
Large-Scale Training Data Attribution for
Music Generative Models via Unlearning

Woosung Choi1∗ Junghyun Koo1∗ Kin Wai Cheuk1∗

Joan Serrà1 Marco A. Martínez-Ramírez1 Yukara Ikemiya1

Naoki Murata1 Yuhta Takida1 Wei-Hsiang Liao1 Yuki Mitsufuji1,2

Sony AI1 Sony Group Corporation2

Abstract

This paper explores the use of unlearning methods for training data attribution
(TDA) in music generative models trained on large-scale datasets. TDA aims to
identify which specific training data points contributed the most to the generation
of a particular output from a specific model. This is crucial in the context of
AI-generated music, where proper recognition and credit for original artists are
generally overlooked. By enabling white-box attribution, our work supports a fairer
system for acknowledging artistic contributions and addresses pressing concerns
related to AI ethics and copyright. We apply unlearning-based attribution to a
text-to-music diffusion model trained on a large-scale dataset and investigate its
feasibility and behavior in this setting. To validate the method, we perform a grid
search over different hyperparameter configurations and quantitatively evaluate
the consistency of the unlearning approach. We then compare attribution patterns
from unlearning with non-counterfactual approaches. Our findings suggest that
unlearning-based approaches can be effectively adapted to music generative models,
introducing large-scale TDA to this domain and paving the way for more ethical
and accountable AI systems for music creation.

1 Introduction

Generative AI has demonstrated impressive capabilities across modalities, including text, images,
audio, and video, reshaping artistic creation, as shown by [1, 16, 33]. While democratizing creative
work, these advancements have also raised concerns regarding authorship, copyright, attribution, and
ethics. Notably, generative models can unintentionally reproduce copyrighted material, posing risks
of intellectual property violations [6, 28]. As highlighted by Deng et al. [7], these issues are especially
pressing in music, where proper attribution and credit to original artists and creators are critical, yet
often neglected. To address this, training data attribution (TDA) has emerged as a promising direction
to identify which training data points contribute to a model’s output, thereby enabling fair crediting.

TDA can be approached in two scenarios based on model access. In the black-box scenario, where the
model is inaccessible, corroborative (similarity-based) attribution is typically performed by computing
similarity between generated outputs and training data using external feature encoders [2, 4]. While
practical, it relies entirely on each encoder’s perspective, which does not necessarily align with the
generative model’s perspective or its inner workings. In contrast, the white-box scenario assumes
access to the model’s parameters, enabling attribution methods that directly reflect the model’s
internal behavior. An intuitive approach in this setting is based on counterfactual reasoning [20],
asking how the model’s prediction would change if a particular training data point was removed.
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The straightforward solution then to measure the influence of a training data point xi is to retrain
the whole model without xi (leave-one-out retraining). However, this method is computationally
unfeasible for large-scale datasets. Instead of retraining, Koh and Liang [20] and Park et al. [24]
approximate the change in loss using the influence function [13]. To our knowledge, Deng et al. [7] is
the first work in music generation that explored influence function-based TDA methods, proposing an
algorithmic solution to estimate the impact of individual training data items on the generated music.
They applied these methods to a Music Transformer [15] trained on the MAESTRO dataset [14],
which contains about 200 hours of virtuosic piano performances. The same experimental setup was
adopted by [8] to further explore ensemble-based TDA approaches.

While the aforementioned methods approximate loss change via the influence function or the ensemble
approach, machine unlearning emerges as a promising approach to emulate the counterfactual model.
Machine unlearning was proposed by Cao and Yang [5] to forget a specific data item from a pretrained
model. Recent studies on TDA have employed gradient ascent to maximize the loss on specific
training samples, a process that can be interpreted as unlearning [19, 29]. To mitigate catastrophic
forgetting, Wang et al. [29] introduced a regularization technique using the Fisher Information Matrix
(FIM) when unlearning a sample xi from the pretrained model, measuring the change in loss between
two different checkpoints as the attribution score. Although unlearning-based TDA has been actively
explored in other domains, its application to music generation remains unstudied.

In this paper, we adapt unlearning-based TDA to measure the attribution score of individual training
examples on generated music. We train a latent DiT-based text-to-music generation model [10] on
a private dataset comprising 115 k high-quality music tracks with diverse musical styles, totaling
approximately 4,356 hours. To validate our unlearning-based TDA pipeline, we adopt a self-influence
attribution setup to assess whether our unlearning method effectively approximates the counterfactual-
based approach. In this setup, we evaluate the fidelity of our unlearning method to ensure accurate
TDA by unlearning a training example and evaluating its influence on other training samples (this
could be seen as the case where a model incidentally generated a direct duplicate of a training sample).
Inspired by [11], we assess self-influence based on two criteria: (1) the influence of the removed
sample must be effectively eliminated, and (2) the model’s overall performance must remain stable.
We detail these two metrics in 3.2. We then leverage these criteria to conduct a grid search and
identify optimal configurations for TDA with unlearning.

Using the best configuration from the self-influence setup, we further analyze test-to-train attribution,
comparing the unlearning approach with several other non-counterfactual TDA methods that treat
the generative model either as a black-box (similarity-based) or as a white-box (similarity- and
gradient-informed), and examine how their influence patterns differ. To our knowledge, this is the
first work that explores TDA on a text-to-music DiT, trained on large dataset of diverse musical styles.

2 Methodology

Intuitively, the attribution score can be obtained by measuring the impact of removing a training
sample on the model’s ability to generate a target output ẑ given the condition ci. Let θ0 be the model
trained on the full dataset D = {zi}Ni=1, where zi = (xi, ci) is an audio–caption pair, and θ\zi

be
the model trained without zi. While there are multiple ways to define the attribution scores τ (ẑ, zi),
we adopt the definition based on the changes in loss as in [29], which is defined as

τ (ẑ, zi) = L(ẑ, θ\zi
)− L(ẑ, θ0), (1)

However, this leave-one-out method is computationally costly, especially when the dataset is huge
and the model training is expensive. A slightly better alternative is to unlearn zi from θ0 to obtain
θ\zi

. Nonetheless, this approach still requires unlearning θ0 for N times to obtain the exhaustive
attribution scores for the whole dataset D.

As proposed by Wang et al. [29], an even better solution is to approximate Eq. 1 with the mirrored
influence hypothesis [19] by unlearning the generated sample ẑ from a pretrained model θ0 to obtain
an approximation to θ\ẑ

τ (ẑ, zi) = L(zi, θ\ẑ)− L(zi, θ0). (2)
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This approach requires only a single unlearning step per generated sample, further reducing the
computation cost. In the following section, we detail the unlearning algorithm used in this work to
obtain θ\ẑ.

2.1 Unlearning Algorithm

While the most intuitive way to unlearn ẑ is to directly maximize its loss, this approach can lead to
catastrophic forgetting [18]. To unlearn the generated sample ẑ without catastrophic forgetting, the
unlearned objective should be defined as

Lẑ
unlearn(θ) = −L(ẑ, θ) +

∑
zi∈D

L(zi, θ), (3)

where the first term unlearns ẑ by maximizing the diffusion loss of the generated sample and the
second term acts as a regularization to prevent the model from forgetting existing training data by
minimizing the diffusion loss for the dataset D. Borrowing the idea from [22], the second term can
be simplified by applying second-order Taylor expansion around θ0:

L(z, θ) ≈ L(z, θ0) +∇θL(z, θ0)⊤(θ − θ0) +
1

2
(θ − θ0)

⊤H(θ − θ0)

≈ 1

2
(θ − θ0)

⊤F(θ − θ0), (4)

where L(z, θ0) is a constant and the gradient ∇θL(z, θ0) at θ0 should be close to zero for a fully
trained model, so both terms can be ignored, leaving behind only the last term. It has been proven in
existing literature [3, 12, 21] that the Hessian H is equivalent to the Fisher information matrix (FIM)
F. Plugging Eq. 4 back to Eq. 3, we have the following unlearning objective:

Lẑ
unlearn(θ) = −L(ẑ, θ) + N

2
(θ − θ0)

⊤F(θ − θ0). (5)

Note that ∇θLẑ
unlearn(θ) = 0 when the loss attains its optimal point and ∇θ(θ − θ0)

⊤F(θ − θ0) =
2F(θ− θ0) (the gradient of quadratic form for symmetric F). Taking the gradient of Eq. 5 w.r.t θ and
rearranging the terms on both sides, we have the following update rule [29]:

0 = −∇θL(ẑ, θ) +NF(θ − θ0)

θ = θ0 +
1

N
F−1∇L(ẑ, θ). (6)

Note that for diffusion models, the loss depends on the denoising timestep t. So we calculate the
average loss across multiple timesteps T , i.e. L(ẑ, θ) =

1
T

∑T
t=1 Lt(ẑ, θ).

2.2 Fisher Information Matrix

The FIM quantifies the amount of information an observation z carries about the model parameters θ,
reflecting the curvature of the log-likelihood function. Mathematically, the FIM is defined as

F = Ez∼p(z|θ)

[
(∇θ log p(z | θ)) (∇θ log p(z | θ))⊤

]
.

Computing the full FIM is often costly. Thus, a diagonal approximation is commonly used [18],
where each diagonal element (Fdiag)jj is estimated by averaging the squared gradients over the N
data samples zi:

(Fdiag)jj ≈
1

N

N∑
i=1

(
∂ log p(zi | θ)

∂θj

)2

.

In the context of diffusion models where log p(zi | θ) = Lt(zi, θ), this is further averaged across T
timesteps t:

(Fdiag)jj ≈
1

N

N∑
i=1

1

T

T∑
t=1

(
∂Lt(zi, θ)

∂θj

)2

.

Now, we have all the information required to unlearn our model via Eq. 6, and then calculate the
attribution score using Eq. 2.
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2.3 Masking Silence

For music generative modeling, we build upon the DiT model proposed by Evans et al. [9], which
processes variable-length audio as input. Generally, zeros are padded to shorter clips to match
the required length. Notably, one can choose to apply or omit masking for this padded section.
Specifically, a mask M can be applied to exclude the padded section from loss computation. We
assume the model was trained without masking, which is the default setting 2.

Despite this setting, we can apply a mask MU when unlearning a target sample, and a mask ML
when computing the loss for measuring attribution. We also propose a “mixed” strategy: applying
MU but not ML. MU ensures that the zero-padded section, not part of the actual content, does not
interfere with unlearning. However, during loss computation, we omit ML to remain consistent with
the training setup. A different setup may result in the model’s unpredictable behavior, leading to
inaccurate attribution.

3 Experimental Results

3.1 Dataset and Model

We utilize an in-house dataset consisting of 115 k high-quality music tracks spanning a diverse range
of genres and styles. This dataset is used exclusively to train our base music generative model. To
evaluate unlearning-based attribution, we consider two experimental setups: (1) Train-to-Train, which
estimates attribution by unlearning individual training samples, and (2) Test-to-Train, which attributes
generated outputs to specific training data points. The Train-to-Train setup serves as a controlled
way to test the efficacy of the unlearning method by unlearning a training instance and measuring
attribution scores to verify whether the unlearned sample is correctly identified as highly influential.
In this setup, we select 40 training samples using k-means clustering on CLAP audio embeddings
to ensure diversity across the dataset, and use them for the grid search experiments described in
Section 3.2. The Test-to-Train setup is employed in the context of a more qualitative evaluation: we
generate 16 two-minute music tracks using distinct text prompts and examine which training data the
model attributes to each generated output. This setup is used for comparison with other attribution
results, as described in Section 3.3.

As mentioned in the previous section, we train a latent diffusion transformer [DiT; 25] building upon
the methodology of Stable Audio [9, 10]. We first train a variational autoencoder [VAE; 17] using the
Stable Audio configuration to encode 44.1 kHz stereo audio into a latent space with a dimensionality
of 64 and a time downsampling ratio of 2048. We employed the v-objective diffusion process method
[26] to train our latent DiT. The maximum length of audio that our DiT can process is approximately
two minutes, corresponding to 2584 latent frames. The model is conditioned on CLAP embeddings
to enable text-to-music generation, as described in Evans et al. [10]. Additionally, it incorporates
timing conditions to support variable-length generation, following the methodology outlined in Evans
et al. [9]. We computed FDopenl3 on Song Describer reference data [23] to evaluate the overall quality
of the generated music, following Evans et al. [10]. Our music generative model achieved an FDopenl3
of 110.5, which falls between the performance of Stable Audio 1.0 (142.5) and 2.0 (71.3).

For each unlearning step following Eq. 6, we average gradients over 2048 random timesteps. A single
step takes approximately 20 minutes on an NVIDIA H100 80GB GPU. Computing then the losses
for all the training data points requires around 5 hours using 8 H100 GPUs.

3.2 Self-Influence Experiment and Tuning

The employed unlearning method features a number of hyperparameters, such as learning rate, target
layers, and number of steps (number of model weights’ updates following Eq. 6). To explore such
different options and select the best combination, we performed a grid search. In this grid search, we
computed Train-to-Train data attribution, where we unlearn a train data point from the model and
compute the attribution score (Eq. 1) for each item in the training set. Specifically, we examined
learning rates ranging from 10−7 to 10−1, number of steps from 1 to 4, multiple groups of target
layers, and different methods for masking silence (see section 2.3). Due to space constraints, we

2https://github.com/Stability-AI/stable-audio-tools
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Table 1: Grid search results for optimal unlearning hyperparameters. FDopenl3 is 110.5 for the original
checkpoint.

Target Layer MU ML R(ztar) CLAPtopk CLAPbotk FDopenl3

Cross-Attention’s to_kv weights ✓ 103.2 0.38 0.35 110.5
Cross-Attention Layers ✓ 1.4 0.60 0.32 110.4
Self-Attention Layers ✓ 1.1 0.63 0.30 110.5

All the Transformer Layers ✓ ✓ 1.0 0.80 0.38 110.5
All the Transformer Layers 6615.7 0.82 0.42 110.5
All the Transformer Layers ✓ 1.0 0.66 0.26 110.5

report only the effects of the target layers and the methods for masking silence, as summarized in
Table 1, while fixing the learning rate to 10−6 and the number of steps to 1 (the best combination we
found for these hyperparameters).

In Table 1, we report several metrics to evaluate whether we successfully unlearned the target data
while preserving other information. The rank of the target sample, denoted as R(ztar), represents the
position of the unlearned data point ztar in the sorted list of attribution scores {τ(ztar, zi)}ni=1, where
a rank of 1 corresponds to the best attribution score. If R(ztar) is greater than 1, it indicates that some
samples, which are not the target, were more affected than the target. We also report CLAPtopk, the
mean CLAP cosine similarity of the top-k attribute scores. Specifically, we measure the mean CLAP
cosine similarities of ztar and zk, where zk belongs to the top k attribution scores. We hypothesize
that unlearning a target track impacts tracks with similar musical components more than irrelevant
tracks, making a higher CLAPtopk preferable. We measure the cosine similarities of the top 100
tracks. Similarly, we report CLAPbotk, the mean CLAP cosine similarity of 100 tracks with the least
significant attribution scores.

As shown in Table 1, omitting both masks did not result in a low R(ztar). The R(ztar) is particularly
high for shorter tracks (typically less than 30 s) because unlearning these tracks involves unlearning
the padded long silence, which may have a greater impact than the actual content. Enabling both
masks prevents this, achieving an R(ztar) of 1.0. However, some short tracks appear frequently in
different target tracks due to a mismatch between training loss and attribution loss. Extremely short
tracks (less than 10 s) tend to have high losses for their actual (non-padded) frames because the losses
are averaged over the entire frames (120 s). To mitigate this problem, we used a mixed strategy,
applying only MU, which results in the same R(ztar) of 1.0.

We also investigated the effect of the target layers. In our experiment, unlearning all the weights in
the transformer blocks achieved the highest CLAPtopk and the lowest CLAPbotk among the mixed
results. In contrast to Wang et al. [29], unlearning only self-attention layers, cross-attention layers, or
to_kv layers in each cross-attention layer was found to be suboptimal (Table 1). FDopenl3 did not vary
significantly, indicating that the model does not forget information unrelated to the target sample.
We unlearned all the transformer layers with the mixed strategy in the subsequent Test-to-Train
attribution experiment.

3.3 Comparison with Non-counterfactual Methods

We finally compare our unlearning-based attribution method with alternative approaches that do
not incorporate counterfactual reasoning: CLAP [30], CLEWS [27], LPIPS [32], and RPS [31],
under the Test-to-Train setup. These methods can all preserve the temporal dimension by windowing
the input audio into overlapping segments. Attribution is computed in an all-against-all manner,
where similarity is computed across all time-wise segments for both target and training tracks and
the maximum value is taken as the attribution score. The CLAP model encodes 10-second audio
segments, and we extract embeddings with a hop size of 1 second to preserve temporal resolution
across the track. CLEWS, a contrastive embedding for capturing musical identity across different
versions of the same musical piece, follows CLAP in treating the generative model as a black-box. In
contrast, LPIPS utilizes intermediate activations from the generative model by computing similarity
at each DiT layer’s output and then averaging across all layers. RPS decomposes the model’s
pre-activation prediction Φ(ẑ) into a weighted sum over training examples: Φ(ẑ) = Σn

i=1τ(ẑ, zi).
The attribution score of ith training sample is τ(ẑ, zi) = αif(zi)

⊤f(ẑ), where f(·) is the feature
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Figure 1: Comparison of attribution scores from unlearning- and similarity-based methods. Mean
(line) and standard deviation (shading) over attribution scores from 16 generated test samples. Min-
max (left) and softmax (right) normalizations are shown (notice the logarithmic axes in the later).

vector from the last layer of DiT. The representer value αi =
1

−2λn
∂L(zi,θ)
∂Φ(zi,θ)

can be reformulated as
αi =

1
−λn (Φ(zi)− zi) as the training objective of our generative model is mean squared error. The

final attribution score is computed by taking the average of signed sum of its components.

Figure 2: Correlation matrix between differ-
ent attribution methods.

Figure 1 visualizes the attribution scores’ distribution
by sorting all training samples in descending order,
based on their unlearning scores, and retrieving the
corresponding scores from each of the other methods
for the same samples. We present two views: one
using min-max normalization to account for scale
differences across methods, and the other using soft-
max scaling (where each method’s scores sum to 1)
to highlight differences in the overall attribution dis-
tribution and sparsity patterns. From these plots, we
observe: (1) the unlearning-based method exhibits a
sharp concentration of influence in the top few sam-
ples, indicating high influence on a small subset of
training examples; and (2) the similarity-based meth-
ods follow a similar trend but with higher variance
and a more gradual decrease in attribution scores,
suggesting a broader and less concentrated attribu-
tion pattern. These qualitative patterns are confirmed by the correlation analysis shown in Figure 2.
Notably, the unlearning-based scores show the strongest Pearson correlation with other attribution
methods in the order of LPIPS, CLAP, CLEWS, and RPS, with correlation coefficients of 0.56, 0.46,
0.32, and 0.11, respectively. This result aligns with methodological similarities: unlearning and
LPIPS may exhibit the highest correlation as both leverage internal information from the generative
model. Likewise, CLAP and CLEWS also show strong mutual correlation, reflecting their reliance
on external embeddings. In contrast, RPS demonstrates low correlation with all other methods,
suggesting it captures a distinct attribution pattern.

4 Conclusion

This paper presents a practical approach for training data attribution in music generative models using
machine unlearning. We apply unlearning techniques to a text-to-music diffusion model trained on a
large-scale in-house dataset, and conduct a grid search by unlearning training data itself to identify
configurations suitable for attribution. We compare the unlearning-based results with other attribution
methods on generated samples, finding that, while the unlearning and others show similar trends, their
attribution patterns differ. This work provides a framework for applying unlearning-based attribution
to music generation models at scale.
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