality (see a recent survey (Zan et al., 2022)).1556

Among the first, Lee et al. (2023) found that previ-1557

ous watermarking (Kirchenbauer et al., 2023a) for1558

text does not work well in terms of both detectabil-1559

ity and generated code quality. It is evidenced that1560

low entropy persists in generated code (Lee et al.,1561

2023), thus, the decoding process is more deter-1562

ministic. They thus adapt the text watermarks to1563

code generation by only injecting watermarks to to-1564

kens with higher entropy than a given threshold and1565

achieve more satisfactory results. Code detection1566

is generally believed to be even harder than text1567

detection due to its shorter length, low entropy, and 1568

non-natural language properties. DetectGPT4Code 1569

(Yang et al., 2023d) detects codes generated by 1570

ChatGPT by using a proxy code model to approxi- 1571

mate the logits on the conditional probability curve 1572

and achieves the best results over previous detec- 1573

tors. 1574

A.3.3 Model Sourcing 1575

Model sourcing (Yang et al., 2023b), is also known 1576

as origin tracking (Li et al., 2023a) or authorship 1577

attribution (Uchendu et al., 2020). Unlike the tra- 1578

ditional distinction between human and machine- 1579

generated texts, it focuses on identifying the spe- 1580

cific source model from a pool of models, treating 1581

humans as a distinct model category. With the fast 1582

advancement of LLMs from different organizations, 1583

it is vital to tell which model or organization po- 1584

tentially generates a certain text. This has practical 1585

applications, particularly for copyright protection. 1586

Consequently, we believe that in the future, it may 1587

become the responsibility of organizations releas- 1588

ing powerful LLMs to determine whether a given 1589

text is a product of their system. Previous work 1590

either (Li et al., 2023a) trains a classifier or uti- 1591

lizes the intrinsic genetic properties (Yang et al., 1592

2023b) to perform model sourcing, but still can 1593

not handle more complicated scenarios. GPT-who 1594

(Venkatraman et al., 2023) utilizes Uniform Infor- 1595

mation Density (UID) based features to model the 1596

unique statistical signature of each LLM and hu- 1597

man author for accurate authorship attribution. 1598

A.3.4 Bias 1599

It has been found that current detectors tend to be 1600

biased against non-native speakers (Liang et al., 1601

2023). Also, Yang et al. (2023b) found that previ- 1602

ous detection tools often perform poorly on other 1603

languages other than English. Besides, current re- 1604

search usually focuses on the detection of text 1605

within a certain length, thus showing bias against 1606

the shorter text. How to ensure the integrity of de- 1607

tectors under various scenarios without showing 1608
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bias against certain groups is of central importance.1609

A.3.5 Generalization1610

Currently, the most advanced LLMs, like Chat-1611

GPT, are getting actively updated, and OpenAI1612

will make a large update every three months. How1613

to effectively adapt existing detectors to the up-1614

dated LLMs is of great importance. For example,1615

Tu et al. (2023a) records the ChatLog of ChatGPT’s1616

response to long-form generation every day in one1617

month, observes performance degradation of the1618

Roberta-based detector, and also finds some stable1619

features to improve the robustness of detection. As1620

LLMs continuously benefit from interacting with1621

different datasets and human feedback, exploring1622

ways to effectively and efficiently detect their gener-1623

ations remains an ongoing research area. Addition-1624

ally, Kirchenbauer et al. (2023b) investigates the1625

reliability of watermarks for large language models1626

and claims that watermarking is a reliable solution1627

under human paraphrasing and various attacks at1628

the context length of around 1000. Pu et al. (2023)1629

examines the zero-shot generalization of machine-1630

generated text detectors and finds that none of the1631

detectors can generalize to all generators. All those1632

findings reveal the difficulty of reliable generaliza-1633

tion to unseen models or data sources of detection.1634

1635

A.4 News Reports1636

We summarize several influential news on the1637

false use of AI detectors and concerns brought by1638

AI-generated information.1639

1. International students are concerned their1640

original writing is being flagged as AI-generated1641

text. link1642

2. Professor Flunks All His Students After1643

ChatGPT Falsely Claims It Wrote Their Papers.1644

link1645

3. China reports first arrest over fake news1646

generated by ChatGPT. link1647

4. Professors have a summer assignment: Prevent1648

ChatGPT chaos in the fall. link1649

5. AI makes plagiarism harder to detect, argue1650

academics – in paper written by chatbot. link1651

6. How AI Could Take Over Elections—And1652

Undermine Democracy. link1653

1654

A.5 Related Survey1655

In the literature, there are some other surveys on1656

this topic. For example, Jawahar et al. (2020) dis-1657

cusses the detection of small language models. 1658

Tang et al. (2023) provides an overview of previ- 1659

ous detection methods but does not fully cover the 1660

recent progress in the era of LLMs. Very recently, 1661

Crothers et al. (2022) surveys threat models and 1662

detection methods but also summarizes previous 1663

detection methods rather than the latest progress 1664

with LLMs. Unlike them, our work aims to fill this 1665

gap by providing the first comprehensive survey 1666

about detection, attack, and benchmarks, especially 1667

focusing on detecting LLMs like ChatGPT. Thus, 1668

our survey includes the most advanced approaches. 1669

Dhaini et al. (2023) gives a survey of the state of 1670

detecting only ChatGPT-Generated text but ignores 1671

various detection methods on other models. 1672

A.6 Additional Latest Work 1673

Very recently, there have been some additional 1674

work released very close to our submission, includ- 1675

ing watermarking methods (Fairoze et al., 2023; Tu 1676

et al., 2023b; Chen et al., 2023a; Ajith et al., 2023; 1677

Zhang et al., 2023a; Li et al., 2023c; Keleş et al., 1678

2023; Piet et al., 2023; Gu et al., 2023; Huang et al., 1679

2023; Zhao et al., 2024; Qu et al., 2024; Liu and 1680

Bu, 2024; Wouters, 2023), training-based methods 1681

(Chen et al., 2023b; Guo and Yu, 2023; Wang et al., 1682

2024; Soto et al., 2024), zero-shot methods (Mao 1683

et al., 2024; Hans et al., 2024; Shi et al., 2024; 1684

Liu et al., 2024), attacks (Irtiza Tripto et al., 2023; 1685

Macko et al., 2024; Peng et al., 2024). 1686

A.7 Datasets 1687

• Uchendu et al. (2021) presents the TURING- 1688

BENCH benchmark for Turing Test and Author- 1689

ship Attribution across 19 language models. 1690

• HC3 (Guo et al., 2023) collectes the Human Chat- 1691

GPT Comparison Corpus (HC3) with both long- 1692

and short-level documents from ELI5 (Fan et al., 1693

2019), WikiQA (Yang et al., 2015), Crawled 1694

Wikipedia, Medical Dialog (Chen et al., 2020), 1695

and FiQA (Maia et al., 2018). 1696

• CHEAT (Yu et al., 2023a) provides 35,304 syn- 1697

thetic academic abstracts, with Generation, Pol- 1698

ish, and Mix as prominent representatives. 1699

• Ghostbuster (Verma et al., 2023) provides a de- 1700

tection benchmark that covers student essays, cre- 1701

ative fiction, and news at document-level detec- 1702

tion and paragraph-level. 1703

• OpenGPTText (Chen et al., 2023c) consists of 1704

29,395 rephrased content generated using Chat- 1705

GPT, originating from OpenWebText (Gokaslan 1706

and Cohen, 2019). 1707
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Datasets Length Size Data type #Language
TuringBench (2021) 100∼400 200K News articles 1

HC3 (2023) 100∼250 44,425 Reddit, Wikipedia, medicine and finance 2
CHEAT (2023a) 100∼300 35,304 Academical abstracts 1

Ghostbuster (2023) 200∼1200 12,685 Student essays, creative fiction, and news 1
GPT-Sentinel (2023c) 100∼400 29,395 OpenWebText (2023) 1

M4 (2023c) 200-300 122,481 Multi-domains 6
MGTBench (2023) 10∼200 2,817 Question-answering datasets 1
Deepfake (2023b) ∼264 447,674 Multi-domains 1
HC3 Plus (2023b) 100∼250 214,498 Summarization, translation, and paraphrasing 2

MULTITuDE (2023) 150∼400 74,081 MassiveSumm (2021) 11
HumanEval (2021) ∼181 164 Code Exercise 1

APPS (2021) ∼474 5,000 Code Competitions 1
CodeContests (2022) ∼2239 165 Code Competitions 6

Table 2: A summarization of the detection datasets. Length is reported in the number of words for text and characters
for codes. #Language represents the number of types of natural languages for text and programming languages for
codes.

• M4 (Wang et al., 2023c) is a large-scale bench-1708

mark covering multi-generator, multi-domain,1709

and multi-lingual corpus for machine-generated1710

text detection.1711

• MULTITuDE (Macko et al., 2023) Large-Scale1712

Multilingual Machine-Generated Text Detection1713

Benchmark comprising 74,081 authentic and1714

machine-generated texts in 11 languages gener-1715

ated by 8 multilingual LLMs. They find that the1716

most currently available black-box methods do1717

not work in multilingual settings.1718

• MGTBench (He et al., 2023) focuses on1719

ChatGPT-generated content on: TruthfulQA (Lin1720

et al., 2022), SQuAD (Rajpurkar et al., 2016) and1721

NarrativeQA (Kočiský et al., 2018).1722

• SAID(Social media AI Detection) Cui et al.1723

(2023) is curated for real AI-generate text from1724

popular social media platforms like Zhihu and1725

Quora, and conducting detection tasks on actual1726

social media platforms prove to be more chal-1727

lenging compared to traditional simulated AI-text1728

detection.1729

• HC3 Plus (Su et al., 2023b) is a more extensive1730

and comprehensive dataset that considers more1731

types of tasks, considering tasks such as summa-1732

rization, translation, and paraphrasing to possess1733

semantic-invariant properties and are more diffi-1734

cult to detect.1735

We summarize them in Table 2.1736

A.8 Future Outlooks1737

Details on the future outlook are as follows.1738

• Robust and Scalable Detection Techniques: Cur-1739

rent LLMs are getting constant improvements1740

from big tech companies. Thus, the development 1741

of advanced algorithms and detection techniques 1742

capable of accurately identifying LLM-generated 1743

content in real time is a priority. Future research 1744

should focus on improving the accuracy, robust- 1745

ness to attacks, and scalability of detection meth- 1746

ods to keep up with the increasing volume and 1747

complexity of LLM-generated content. 1748

• Rigorous and Standard Evaluation: As discussed 1749

in Section 2.3, current evaluation faces data con- 1750

tamination issues; either the LLMs or the de- 1751

tectors might encounter the human data in their 1752

training stage. Besides, the evaluation benchmark 1753

also varies. The detection results affect the length, 1754

prompting methods, and adopted datasets. How- 1755

ever, unlike traditional machine learning tasks 1756

where one benchmark can be used for a long 1757

period, how to avoid any potential data contami- 1758

nation is very critical. 1759

• Fine-grained Detection: LLM-generated content 1760

can vary in its intentions, ranging from malicious 1761

propaganda to unintentional misinformation. Fu- 1762

ture work should explore approaches that can de- 1763

tect and differentiate between various categories 1764

of LLM-generated content, allowing for more 1765

tailored interventions and countermeasures. 1766

• User Education and Awareness: Educating users 1767

about the existence and capabilities of LLMs de- 1768

tectors is essential. For example, in Appendix 1769

A.4, we show some reported misuse of AI detec- 1770

tors in education. Future work should focus on 1771

raising awareness among users about the reliabil- 1772

ity of detection tools. This can empower users to 1773

make more informed decisions and mitigate the 1774

19



impact of deceptive or misleading decisions.1775

• AI Regulations: As LLMs become more sophis-1776

ticated, the ethical implications of their usage1777

in generating deceptive content become increas-1778

ingly important. Future research should explore1779

ethical frameworks and guidelines for the re-1780

sponsible development and deployment of LLMs1781

while considering the potential consequences and1782

risks associated with their misuse.1783

• Transparency and Explainability: Enhancing1784

the transparency and explainability of LLM-1785

generated content detection algorithms is crucial1786

for building trust and understanding among users.1787

For example, Yang et al. (2023b) uses the non-1788

trivial N-gram overlaps to support the detection1789

results. But currently, most detectors can only1790

give a predictive probability, with no clues about1791

evidence. Future work should focus on develop-1792

ing techniques that can provide explanations or1793

evidence for the classification decisions made by1794

detection systems, enabling users to understand1795

the rationale behind content identification better.1796
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