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ABSTRACT

Diffusion models have emerged as powerful priors for solving inverse problems.
However, existing approaches typically overlook side information that could sig-
nificantly improve reconstruction quality, especially in severely ill-posed settings.
In this work, we propose a novel inference-time search algorithm that guides the
sampling process using the side information in a manner that balances exploration
and exploitation. This enables more accurate and reliable reconstructions, provid-
ing an alternative to the gradient-based guidance that is prone to reward-hacking
artifacts. Our approach can be seamlessly integrated into a wide range of existing
diffusion-based image reconstruction pipelines. Through extensive experiments on
a number of inverse problems, such as box inpainting, super-resolution, and vari-
ous deblurring tasks including motion, Gaussian, nonlinear, and blind deblurring,
we show that our approach consistently improves the qualitative and quantitative
performance of diffusion-based image reconstruction algorithms. We also show
the superior performance of our approach with respect to other baselines, including
reward gradient-based guidance algorithms.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021b) have demonstrated remarkable success in
generative tasks across various fields like text-to-image synthesis (Rombach et al., 2022), protein
sequence (Wu et al., 2024), video (Ho et al., 2022), audio (Kong et al., 2021), and language modeling
(Austin et al., 2021; Sahoo et al., 2024). Aside from generation, these models have also shown great
promise in solving inverse problems, where the goal is to reconstruct an image from partial or noisy
observations (Chung et al., 2023b; Song et al., 2023a; Rout et al., 2023; Song et al., 2024; He et al.,
2024; Ye et al., 2024; Zhang et al., 2024). Inverse problems differ fundamentally from standard
generative tasks (e.g., text-to-image synthesis, personalized editing, style transfer): whereas those
tasks are often judged subjectively, inverse problems have a precise objective, to recover a specific
ground-truth signal from incomplete measurements. Consequently, fidelity to the ground truth and
rigorous quantitative evaluation are critical.

When the observation is heavily degraded, the inverse problem becomes highly ill-posed as many
distinct signals can explain the data almost equally well. In this regime, unconstrained posterior sam-
pling rarely recovers the ground truth; it tends instead to produce diverse yet semantically inconsistent
reconstructions. A practical solution is to incorporate side information, auxiliary measurements
correlated with the target signal, to constrain the solution space and steer the reconstruction toward
faithful outcomes. This idea is well established in the classical signal processing literature, where
certain structural or encoded properties are used to guide the iterative algorithms that solve the inverse
problem (Jones, 2009; Chun et al., 2012; Oymak et al., 2013; Ehrhardt et al., 2014; Mota et al., 2017;
Hyder et al., 2019). In medical imaging, leveraging complementary measurements or modalities,
such as multiple MRI contrasts, multimodal microscopy, or RGB guidance for NIR imaging, has
been shown to substantially improve quality (Atalık et al., 2025; Tsiligianni & Deligiannis, 2019).

While the existing works on diffusion-based solvers have made significant progress on measurement-
only inverse problems, they largely sidestep the harder and increasingly common setting where we
must also exploit side information (e.g., a reference photograph of the same person, a text description,
or features from another modality). A key obstacle is the challenge of learning the conditional
distribution pX|Y,S , where X denotes the target image, Y denotes the noisy measurement, and S
denotes the side information. While some recent works (Kim et al., 2025a; Chung et al., 2025)
address the limited setting of textual side information, these approaches typically train a diffusion
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Figure 1: Illustration of the performance of our inference-time search algorithm for using side
information in solving inverse problems, compared with the DPS algorithm (Chung et al., 2023b).

model to take a specific side-info modality as input; this demands large paired datasets and expensive
training, ties the solver to a single conditioning format, and is impractical when the test-time side
information differs from what the model was trained on. This motivates us to address the following
question:

How can we leverage a pre-trained (unconditional) diffusion prior to solve inverse problems with side
information at inference time, without any retraining, so that the method is modality-agnostic and
can use text, images, or features depending on the end-use applications? We provide constructive
solutions to these questions in our work. Our main contributions are the following.

• Modeling: We introduce a general modeling approach that incorporates arbitrary side
information via an auxiliary reward, characterizing pX|S as a reward-tilted version of the
pre-trained diffusion prior. This abstraction cleanly decouples the measurement model
from the side information, is modality-agnostic (text, image, features), and requires no
retraining. We use this modeling with tractable approximations and appropriate error
bounds for computing the conditional score functions that are needed for sampling from the
pre-trained diffusion models.

• Algorithm: Motivated by recent successes of inference-time search in LLMs (Snell et al.,
2025; Setlur et al., 2025; Liu et al., 2025), we propose a compute-aware, training-free
inference-time search framework that can leverage the side information to solve inverse
problems. We instantiate this framework by proposing two specific search algorithms: (i)
Greedy Search (GS), a strategy that resamples greedily at each step, and (ii) Recursive Fork-
Join Search (RFJS), which balances exploration and exploitation through a group-based
sampling at each step. The framework operates as a plug-in on top of any standard inverse-
problem solvers and supports black-box, non-differentiable rewards. To our knowledge, our
work is the first to propose inference-time search with side information for diffusion-based
inverse problems.

• Experiments: We provide extensive experimental evaluations of our proposed ap-
proach across linear and nonlinear problems (e.g., box inpainting, super-resolution, mo-
tion/Gaussian/nonlinear deblurring) and side-information types (images and text), and
demonstrate that our approach outperforms multiple relevant baseline algorithms.

2 RELATED WORK

Inverse problems with diffusion priors: Diffusion models (Dhariwal & Nichol, 2021; Ho et al.,
2020; Song & Ermon, 2019; Sohl-Dickstein et al., 2015; Song & Ermon, 2020; Song et al., 2021a)
are powerful generative models that sample from data distributions by iteratively denoising random
noise. Several works adapt diffusion priors to inverse problems via likelihood score approximations.
Diffusion Posterior Sampling (DPS) (Chung et al., 2023b) is a foundational method for solving inverse
problems in a principled way. Its key idea is to approximate the expected conditional likelihood by
evaluating the likelihood at the conditional mean, effectively pushing the expectation through the
nonlinear function (Sec. 3.1). ΠGDM (Song et al., 2023a) solves linear inverse problems using a better
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approximation than DPS; MPGD (He et al., 2024) avoids this cost by enforcing data consistency
in image space; MCG (Chung et al., 2022) constrains reconstructions via manifold projections;
DDRM (Kawar et al., 2022) operates in spectral space; and DAPS (Zhang et al., 2024) decouples
diffusion steps. Latent diffusion priors are also used: PSLD (Rout et al., 2023) adds consistency
terms, ReSample (Song et al., 2024) solves per-step optimization problems, and Chung et al. (2024)
tunes prompts for efficiency. These methods, however, do not leverage side information.

Inverse problems with side information: Many works in signal processing (Mota et al., 2017;
Oymak et al., 2013; Jones, 2009; Chun et al., 2012; Ehrhardt et al., 2014; Hyder et al., 2019) integrate
structural correlations from auxiliary signals, often via designing appropriate optimization algorithms.
In MRI, LeSITA (Tsiligianni & Deligiannis, 2019) learns coupled sparse representations, and TGVN
(Atalık et al., 2025) constrains ambiguous subspaces with additional contrasts using learned unrolled
networks. Diffusion-based approaches include training with joint priors across modalities (Levac
et al., 2023; Efimov et al., 2025), metadata conditioning (Chung et al., 2025), and text-guided
regularization (Kim et al., 2025a). Most approaches, however, are training-based or bound to one
modality of side information associated with the trained conditional diffusion model.

Reward-gradient guidance: LGD (Song et al., 2023b) refines DPS via Monte Carlo estimates, while
UGD (Bansal et al., 2024), FreeDoM (Yu et al., 2023), and RB-Modulation (Rout et al., 2025) propose
to guide the diffusion with a gradient of the reward function. In addition to being gradient-based
approaches, they are typically used for semantic generation tasks rather than inverse problems.

SMC methods: Sequential Monte Carlo approaches (Cardoso et al., 2024; Dou & Song, 2024;
Wu et al., 2023) generate and resample particles under tilted distributions, offering gradient-free
alternatives but limited performance at small N . DAS (Kim et al., 2025b) combines resampling
with gradients for text-to-image tasks. These methods rely only on the measurement to guide the
unconditional sampler and do not exploit side information.

Inference-time search: Reward-guided inference-time search has advanced LLM reasoning using
Process Advantage Verifiers (PAVs) (Setlur et al., 2025), compute-optimal scheduling (Snell et al.,
2025), and reward-guided small models (Liu et al., 2025). Some recent works (Singhal et al., 2025;
Li et al., 2025) apply reward-based search in diffusion for text-to-image/protein generation, but do
not consider side information or inverse problems.

3 PRELIMINARIES AND PROBLEM FORMULATION

3.1 PRELIMINARIES

Diffusion models: Diffusion models (Ho et al., 2020; Song et al., 2021b) are powerful generative
models that enable sampling from an (unknown) distribution through an iterative process. Diffusion
models comprise a forward diffusion process and a reverse denoising process. During the forward
process, a clean sample from the distribution pdata is progressively corrupted by the addition of
Gaussian noise at each timestep, transforming the data distribution into pure noise. Conversely,
the reverse process trains a denoising neural network to iteratively remove this introduced noise,
enabling the reconstruction of samples from the initial data distribution. The forward process is
represented by the stochastic differential equation (SDE), dxt = f(xt, t)dt+ g(t)dwt, ∀t ∈ [0, T ],
where x0 is sampled from pdata and wt is a Wiener process. Common choices for f, g are f(xt, t) =

−(β(t)/2)xt and g(t) =
√
β(t) for some non-negative monotonic increasing function β(·) over

[0, T ]. The corresponding reverse process of this SDE is described by (Anderson, 1982; Song
et al., 2021b) dxt =

(
f(xt, t)− g2(t)∇xt

log pt(xt)
)
dt+ dwt, ∀t ∈ [T, 0], where pt denotes the

marginal probability distribution of xt, xT is sampled according to a standard Gaussian distribution,
and ∇xt log pt(xt) represents the score function. Since the marginal distribution pt is unknown,
the score function is approximated by a neural network Dθ(xt, t) via the minimization of a score-
matching objective. In practical implementations, the SDE is discretized into T steps, and we define
αt ≜

∏t
s=1(1− βs).

Solving inverse problems using diffusion models: An inverse problem consists of recovering an
unknown signal x0 from noisy, partial observations y = A(x0) + σyz, where A is the measurement
model, σy is the observation noise level, and z is typically a Gaussian noise. Often, A is non-
injective, i.e., multiple signals x0 can produce the same measurement y. A standard approach
for estimating x0 is via the Bayesian framework, assuming a prior distribution p0 over the signal
x0, and sampling from the posterior distribution x0 ∼ p0|Y (· | y). Though p0|Y (· | y) is not
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known, this sampling can be achieved by running the backward SDE with replacing the original
score function with the conditional score function ∇xt

log pt|Y (xt | y). Using Bayes’ theorem,
∇xt log pt|Y (xt | y) = ∇xt

log pt(xt)+∇xt
log pY |t(y | xt). While the score function networkDθ

of the pre-trained diffusion model can be used to approximate the first term, approximating the second
term is significantly more challenging, and numerous approaches (Daras et al., 2024) have been
proposed to tackle this challenge. In particular, Diffusion Posterior Sampling (DPS) (Chung et al.,
2023b) proposes a simple approach to approximate pY |t as pY |t(y | xt) = Ex0∼p0|t(·|xt)[pY |0(y |
x0)] ≈ pY |0(y | Ex0∼p0|t(·|xt)[x0]), by pushing the expectation inside the nonlinear pY |0(y | ·).
The remaining challenge is to compute the conditional mean Ex0∼p0|t(·|xt)[x0] ≜ x̂0|t(xt), which is
typically tackled by using Tweedie’s formula (Efron, 2011), leveraging the fact that xt given x0 is
Gaussian. This results in the estimate

x̂0|t(xt) = (1/
√
αt)(xt + (1− αt)∇xt

log pt(xt)) ≈ (1/
√
αt)(xt + (1− αt)Dθ(xt, t)). (1)

3.2 PROBLEM FORMULATION: SOLVING INVERSE PROBLEMS WITH SIDE INFORMATION

In many applications, the observation y alone is insufficient to identify the latent signal x0; auxiliary
side information s (e.g., a reference image, identity/text embedding, or physics-derived features)
can dramatically reduce ambiguity. Formally, when side information s is available, the goal is
to sample from the target conditional distribution p0|Y,S(· | y, s). A seemingly direct route is to
train a conditional diffusion model that accepts s as input, learn the conditional score function
∇xt

log pt|S(xt | s), and then approximate the full conditional score ∇xt
log pt|Y,S(xt | y, s) =

∇xt
log pt|S(xt | s) +∇xt

log pY |t,S(y | xt, s) through a DPS-style method for the second term,
to run the backward SDE. However, this training-based approach is often impractical: it demands
large paired datasets (x0, s), which are expensive or impossible to curate; it locks the solver to the
training modality of s (a text-conditioned prior cannot natively exploit an image or spectral feature
at test time); and general multi-modal conditioning requires prohibitive data and compute. These
constraints motivate a training-free alternative that reuses strong unconditional diffusion priors and
uses s only at inference, preserving modality-agnosticism and avoiding costly data collection.

Designing such a training-free method is technically challenging. First, DPS-style derivations
rely on tractable likelihoods (e.g., Gaussian pY |0), whereas realistic pS|0 are often non-Gaussian
implicitly, complicating conditional-score construction. Second, even for measurement-only guidance,
computing the conditional score used in the DPS-style algorithms requires back-propagating through
the denoiser at every step. Naively extending to side information forces second-order/Hessian terms
through the diffusion network. Third, purely gradient-guided diffusion is brittle: it struggles with non-
differentiable or black-box rewards, amplifies early-step errors, and can drift off the data manifold.
Inference-time search approaches, which have shown remarkable performance improvement in LLMs
(Setlur et al., 2025; Liu et al., 2025; Snell et al., 2025) and text-conditioned diffusion models (Singhal
et al., 2025; Kim et al., 2025b), but have not yet been used for solving the inverse problems, offer a
promising path to overcome these challenges. In this context, we address the following questions:

(i) Modeling: How can we realize p0|Y,S at inference time, without any retraining, by constructing a
surrogate objective that is valid across diverse side-information modalities? (ii) Algorithm: How can
we design a plug-and-play inference-time search module that is modality-agnostic, compute-aware,
and capable of making global corrections (beyond local gradient steps)?

4 MODELING AND ALGORITHM

4.1 MODELING SIDE INFORMATION USING REWARD FUNCTION

Given a side-information signal s corresponding to an unknown x0, and two candiate reconstruc-
tions, x1

0 and x2
0, a principled way to decide which reconstruction is more truthful is to compare

the (unknown) conditional probabilities p0|S(x
1
0 | s) and p0|S(x

2
0 | s). Directly estimating p0|S

is intractable in our setting: it is typically non-Gaussian, multi-modal, and depends on the data
domain and modality of s. We therefore introduce a reward function r : Rd × S → R that orders
reconstructions given s: if r(x1

0, s) > r(x2
0, s), then x1

0 is deemed more compatible with x0 than x2
0.

This abstraction aligns with many real-world applications (as shown in our experiments): when s is a
text description of the target image x0, we can use a pre-trained text-image model to score text-image
alignment. When s is a reference image of the same entity (e.g., the same person under different
poses/lighting), we can use a pre-trained network to score image-image similarity. Such pre-trained
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rewards are typically available across datasets, and monotone with respect to the intuitive notion of
agreement with x0. In this sense, they serve as practically justified surrogates for comparing p0|S
without requiring an explicit conditional density model.

Our key modeling choice is to use r(·, s) to implicitly characterize p0|S(· | s) by tilting the uncondi-
tional prior p0 toward higher-reward regions. Our approach is inspired by the alignment framework
used in LLMs (Ouyang et al., 2022; Rafailov et al., 2023), where the goal is to generate a sample x
that maximizes some reward r(x), while ensuring that the sampling distribution does not deviate too
much from the pre-trained distribution p0. This is typically formalized as a KL-regularized reward
maximization problem, maxp∈P

(
Ex∼p[r(x)] − τDKL(p∥p0)

)
, where τ > 0 offers the trade-off

between the deviation from the prior and reward maximization. This optimization problem admits a
closed-form solution, p∗(x) ∝ p0(x) exp(r(x)/τ) (Rafailov et al., 2023). Based on this intuition,
we make the following modeling assumption: the conditional distribution p0|S is approximated as,

p0|S(x0 | s) ∝ p0(x0) exp
(

r(x0;s)
τ

)
, (2)

This assumption: (i) preserves the powerful unconditional diffusion prior p0, (ii) injects modality-
agnostic side information via a reward, and (iii) produces a tractable objective that we can combine
with the measurement model to target p0|Y,S at inference time using a pre-trained diffusion model.
We do not claim optimality of Eq. (2); rather, we show it leads to a practical, training-free algorithm
that consistently improves reconstructions over strong baselines while keeping compute comparable.

We now leverage Eq. (2) to compute the conditional posteriors for the reverse diffusion.

Proposition 1. Let pt|t+1,Y,S denote the conditional posterior distribution for the reverse diffusion
process. Then using (2) we have

pt|t+1,Y,S(xt | xt+1,y, s) ∝ pt|t+1,Y (xt | xt+1,y) exp(V
τ
t (xt; s,y)), (3)

pt|Y,S(xt | y, s) ∝ pt|Y (xt | y) exp(V τ
t (xt; s,y)), (4)

where V τ
t (xt; s,y) ≜ logEx0∼p0|t,Y (·|xt,y)[exp(r(x0; s)/τ)].

The proof is provided in Appendix A.1. Using (4), we can get the conditional score function as,
∇xt log pt|Y,S(xt | y, s) = ∇xt log pt(xt) +∇xt log pY |t(y | xt) +∇xtV

τ
t (xt; s,y). (5)

The computation of V τ
t is not straightforward. So, we use a DPS-style approximation

as V τ
t (xt; s,y) = logEx0∼p0|t,Y (·|xt,y)[exp(r(x0; s)/τ)] ≈ r(Ex0∼p0|t,Y (·|xt,y)[x0]; s)/τ =

r(x̂0|t,Y (xt,y); s)/τ . Using some approximation and the fact that pY |0 is Gaussian, we can get

x̂0|t,Y (xt,y) ≈ x̂0|t(xt)− (1− αt)(
√
αt))η∇xt∥y −Ax̂0|t(xt)∥22, (6)

V τ
t (xt; s,y) ≈ V̂ τ

t (xt; s,y) ≜ r
(
x̂0|t,Y (xt,y); s

)
/τ. (7)

In Appendix A.2, we have provided the details of the steps leading to Eq. (6)-Eq. (7).

We characterize the error in approximating the value function, |V τ
t (xt; s,y) − V̂ τ

t (xt; s,y)|, in
Proposition 3, which is deferred to Appendix A.2.

We can now get ∇xt log pt|Y,S(xt | y, s) given in Eq. (5) by replacing ∇xtV
τ
t (xt; s,y) with

∇xt
V̂ τ
t (xt;y, s). However, running a backward diffusion using ∇xt

V̂ τ
t (xt; s,y) is computationally

infeasible because it involves computing second-order derivatives through the denoiser network.
This issue, however, can be circumvented by making a further approximation, by setting η = 0
in Eq. (6) to get x̂0|t,Y (xt,y) ≈ x̂0|t(xt), which leads to the approximation ∇xtV

τ
t (xt; s,y) ≈

∇xt
r(x̂0|t(xt); s). We show that approximation error remains small when t is small in Appendix A.2

even when η = 0. This approach then reduces to the reward gradient guidance (RGG) approach
used for the inference-time alignment of diffusion models (Bansal et al., 2024; Kim et al., 2025b; Yu
et al., 2023; He et al., 2024), with the critical difference being that the guidance is from both s and y.

The RGG approach, however, is limited only to differentiable rewards, and even when they are
differentiable, calculating a gradient through the denoiser network at each step of the backward
diffusion is computationally intensive and can be ill-suited for many end-use edge-device applications.
Moreover, the hyperparameter that determines the weight of the reward gradient guidance is highly
sensitive and is difficult to tune, leading to limited performance improvements and undesirable
artifacts in the reconstructed images. We later illustrate these issues in Appendix B.4. This motivates
us to pursue a gradient-free approach for leveraging the side information for inverse problems.
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Figure 2: Illustration of the group size resampling strategies of different search algorithms.

4.2 INFERENCE-TIME SEARCH ALGORITHMS FOR INVERSE PROBLEMS

Inference-time search methods have recently gained traction as a means of improving the quality of
output from LLMs (Snell et al., 2025; Setlur et al., 2025; Liu et al., 2025). The key objective of a
search algorithm is to solve a multi-step decision-making problem with balanced exploration and
exploitation. While Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006) was successful in
large-scale reinforcement learning systems like AlphaGo (Silver et al., 2016), they are infeasible for
diffusion models: estimating the expected reward of a noisy state xt would require repeated rollouts
of the reverse process. Training a value function to guide the search rewards is another alternative,
but this demands additional training customized to each modality and type of side information. These
limitations motivate inference-time methods that are both training-free and computationally tractable.

Particle-based procedures offer one such approach, using the distribution given by Eq. (3), where
the value function is replaced by the approximation in Eq. (7). At a given step, suppose we have N
samples xt+1[1], . . . ,xt+1[N ] ∼ pt+1|Y,S . One way to generate samples from pt|Y,S is to (i) pro-
pose candidates x̃t[i] ∼ pt|t+1,Y (· | xt+1[i],y), (ii) compute rewards r[i] = r(x̂0|t,Y (x̃t[i],y); s)
(approximate value) (iii) assign weights w[i] ∝ exp(r[i]/τ) and resample indices with replacement
I[i] ∼ Cat(w[1 : N ]), and (iv) retain xt[I[i]] for the next step. In theory, such particle methods
converge to the target distribution as N →∞ and with exact tilting (Wu et al., 2023; Dou & Song,
2024). In practice, however, finite N and approximate tilting has some issues: frequent resampling
favors exploitation but risks reward over-optimization, while no resampling preserves data consistency
but requires prohibitively many particles to harness and optimize the reward.

To address this trade-off, we modify the step (iii) by introducing grouped resampling at each time
step t, where particles are resampled within groups of size gt. Formally, let the index set of the i-th
group be Gi = {(i − 1)gt + 1, . . . , igt} for i = 1, . . . , N/gt. For each group, we draw gt indices
with replacement according to the weights within that groups, i.e., I ′[j] ∼ Cat(w[Gi]) ∈ [1 : gt].
The absolute indices are then obtained by shifting I ′ as I[(i− 1)gt + j : igt + j] = (i− 1)gt + I ′[j]
for j = 1, . . . , gt. Based on the choice of gt, we introduce two specific search strategies.

Greedy Search (GS): Here, we use a fixed resampling period B and select gt = N whenever
t mod B = 0, and gt = 1 otherwise. Greedy Search reduces to the Best-of-N (BON) strategy
when B ≥ T , since in that case gt = 1 for all t. Smaller values of B emphasize short-term reward
exploitation, while larger values promote long-term consistency and exploration. An illustration
of Greedy Search, with resampling interval B, is provided in Figure 2, where the particles evolve
independently between resampling events and only interact at steps that are multiples of B.

Recursive Fork-Join Search (RFJS): Greedy search considers the largest resampling group size
(N ) at fixed time periods of B, and greedily selects one particle from this group, which leads to
an exploitation-style approach in search. Selecting the smallest group size (gt = 1) leads to a pure
exploration-style search of BON. Ideally, one should combine the benefits of resampling with multiple
group sizes at multiple time steps to get a balanced exploration and exploitation.

To this end, we propose a recursive grouping and sampling approach, which we call recursive
fork-join search (RFJS), in which the resampling group sizes vary systematically over time. At every
B steps, all N particles are resampled together; at every B/2 steps, the particles are partitioned into
groups of size N/2 that are resampled independently; at every B/4 steps, groups of size N/4 are
resampled; and so on. This hierarchical schedule is illustrated in Figure 2. As a concrete example,
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Figure 3: Image as side information: Qualitative illustration of the performance of our RFJS
algorithm compared to the DPS baseline on linear and nonlinear inverse problems. RFJS is able to
capture many details that are missed by the DPS baseline to achieve a superior reconstruction quality.

Box Inpainting Super Resolution (×4) Non-linear Deblur

Algorithm FS (↓) PSNR (↑) LPIPS (↓) SSIM (↑) FS (↓) PSNR (↑) LPIPS (↓) SSIM (↑) FS (↓) PSNR (↑) LPIPS (↓) SSIM (↑)

RFJS (ours) 0.308 28.29 0.136 0.855 0.380 25.26 0.225 0.695 0.394 23.89 0.229 0.668
GS (ours) 0.349 28.22 0.137 0.855 0.460 25.24 0.225 0.696 0.467 23.92 0.232 0.669
RGG 0.475 27.96 0.138 0.851 0.573 25.13 0.228 0.690 0.654 23.89 0.231 0.665
BON 0.584 28.20 0.137 0.854 0.915 25.14 0.229 0.694 0.881 23.89 0.233 0.667
DPS 0.739 27.93 0.139 0.852 1.042 25.13 0.229 0.693 1.008 23.87 0.232 0.666

Motion Deblur Gaussian Deblur Blind Deblur

RFJS (ours) 0.326 26.64 0.193 0.736 0.330 26.20 0.196 0.712 0.341 25.04 0.209 0.707
GS (ours) 0.392 26.58 0.193 0.735 0.385 26.16 0.198 0.711 0.417 25.04 0.211 0.706
RGG 0.497 26.55 0.193 0.733 0.495 26.15 0.200 0.709 0.473 24.97 0.211 0.701
BON 0.671 26.57 0.194 0.735 0.667 26.18 0.201 0.711 0.642 25.15 0.210 0.708
DPS 0.815 26.54 0.194 0.734 0.807 26.15 0.200 0.711 0.779 24.98 0.213 0.704

Table 1: Image as side information: Quantitative comparison of our GS and RFJS algorithms with
baseline algorithms. For each evaluation metric, the best result is shown in bold, and the second best
is underlined. RFJS and GS achieve superior performance consistently across all tasks and metrics.

consider N = 8. In this case, groups of size at least N/4 = 2 are resampled every B/4 steps,
groups of size N/2 = 4 are resampled every B/2 steps, and all N = 8 particles are resampled
every B steps. When multiple group sizes are scheduled to be resampled at the same time step t,
the larger group size always takes precedence. For example, although t = B/2 is also a multiple
of B/4, the scheme prioritizes the larger group size. Thus, rather than resampling groups of size
2, we resample groups of size 4 at t = B/2. Similarly, at t = B, the entire set of N = 8 particles
is resampled jointly. More generally, the group size at time step t is given by gt = N/2j

∗
, where

j∗ = min{ i ≥ 0 : t mod (B/2i) = 0 }. The localized resampling (fork) at intermediate group sizes
encourages balanced exploration, while the recursive return to larger group sizes (join) encourages
exploitation. Naively reducing B in GS does not balance this trade-off well and may lead to an
undesirable compromise between exploration and exploitation.

We have summarized this inference-time search framework in Algorithm 1 in the Appendix A.3. Our
framework is modular: the resampling rule, whether BON, GS, or RFJS, can be chosen depending on
budget and application. Since this requires no retraining and works with arbitrary reward functions, it
can be incorporated into any diffusion-based inverse problem solvers with minimal modification.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate our inference-time search framework for solving inverse problems with side information
by instantiating two specific search algorithms we proposed: Greedy Search (GS) and Recursive
Fork Join Search (RFJS), both of which are described in the previous section. We consider two
types of side information: (i) image as side information, where a reference image of the same entity
(here, the same person under different poses/lighting) is used as side information, and (ii) text as
side information, where a text description of the target image is used as a side information.
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Figure 4: Text as side information : Qualitative illustration of the performance of our RFJS algorithm
compared to the DPS baseline. For example, the side information provided for the super resolution
task is ‘golden retriever sitting on a snowy frozen lake, facing forward’. RFJS is able to capture many
details that are missed by the DPS baseline to achieve a superior reconstruction quality.

Box Inpainting Super Resolution (×32) Non-linear Deblur

Algorithm CS (↑) PSNR (↑) SSIM (↑) LPIPS (↓) CS (↑) PSNR (↑) SSIM (↑) LPIPS (↓) CS (↑) PSNR (↑) SSIM (↑) LPIPS (↓)

RFJS (ours) 0.901 20.75 0.678 0.294 0.801 17.13 0.352 0.4926 0.863 20.58 0.473 0.405
GS (ours) 0.894 19.76 0.676 0.305 0.791 17.20 0.351 0.5094 0.865 20.32 0.456 0.405
BON 0.882 19.99 0.672 0.308 0.788 17.21 0.350 0.5003 0.855 20.52 0.464 0.406
DPS 0.871 19.86 0.672 0.312 0.731 16.90 0.330 0.5220 0.839 20.55 0.469 0.409

Motion Deblur Gaussian Deblur Blind Deblur

RFJS (ours) 0.858 18.61 0.402 0.424 0.843 18.10 0.358 0.457 0.851 18.84 0.412 0.433
GS (ours) 0.835 17.83 0.369 0.453 0.835 17.96 0.356 0.457 0.835 18.93 0.414 0.438
BON 0.848 19.24 0.415 0.427 0.831 17.99 0.365 0.452 0.831 18.78 0.410 0.443
DPS 0.794 18.16 0.384 0.458 0.778 16.79 0.329 0.487 0.793 18.82 0.409 0.459

Table 2: Text as side information: Quantitative comparison of our GS and RFJS algorithms with
baseline algorithms. RFJS and GS achieve better performance across all tasks and metrics.

We demonstrate the plug-and-play nature of our algorithms by considering four different baseline
inverse problem solvers: (i) DPS (Chung et al., 2023b), (ii) BlindDPS (Chung et al., 2023a), (iii)
MPGD (He et al., 2024), and (iv) DAPS (Zhang et al., 2024). Due to page limitation, the evaluation
results using DAPS and MPGD are deferred to Appendix B.
Inverse problems: We evaluate our algorithms on six inverse problems, covering both linear and
nonlinear problems. The linear problems are: (i) box inpainting, (ii) super resolution, (iii) motion
deblurring, and (iv) Gaussian deblurring. The nonlinear problems are: (v) nonlinear deblurring, and
(vi) blind deblurring. A detailed description of these inverse problems is given in Appendix C.
Baselines: We compare the performance of GS and RFJS against the following baselines: (i) Baseline
solvers (DPS, BlindDPS, MPGD, DAPS), (ii) Best-of-N (BoN), which generates N independent
samples and selects the one with the best reward at the end, (iii) Reward Gradient Guidance (RGG),
which solves the inverse problem by running the backward diffusion according to Eq. (5), but with
the approximation∇xtV

τ
t (xt; s,y) ≈ ∇xtr(x̂0|t(xt); s). Unless otherwise noted, hyperparameters,

including guidance scale, number of diffusion steps, and task-specific settings, match the original
baseline implementations. The specific values of hyperparamaters are listed in Appendix C. All the
experiments are run on NVIDIA A100 GPUs on an internal compute cluster.

5.2 MAIN RESULTS

Image as side information: The goal is to reconstruct a human face from a noisy observation when
another image of the same identity is available (Fig. 3). Using Celeb-HQ (Na et al., 2022) as an out-
of-distribution set and a diffusion model pretrained on FFHQ (Chung et al., 2023b), we sample two
random images per identity for target and side information. We compute the reward as follows: first,
detect the face using MTCNN (Zhang et al., 2016) and then extract identity features with AdaFace
(Kim et al., 2022). Then, we measure the reward as the negative of the FaceSimilarity (FS) loss,
computed as the distance between the identity embeddings of the reconstructed and side-information
faces, extracted by pretrained AdaFace network. We evaluate on 64 pairs, using N = 8 particles
and B = 16, with a gradient scale 0.5 for RGG. We evaluate with standard metrics, PSNR, SSIM,
and LPIPS, but these often fail to measure the identity similarity. Thus, we use FaceSimilarity (FS),
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Figure 5: Contrast Image as Side Information: Qualitative
MRI reconstruction with RFJS vs. ContextMRI. The shapes
and line edges are well preserved in our reconstruction.

PDFS with PD

Algorithm PSNR (↑) SSIM (↑) LPIPS (↓) NMI (↑)

RFJS 25.85 0.801 0.375 0.457
GS 25.33 0.797 0.375 0.455
BON 25.47 0.797 0.376 0.454
ContextMRI 25.39 0.795 0.383 0.451

PD with PDFS

RFJS 27.85 0.920 0.358 0.579
GS 27.80 0.920 0.360 0.579
BON 27.80 0.918 0.366 0.570
ContextMRI 27.46 0.915 0.375 0.563

Figure 6: Quantitative MRI
reconstruction results (fastMRI
knee, AF=16, ACS=2%).

comparing the reconstruction to the ground truth for a more reliable measure of identity preservation.
Table 1 shows that both proposed inference-time search methods, GS and RFJS, outperform baselines,
with RFJS achieving the best overall scores indicating a stronger balance between exploration and
exploitation. Qualitative results given in Fig 3 show sharper facial details and preserved identity traits,
whereas Fig 7 in Appendix B.1 indicates the importance of the FS metric.

Text as side information: The goal is to reconstruct an image from its noisy observation, with a
text description of the image available as side information. We use a pre-trained diffusion model
trained on the ImageNet data (Dhariwal & Nichol, 2021). We use 25 images from the ImageNet
validation set to evaluate the algorithms and generated a short one-sentence textual description for
each image using ChatGPT. We use ImageReward (Xu et al., 2023), a pre-trained network that
measures text-to-image similarity, as the reward function. We consider some inverse problem tasks
that are significantly challenging, including ×32 super resolution, and strong blur with larger kernels.
Experiments use N=4 and B=100, and we report the standard metrics and CLIPScore (Radford
et al., 2021). CLIPScore measures the cosine similarity between CLIP image embeddings of the
ground truth and reconstruction, providing a semantically informed metric that reflects both visual
and textual alignment. It can be seen in Fig. 4 that the qualitative reconstructions closely match
textual descriptions. The quantitative metrics are in Table 2 where both GS and RFJS outperform
competing baselines, with RFJS achieving the highest CLIPScore.

MRI with multi-contrast side information: Finally, we test on fastMRI knee dataset (Zbontar
et al., 2018) with the ContextMRI model (Chung et al., 2025). We pair PD and PDFS contrasts,
reconstructing one from the other under highly accelerated 16× undersampling with 2% ACS. We use
normalized mutual information (NMI) as reward, which is robust to contrast changes. Table 6 shows
our methods consistently outperform the baseline in all the metrics of interest. Figure 5 highlights
sharper edges and more faithful structure.

Additional Experiments: To demonstrate the generality of our framework, we extended our search
algorithm beyond DPS to other samplers, including DAPS and MPGD. Qualitative and quantitative
results for these experiments are provided in Appendix B, along with additional DPS results for both
types of side information. We also conducted several ablations to analyze the role of side information
and the scalability of our approach. Appendix B.4 studies the sensitivity of the gradient-guided
methods. Appendix B.5 examines the effect of the number of particles: increasing N improves
exploration and reward, while runtime grows sublinearly due to parallelization (Appendix B.6). To
build intuition, Appendix B.7 provides 2D toy examples illustrating the benefits of side information
and the impact of B; Fig. 20 further shows that RFJS is more robust than GS when the reward is
non-linear and non-convex. Hyperparameter details are summarized in Appendix C.

6 CONCLUSION

We proposed a lightweight, modular inference-time search algorithm that integrates side information
into diffusion-based image reconstruction, in a principled way. By adaptively guiding the generative
process, our method delivers substantial quality gains, especially in ill-posed settings, while requiring
only minimal changes to existing pipelines. Extensive experiments across standard reconstruction
tasks show consistent improvements in both visual fidelity and quantitative metrics, and our approach
surpasses gradient-based alternatives. These results highlight the power of leveraging side information
at inference time to make diffusion-based solvers more reliable and accurate.
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APPENDICES

A PROOFS

A.1 PROOF OF PROPOSITION 1

To begin, recall that p0|S(x0|s) = 1
Z p0(x0)e

r(x0;s)
τ . Using Bayes’ rule, we can rewrite this expression

as

1

Z
p0(x0) exp

(
r(x0; s)

τ

)
=

p0,S(x0, s)

pS(s)
=

pS|0(s | x0)p0(x0)

pS(s)

and we gather that, for s fixed, pS|0(s|x0) ∝ e
r(x0;s)

τ where the proportionality is up to constants on
independent of x0. Starting from the LHS of (3), we first apply Bayes’ rule, reverse the conditioning,
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and introduce a marginalized x0 to leverage conditional independence. This sequence leads to

pt|t+1,Y,S(xt | xt+1,y, s) =
pt,S|t+1,Y (xt, s | xt+1,y)

pS|t+1,Y (s | xt+1,y)

=
pt|t+1,Y (xt | xt+1,y)pS|t,t+1,Y (s | xt,xt+1,y)

pS|t+1,Y (s | xt+1,y)

∝ pt|t+1,Y (xt | xt+1,y)

∫
x0

pS|t,t+1,Y (s | x0,xt,xt+1,y)p0|t,t+1,Y (x0 | xt,xt+1,y)dx0

= pt|t+1,Y (xt | xt+1,y)

∫
x0

pS|0,t,t+1,Y (s | x0,xt,xt+1,y)p0|t,Y (x0 | xt,y)dx0

∝ pt|t+1,Y (xt | xt+1,y)

∫
x0

pS|0(s | x0)p0|t,Y (x0 | xt,y)dx0

= pt|t+1,Y (xt | xt+1,y)Ex0∼p0|t,Y (·|xt,y)[exp(r(x0; s)/τ)]

∝ pt|t+1,Y (xt | xt+1,y) exp(V
τ
t (xt; s,y)).

The penultimate step follows from the discussion at the onset of the proof. The last step captures the
definition for V τ

t (xt; s,y) found in Proposition 1. The proof of (4) is similar without conditioning
on t+ 1.

Proof of Value-titled KL. Given a distribution p0 over Rd, a reward function r : Rd → R, and τ > 0,
we are interested in sampling from the distribution p∗ given by

p∗ = argmax
p

Ex∼p[r(x)]− τDKL(p∥p0)

= argmax
p

Ex∼p

[
r(x)− τ log

p(x)

p0(x)

]
= argmin

p
Ex∼p

[
log

p(x)

p0(x)
− r(x)

τ

]
= argmin

p
Ex∼p

[
log

p(x)

p0(x)er(x)/τ

]
≜ argmin

p
L(p).

Let q(x) ≜ 1
Z p0(x)e

r(x)/τ , where Z is chosen such that
∫
q(x)dx = 1. Then

L(p) = Ex∼p

[
log

p(x)

p0(x)er(x)/τ

]
= Ex∼p

[
log

p(x)

Zq(x)

]
= DKL(p∥q)− logZ.

By the non-negativity of KL-divergence, L(p) ≥ L(q) for any distribution p, and so p∗ = q, or
p(x) ∝ p0(x)e

r(x)/τ .

A.2 VALUE APPROXIMATION BOUND

In the following, we provide the steps that lead to Eq. 7, and subsequently bound the approximation
error. We begin with the following lemma.

Lemma 2. The conditional mean of X0 given Xt = xt and Y = y is given by

x̂0|t,Y (xt,y) = x̂0|t(xt) +

(
1− αt√

αt

)
∇xt

log pY |t(y | xt). (8)

Proof. For any distribution over X0 since pt|0(xt | x0) = N (xt |
√
αtx0, (1 − αt)I), we can use

the Tweedie’s formula (Efron, 2011) to p0|Y (x0 | y) and p0(x0) to get
√
αtx̂0|t,Y (xt,y) = xt + (1− αt)∇xt log pt|Y (xt | y) (9)
√
αtx̂0|t(xt) = xt + (1− αt)∇xt

log pt(xt). (10)

Since by Bayes theorem, ∇xt
log pt|Y (xt | y) = ∇xt

log pt(xt) + log pY |t(y | xt), the results
follows by simple algebra.
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Since pY |0 is Gaussian, using the DPS approximation on the second term in Eq. (8), we get

x̂0|t,Y (xt,y) ≈ x̂0|t(xt)−
(
1− αt√

αt

)
1

2σ2
y

∇xt∥y −A(x̂0|t(xt))∥22. (11)

Replacing 1/2σ2
y by η to control the approximation error gives Eq. (6). In the following, we denote

this approximation as

x̂0|t,Y (xt,y) ≈ x̂0|t(xt)−
(
1− αt√

αt

)
η∇xt

∥y −A(x̂0|t(xt))∥22 ≜ x̃η
0|t(xt,y). (12)

Proposition 3. Assume that r is a Lipschitz function that takes values in [0, 1]. For any xt,y, s, the
error in the value approximation V̂ τ

t (xt; s,y) = r(x̃η
0|t(xt,y); s)/τ with the true value V τ

t (xt; s,y)

is bounded as

|V τ
t (xt; s,y)− V̂ τ

t (xt; s,y)| ≤ cτ c1(t) +
Lr

τ

(√
c2(t) +

√
c3(t)c

η
4(t)

)
, (13)

where c1(t) = Var (r(X0; s) | xt,y), c2(t) = Var(X0 | xt,y), c3(t) = Var(X0 | xt),

cη4(t) = 1 + CV2(t) + η2∥AT (y −Ax̂0|t(xt))∥2Σ0|t(xt)
(14)

− 2η⟨A(x̂0|t,Y (xt,y)− x̂0|t(xt)),y −Ax̂0|t(xt)⟩, (15)

where CV(t) ≜
√

Var(pY |0(y|X0)|xt)

E[pY |0(y|X0)|xt]
is the coefficient of variation of the likelihood function pY |0(y |

X0) given xt and cτ = e1/τ − 1− 1/τ is a positive constant.

Remark 4. In Proposition 3, the term c1(t) denotes the conditional variance of the reward given
xt,y, c2(t) denotes the conditional variance of X0 given xt,y, and c3(t) denotes the conditional
variance of X0 given only xt. Since the variance of the reverse distribution p0|t(· | xt) decreases as
t becomes smaller, we have that all the terms c1(t), c2(t), c3(t) are small when t is small. Therefore,
the approximation error is small when t is small.

Proof. Since r is a bounded random variable, assuming finite variance, we can use Bennett’s inequality
for the log moment-generating function

V τ
t (xt; s,y) = logE[exp(r(X0; s)/τ)] ≤

1

τ
E[r(X0; s)] + cτ c1(t). (16)

Then, we have

| logE[exp(r(X0; s)/τ)]−
1

τ
r(x̃η

0|t,Y (xt,y))| ≤
1

τ
|E[r(X0; s)]− r(x̃η

0|t,Y (xt,y))|+ cτ c1(t).

(17)

Now, let us simplify the first term,

|E[r(X0; s)]−r(x̃η
0|t,Y (xt,y); s)| ≤ E[|r(X0; s)− r(x̃η

0|t,Y (xt,y); s)|] (18)

≤ LrE[∥X0 − x̃η
0|t,Y (xt,y)∥2] (19)

≤ Lr(E[∥X0 − x̂0|t,Y (xt,y)∥2] + ∥x̂0|t,Y (xt,y)− x̃η
0|t,Y (xt,y)∥2). (20)

The first term can be bounded by
√
c2(t) using Cauchy-Schwarz inequality in L2-probability space.

For the second term, first we simplify

x̃η
0|t,Y (xt,y) = x̂0|t(xt)−

(
1− αt√

αt

)
η∇xt

∥y −Ax̂0|t(xt)∥22,

and then ∇xt
∥y −Ax̂0|t(xt)∥22 = −(∇xt

x̂0|t(xt))A
T (y −Ax̂0|t(xt)). Now,

∇xt
x̂0|t(xt) = ∇xt

∫
xT
0 p0|t(x0 | xt)dx0 =

∫
∇xt

p0|t(x0 | xt)x
T
0 dx0 (21)

=

∫
∇xt log p0|t(x0 | xt)x

T
0 p0|t(x0 | xt)dx0. (22)
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Now, we shall compute

∇xt log p0|t(x0 | xt) = ∇xt log pt|0(xt | x0)−∇xt log pt(xt). (23)

But since
√
αtx̂0|t(xt) = xt+(1−αt)∇xt log pt(xt), and∇xt log pt|0(xt | x0) =

1
1−αt

(
√
αtx0−

xt), which gives (
1− αt√

αt

)
∇xt

log p0|t(x0 | xt) = x0 − x̂0|t(xt), (24)

which gives(
1− αt√

αt

)
∇xt

x̂0|t(xt) = EX0∼p0|t(xt)[(X0 − x̂0|t(xt))X
T
0 ] (25)

= Ep0|t(xt)[X0X
T
0 ]− Ep0|t(xt)[X0]Ep0|t(xt)[X

T
0 ] (26)

= Ep0|t(xt)[(X0 − x̂0|t(xt))(X0 − x̂0|t(xt))
T ] ≜ Σ0|t(xt), (27)

which is precisely the covariance matrix of X0 given xt.

Thus, we finally get,

x̃η
0|t,Y (xt,y) = x̂0|t(xt) + ηΣ0|t(xt)A

T (y −Ax̂0|t(xt)) (28)

Next, note that since Ep0|t(xt)[pY |0(y | X0)] = pY |t(y | xt), we can define f(X0) =
pY |0(y|X0)

Ep0|t(xt)
[pY |0(y|X0)]

, whose expectation is Ep0|t(xt)[f(X0)] = 1. Further, it is easy to see that

x̂0|t,Y (xt,y) = Ep0|t(xt)[X0f(X0)]. Now, we are ready to bound the final term as follows

∥x̂0|t,Y (xt,y)− x̃η
0|t,Y (xt,y)∥2 (29)

= ∥Ep0|t(xt)[X0f(X0)]− x̂0|t(xt)− ηΣ0|t(xt)A
T (y −Ax̂0|t(xt))∥2 (30)

= ∥Ep0|t(xt)[X0f(X0)− x̂0|t(xt)f(X0)] (31)

− ηEp0|t(xt)[(X0 − x̂0|t(xt))(X0 − x̂0|t(xt))
T ]AT (y −Ax̂0|t(xt))∥2 (32)

= ∥Ep0|t(xt)[(X0 − x̂0|t(xt))(f(X0)− η(X0 − x̂0|t(xt))
TAT (y −Ax̂0|t(xt))))]∥2

(33)

≤ Ep0|t(xt)[∥(X0 − x̂0|t(xt))(f(X0)− η(X0 − x̂0|t(xt))
TAT (y −Ax̂0|t(xt))))∥2]

(34)

= Ep0|t(xt)[∥X0 − x̂0|t(xt)∥2|f(X0)− η(X0 − x̂0|t(xt))
TAT (y −Ax̂0|t(xt))|] (35)

≤
√

c3(t)
√
cη4(t), (36)

where the last step follows by Cauchy-Schwarz inequality in L2 probability space, where

c3(t) ≜ Ep0|t(xt)[∥X0 − Ep0|t(xt)[X0]∥
2
2] = Var(X0 | xt). (37)

and at last, we have

cη4(t) ≜ Ep0|t(xt)[(f(X0)− η(X0 − x̂0|t(xt))
TAT (y −Ax̂0|t(xt)))

2] (38)

= Ep0|t(xt)[f(X0)
2] + η2E[((X0 − x̂0|t(xt))

TAT (y −Ax̂0|t(xt)))
2] (39)

− 2ηEp0|t(xt)[(X0f(X0)− f(X0)x̂0|t(t))
T ]AT (y −Ax̂0|t(xt)) (40)

= Ep0|t(xt)[f(X0)
2] + η2∥AT (y −Ax̂0|t(xt))∥2Σ0|t(xt)

(41)

− 2η⟨A(x̂0|t,Y (xt,y)− x̂0|t(xt)),y −Ax̂0|t(xt)⟩. (42)

Since Ep0|t(xt)[f(X0)
2] =

Ep0|t(xt)
[(pY |0(y|X0))

2]

(Ep0|t(xt)
[pY |0(y|X0)])2

= 1 + CV2(t), where CV(t) =
√

Var(pY |0(y|X0)|xt)

E[pY |0(y|X0)|xt]
is the coefficient of variation of the likelihood function given xt.
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Algorithm 1 Inference-Time Search with Side Information for Inverse Problems

Require: Side information s, observation y, reward function r, resampling parameter B, number of
particles N , temperature τ > 0

1: Initialize N particles: xT [i] ∼ N (0, I) for 1 ≤ i ≤ N
2: for t = T − 1 to 0 do
3: Sample xt[i] ∼ pt|t+1,Y (· | xt+1[i],y), ▷ Sample candidate particles
4: r[i]← r(x̂0|t,Y [i]; s) ▷ Compute reward using side information
5: gt ← GROUPSIZE(N,B, t) ▷ Compute the group size at step t for resampling
6: I ← RESAMPLE(r, gt, τ) ▷ Resample indices with replacement among the groups of size gt
7: xt[i]← xt[I[i]] ▷ Retain the particles in the resampled indices
8: Select x∗

0 from x̂0|0[1 : N ] (e.g., via reward maximization) return x∗
0

A.3 ALGORITHM

We summarize our framework in Algorithm 1. The GROUPSIZE step in line 5 computes the group-
size at time t and can be changed to obtain various search strategies: Best-of-N, Greedy Search, and
RFJ Search, and the RESAMPLE step in line 6 samples the indices within the groups as described in
the main paper. Line 3 is specific to the diffusion samplers and how they implement it.

Here, we roughly explain how the entire algorithm is implemented in all the three diffusion samplers.

DPS: Compute the denoised mean and the clean data estimate µt[i], x̂0|t[i] from xt+1[i]. Compute
gt[i] = ∇xt∥y − Ax̂0|t(xt+1[i])∥22 and use it to update x̂0|t,Y [i] ← x̂0|t[i] − 1−αt√

αt
ηgt[i], and

µt[i] ← µt[i] − ζgt[i]. Then, compute rewards based on x̂0|t,Y [i] to resample promising indices.
Take the reverse diffusion step on the resampled µt[I[i]] to obtain xt[i].

DAPS: Compute the clean data estimate x̂0|t[i] from xt+1[i]. Compute the rewards based on x̂0|t[i],
resample, and then take MCMC steps, starting from the resampled particles, to perform a local
Langevin sampling (Zhang et al., 2024). In the end, we obtain x̂t,Y [i], from which we sample xt[i]
by adding appropriate decoupled noise (Zhang et al., 2024).

MPGD: Compute the clean data estimate x̂0|t[i] from xt+1[i]. Compute gradient gt = ∇x0|t∥y −
Ax̂0|t[i]∥22. Take x̂0|t,Y [i] ← x̂0|t[i] − 1−αt√

αt
ηgt[i], and x̂0|t[i] ← x̂0|t[i] − ζgt. Resample indices

based on rewards computed from x̂0|t,Y [i]. Then, using the particles corresponding to the sampled
indices x̂0|t,Y [I[i]], take a reverse DDIM step (He et al., 2024; Song et al., 2021a).

B ADDITIONAL EXPERIMENTS

B.1 DPS

Figure 7 provides a qualitative example highlighting why FaceSimilarity is essential in addition
to standard metrics such as PSNR, SSIM, and LPIPS. It compares three samples generated by the
BlindDPS algorithm with our RFJS reconstruction. Although our result better preserves identity and
achieves a higher FaceSimilarity score, its PSNR and LPIPS are worse than BlindDPS, underscoring
that traditional metrics may not capture semantic fidelity. This illustrates the need for task-specific
metrics in inverse problems to ensure qualitative performance.

We also present additional qualitative examples for our DPS experiments in Figures 8 and 9, corre-
sponding to settings that use face and text as side information, respectively.

B.2 DAPS

Setup: We employ the search and gradient modules to infuse side information using DAPS as the
base sampler. We consider two challenging tasks, box inpainting with a box of size 96 × 96 and
super-resolution with downsampling factor of 10. For gradient guidance, we used a scale of 15 with
respect to the noise being added to x̂0|t(xt) after MCMC steps (Zhang et al., 2024). DAPS uses
fewer diffusion steps (200) than DPS (1000). Further, the algorithm is based on a graphical model
that allows for more inherent exploration due to the decoupling between consecutive steps. Therefore,
for search algorithms, relatively smaller bases are preferable, and hence B = 4 is chosen.
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Ground truth Input RFJS (Ours) DPS (1) DPS (2) DPS (3)

Figure 7: Qualitative illustration of the relevance of the FaceSimilarity metric and the superior
performance of RFJS in identity preservation. RFJS reconstruction is clearly more faithful to the
ground truth, yet PSNR, SSIM, and LPIPS values slightly favor the BlindDPS outputs.

Side Measurement DPS RGG RFJS (Ours) Ground Truth Side Measurement DPS RGG RFJS (Ours) Ground Truth
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Figure 8: Additional samples using DPS as the base sampler.

Results: The qualitative results are given in Figure 10, while the quantitative metrics are given in 3.
Observe that for the task of inpainting, our search algorithm shows a significant improvement over
DAPS, particularly in the FaceSimilarity metric.

Box Inpainting Super Resolution (×10)

Method FaceSimilarity (↓) PSNR (↑) LPIPS (↓) SSIM (↑) FaceSimilarity (↓) PSNR (↑) LPIPS (↓) SSIM (↑)

RFJS (ours) 0.423±0.10 28.720±1.35 0.140±0.03 0.788±0.03 0.654±0.11 25.228±1.34 0.282±0.03 0.661±0.04

GS (ours) 0.511±0.12 28.640±1.43 0.140±0.03 0.787±0.03 0.760±0.12 25.271±1.36 0.285±0.03 0.662±0.04

RGG 0.436±0.12 28.410±1.39 0.141±0.03 0.784±0.03 0.579±0.13 25.210±1.34 0.282±0.03 0.659±0.04

BON 0.611±0.14 28.660±1.45 0.141±0.03 0.787±0.03 0.909±0.11 25.220±1.38 0.285±0.03 0.660±0.04

DAPS 0.739±0.18 28.290±1.53 0.142±0.03 0.784±0.03 1.020±0.14 25.170±1.35 0.285±0.03 0.659±0.04

Table 3: Comparison of metrics for various inverse problems using DAPS as the base sampler. For
each metric, the best result is shown in bold, and the second best is underlined. We observe that our
RFJ Search-based algorithm has the best or the second-best performance in all the tasks.

B.3 MPGD
Setup: As in the paper He et al. (2024), we choose super-resolution and Gaussian deblurring as the
tasks, along with additional task of box inpainting. For box inpainting, we used a box of size 64× 64
at the center of the face. Further, we modified the down-sampling scale of super-resolution from 4 to
6, and the intensity of the kernel in Gaussian deblur from 3 to 5 to make the tasks more challenging.
Even though MPGD uses 100 DDIM steps in generation, its exploratory capabilities are similar to
DPS. Therefore, we cannot use very large base B, whence, we choose B = 8 for box inpainting, and
super-resolution. For Gaussian deblur, we found that using B = 8 becomes detrimental for other
metrics, and so B = 16 is used. For the gradient guidance, the scales of 0.5 for box inpainting, and
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Side: A male lion with a black-to-rust mane, surrounded by
soft dry grass. Side: A tabby cat with dark stripes.

Figure 9: Qualitative comparison on ImageNet with textual side information. For highly degraded
observations, DPS and BlindDPS often produce artifacts, whereas our method reduces these by better
aligning reconstructions with the description.
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Figure 10: Qualitative comparison of algorithms using DAPS as the base sampler. Our method offers
better reconstructions aligned with the identity.

0.25 for super-resolution and Gaussian deblur are chosen carefully to avoid overfitting. This is the
scale relative to the gradient with respect to the measurement. For more discussion and examples on
the effect of gradient scale, see Appendix B.4.

Results: Experimental results with MPGD (He et al., 2024) as baseline algorithm are given in Table
4. We observe that using RFJ Search significantly enhances the FaceSimilarity (FS) metric, while
improving the other metrics. The reconstructions that utilize the side information exhibit strong
identity match with the one described by the measurement, which is reflected in the FS metric.

B.4 EXPERIMENTS ON EFFECT OF GRADIENT SCALE

Gradient Guidance Limitations. While guiding the reverse diffusion process with reward gradients
can help generate images with higher reward scores, this approach has several limitations. First, as
shown in Figures 12, 13, gradient-based guidance primarily adds fine details, such as wrinkles or
texture, to the reconstruction, but it cannot significantly alter the global structure of the face. To
isolate the effect of the gradient, we used fixed noise realizations for both the gradient-based and
baseline methods. The results show that changes are mostly confined to local details, implying that if
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Sampler Task Method FaceSimilarity (↓) PSNR (↑) LPIPS (↓) SSIM (↑)

MPGD

Box Inpainting (64)

RFJS (8) (ours) 0.542±0.08 29.81±1.44 0.102±0.02 0.852±0.02

GS (8) (ours) 0.587±0.10 29.44±1.75 0.102±0.02 0.851±0.02

RGG (0.5) 0.609±0.08 29.24±1.30 0.103±0.02 0.850±0.02

BON 0.661±0.08 29.35±1.82 0.102±0.02 0.851±0.02

MPGD 0.766±0.07 29.09±1.27 0.103±0.02 0.848±0.02

Super Resolution (6)

RFJS (8) (ours) 0.834±0.09 24.50±1.48 0.242±0.04 0.666±0.06

GS (8) (ours) 0.878±0.08 24.45±1.47 0.247±0.03 0.660±0.06

RGG (0.25) 0.854±0.07 24.39±1.44 0.246±0.03 0.656±0.05

BON 0.964±0.09 24.44±1.58 0.244±0.04 0.664±0.06

MPGD 1.037±0.07 24.39±1.45 0.249±0.03 0.657±0.06

Gaussian Deblur (5)

RFJS (16) (ours) 0.848±0.07 24.19±1.40 0.229±0.03 0.638±0.06

GS (16) (ours) 0.893±0.07 24.14±1.39 0.233±0.03 0.637±0.06

RGG (0.25) 0.846±0.05 24.11±1.34 0.235±0.03 0.634±0.05

BON 0.950±0.07 24.20±1.38 0.233±0.03 0.640±0.06

MPGD 1.026±0.06 24.09±1.35 0.236±0.03 0.634±0.06

Table 4: Quantitative comparison of reconstruction metrics in case of inverse problems with MPGD as
the base sampler. For each metric, the best result is shown in bold, and the second best is underlined.
Observe that our RFJSsearch algorithm has the best or the second-best performance in all the tasks.
In Gaussian deblur, our search algorithm is only marginally worse than the best metrics attained.
The value in the brackets indicates the resampling rate for search algorithms, and gradient scale for
Gradient algorithm.
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Figure 11: Qualitative comparison of algorithms using MPGD as the base sampler. Our method
offers better reconstructions aligned with the identity. Notice that while the identity is preserved, the
exact reconstruction might not be possible as witnessed in, for example, Box inpainting. The ground
truth has a smiling face whereas the reconstruction does not, although being the same person. Thus,
PSNR improvements over the base sampler might be small, but FaceSimilarity improvements are
significant.

the sampling trajectory is poor, gradient guidance alone cannot compensate. This highlights the need
for search-based methods that can explore a wider range of trajectories during inference.

Second, this method is sensitive to the choice of gradient scale. In the visual examples, we used a
relatively large scale of 1.6 to make the gradient’s effect more visible; however, such high scales
often degrade other metrics like PSNR and SSIM and introduce artifacts. Empirically, we found that
a scale around 0.5 yields the best balance when the base sampler is DPS or BlindDPS, consistently
improving the FaceSimilarity metric while preserving other evaluation metrics and avoiding artifacts
(see Figure 13). Moreover, the sensitivity to gradient scale increases when the number of reverse
diffusion steps is small. For instance, in DAPS (Figure 12) and MPGD, where the number of steps is
limited to 200 and 100 respectively, larger scales quickly lead to visible artifacts, as demonstrated in
Figures 14, and 15.

It is well established in deep learning research that deep (convolutional) neural networks are vulnerable
to gradient-based adversarial attacks (Goodfellow et al., 2015). Consequently, using such networks
to provide reward-based guidance inherits these vulnerabilities. However, when combined with
diffusion samplers, this susceptibility is partially alleviated, as the diffusion process can help steer
trajectories away from adversarially induced local minima. This mitigating effect is particularly
evident when using a large number of sampling steps (e.g., 1000 steps in DPS). In contrast, samplers
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Figure 12: Effect of reward-gradient guidance in diffusion-based inverse problems. We show 4
runs with different random seeds (rows), and for each seed we vary the gradient scale across 4 settings
(columns). Within each row, the noise realization is identical and only the gradient scale changes;
within each column, the gradient scale is fixed while the random seed varies. The ground truth and
degraded input are the same for all reconstructions. This arrangement reveals two key observations:
(1) The reward gradient influences fine details, such as wrinkles and facial lines without altering
the overall facial structure; the structure is primarily determined by the initial noise realization.
(2) Different seeds reconstruct different face structures, highlighting the multi-modal nature of the
problem. This demonstrates why using multiple particles and performing search across them is
beneficial: it enables exploration of structurally different hypotheses while the reward gradient refines
locally.
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Figure 13: Qualitative comparison of the effect of gradient scale on reconstruction paths.

with fewer steps (e.g., 100 steps in MPGD) exhibit increased sensitivity to the gradient scale, as
illustrated in Figures 14 and 15.
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Figure 14: Qualitative comparison of the effect of gradient scale on reconstruction paths. Notice that
while the base reconstruction is reasonable, adding the gradient can degrade it if the scale is very
large. The final scale used in the experiments is 0.5.
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Figure 15: Qualitative comparison of the effect of gradient scale on reconstruction paths for super
resolution task. Notice that while the base reconstruction is reasonable, adding the gradient can
degrade it if the scale is very large. The final scale used in the experiments is 0.25.
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Figure 16: Scaling of search algorithms with respect to the number of particles.
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(a) Nonlinear Deblur
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(b) Super Resolution (4)
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(c) Gaussian Deblur
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Figure 17: Effect of the number of particles N on the FaceSimilarity metric in DPS. As N increases,
we proportionally increase the base to encourage greater exploration. Specifically, for N = 2, 4, 8,
the corresponding base values are B = 4, 8, 16. Using many particles with a small value for base B
can overly emphasize reward maximization, which may degrade other evaluation metrics.
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(a) Box Inpainting (Box: 64)
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(b) Super-resolution (Scale: 6)
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Figure 18: Effect of number of particles N on the FaceSimilarity metric. RFJ Search algorithm offers
the best scaling performance, followed by Greedy Search algorithm. Finally, BestOfN performance
improves, but only marginally. 64 indicates the size of the box for inpainting, 6 indicates the down-
sampling factor in super-resolution, and 5 is the intensity of the Gaussian kernel in Gaussian deblur.
The base resampling rate B is 8 for both the search algorithms in box inpainting and super-resolution
whereas B is 16 for the Gaussian deblur.

B.5 EFFECT OF NUMBER OF PARTICLES

Although we do not explicitly define a second base, the recursive structure of our RFJS algorithm
implicitly induces a small base, denoted by b, which refers to the interval at which the smallest
groups are resampled. For instance, with 8 particles and a base B = 16, the smallest groups of size
2 are resampled every 4 steps, so the induced small base is b = 4. This hierarchical resampling
schedule enables finer control over exploration without over-committing the entire particle set too
aggressively. For analyzing the effect of particle count in RFJ Search (see Figure 17), we fix the
small base b so that groups of the same size follow the same resampling dynamics, even across
experiments with different total numbers of particles. This ensures that any differences we observe
are attributable to the number of particles, not to changes in resampling frequency. On the other
hand, when comparing RFJ Search vs Greedy Search, we fix the big base B to ensure both methods
resample at the same overall frequency. This is why, in our plots, the B values for Greedy search
vary with the number of particles (e.g., B = 4, 8, 16 for 2, 4, 8 particles respectively), matching the
corresponding configurations in RFJ Search.

B.6 RUNTIMES

Table 5 reports wall-clock runtimes (in seconds) for our search algorithms compared to Best-of-N
(BON) and Greedy Search across different baselines (DPS, DAPS, and MPGD) with varying numbers
of particles. When the number of particles is set to 1, the runtime corresponds to the baseline method
without search. As the number of particles increases, amount of computation scales linearly with N ,
but thanks to parallelization, the wall-clock overhead remains moderate: with N = 8, runtimes are
only 4–5× those of the baseline. We also note that our RFJ Search method take slightly more time
than BON and Greedy Search, but consistently achieve better reconstruction quality, highlighting the
practical efficiency of our approach.
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Particles BON Greedy Search RFJ Search
1 55 - -
2 65 75 75
4 102 118 131
8 180 195 241

(a) Task: Box inpainting. Baseline: DPS

Particles BON Greedy Search RFJS
1 61 - -
2 72 91 91
4 125 141 157
8 229 245 290

(b) Task: Box inpainting. Baseline: DAPS

Particles BON Greedy Search RFJS
1 3 - -
2 4 5 5
4 5 8 9
8 8 12 23

(c) Task: Box inpainting. Baseline: MPGD

Table 5: Runtime (seconds) vs number of particles for BON, Greedy Search, and RFJ Search methods
on DPS, DAPS and MPGD (B = 8). The baseline algorithm corresponds to N = 1.

Unconditional DPS x0 y, s, B = 512 x0 y, s, B = 128 x0 y, s, B = 32

x1

x 2

Samples Mixture means Ground truth y = Ax0

Figure 19: Illustration of the effect of B in utilization of side information for the reconstruction in a
linear inverse problem with a mixture of Gaussian prior.

B.7 SIMULATION IN 2D
To understand the effect of side-information in inference-time search, we consider a simple scenario
with the prior p0 on X0 being a mixture of Gaussian distribution, as illustrated in Figure 19, part (i)
(numbered left to right).

For the ground truth x sampled from the central mode, and given y = Ax + zy, we plotted the
posterior estimates by the DPS algorithm in (ii). Notice that since the posterior is multi-modal with
three modes due to the prior distribution, the reconstruction algorithm DPS cannot recover the ground
truth with accuracy. Given additional side information, which has a linear relation s = Bx + zs
with x (vertical, not plotted), we plot the samples generated by using our RFJS algorithm as the
base rate B decreases as 512, 128, 32 in Figures (iii), (iv) and (v) respectively. We use the reward
function r(x, s) = −∥s−Bx∥22. As B decreases, the effect of side information is more visible as
the generated samples concentrate around the ground truth x. This illustrates the importance and
usefulness of side information in a simple yet intuitive setting.

The above example considers a linear side information with negative of the distance in the range
space of B, which is a concave and hence well-behaved reward. Therefore, B has more or less
monotone effect on the performance of the RFJS, the particles get closer and closer to the ground
truth. We wish to illustrate the effect of B when s and x have a complicated non-linear relationship,
which can be represented by a neural network rθ. In that case, the reward is not very well-behaved.
We examine the performances of RJFS and GS algorithms in this setup. We emphasize that this setup
accurately captures the nuances in the real-world problems, where the reward model is a pretrained
network (for example, in our experiments on face and text as side information). We initialize the
reward network with random weights, and we generate samples using this reward for tilting. We
compute the PSNR of the reconstucted samples with respect to the ground truth. We plot the result in
Figure 20. Observe that RFJS outperforms GS across all values of B, showing the robust nature of
RFJS when the reward is complicated non-linear, non-convex function. Finally, it is interesting to
observe that the optimal value of PSNR occurs at B = 4 using RFJS, indicating that delicate balance
is required while utilizing side information.

C HYPERPARAMETERS

In our implementation of RESAMPLE in Algorithm 1, we perform a greedy resampling, i.e., we pick
the best candidate within each group of size gt and replicate it gt times. Since we are using large
enough B, this is justified and has similar effect as using smaller B with moderate temperature, with
the added advantage of utilizing less function calls to the reward network r. Thus, tuning the B
allows us to maintain balance without over-optimizing with respect to the reward.
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Figure 20: Comparison of performance of RFJ Search (RFJS) and Greedy Search (GS) as a function
of B for a randomly generated reward network rθ. RFJS outperforms GS across all values of B.

For reproducibility, we provide detailed settings for each task, sampler, and search algorithm used in
our experiments below.

C.1 FACE IDENTITY EXPERIMENTS

For experiments with face identity as side information:

• DPS: Box inpainting with box size 96. All other parameters (downsampling rate, blur
kernel, noise levels) are the same as the default DPS settings in the implementation. Search
algorithms use N = 8 particles and resampling base B = 16 for both RFJ and Greedy
search. Gradient guidance is applied with scale 0.5.

• DAPS: Box inpainting with box size 96, super-resolution with downsampling rate 10×.
Noise levels unchanged from original DAPS defaults. Search algorithms use N = 8 particles
and resampling base B = 4, with gradient guidance scale 13.

• MPGD: Box inpainting with box size 64, super-resolution with downsampling rate 6×,
and Gaussian deblur with intensity of 5.0. Search algorithms use N = 8 particles and
resampling base B = 8. Gradient guidance scale is 0.5 for box inpainting and 0.25 for
super-resolution and Gaussian deblur.

C.2 TEXT SIDE INFORMATION EXPERIMENTS

When text descriptions were used as side information, we made the degradation more severe so that
the information in s was not already present in the measurement y. Otherwise, side information
would not provide meaningful guidance. For example, if the input image is sharp enough to identify
the type of animal, then explicitly stating it in s adds little value.

The settings for these tasks are:

• Box inpainting: Box size 138, noise level same as default.

• Super-resolution: Downsampling rate 32×, noise level same as default.

• Motion/Gaussian deblur: Kernel size 256, intensity of Gaussian 5.0, noise level 0.1.

• Nonlinear/Blind deblur: Kernel size unchanged, noise level 0.5.

For all tasks in this setting, search algorithms use N = 4 particles and resampling base B = 100.

These hyperparameters ensure that our framework is evaluated under severe degradations (heavy
downsampling, blurring, or noise), while search and guidance settings remain consistent across
samplers and modalities.

C.3 MRI EXPERIMENTS

We used the contrast-pairings among the files in the fastMRI dataset, provided by Atalık et al. (2025).
We collect the data from the (fastMRI) source and preprocess to be compatible with the inputs in
ContextMRI. Specifically, the setup used in the data is multi-coil MRI acquisition, which requires
us to estimate the coil sensitivity maps, and then a complex reconstruction from them. ContextMRI
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takes complex values as inputs and denoises to produce a complex-valued 2D image. We computed
NMI with 64 bins at each step of the diffusion process to balance complexity with performance. We
use the defaults parameters as in ContextMRI, except for the acceleration factor, 16 and the center
fraction (ACS), 0.02. We use a pair of anatomy which two contrasts, which has more 30 slices. We
consider the slices 15 to 28 as these are more challenging and report the results by using one as the
side information for the other.

D LIMITATIONS

Our proposed search algorithms lack formal optimality guarantees for exploration–exploitation, and
we do not claim they are theoretically optimal. We expect that stronger algorithms are possible,
potentially improving both sample efficiency and robustness. A central reason is the absence of
a general mathematical framework for designing optimal exploration–exploitation strategies in
diffusion-based inverse problems with side information, an open problem we highlight. Practically,
this means our methods rely on principled heuristics and tuned schedules (e.g., reward scaling,
resampling/branching rates) whose compute allocation is not provably optimal, suggesting a clear
direction for future work.

E USE OF LARGE LANGUAGE MODELS

Parts of this work were assisted by large language models (specifically GPT-5 from OpenAI). Their
use was limited to improving clarity, grammar, and the presentation of experimental descriptions. All
conceptual contributions, experimental design, analysis, and final decisions are solely the authors’
responsibility. The models were not used to generate new research ideas, design experiments, or
make unverifiable scientific claims. Additionally, large language models were used to generate textual
descriptions serving as side information for a specific set of experiments, as detailed in the main
paper.
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