
Bures-Wasserstein Flow Matching for Graph Generation

Keyue Jiang 1 Aaron Cui 1 Xiaowen Dong 2 Laura Toni 1

Abstract
Graph generation has emerged as a critical task
in fields ranging from molecule design to drug
discovery. Contemporary approaches, notably
diffusion and flow-based models, have achieved
solid graph generative performance through con-
structing a probability path that interpolates be-
tween a reference distribution and the data distri-
bution. However, these methods typically model
the evolution of individual nodes and edges inde-
pendently and use linear interpolations to build
the path assuming that the data lie in Euclidean
space. We show that this is suboptimal given
the intrinsic non-Euclidean structure and inter-
connected patterns of graphs, and it poses risks
to the sampling convergence. To build a better
probability path, we model the joint evolution
of the nodes and edges by representing graphs
as connected systems parameterized by Markov
random fields (MRF). We then leverage the opti-
mal transport displacement between MRF objects
to design the probability path for graph genera-
tion. Based on this, we introduce BWFlow, a
flow-matching framework for graph generation
that respects the underlying geometry of graphs
and provides smooth velocities in the probabil-
ity path. The novel framework can be adapted
to both continuous and discrete flow-matching
algorithms. Experimental evaluations in plain
graph generation and 2D/3D molecule generation
validate the effectiveness of BWFlow in graph
generation with competitive performance, stable
training, and guaranteed sampling convergence.

1. Introduction
Thanks to the capability of graphs in representing com-
plex relationships, graph generation (Zhu et al., 2022; Liu

1University College London, London, UK 2University
of Oxford, Oxford, UK. Correspondence to: Keyue Jiang
<keyue.jiang.18@ucl.ac.uk>.

Proceedings of the Workshop on Generative AI for Biology at the
42nd International Conference on Machine Learning, Vancouver,
Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

et al., 2023a) has become an essential task in various fields
such as protein design (Ingraham et al., 2019), drug discov-
ery (Bilodeau et al., 2022), and social network analysis (Li
et al., 2023). Among contemporary generative models, dif-
fusion and flow models have emerged as two compelling
approaches for their ability to achieve state-of-the-art perfor-
mance in graph generation (Niu et al., 2020; Vignac et al.,
2023a; Eijkelboom et al., 2024; Qin et al., 2024; Hou et al.,
2024). In particular, these generative models can be unified
under the framework of stochastic interpolation (Albergo
& Vanden-Eijnden, 2023), which consists of four proce-
dures (Lipman et al., 2024): 1) Drawing samples from the
reference (source) distribution p0(⋅) and/or the data (target)
distribution p1(⋅) for training set assembly; 2) Constructing
a time-continuous probability path pt(⋅),0 ≤ t ≤ 1 interpo-
lating between p0 and p1; 3) Training a model to reconstruct
the probability path by either approximating the score func-
tion or velocity fields (ratio matrix in the discrete case); and
4) sampling from p0 and transforming it through the learned
probability path to get samples that approximately follow
p1.

A core challenge in this framework is constructing the prob-
ability path pt. Existing text and image generative models,
operating either in the continuous (Ho et al., 2020; Song
et al., 2021; Lipman et al., 2023; Liu et al., 2023b) or dis-
crete (Campbell et al., 2022; Sun et al., 2023; Campbell
et al., 2024; Gat et al., 2024; Minello et al., 2025) space,
typically rely on linear interpolation between source and
target distributions to construct the path. Graph generation
models, including diffusion (Niu et al., 2020; Vignac et al.,
2023a; Haefeli et al., 2022; Xu et al., 2024; Siraudin et al.,
2024) and flow-based models (Eijkelboom et al., 2024; Qin
et al., 2024; Hou et al., 2024), inherit this design by model-
ing every single node and edge independently and linearly
build paths in the disjoint space. However, this approach is
inefficient because it neglects the strong interactions and re-
lational structure inherent in graphs, i.e., the significance of
a node heavily depends on the configuration of its neighbors.
While empirical success have been achieved via fine-grained
searching on the training and sampling design (Qin et al.,
2024) such as target guidance and time distortion, we argue
that there remains a fundamental issue of the linear proba-
bility path construction, and these strategies only mitigate
the problem by manipulating the probability path.

1



Bures-Wasserstein Flow Matching for Graph Generation

Target 
guided 
velocity

Real velocity

(a) Training path comparison (b) Training path manipulation

C
onvergence G

ap

(c) Sampling path comparison

Figure 1. Probability path visualization. Since the probability is intractable, the average maximum mean discrepancy ratio (y-axis) of graph
statistics between interpolants and the data points is used as a proxy. Lower means closer to the data distribution (details in Appendix I.3).

Motivation examples. The blue line in Figure 1a illustrates
the probability path evolution through linear interpolation in
plain graph generation, where the probability path remains
flat until t ≈ 0.8 before sharply dropping. This pattern
provides a poor velocity1 estimation, as ideally the veloc-
ity field should be smooth and consistently pointing to the
data distribution as the green line in Figure 1a (Kapusniak
et al., 2024). The resultant velocity will make the sam-
pling difficult to converge to the data distribution, as shown
in Figure 1c, where the termination point of the blue curve
remains high. Though not explicitly mentioned, the supe-
rior performance achieved by Qin et al. (2024) is partially
attributed to an extensive design space search to manipulate
the path for smoother velocity estimation. The techniques
they used, including target guidance, time distortion, and
stochasticity injection, are conceptually visualized in Fig-
ure 1a and 1b with discussions in Appendix F.1. More
motivating examples in Appendix I.2.

The limitations. The above examples reveal fundamental is-
sues of the probability path construction in graph generation,
attributable to two primary reasons: 1) The assumption of in-
dependence between nodes/edges and a linear interpolation
in the locally disjoint space fails to capture the global co-
evolution of graph components and properties such as com-
munity structure or spectrum (Haasler & Frossard, 2024).
This potentially causes a sudden transition from reference to
data distribution, which yields non-smooth probability paths.
2) The linear interpolation is derived through the optimal
transport (OT) displacement (Tong et al., 2024) between
distributions residing in the Euclidean space (Lipman et al.,
2024). However, linear interpolation would stray away from
the true data manifold when the underlying space is non-
Euclidean (Chen & Lipman, 2024; Kapusniak et al., 2024).
Since graphs naturally inhabit non-Euclidean geometries,
linearly interpolating the nodes/edges neither guarantees
an OT displacement nor respects the underlying geometry,

1Formally, the per-sample velocity is the gradient of the corre-
sponding sample-specific path. Here, we average among samples
and view the path tangent as an approximation for the marginal
velocity. Section 2 gives a more accurate definition.

making the constructed probability path suboptimal or even
deviate from the valid graph domain.

Proposed solution. To address these limitations, we draw
on statistical relational learning and model graphs using
Markov Random Fields (MRFs) (Taskar et al., 2007; Qu
et al., 2019). MRFs organize the nodes/edges as an in-
terconnected system and interpolating between two MRFs
captures the joint evolution of the whole graph system. Ex-
tending (Haasler & Frossard, 2024), we derive a closed-
form Wasserstein distance between graph distributions and
leverage it to construct the Bures-Wasserstein (BW) inter-
polation of two graphs that ensures the OT displacement in
graph generation compared to linear interpolation. We then
integrate these insights into a flow-matching framework2

called Bures–Wasserstein Flow (BWFlow). Specifically,
by defining a probability path via BW interpolation, we
obtain smooth, globally coherent velocity fields at interme-
diate steps (see Figure 1c) that respect the non-Euclidean,
interconnected structure of graphs. Crucially, BWFlow ad-
mits simulation-free computation of densities and velocities
along the entire path, which translates into efficient, stable
training and sampling.

Contributions. First, we theoretically and empirically
show that the linear interpolation used in existing graph
generation models gives suboptimal probability path con-
struction and velocity estimation. Second, through param-
eterizing graphs as MRFs, we introduce BWFlow, a flow-
matching model for graph generation that constructs prob-
ability paths respecting the graph geometry and develops
smooth velocities. Third, BWFlow was tested on plain
graph and 2D/3D molecule generation, demonstrating com-
petitive performance without an excessive search for path
manipulation techniques. We further show that BW interpo-
lation consistently outperforms other interpolation methods
in building flow matching models, leading to more stable
training and sampling convergence.

2For conciseness, we focus on flow models, but the idea is
generalizable to diffusions as in Appendix F.2.

2



Bures-Wasserstein Flow Matching for Graph Generation

2. Preliminaries
2.1. Flow matching for graph generation

Flow matching (FM). Generative modeling considers fit-
ting a mapping from state space S → S that transforms
the samples from source distribution, X0 ∼ p0, to sam-
ples from target data distribution, X1 ∼ p13. Continuous
normalizing flow (CNF) (Chen et al., 2018) parameterizes
the transformation through a push-forward equation that
interpolates between p0 and p1 and constructs a probabil-
ity path pt(X) = [ψtp0] (X) through a time-dependent
function ψt (a.k.a flow). A vector field ut, defined as
d
dt
ψt (X) = ut (ψt (X)) with ψ0 (X) = X , is said to gener-

ate pt if ψt satisfies Xt ∶= ψt (X0) ∼ pt for X0 ∼ p0. The
FM (Lipman et al., 2023) is designed to match the real
velocity field through the loss:

LFM(θ) = Et,Xt∼pt(⋅) ∥vθ(Xt) − ut(Xt)∥2 . (1)

where vθ(⋅) ∶ S → S is the parameterized velocity field and
t ∼ U[0,1].

Conditional flow matching (CFM). Given that the ac-
tual velocity field and the path are not tractable (Tong
et al., 2024), one can construct the per-sample condi-
tional flow. We condition the probability paths on variable
Z ∼ π(⋅) (for instance, a pair of source and target points
Z = (X0,X1)) and re-write pt(X) = Eπ(⋅)pt(X ∣ Z) and
ut(X) = Eπ(⋅)ut(X ∣ Z) where the conditional path and
the velocity field are tractable. The CFM aims at regressing
a velocity vθ(⋅) to ut(X ∣ Z) by the loss,

LCFM(θ) ∶= Et,Z∼π(⋅),pt(⋅∣Z) ∥vθ(Xt) − ut(Xt ∣ Z)∥2 ,
(2)

where it is shown that the CFM optimization has the same
optimum as the FM objective (Tong et al., 2024).

Graphs as statistical objects. When considering graph
generation with CFM, the very first step is to model graphs
as statistical objects. For notation, we let G = {V,E ,X}
denote an undirected graph random variable with edges
E = {euv}, nodes V = {v}, and node features X = {xv}.
A graph realization is denoted as G = {V,E,X} ∼
p(G). We consider a group of latent variables that con-
trols the graph distribution, specifically the node feature
mean X = [x1,x2, . . . ,x∣V∣]

⊺ ∈ R∣V∣×K , the weighted ad-
jacency matrix W ∈ R∣V∣×∣V∣, and the Laplacian matrix
L =D −W ∈ R∣V∣×∣V∣, with D = diag(W1) being the de-
gree matrix (and 1 the all-one vector). In a nutshell, graphs
are sampled from G ∼ p(G;G) = p(X ,E ;X,W ).

3For clarity, we denote the calligraphic style X being the ran-
dom variable, the plain X the relevant realizations and the bold
symbol X the latent variables (parameters) that controls the dis-
tributons, i.e. X ∼ p(X ;X).

Graph generation with CFM. The CFM samples new
graphs through iteratively building Gt+dt = Gt +vθt (Gt) ⋅dt
with initial G0 ∼ p0(G) and a trained velocity field vθt (Gt),
so that the medium points follows Gt ∼ pt(G) and termi-
nates at p1(G). We can parameterize vθt (Gt) as in (Gat
et al., 2024),

vθt (Gt) = EG0∼p0(G),G1∼pθ
1∣t
(⋅∣Gt)

[vt (Gt ∣ G0,G1)] (3)

As such, training the velocity fields is replaced by training a
denoiser pθ1∣t (⋅ ∣ Gt) to predict the clean datapoint, which
is equivalent to maximizing the log-likelihood (Qin et al.,
2024; Campbell et al., 2024),

LCFM = EG1∼p1,G0∼p0,t∼U[0,1],Gt∼pt∣0,1
[log pθ1∣t (G1 ∣ Gt)]

(4)
where t is sampled from a uniform distribution U[0,1] and
Gt ∼ pt∣0,1 can be obtained in a simulation-free manner.
This framework avoids the evaluation of the conditional
vector field at training time, which both increases the model
robustness and training efficiency.

To proceed, a closed form of pt(⋅ ∣ G0,G1) is re-
quired to construct both the probability path and the
velocity field vt (Gt ∣ G0,G1). A common selection
to decompose the probability density assumes indepen-
dency for each node and edge (Hou et al., 2024; Qin
et al., 2024; Eijkelboom et al., 2024) giving p(G) =
p(X)p(E) = ∏v∈V p(xv)∏euv∈E

p(euv). Choosing π(⋅) =
p0 (G)p1 (G), the boundary conditions follow pi(G) =
δ(Xi = Xi) ⋅ δ(Ei = Wi),∀i = {0,1} with δ the dirac
function. This decomposition is further combined with lin-
ear interpolation to build the path, as introduced in (Tong
et al., 2024), where,

pt(xv ∣ G0,G1) = N (t[X1]v + (1 − t)[X0]v, σ2
t )

pt(euv ∣ G0,G1) = N (t[E1]uv + (1 − t)[E0]uv, σ2
t ) .

(5)
Similarly, discrete flow matching frameworks for graph gen-
eration (Qin et al., 2024; Siraudin et al., 2024; Xu et al.,
2024) is also based on linear interpolation, where the in-
terpolant is sampled from a categorical distribution whose
probabilities are simply linear interpolation between the
boundary conditions.

2.2. Optimal transport and flow matching

Why linear interpolation? Existing literature (Liu et al.,
2023b; Albergo & Vanden-Eijnden, 2023) argues that the
probability path pt(X ∣ Z) should be chosen to recover the
optimal transport (OT) displacement interpolant (McCann,
1997). The (Kantorovich) optimal transport problem is to
find the transport plan between two probability measures,
η0 and η1, with the smallest associated transportation cost
defined as follows.

3



Bures-Wasserstein Flow Matching for Graph Generation

Definition 1 (Wasserstein Distance). Denote the pos-
sible coupling as π ∈ Π(η0, η1), which is a measure on
S × S whose marginals are η0 and η1. With c(X,Y )
being the cost of transporting the mass between X and
Y , the Wasserstein distance is defined as,

Wc(η0, η1) = inf
π∈Π(η0,η1)

∫
S×S

c(X,Y )dπ(X,Y ).
(6)

When the data follow Euclidean geometry and both bound-
ary distributions, p0 and p1 are described by the Gaussian
family, the probability path shown in Equation (5) with
σt → 0 becomes a solution to Equation (6).

As suggested in the motivations, linearly interpolating
in the disjoint space of nodes and edges with Equa-
tion (5) does not guarantee the OT displacement in
non-Euclidean and interconnected objects like graphs.
To overcome the limitation, we utilize Markov random
fields to capture the joint evolution of the graph sys-
tem, and build an FM model that generates graphs with
smooth probability paths and consistent velocity.

3. Methodology
In this paper, we introduce Bures–Wasserstein Flow Match-
ing (BWFlow), a novel graph generation framework that
is built upon the OT displacement when modeling graphs
with Markov Random Fields (MRFs). We begin by cast-
ing graphs in an MRF formulation in Section 3.1. We then
derive the BWFlow framework in Section 3.2 by formulat-
ing and solving the OT displacement problem on the MRF,
thereby yielding the fundamental components, interpola-
tions and velocity fields, for FM-based graph generation.
Finally, in Section 3.3, we extend BWFlow to discrete FM
regimes, enabling its application across a broad spectrum of
graph-generation tasks. A schematic overview of the entire
BWFlow is illustrated in Figure 2.

3.1. Graph Markov random fields

We borrow the idea from MRF as a remedy to modeling
the complex system organized by graphs, which intrinsi-
cally captures the underlying mechanism that jointly gen-
erates the nodes and edges. Mathematically, we assume
the joint probability density distribution (PDF) of node fea-
tures and graph structure as p(G;G) = p(X ,E ;X,W ) =
p(X ;X,W )p(E ;W ) where the node features and graph
structure are interconnected through latent variables X and
W . For node features X , we follow the MRF assumption
in Zhu et al. (2003) and decompose the density into the
node-wise potential φ1(v),∀v ∈ V and pair-wise potential

φ2(u, v), ∀euv ∈ E :

p(X ;X,W ) ∝∏
v

exp{−(ν + dv)∥V xv −µv∥2}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ1(v)

∏
u,v

exp{wuv [(V xu −µu)⊺(V xv −µv)]}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ2(u,v)

,

(7)
with ∥ ⋅ ∥ the L2 norm, (⋅)† the pseudo-inverse, V the trans-
formation matrix modulating the graph feature emission,
and µv the node-specific latent variable mean. Equation (7)
can be expressed as a colored Gaussian distribution in Equa-
tion (8) given that V xv ∼ N(µv, (νI +L)−1). We further
assume that edges are emitted via a Dirac delta, E ∼ δ(W ),
yielding our definition of Graph Markov Random Fields
(GraphMRF). The derivation can be found in Appendix A.2.

Definition 2 (Graph Markov Random Fields).
GraphMRF statistically describes graphs as,

p(G;G) = p(X ,E ;X,W ) = p(X ;X,W ) ⋅ p(E ;W )
where E ∼ δ(W ) and vec(X) ∼ N (X,Λ†) ,
with X = vec(V †µ),Λ = (νI +L) ⊗V ⊺V .

(8)
The ⊗ is the Kronecker product, vec(⋅) is the vector-
ization operator and I is the identity matrix.

Remark 1. GraphMRF explicitly captures node–edge
dependencies and preserves the advantages of colored
Gaussian distributions. Section 3.2 will soon show that
this yields closed-form interpolation and velocity, and
the probability path constructed from GraphMRFs re-
mains on the graph manifold that respects the underly-
ing non-Euclidean geometry.
Remark 2. While we emphasize that GraphMRF is not
a universal model and imposes certain constraints (Ap-
pendix A.3 discusses about the usage scope), it nonethe-
less captures the dynamics of most graph-generation
tasks such as planar, stochastic block models, and
molecular graphs.

3.2. Bures-Wasserstein flow matching for graph
generation

The optimal transport displacement between graph dis-
tributions. Given that the joint probability of graphs de-
composed as p(G) = p(X ;X,W )p(E ;W ) and the mea-
sure factorized to ηGj = ηXj ⋅ ηEj with j ∈ {0,1}, the graph
Wasserstein distance between ηG0 and ηG1 is written as,

dBW(G0,G1) ∶= Wc(ηX0 , ηX1) +Wc(ηE0 , ηE1).

We extend Haasler & Frossard (2024) and analytically de-
rive the graph Wasserstein distance using the OT formula
between Gaussians (Dowson & Landau, 1982; Olkin &

4



Bures-Wasserstein Flow Matching for Graph Generation

f. Generation: sample with velocity: 𝐺𝑡+𝑑𝑡 = 𝐺𝑡 + 𝑣𝜃 𝐺𝑡 𝑑𝑡

𝐺0 𝐺𝑡 𝐺𝑡+𝑑𝑡 𝐺1

𝜂𝐺0 ∼ 𝒩(𝑿0, Λ0−1) 𝜂𝐺𝑡 ∼ 𝒩(𝑿𝑡, Λ𝑡−1) 𝜂𝐺1 ∼ 𝒩(𝑿1, Λ1−1)

𝑡 = 0 𝑡 = 1

c. BW Interpolation between 𝜼𝑮𝟎 and 𝜼𝑮𝟏 to get 𝜼𝑮𝒕

𝜂𝐺𝑡+𝑑𝑡

b. Convert 
graphs to MRFs

d. Convert back to Graph domain 

e. Train the 
velocity 𝑣𝜃 𝐺𝑡a. Sample

𝐺0, 𝐺1

Figure 2. Schematic overview of BWFlow, which consists of: a) Sample the marginal graph condition G0 and G1; b) Convert graphs to
MRFs; c) Interpolate to get intermediate points; d) Convert back to get Gt; e) Train velocity based on Gt; and f) Generate new points
with the trained velocity.

Pukelsheim, 1982; Takatsu, 2010) (see Lemma 2 proved
in Appendix B.1) as follows.

Proposition 1 (Bures-Wasserstein Distance). Con-
sider two same-sized graphs G0 ∼ p (X0,E0) and
G1 ∼ p (X1,E1) with V shared for two graphs, de-
scribed by the distribution in Definition 2. When
the graphs are equipped with graph Laplacian ma-
trices L0 and L1 satisfying 1) is Positive Semi-Definite
(PSD) and 2) has only one zero eigenvalue. The Bures-
Wasserstein distance between these two random graph
distributions is given by

dBW(G0,G1) = ∥X0 −X1∥2F +

β trace(L†
0 +L

†
1 − 2 (L

†/2
0 L†

1L
†/2
0 )

1/2
) ,

(9)

as ν → 0 and β is a constant related to the norm of
V †. The proof can be found in Appendix B.2.

Based on the Bures-Wasserstein (BW) distance, we then de-
rive the OT interpolant for two graphs, which is the solution
of the displacement minimization problem described as,

Gt = argmin
G̃

(1 − t)dBW(G0, G̃) + tdBW(G̃,G1). (10)

The probability path. The interpolation is obtained
through solving Equation (10) with the BW distance de-
fined in Proposition 1, we prove the minimizer of the above
problem has the form in Proposition 2. The proof can be
found in Appendix C.1.

Proposition 2 (Bures-Wasserstein interpolation). The
graph minimizer of Equation (10), Gt = {V,Et,Xt},
have its node features following a colored Gaussian
distribution, Xt ∼ N(Xt,Λ

†
t) with Λt = (νI +Lt) ⊗

V ⊺V and edges following Et ∼ δ(Wt), specifically,

L†
t = L

1/2
0 ((1 − t)L

†
0 + t (L

†/2
0 L†

1L
†/2
0 )

1/2
)
2

L
1/2
0

Xt = (1 − t)X0 + tX1

(11)

The interpolant provides a closed form for the induced prob-
ability path p(Gt ∣ G0,G1) and the velocity v(Gt ∣ G0,G1)
that is easy to access without any simulation.

The velocity. We consider the reparameterization as
in Equation (3) and derive the conditional velocity
vt (Gt ∣ G1,G0) as in Proposition 3.

Proposition 3 (Bures-Wasserstein velocity). For the
graph Gt following BW interpolation in Proposition 2,
the conditional velocity at time t with observation Gt

is given as,

vt(Et ∣ G0,G1) = Ẇt = diag(L̇t) − L̇t

vt(Xt ∣ G0,G1) =
1

1 − t(X1 −Xt)

with L̇t = 2Lt − TLt −LtT

and T = L1/2
0 (L

†/2
0 L†

1L
†/2
0 )1/2L

1/2
0

(12)

where Wt =Dt −Lt and Lt defined in Equation (11).
Derivation can be found in Appendix C.2.

With Proposition 2 and Proposition 3, we are now able to
formally construct the algorithms for Bures-Wasserstein
flow matching. Taking continuous flow matching as an

5



Bures-Wasserstein Flow Matching for Graph Generation

example, Algorithms 1 and 2 respectively introduce the
training and sampling pipelines for our BWFlow.

Remark: The BW interpolation and velocity both de-
viate from the linear flow matching framework and
require extra computational cost. However, there exist
multiple ways to analytically calculate or numerically
approximate the velocity for training and inference. The
choice of these methods depends on the trade-off be-
tween training stability, sampling efficiency, etc. In Ap-
pendix E, we provide a discussion about the design
space of BW interpolation and velocity.

3.3. Discrete Bures-Wasserstein flow matching for
graph generation

Up to now we are working on the scenario when p(X ∣
X,W ) is a Gaussian and p(E ∣ W ) is a Dirac distribu-
tion. However, previous studies have observed a significant
improvement of the discrete counterpart of the continuous
graph generation models (Vignac et al., 2023a; Xu et al.,
2024; Qin et al., 2024). To benefit our model from such a
nature, we derive the discrete Bures-Wasserstein flow match-
ing for graph generation.

The discrete probability path. We design the probability
path as discrete distributions,

pt(xv ∣ G0,G1) = Categorical([Xt]v),
pt(euv ∣ G0,G1) = Bernoulli([Wt]uv)
s.t. p0(G) = δ(G0, ⋅), p1(G) = δ(G1, ⋅)

(13)

where Wt = Dt − Lt with Xt and Lt defined the same
in Equation (11). We consider the fact that the Dirac dis-
tribution is a special case when the Categorical/Bernoulli
distribution has probability 1 or 0, so the boundary condition
p0(G) = δ(G0, ⋅), p1(G) = δ(G1, ⋅) holds. Even though we
are not sampling from Gaussian distributions anymore, it is
possible to approximate the Wasserstein distance between
two multivariate discrete distributions with the Gaussian
counterpart so the conclusions, such as optimal transport dis-
placements, still hold. More discussions in Appendix D.2.

The discrete velocity fields. The path of node features Xt

can be re-written as pt(X) = (1− t)δ(⋅,X0) + tδ(⋅,X1) so
the conditional velocity can be accessed through vt(Xt ∣
G0,G1) = [δ(⋅,X1)−δ(⋅,Xt)]/(1−t). However, the prob-
ability path of edges Et, shown in Equations (11) and (13),
cannot be written as a mixture of two boundary conditions
given the non-linear interpolation. To this end, we derive
in Appendix D.3 that the discrete velocity follows,

vt(Et ∣ G1,G0) = (1 − 2Et)
Ẇt

Wt ○ (1 −Wt)
, (14)

where Wt = Dt − Lt, Ẇt = diag(L̇t) − L̇t with Lt, L̇t

defined in Equations (11) and (12) respectively. With the in-
terpolation and velocity defined, the discrete flow matching
is built in Algorithms 3 and 4.

4. Experiments
We evaluate the BWFlow algorithms through both the plain
graph generation and real-world molecule generation tasks.
We first outline the experimental setup in Section 4.1, fol-
lowed by a general comparison in Section 4.2. Next, we
conduct behavior analysis on the impact of interpolation
methods and the corresponding velocity construction on
graph generation performance in Section 4.3, which demon-
strates the effectiveness and benefit of flow along Bures-
Wasserstein interpolation.

2D molecule graph generation. The model performance
is illustrated in Table 2. In both datasets, BWFlow can
achieve competitive results near the state-of-the-art (SOTA)
flow matching models (Qin et al., 2024), and outperforms
the diffusion models. Given that MOSES and GUA-
CAMOL benchmarks are approaching saturation, the fact
that BWFlow achieves results on par with the SOTA models
serves as strong evidence of its effectiveness.

4.1. Experiment settings

Dataset. For plain graph generation, we evaluate the quality
of generated graphs on three benchmark datasets follow-
ing previous works (Martinkus et al., 2022a; Vignac et al.,
2023a; Bergmeister et al., 2024), specifically, planar graphs,
tree graphs, and stochastic blocking models (SBM). Two
datasets, namely MOSES (Polykovskiy et al., 2018) and
GUACAMOL (Brown et al., 2019), are benchmarked to test
the model performance on 2D molecule generation. For
3D molecule generation with coordinate data, we test the
model on QM9 (Ramakrishnan et al., 2014) and GEOM-
DRUGS (Axelrod & Gómez-Bombarelli, 2020).

Metrics. In plain graph generation, the evaluation metrics
include the percentage of Valid, Unique, and Novel (V.U.N.)
graphs, and the average maximum mean discrepancy ratio
(A.Ratio) of graph statistics between the set of generated
graphs and the test set are reported (details in Appendix I.3).
For molecule generation, we test two scenarios with and
without bond type information, where the latter validates the
capacity of our methods in generating the graph structures.
To this end, we develop a new relaxed metric to measure
the stability and validity of atoms and molecules when bond
types are not available. Specifically, the atom-wise stability
is relaxed as (Stability of Atom i is defined as si):

si = I[∃{bij}j∈Ni ∈ ∏
j∈Ni

Bij ∶ ∑
j∈Ni

bij = EVi],

with the identity function I. This means atom i is “relaxed-

6



Bures-Wasserstein Flow Matching for Graph Generation

(a) The evolution of graph statistics ratio along
the probability path.

Planar Tree SBM
Datasets

0

10

20

30

40

50

60

70

80

Ge
ne

ra
te

d 
Gr

ap
h 

Va
lid

ity

Model Performance vs. Interpolation Methods evaluted on plain graph generation.
Interpolation Method

Harmonic
Geometric
Linear
Bures-Wasserstein

(b) The impact of interpolation methods
on the performance.

(c) Convergence analysis of BW-Flow and flows
with linear interpolations.

Figure 3. Ablation studies for Bures-Wasserstein Flow Matching.

Table 1. Plain Graph generation performance. We sampled 5 times (each run generates 40 graphs) to calculate the mean and standard
deviation. We only keep the main diffusion/flow model for comparison, while other models are included in the full version at Table 8.

Planar Tree SBM

Model Class V.U.N. ↑ A.Ratio ↓ V.U.N. ↑ A.Ratio ↓ V.U.N. ↑ A.Ratio ↓
Train set — 100 1.0 100 1.0 85.9 1.0

DiGress (Vignac et al., 2023a) Diffusion 77.5 5.1 90.0 1.6 60.0 1.7
HSpectre (Bergmeister et al., 2024) Diffusion 95.0 2.1 100.0 4.0 75.0 10.5
GruM (Jo et al., 2024) Diffusion 90.0 1.8 — — 85.0 1.1
CatFlow (Eijkelboom et al., 2024) Flow 80.0 — — — 85.0 —
DeFoG (Qin et al., 2024) Flow 99.5±1.0 1.6±0.4 96.5±2.6 1.6±0.4 90.0±5.1 4.9±1.3

BWFlow Flow 97.5±2.5 1.3±0.4 75.5±2.4 1.4±0.3 90.5±4.0 3.8±0.9

DeFoG (EMA) Flow 77.5±8.37 3.5±1.7 73.1±11.4 1.50±0.3 85.0±7.1 3.7±0.9

BWFlow (EMA) Flow 84.8±6.44 2.4±0.9 68.1±12.2 1.24±0.2 83.5±6.0 2.4±0.6

stable” if there is at least one way to pick allowed bond
types (Bij) to its neighbors Ni so that their total exactly
matches the expected valences EVi. Such a relaxed stability
of atoms (Atom.Stab.) inherently defines molecule stability
(Mol.Stab.) and the validity of a molecule, which are the
shared metrics for both 2D/3D molecule generation. In ad-
dition to these metrics, distribution metrics are also used for
2D molecules (FCD, Scaf, etc.), and 3D generations (charge
distributions, atom total variation, angles, etc.). Details
in Appendix I.3.

Setup. To isolate the impact from model architecture, we
follow Qin et al. (2024) to fix the backbone model as the
same graph transformers. It is shown that sampling/training
distortion and target guidance have a significant impact
on the performance of graph generation tasks (Qin et al.,
2024). In our experiment, the best model performance is
obtained with these technologies, but in behavior analysis,
we disabled time distortion and target guidance for a fair
comparison. In molecular generation, two scenarios with
and without bond types information are considered to better
evaluate the ability of generating graph structures. More
experimental details can be found in Appendix I.1.

4.2. Main results for graph generation

Plain graph generation. In Table 1, we report both V.U.N.
and A.Ratio. As performance on these benchmarks con-

tinues to fluctuate significantly even after convergence and
the results are near saturated, we present not only the best
scores but also the exponentially moving averaged (EMA)
results on last 5 checkpoints and decay 0.999. BWFlow
outperforms most competitors on Planar and SBM graph
generation. The lone exception is the tree graphs, where our
model falls short. We attribute this gap to the fundamentally
different generation process for tree graphs (which reside in
hyperbolic space (Yang et al., 2022)) and thus violate our
MRF assumptions.

3D molecule generation. Table 3 gives the results on the
3D molecule generation task with explicit hydrogen, where
we ignore the bond type but just view the adjacency matrix
as a binary one for validating the power of generating graph
structures. Interestingly, the empirical results show that
even without edge type, the 3D graph generation model
already can capture the molecule data distribution. And
our BWFlow significantly outperforms the SOTA models,
including MiDi (Vignac et al., 2023b) and FlowMol (Dunn
& Koes, 2024). We believe a promising future direction is to
incorporate the processing of multiple bond types into our
framework, which would potentially raise the performance
by a margin.

7



Bures-Wasserstein Flow Matching for Graph Generation

Table 2. Large molecule generation results. Table 15 gives further experiments with binary edge types.
Guacamol MOSES

Model Val. ↑ V.U. ↑ V.U.N.↑ FCD ↑ Val. ↑ Unique. ↑ Novelty ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set 100.0 100.0 0.0 92.8 100.0 100.0 0.0 100.0 0.01 0.64 99.1

DiGress (Vignac et al., 2023a) 85.2 85.2 85.1 68.0 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo (Xu et al., 2024) 86.6 86.6 86.5 59.7 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh (Siraudin et al., 2024) 98.9 98.9 97.6 72.7 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG (Qin et al., 2024) 99.0 99.0 97.9 73.8 92.8 99.9 92.1 98.9 1.95 0.55 14.4
BWFlow (Ours) 98.8 98.9 97.4 69.2 92.0 100.0 94.5 98.4 1.32 0.56 15.3

Dataset Interpolation Metrics
µ V.U.N(%) Mol.Stab. Atom.Stab. Connected(%) Charge(10−2) Atom(10−2) Angles(○)

QM9
(with h)

MiDi 1.01 93.13 93.98 99.60 99.21 0.2 3.7 2.21
FlowMol 1.01 87.53 88.45 99.13 99.09 0.4 4.2 2.72
BWFlow 1.01 96.45 97.84 99.84 99.24 0.1 2.3 1.96

GEOM
(with h)

Midi 1.34 78.23 32.42 89.61 79.15 0.6 11.2 9.6
FlowMol 1.34 82.20 36.90 94.60 59.98 0.4 8.8 6.5
BWFlow 1.20 87.75 46.80 95.08 73.53 0.1 6.5 3.96

Table 3. Quantitative experimental results on 3D Molecule Generation with explicit hydrogen.

4.3. Behavior analysis

BWFlow provides smooth velocity in probability paths.
To illustrate how BWFlow models the smooth evolution of
graphs, we compute the A.Ratio on SBM datasets (the fig-
ures for the others are in Figure 6) between generated graph
interpolants and test data for t ∈ [0,1], as shown in Fig-
ure 3a. In contrast to the linear (arithmetic) interpolation,
BW interpolation initially exposes the model to more out-of-
distribution samples with increased A.Ratio. After this early
exploration, the A.Ratio monotonously converges, yielding
a smooth interpolation between the reference graphs and the
data points. This behavior enhances both the model robust-
ness and velocity estimation, which helps in covering the
convergence gap in the generation stage as in Figure 1c. In
comparison, harmonic and geometric interpolations step out-
side the valid graph domain, making the learning ill-posed.

The impact of interpolation metrics on the model per-
formance. Figure 3b illustrated a bar plot that compares
interpolation methods on the ability of generating valid plain
graphs measured by V.U.N., which shows the superiority
of BW interpolation in capturing graph distributions. Fig-
ure 3c illustrated an example (in planar graph generation)
of the convergence curve at the training stage (full results
in Table 10), which suggests that BWFlow can bring a faster
convergence speed compared to FM methods constructed
with linear (arithmetic) interpolations.

5. Discussion and future work
In this paper, we introduce BWFlow, a flow matching model
that captures the non-Euclidean and interconnected proper-
ties of graphs. While we show BWFlow exhibits outstanding

performance in various graph generation tasks, it faces the
following limitations that motivate solid future work.

Extension to multiple relation types. As our framework is
built upon the interpolation parameterized by the Graph
Laplacian, it is not easily generalizable to the graph gen-
eration with multiple edge types. We made preliminary
attempts at the extension but a comprehensive design is still
required.

Lower computational complexity. While constructing the
probability path and the velocity, our BW interpolation suf-
fers from an extra cost due to its request to compute the
pseudo-inverse of the Laplacian. Compared to linear inter-
polation, this brings O(N3) extra complexity theoretically,
and empirically 2x training time and inference time, which
is non-negligible in large graph generation. We aim to de-
velop iterative optimization methods to make training faster
in future work.

More universal interpolation that accommodates the geom-
etry. In our experiments on the tree dataset, performance
was unsatisfactory. We attribute this issue to the unique ge-
ometry of tree-structured graphs. A promising future work
includes selecting the adaptive interpolation schemes that
accommodate the intrinsic geometry of a graph.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

8



Bures-Wasserstein Flow Matching for Graph Generation

References
Albergo, M. S. and Vanden-Eijnden, E. Building normaliz-

ing flows with stochastic interpolants. In ICLR. OpenRe-
view.net, 2023.

Axelrod, S. and Gómez-Bombarelli, R. GEOM: energy-
annotated molecular conformations for property predic-
tion and molecular generation. CoRR, abs/2006.05531,
2020.

Bach, E., Rogers, S., Williamson, J., and Rousu, J.
Probabilistic framework for integration of mass spec-
trum and retention time information in small molecule
identification. Bioinformatics, 37(12):1724–1731, 11
2020. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btaa998. URL https://doi.org/10.1093/
bioinformatics/btaa998.

Bergmeister, A., Martinkus, K., Perraudin, N., and Wat-
tenhofer, R. Efficient and scalable graph generation
through iterative local expansion. In ICLR. OpenRe-
view.net, 2024.

Bhatia, R., Jain, T., and Lim, Y. On the bures–wasserstein
distance between positive definite matrices. Exposi-
tiones Mathematicae, 37(2):165–191, 2019. ISSN 0723-
0869. doi: https://doi.org/10.1016/j.exmath.2018.01.
002. URL https://www.sciencedirect.com/
science/article/pii/S0723086918300021.

Bilodeau, C., Jin, W., Jaakkola, T., Barzilay, R., and Jensen,
K. F. Generative models for molecular discovery: Recent
advances and challenges. Wiley Interdisciplinary Reviews:
Computational Molecular Science, 12(5):e1608, 2022.

Brown, N., Fiscato, M., Segler, M. H. S., and Vaucher, A. C.
Guacamol: Benchmarking models for de novo molecular
design. J. Chem. Inf. Model., 59(3):1096–1108, 2019.

Campbell, A., Benton, J., Bortoli, V. D., Rainforth, T., Deli-
giannidis, G., and Doucet, A. A continuous time frame-
work for discrete denoising models. In NeurIPS, 2022.

Campbell, A., Yim, J., Barzilay, R., Rainforth, T., and
Jaakkola, T. S. Generative flows on discrete state-spaces:
Enabling multimodal flows with applications to protein
co-design. In ICML. OpenReview.net, 2024.

Cao, N. D. and Kipf, T. Molgan: An implicit gen-
erative model for small molecular graphs. CoRR,
abs/1805.11973, 2018.

Chen, R. T. Q. and Lipman, Y. Flow matching on general
geometries. In ICLR. OpenReview.net, 2024.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. Neural ordinary differential equations. In NeurIPS,
pp. 6572–6583, 2018.

Chen, X., He, J., Han, X., and Liu, L. Efficient and degree-
guided graph generation via discrete diffusion modeling.
In ICML, volume 202 of Proceedings of Machine Learn-
ing Research, pp. 4585–4610. PMLR, 2023.

Dai, H., Nazi, A., Li, Y., Dai, B., and Schuurmans, D.
Scalable deep generative modeling for sparse graphs. In
ICML, volume 119 of Proceedings of Machine Learning
Research, pp. 2302–2312. PMLR, 2020.

Diamant, N. L., Tseng, A. M., Chuang, K. V., Biancalani, T.,
and Scalia, G. Improving graph generation by restricting
graph bandwidth. In ICML, volume 202 of Proceedings
of Machine Learning Research, pp. 7939–7959. PMLR,
2023.

Dowson, D. and Landau, B. The fréchet distance between
multivariate normal distributions. Journal of Multivariate
Analysis, 12(3):450–455, 1982. ISSN 0047-259X.
doi: https://doi.org/10.1016/0047-259X(82)90077-X.
URL https://www.sciencedirect.com/
science/article/pii/0047259X8290077X.

Dunn, I. and Koes, D. R. Mixed continuous and categorical
flow matching for 3d de novo molecule generation. ArXiv,
pp. arXiv–2404, 2024.

Eijkelboom, F., Bartosh, G., Naesseth, C. A., Welling, M.,
and van de Meent, J. Variational flow matching for graph
generation. In NeurIPS, 2024.

Gat, I., Remez, T., Shaul, N., Kreuk, F., Chen, R. T. Q.,
Synnaeve, G., Adi, Y., and Lipman, Y. Discrete flow
matching. In NeurIPS, 2024.

Goyal, N., Jain, H. V., and Ranu, S. Graphgen: A scalable
approach to domain-agnostic labeled graph generation.
In WWW, pp. 1253–1263. ACM / IW3C2, 2020.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In KDD, pp. 855–864. ACM, 2016.

Haasler, I. and Frossard, P. Bures-wasserstein means of
graphs. In AISTATS, volume 238 of Proceedings of Ma-
chine Learning Research, pp. 1873–1881. PMLR, 2024.

Haefeli, K. K., Martinkus, K., Perraudin, N., and Watten-
hofer, R. Diffusion models for graphs benefit from dis-
crete state spaces. In The First Learning on Graphs Con-
ference, 2022. URL https://openreview.net/
forum?id=CtsKBwhTMKg.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In NeurIPS, 2020.

Hou, X., Zhu, T., Ren, M., Bu, D., Gao, X., Zhang, C., and
Sun, S. Improving molecular graph generation with flow
matching and optimal transport. CoRR, abs/2411.05676,
2024.

9

https://doi.org/10.1093/bioinformatics/btaa998
https://doi.org/10.1093/bioinformatics/btaa998
https://www.sciencedirect.com/science/article/pii/S0723086918300021
https://www.sciencedirect.com/science/article/pii/S0723086918300021
https://www.sciencedirect.com/science/article/pii/0047259X8290077X
https://www.sciencedirect.com/science/article/pii/0047259X8290077X
https://openreview.net/forum?id=CtsKBwhTMKg
https://openreview.net/forum?id=CtsKBwhTMKg


Bures-Wasserstein Flow Matching for Graph Generation

Ingraham, J., Garg, V. K., Barzilay, R., and Jaakkola, T. S.
Generative models for graph-based protein design. In
NeurIPS, pp. 15794–15805, 2019.

Jiang, K., Tang, B., Dong, X., and Toni, L. Het-
erogeneous graph structure learning through the lens
of data-generating processes. In The 28th Interna-
tional Conference on Artificial Intelligence and Statistics,
2025. URL https://openreview.net/forum?
id=JHK0QBKdYY.

Jo, J., Kim, D., and Hwang, S. J. Graph generation with
diffusion mixture. In ICML. OpenReview.net, 2024.

Kapusniak, K., Potaptchik, P., Reu, T., Zhang, L., Tong,
A., Bronstein, M. M., Bose, A. J., and Giovanni, F. D.
Metric flow matching for smooth interpolations on the
data manifold. In NeurIPS, 2024.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
CoRR, abs/1611.07308, 2016.

Li, M., Kreacic, E., Potluru, V. K., and Li, P. Graphmaker:
Can diffusion models generate large attributed graphs?
CoRR, abs/2310.13833, 2023.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W. L., Duve-
naud, D., Urtasun, R., and Zemel, R. S. Efficient graph
generation with graph recurrent attention networks. In
NeurIPS, pp. 4257–4267, 2019.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. In The
Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/
forum?id=PqvMRDCJT9t.

Lipman, Y., Havasi, M., Holderrieth, P., Shaul, N., Le, M.,
Karrer, B., Chen, R. T. Q., Lopez-Paz, D., Ben-Hamu,
H., and Gat, I. Flow matching guide and code. CoRR,
abs/2412.06264, 2024.

Liu, C., Fan, W., Liu, Y., Li, J., Li, H., Liu, H., Tang, J., and
Li, Q. Generative diffusion models on graphs: Methods
and applications. In IJCAI, pp. 6702–6711. ijcai.org,
2023a.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow.
In ICLR. OpenReview.net, 2023b.

Martinkus, K., Loukas, A., Perraudin, N., and Wattenhofer,
R. SPECTRE: spectral conditioning helps to overcome
the expressivity limits of one-shot graph generators. In
ICML, volume 162 of Proceedings of Machine Learning
Research, pp. 15159–15179. PMLR, 2022a.

Martinkus, K., Loukas, A., Perraudin, N., and Wattenhofer,
R. SPECTRE: spectral conditioning helps to overcome
the expressivity limits of one-shot graph generators. In
ICML, volume 162 of Proceedings of Machine Learning
Research, pp. 15159–15179. PMLR, 2022b.

McCann, R. J. A convexity principle for interacting
gases. Advances in Mathematics, 128(1):153–179, 1997.
ISSN 0001-8708. doi: https://doi.org/10.1006/aima.1997.
1634. URL https://www.sciencedirect.com/
science/article/pii/S0001870897916340.

Minello, G., Bicciato, A., Rossi, L., Torsello, A., and
Cosmo, L. Generating graphs via spectral diffusion. In
The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=AAXBfJNHDt.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In AISTATS, volume 108 of Pro-
ceedings of Machine Learning Research, pp. 4474–4484.
PMLR, 2020.

Olkin, I. and Pukelsheim, F. The distance be-
tween two random vectors with given disper-
sion matrices. Linear Algebra and its Applica-
tions, 48:257–263, 1982. ISSN 0024-3795. doi:
https://doi.org/10.1016/0024-3795(82)90112-4.
URL https://www.sciencedirect.com/
science/article/pii/0024379582901124.

Polykovskiy, D., Zhebrak, A., Sánchez-Lengeling, B., Golo-
vanov, S., Tatanov, O., Belyaev, S., Kurbanov, R., Ar-
tamonov, A., Aladinskiy, V., Veselov, M., Kadurin, A.,
Nikolenko, S. I., Aspuru-Guzik, A., and Zhavoronkov,
A. Molecular sets (MOSES): A benchmarking platform
for molecular generation models. CoRR, abs/1811.12823,
2018.

Pooladian, A., Ben-Hamu, H., Domingo-Enrich, C., Amos,
B., Lipman, Y., and Chen, R. T. Q. Multisample flow
matching: Straightening flows with minibatch couplings.
In ICML, volume 202 of Proceedings of Machine Learn-
ing Research, pp. 28100–28127. PMLR, 2023.

Qin, Y., Madeira, M., Thanou, D., and Frossard, P. De-
fog: Discrete flow matching for graph generation. CoRR,
abs/2410.04263, 2024.

Qu, M., Bengio, Y., and Tang, J. GMNN: graph markov
neural networks. In ICML, volume 97 of Proceedings
of Machine Learning Research, pp. 5241–5250. PMLR,
2019.

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilienfeld,
O. A. Quantum chemistry structures and properties of
134 kilo molecules. Scientific data, 1(1):1–7, 2014.

10

https://openreview.net/forum?id=JHK0QBKdYY
https://openreview.net/forum?id=JHK0QBKdYY
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=PqvMRDCJT9t
https://www.sciencedirect.com/science/article/pii/S0001870897916340
https://www.sciencedirect.com/science/article/pii/S0001870897916340
https://openreview.net/forum?id=AAXBfJNHDt
https://openreview.net/forum?id=AAXBfJNHDt
https://www.sciencedirect.com/science/article/pii/0024379582901124
https://www.sciencedirect.com/science/article/pii/0024379582901124


Bures-Wasserstein Flow Matching for Graph Generation

Siraudin, A., Malliaros, F. D., and Morris, C. Cometh:
A continuous-time discrete-state graph diffusion model,
2024. URL https://arxiv.org/abs/2406.
06449.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A.,
Ermon, S., and Poole, B. Score-based generative mod-
eling through stochastic differential equations. In ICLR.
OpenReview.net, 2021.

Stärk, H., Jing, B., Wang, C., Corso, G., Berger, B., Barzi-
lay, R., and Jaakkola, T. S. Dirichlet flow matching with
applications to DNA sequence design. In ICML. Open-
Review.net, 2024.

Sun, H., Yu, L., Dai, B., Schuurmans, D., and Dai, H. Score-
based continuous-time discrete diffusion models. In ICLR.
OpenReview.net, 2023.

Takatsu, A. On wasserstein geometry of gaussian measures.
Probabilistic approach to geometry, 57:463–472, 2010.

Taskar, B., Abbeel, P., Wong, M.-F., and Koller, D. Rela-
tional markov networks. Introduction to statistical rela-
tional learning, 175:200, 2007.

Tong, A., Fatras, K., Malkin, N., Huguet, G., Zhang, Y.,
Rector-Brooks, J., Wolf, G., and Bengio, Y. Improving
and generalizing flow-based generative models with mini-
batch optimal transport. Trans. Mach. Learn. Res., 2024,
2024.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. In ICLR. OpenReview.net, 2023a.

Vignac, C., Osman, N., Toni, L., and Frossard, P. Midi:
Mixed graph and 3d denoising diffusion for molecule
generation. In ECML/PKDD (2), volume 14170 of Lec-
ture Notes in Computer Science, pp. 560–576. Springer,
2023b.

Villani, C. and Society, A. M. Topics in Optimal Trans-
portation. Graduate studies in mathematics. American
Mathematical Society, 2003. ISBN 9781470418045.
URL https://books.google.co.uk/books?
id=MyPjjgEACAAJ.

Wang, F., Yang, L., Huang, Z., Wang, M., and Li, H. Recti-
fied diffusion: Straightness is not your need in rectified
flow. CoRR, abs/2410.07303, 2024.

Weigt, M., White, R. A., Szurmant, H., Hoch, J. A.,
and Hwa, T. Identification of direct residue con-
tacts in protein–protein interaction by message pass-
ing. Proceedings of the National Academy of Sci-
ences, 106(1):67–72, 2009. doi: 10.1073/pnas.
0805923106. URL https://www.pnas.org/doi/
abs/10.1073/pnas.0805923106.

Xu, Z., Qiu, R., Chen, Y., Chen, H., Fan, X., Pan, M., Zeng,
Z., Das, M., and Tong, H. Discrete-state continuous-
time diffusion for graph generation. arXiv preprint
arXiv:2405.11416, 2024.

Yang, M., Zhou, M., Li, Z., Liu, J., Pan, L., Xiong, H., and
King, I. Hyperbolic graph neural networks: A review of
methods and applications. CoRR, abs/2202.13852, 2022.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In ICML, volume 80 of Proceedings
of Machine Learning Research, pp. 5694–5703. PMLR,
2018.

Yu, M. and Zhan, K. Bias mitigation in graph diffu-
sion models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https:
//openreview.net/forum?id=CSj72Rr2PB.

Zhu, X., Lafferty, J., and Ghahramani, Z. Semi-supervised
learning: From Gaussian fields to Gaussian processes.
School of Computer Science, Carnegie Mellon University,
2003.

Zhu, Y., Du, Y., Wang, Y., Xu, Y., Zhang, J., Liu, Q., and
Wu, S. A survey on deep graph generation: Methods
and applications. In LoG, volume 198 of Proceedings of
Machine Learning Research, pp. 47. PMLR, 2022.

11

https://arxiv.org/abs/2406.06449
https://arxiv.org/abs/2406.06449
https://books.google.co.uk/books?id=MyPjjgEACAAJ
https://books.google.co.uk/books?id=MyPjjgEACAAJ
https://www.pnas.org/doi/abs/10.1073/pnas.0805923106
https://www.pnas.org/doi/abs/10.1073/pnas.0805923106
https://openreview.net/forum?id=CSj72Rr2PB
https://openreview.net/forum?id=CSj72Rr2PB


Bures-Wasserstein Flow Matching for Graph Generation

A. Graph Markov random fields: background and theory
A.1. Background of Markov random fields

Markov random fields (MRFs) were originally developed to describe the dynamics of interconnected physical systems such
as molecules and proteins (Weigt et al., 2009; Bach et al., 2020). For a given graph G = {V,E}, MRFs are energy-based
models that describe the graph with the following probability density:

p(G) = 1

Z
∏

ξ∈cl(G)

φξ (Vξ) =
1

Z
e−U(G)/kT , (15)

where the energy U(G) is used to describe the whole connected system, cl(G) is the set of cliques of G, Vξ is the subset of
nodes related to ξ, and Z is the partition function. In our paper, we follow Zhu et al. (2003) and parameterize the energy
function with node-wise potential φ1(v),∀v ∈ V and edge-wise potential φ2(u, v), ∀euv ∈ E :

U(G) = ∑
v∈V

logφ1(v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Node-wise potential

+ ∑
{u,v}∈E

logφ2(u, v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Edge-wise potential

As a concrete example, in the molecule system that consists of atoms and bonds, the node-wise potential can be the kinetic
energy for an atom and the edge-wise potential is determined by the interatomic forces, such as the Electrostatic force.
MRFs thus serve as a natural and elegant way to describe general graph systems.

The energy-based models have an intrinsic relationship with generative models. As an example, Song et al. (2021) derived
the relationship between diffusion models and the Langevin dynamics, which is used to describe the evolution of an
energy-based model. It is shown that the diffusion models are trying to approximate the score function ∇X log p(X). In
the energy-based models, the score function is just the gradient of energy, ∇X log p(X) = −∇XU(X), and the Langevin
dynamics samples data points towards a lower energy profile state. Thus, interpolating between two graph distributions,
respectively, reference and data distributions, can be viewed as transitioning between two Markov random fields with
different energy landscapes. As illustrated in Figure 4, the random molecule graph sampled from the reference distributions
corresponds to the high energy state and the data distribution the low energy state.

Molecule with High Energy Molecule with low Energy

Energy 
Minimization

Figure 4. Molecule graphs correspond to MRFs with different energies.

The idea of our paper originated from the two facts: MRFs are energy-based model describing connected systems, and the
energy-based models have their intrinsic relationship with the diffusion/flow models. Thus, if a model is required to describe
the evolution of the whole graph system, we believe it is natural to consider constructing a probability path for two graph
distributions with MRFs as the backbone.

A.2. Derivation of Graph Markov random fields

We show the derivation of Definition 2, which is restated here:

Definition 3 (Graph Markov Random Fields). GraphMRF statistically describes graphs as,

p(G;G) = p(X ,E ;X,W ) = p(X ;X,W ) ⋅ p(E ;W ) where E ∼ δ(W ) and

vec(X) ∼ N (X,Λ†) , with X = vec(V †µ),Λ = (νI +L) ⊗V ⊺V .
(16)

The ⊗ is the Kronecker product, vec(⋅) is the vectorization operator and I is the identity matrix.

12



Bures-Wasserstein Flow Matching for Graph Generation

Derivation:

We start from

p(X ;X,W ) ∝∏
v

exp{−(ν + dv)∥V xv −µv∥2}∏
u,v

exp{wuv [(V xu −µu)⊺(V xv −µv)]} . (17)

We assume that the linear transformation matrix has dimension V ∈ RK′
×K given that xv ∈ RK and define a transformed

variable
hv ≡ V xv −µv ∈ RK′

, stacking asH ∈ R∣V∣×K
′

. (18)

The probability becomes

P (H;X,W ) ∝∏
v

exp{−(ν + dv)∥hv∥2}∏
u,v

exp{wuv h
⊺
uhv}. (19)

Then, the terms inside the exponent in Equation (19) become

−∑
v

(ν + dv)∥hv∥2 +∑
u,v

wuv h
⊺
uhv = −∑

v

(ν + dv)h⊺vhv +∑
u,v

wuv h
⊺
uhv

= −∑
u,v

h⊺u[(ν + du)δuv −wuv]hv,

where the Kronecker delta δuv = 1 if u = v and 0 else. We define a squared matrix Λ′ to arrange the inner term, which can
be written as,

Λ′ = νI +L with Λ′uv = (ν + du)δuv −wuv. (20)

I is the identity matrix. Thus, the exponent in compact matrix form gives

−1
2
Tr(H⊺Λ′H), whereH =

⎛
⎜⎜⎜
⎝

h1
h2
⋮

h∣V∣

⎞
⎟⎟⎟
⎠
. (21)

It is possible to rearrange the exponent as

Tr(H⊺Λ′H) = vec(H)⊺(Λ⊗ I)vec(H), (22)

where ⊗ denotes the Kronecker product. This is exactly in the form of a multivariate colored Gaussian. Thus, the joint
distribution of vec(H) (of dimension ∣V∣K ′) is given by

vec(H) ∼ N(0, (νI +L))−1 ⊗ IK′), (23)

Recall that hv = V xv −µv , we obtain

vec(H) = (I ⊗V ) vec(X) − vec(µ). (24)

Since the transformation is linear, the distribution over X remains Gaussian. By the properties of linear transformations of
Gaussians, if

vec(H) ∼ N(vec(µ), Σh),vec(X) = (I ⊗V †) vec(H), (25)

then
vec(X) ∼ N((I ⊗V †) vec(µ), (In ⊗V †)ΣH (In ⊗V †)⊺). (26)

Thus, using the mixed-product property of the Kronecker product,

(I ⊗V †)((νI +L)−1 ⊗ I)(In ⊗V †)⊺ = (L + νI)−1 ⊗ (V †V †⊺) (27)

Finally, the joint distribution over X is

vec(X) ∼ N(X,Σ),
with X = (I ⊗V †) vec(µ) = vec(V †µ)
and Σ = (νI +L)−1 ⊗ (V †V †⊺) ,

(28)

We use the following lemma:

13



Bures-Wasserstein Flow Matching for Graph Generation

Lemma 1. Given two invertible matrices A and B, their Kronecker product satisfies (A⊗B)−1 =A−1 ⊗B−1.

So that we get
vec(X) ∼ N (X,Λ†) , with X = vec(V †µ),Λ = (νI +L) ⊗V ⊺V . (29)

which ends the derivation.

A.3. The usage scope of graph Markov random fields

Given that our Graph Markov random fields (GraphMRF) have an explicit form to constrain the graph distribution, it inherits
certain inductive biases and we have to properly understand the usage scenarios.

To understand the scenarios which GraphMRF could be used, we start by stating the plain form of MRF by melting the
linear transformer matrix and the mean term, i.e., giving hv = V xv −µ which gives the probability density as,

P (H ∣ L) ∝ exp(− trace(H⊺(L + νI)H)) = exp(−wuv∥hu − hv∥2 − ν∑
u

∥hu∥2F) (30)

Plain Graph Markov random fields. To understand the scenarios which we can utilize MRF to model graphs, we first
consider the simplest case when V is rectangular orthogonal (semi-orthogonal) matrix such that V ⊺V = I and the mean
µ = 0, the probability density becomes,

P (X,L) ∝ exp(−X⊺(L + νI)X) = exp(− ∑
{u,v}∈E

Wuv(xu −xv)2 − ν∑
u

x2
u) (31)

As ν → 0, the exponent term inside becomes

S(X,L) = − ∑
{u,v}∈E

Wuv(xu −xv)2 = trace(X⊺LX), (32)

where we name S(X,L) as the smoothness of the graph features. The smoothness measures how similar the neighbors
connected are. For instance, if there exists an edge between node u and v weighted as Wuv , the likelihood will be higher if
xu and xv be similar, so that ∥xu −xv∥2 are small. This suggests that the probability will be higher if the S(X,L) is small.

This vanilla form captures the first type of graphs the GraphMRF can model - the homophily graphs, i.e., similar nodes
(measured by the node attribute) may be more likely to attach to each other than dissimilar ones. This includes the social
networks with friendship, traffic networks, etc.

Graph Markov random fields with embeddings. Now we move one step further to consider the graphs with linear
transformer matrix V . Linear transformation provides a map from the feature space to the latent space, which can be
considered as an embedding method to empower the models with better expressiveness. As a simple example, when the V
provides a negative projection, the mapping can capture the heterophily relationships, which means the nodes connected are
dissimilar.

Coincidently, this aligns well with the famous embedding method Node2Vec as in Grover & Leskovec (2016), where the
edge weights are proportional to the negative distance, or the inner product of the embeddings. i.e.,

Wuv ∝ exp(−∥V xu −V xv∥2F) (33)

In (Jiang et al., 2025) it is derived that learning the parameters of MRFs is intrinsically equivalent to learning embeddings
similar to Node2Vec. As such, the expressiveness of MRFs are as good as Node2Vec, which grants its usage to molecule
graphs, protein interaction networks, social networks, and knowledge graphs. In our paper we make the assumption is that
the linear mapping from X the observation is shared. This requirement translates to that the two graphs should have the
same embedding space and feature space, which is practical if the reference distribution and data distributions share the
same space.

Graphs without features. We wish to emphasize that even though the GraphMRF is constructed under the assumption
that graph features exist, it is capable of modeling the non-attributed graphs, such as planar and SBM graphs. To do so,

14



Bures-Wasserstein Flow Matching for Graph Generation

we consider the optimization over the Rayleigh function: It is shown that, if v1, . . . , vk−1 are orthonormal eigenvectors for
λ1, . . . , λk−1, then the eigenvalues satisfy,

λk = min
x≠0

x⊥v1,...,vk−1

R(x), with R(x) = xTLx

xTx
(34)

In such a scenario, the graphs are no longer related to the actual node features, but instead, the eigenvectors vk serve as
an intrinsic graph feature. Interestingly, R(x) is the normalized form of the smoothness as in Equation (31), which is
exactly equivalent to the eigenvalues. This means that if the spectrum of the graph Laplacian focuses on the low-frequency
components, the corresponding graphs would give a higher probability in terms of MRFs if we view the eigenvectors as the
node features. Such a pattern could capture the graph distributions almost all the synthetic datasets, such as Planar, SBM,
TLS, COMM20 datasets, satisfy such a property. There is no surprise that our models capture better global patterns in those
datasets. But it is also worth pointing out that there exists exceptions, such as the tree graph, which does not have a clear
clustering pattern, thus the spectrum does not follow our GraphMRF.

Future work. A limitation of our method is that it cannot easily capture the generation of graphs with multiple relation
types, which we name heterogeneous graphs. Even though we utilize an intuitive solution in the experiment to produce Ta-
ble 2: we first sample the pure graph structure without edge types to produce the graph backbone, and then sample the
edge types via liner interpolated probability on top of the backbone. The solution provides preliminary results for the graph
generation in multi-relational graphs, but still requires improvements. Fortunately, there exists a few ways to extend the
GraphMRF to heterogeneous graphs (Jiang et al., 2025). An interesting future work can be generalizing our model to
heterogeneous graphs by considering GraphMRF variants, such as the H2MN proposed in Jiang et al. (2025).

B. Proofs
B.1. Wasserstein Distance between two colored gaussian distributions

We first prove the lemma that captures the Wasserstein distance between two colored Gaussians, which will be used in
deriving our Bures-Wasserstein distances in graph generations.

Lemma 2. Consider two measures η0 ∼ N (µ0,Σ0) and η1 ∼ N (µ1,Σ1), describing two colored Gaussian distri-
butions with mean µ0,µ1 and covariance matrices Σ0,Σ1. Then the Wasserstein distance between these probability
distributions is given by

(W2 (η0, η1))2 = ∥µ0 −µ1∥2 +Tr(Σ0 +Σ1 − 2 (Σ1/2
0 Σ1Σ

1/2
0 )

1/2
) .

Proof. We first state the following proposition.
Proposition 4. (Translation Invariance of the 2-Wasserstein Distance for Gaussian Measures) Consider two measures
η0 ∼ N (µ0,Σ0) and η1 ∼ N (µ1,Σ1) and their centered measure as η̃0 = N (0,Σ0) and η̃1 = N (0,Σ1), the squared
Wasserstein distance decomposes as

W2
2 (η0, η1) = ∥µ0 −µ1∥22 +W

2
2 (η̃0, η̃1)

Proof :

Consider two random vectors X ,Y distributed as η0, η1,

X = µ0 + X̃ ,Y = µ1 + Ỹ, with X̃ ∼ η̃0, Ỹ ∼ η̃1.

For any coupling (X ,Y), we consider the expected squared Euclidean distance,

EX ,Y∥X − Y∥2 = EX ,Y ∥mu0 −µ1 + (X̃ − Ỹ)∥
2
.

= ∥µ0 −µ1∥2 + 2 ⟨µ0 − µ1, X̃ − Ỹ⟩ +EX̃ ,Ỹ∥X̃ − Ỹ∥
2

(35)

Since X̃ and Ỹ both have zero mean, we have E[X̃ − Ỹ] = 0 so the cross-term vanishes. Thus,

E∥X − Y∥2 = ∥µ0 −µ1∥2 +E∥X̃ − Ỹ∥2 (36)

15



Bures-Wasserstein Flow Matching for Graph Generation

Take the definition of 2-Wasserstein distance, the infimum over all couplings directly yields

(W2(η0, η1))2 = inf
π∈Π(η0,η1)

∫ ∥X − Y∥2 dπ(X ,Y).

= ∥µ0 −µ1∥2 +W2
2 (η̃0, η̃1)

(37)

This completes the proof of Proposition 4.

Now we prove the flowing proposition, which will give us our lemma.

Proposition 5. Given two centered measures as η̃0 = N (0,Σ0) and η̃1 = N (0,Σ1)

W2
2 (η̃0, η̃1) = Tr(Σ0 +Σ1 − 2 (Σ1/2

1 Σ0Σ
1/2
1 )

1/2
) . (38)

proof. The coupling π of η̃0 and η̃1 is a joint Gaussian measure with zero mean and covariance matrix

Σc = (
Σ0 C
CT Σ1

) ⪰ 0, (39)

where C is the cross-covariance and ⪰ means the matrix is positive semi-definitive (PSD). The expected squared distance
between the two random vectors (X ,Y) drawn from π is then described as,

E∥X − Y∥2 = Tr(E[(X − Y)(X − Y)⊺])
= Tr(Σ0) +Tr(Σ1) − 2 Tr(C).

(40)

The definition of Wasserstein distance gives,

Wc(η0, η1) = inf
π∈Π(η0,η1)

E∥X − Y∥2 (41)

Thus, minimizing the Wasserstein distance is equivalent to maximizing Tr(C) over all C subject to the joint covariance is
positive semi-definite (PSD). It turns out (see Dowson & Landau (1982); Olkin & Pukelsheim (1982); Takatsu (2010) ) that
the condition in Equation (39) is equivalent to,

Σ1 −C⊺Σ−10 C ⪰ 0↔ Σ
−1/2
0 CΣ

−1/2
1 has operator norm ≤ 1 (42)

So we denote K ∶= Σ−1/20 CΣ
−1/2
1 with ∥K∥op ≤ 1. Then

Tr(C) = Tr(Σ1/2
0 KΣ

1/2
1 ) = Tr (KΣ

1/2
1 Σ

1/2
0 ) .

Using von Neumann trace inequality, its trace inner-product with K is maximized by choosing K = I on the support.

max
∥K∥op≤1

Tr(KA) = Tr (M1/2) , M =
√
AA⊺ = Σ1/2

1 Σ0Σ
1/2
1

Hence the optimal value of Tr(C) is

Tr(C∗) = Tr [(Σ1/2
1 Σ0Σ

1/2
1 )

1/2
]

Substituting this optimal value into the expression of Wasserstein distance, we obtain

W2
2 (η̃0, η̃1) = Tr(Σ0) +Tr(Σ1) − 2 Tr [(Σ1/2

1 Σ0Σ
1/2
1 )

1/2
] . (43)

This completes the proof of proposition 5. Taking Proposition 4 and Proposition 5 together, we proved Lemma 2.

16



Bures-Wasserstein Flow Matching for Graph Generation

B.2. Derivation of the graph Wasserstein distance under MRF

We then prove the Bures-Wasserstein distance for two graph distributions. We restate Proposition 1,

Proposition 6 (Bures-Wasserstein Distance). Consider two same-sized graphs G0 ∼ p (X0,E0) and G1 ∼ p (X1,E1)
with V shared for two graphs, described by the distribution in Definition 2. When the graphs are equipped with graph
Laplacian matrices L0 and L1 satisfying 1) is Positive Semi-Definite (PSD) and 2) has only one zero eigenvalue. The
Bures-Wasserstein distance between these two random graph distributions is given by

dBW(G0,G1) = ∥X0 −X1∥2F + βTr(L
†
0 +L

†
1 − 2 (L

†/2
0 L†

1L
†/2
0 )

1/2
) , (44)

as ν → 0 and β is a constant related to the norm of V .

Specifically, Definition 2 uses graph Markov random fields to describe a graph as

p(G;G) = p(X ,E ;X,W ) = p(X ;X,W ) ⋅ p(E ;W ) where E ∼ δ(W ) and

vec(X) ∼ N (X,Λ†) , with X = vec(V †µ),Λ = (νI +L) ⊗V ⊺V .
(45)

With the graph Wasserstein distance defined as,

(Graph Wasserstein Distance) dBW(G0,G1) ∶= Wc (ηG0 , ηG1) = Wc(ηX0 , ηX1) +Wc(ηE0 , ηE1).

We first consider calculatingWc(ηX0 , ηX1). Specifically, this is the distance between two colored Gaussian measures where

ηi ∼ N(µ′i,Σi), i = 0,1,

where µ′i = Vi ⊗µi and Σ−1i = Λi = (νI +Li) ⊗ (V ⊺i Vi).
(46)

where we first assume that these two Gaussians are emitted from different linear transformation matrices V0 and V1. This
will bring us the most general and flexible form that could be universally applicable, and potentially can bring more insights
to future work. Next, we will inject a few assumptions to arrive at a more practical form for building the flow matching
models.

An important property of Kronecker product: Given two invertible matrices A and B, their Kronecker product satisfies
(A⊗B)−1 =A−1 ⊗B−1. Using such a property, in the limit as ν → 0, we have

Λi → Li ⊗ (V ⊺i Vi) Ô⇒ Σi = L−1i ⊗ (V ⊺i Vi)−1. (47)

According to Propensity 2, the squared 2-Wasserstein distance between two Gaussian measures is given by

W2
2(η0, η1) = ∥µ′0 −µ′1∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Mean term

+Tr(Σ0 +Σ1 − 2(Σ1/2
0 Σ1Σ

1/2
0 )

1/2

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Covariance Term

. (48)

Mean Term. Since µ′i = V ⊗µi, the mean difference becomes

∥µ′0 −µ′1∥2 = ∥V0µ0 −V1µ1∥2F = ∥X0 −X1∥2F (49)

Covariance term. Using the property of the Kronecker product, the square root of Equation (47) factors in as

Σ
1/2
i = L−1/2i ⊗ (V ⊺i Vi)−1/2. (50)

and
Σ

1/2
0 Σ1Σ

1/2
0 = (L−1/20 L−11 L

−1/2
0 ) ⊗ ((V ⊺0 V0)−1/2(V ⊺1 V1)−1(V ⊺0 V0)−1/2) (51)

We first look into the term related to V0 and V1, which is,

Tr((V ⊺0 V0)−1/2(V ⊺1 V1)−1(V ⊺0 V0)−1/2) = Tr((V ⊺1 V1)−1(V ⊺0 V0)−1/2(V ⊺0 V0)−1/2)

= Tr((V ⊺1 V1)−1(V ⊺0 V0)−1)
(52)

17



Bures-Wasserstein Flow Matching for Graph Generation

As Tr(A +B) = Tr(A) +Tr(B) the covariance term becomes

Covariance Term

= Tr(Σ0 +Σ1 − 2(Σ1/2
0 Σ1Σ

1/2
0 )

1/2

)

= Tr(Σ0) +Tr(Σ1) − 2Tr ((Σ1/2
0 Σ1Σ

1/2
0 )1/2)

= Tr(L−10 ⊗ (V ⊺0 V0)−1 +L−11 ⊗ (V ⊺1 V1)−1 − 2 (L−1/20 L−11 L
−1/2
0 )

1/2

⊗ (V ⊺1 V1)−1/2(V ⊺0 V0)−1/2)

(53)

Given that Tr(A⊗B) = Tr(A)Tr(B) and Tr(V ⊺V ) = ∥V ∥2F for any real-valued matrix V , we can further derive,

Covariance Term = Tr[(V ⊺0 V0)−1]Tr(L†
0) +Tr[(V ⊺1 V1)−1]Tr(L†

1)

− 2Tr(L†/2
0 L†

1L
†/2
0 )

1/2

⋅Tr[(V ⊺1 V1)−1/2(V ⊺0 V0)−1/2].
(54)

Unfortunately, to simplify this equation, we have to make the two gram matrix, (V ⊺0 V0)−1 and (V ⊺1 V1)−1 agree, i.e.,
(V ⊺1 V1)−1 = (V ⊺0 V0)−1. This will be satisfied if and only if there exists an orthogonal matrix Q such that

V †
1 = V

†
0 Q.

Thus, to further process, we simply consider the case when V1 and V0 are exactly the same, i.e., V1 = V0 = V (we
have already discussed how realistic this assumption is in Appendix A.3). So that we work under the assumptions that
∥V †

0 ∥2F = ∥V
†
1 ∥2F = β, which simplify the trace as

Covariance Term = β ⋅Tr(L†
0 +L

†
1 − 2 (L

†/2
0 L†

1L
†/2
0 )

1/2

). (55)

Combining the mean term and the covariance term, we obtain the Wasserstein distance ofWc(ηX0 , ηX1)
For calculatingWc(ηE0 , ηE1), we have the freedom to choose the cost function when obtaining the Wasserstein distance.
Note that W serves as the prior for the Gaussian covariance matrix Σ, where the covariance has to be positive-semi definite.
Thus, according to (Bhatia et al., 2019), a proper distance between two positive semi-definite matrices is measured by

W(ηE0 , ηE1) = ∥Σ
1/2
0 −Σ1/2

1 ∥
2

F
. (56)

Coincidently, this is another usage case when the Bures-Wasserstein metric is utilized. Putting everything together, the
Wasserstein distance in the limit ν → 0 is

dBW(G0,G1) = ∥V0µ0 −V1µ1∥2F + (β + 1) ⋅Tr(L†
0 +L

†
1 − 2 (L

†/2
0 L†

1L
†/2
0 )

1/2

).

= ∥X0 −X1∥2F
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dX(X0,X1)

+(β + 1) ⋅Tr(L†
0 +L

†
1 − 2 (L

†/2
0 L†

1L
†/2
0 )

1/2

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dL(L0,L1)

. (57)

This expression separates the contribution of the mean difference (transformed by V ) and the discrepancy between the
covariance structures (encoded in L0 and L1). This could be further used to derive BW interpolation, which we will
show in Appendix C.1. In the main body, constant β actually corresponds to β + 1 here. This complete our derivation
in Proposition 1.

C. Derivation of Bures-Wasserstein flow matching
In order to build the flow matching framework, we need to derive the optimal interpolation and the corresponding velocities
for the probability path p(Gt ∣ G0,G1). This is achieved via the OT displacement between two graph distributions.

18



Bures-Wasserstein Flow Matching for Graph Generation

C.1. The Bures-Wasserstein graph interpolation

We aim to recover the proposition stated as follows.

Proposition 7 (Bures-Wasserstein interpolation). The graph minimizer of Equation (10), Gt = {V,Et,Xt}, have its
node features following a colored Gaussian distribution, Xt ∼ N(Xt,Λ

†
t) with Λt = (νI +Lt) ⊗ V ⊺V and edges

following Et ∼ δ(Wt), specifically,

L†
t = L

1/2
0 ((1 − t)L

†
0 + t (L

†/2
0 L†

1L
†/2
0 )

1/2
)
2

L
1/2
0 , Xt = (1 − t)X0 + tX1 (58)

The interpolation is an extension of the concept of mean, where in the optimal transport world, the Wasserstein barycenter
(mean) of measures η0, . . . ηm−1 under weights λ0, . . . λm−1 can be derived over the following optimization problem:

η̄ = argmin
η

m−1

∑
j=0

λj (W2 (η, ηj))2 (59)

When m = 2, based on the Bures-Wasserstein (BW) distance, we can define the OT displacement minimization problem on
graphs described as,

Gt = argmin
G̃

(1 − t)dBW(G0, G̃) + tdBW(G̃,G1). (60)

where dBW(G0,G1) is described in Proposition 1. The optimal graph interpolation is the solution to the problem.

In the setting of graph, this becomes a two-variable optimization problem, where

Xt,Et = argmin
X̃ ,Ẽ

(1 − t)dBW(G0, G̃) + tdBW(G̃,G1). (61)

Fortunately, recall in Equation (57) that our distance measurement dBW(G0,G1) is decomposed into dX(X0,X1) and
dL(L0,L1), then the optimization over node and edges are disentangleable into solving the two sub optimization problem,

Sub-question 1: X̄t = argmin
X̃

(1 − t)∥X0 − X̃∥2F + t∥X̃ −X1∥2F

Sub-question 2: L̄t = argmin
L̃

(1 − t)dL(L0, L̃) + tdL(L1, L̃)
(62)

This two problems are completely disentangled thus we can solve them separately.

Sub-question 1 For the first problem, we simply set the derivate to 0 and get,

(1 − t)(X̃ −X0) + t(X̃ −X1) = 0→Xt = (1 − t)X0 + t(X1) (63)

Subquestion 2 The second subproblem is equivalent in deriving the covariance of Bures-Wasserstein interpolation between
two Gaussian measures, η0 ∼ N (0,L†

0) and η1 ∼ N (0,L†
1). This problem has been properly addressed in Haasler &

Frossard (2024) and here we just verbose their results. For more details we refer the reader to Haasler & Frossard (2024)
for a further discussion.

The optimal transport geodesic between η0 ∼ N (0,L†
0) and η1 ∼ N (0,L†

1) is defined by ηt = ((1 − t)I + tT )#η0, where
the symbol “#” denotes the push-forward of a measure by a mapping, T is a linear map that satisfies TL†

0T = L
†
1.

We define a new matrix M and do normalization, which leads to,

T = L1/2
0 ML

1/2
0 (64)

Plug in gives,

TL†
0T
⊺ = L1/2

0 ML
1/2
0 L†

0 (L
1/2
0 ML

1/2
0 )

⊺

= L1/2
0 MM⊺L

1/2
0 .

(65)

19



Bures-Wasserstein Flow Matching for Graph Generation

So that we obtain

L†
1 = L

1/2
0 MM⊺L

1/2
0 →M = (L†/2

0 L†
1L

†/2
0 )1/2 (66)

Replace T and we get,

T = L1/2
0 (L

†/2
0 L†

1L
†/2
0 )

1/2
L

1/2
0 (67)

Given that the geodesic ηt = ((1 − t)I + tT )#η0 which also has a Gaussian form ηt ∼ N (0,Σt), We can then write the
covariance matrix and obtain

L†
t = Σt = ((1 − t)I + tT )L†

0((1 − t)I + tT )

= L1/2
0 ((1 − t)L

†
0 + t (L

†/2
0 L†

1L
†/2
0 )

1/2
)L1/2

0 L†
0L

1/2
0 ((1 − t)L

†
0 + t (L

†/2
0 L†

1L
†/2
0 )

1/2
)L1/2

0

= L1/2
0 ((1 − t)L

†
0 + t (L

†/2
0 L†

1L
†/2
0 )

1/2
)
2

L
1/2
0

(68)

Which ends the derivation.
Remark 1: Even though the GraphMRF in Definition 2 does rely on an implicit linear emission matrices V , the
BW interpolation in Proposition 2 can be obtained without explicitly accessing to the V matrices. The property was
attractive as in practice we can construct the probability path without explicitly fitting a V beforehand.

C.2. Deriving the velocity of BW interpolation

We first show the general form of the velocity term for the Gaussian and Dirac measures.

Gaussian Measure. For a time-parametrized Gaussian density pt(x) = N (x;µt,Σt), the velocity field vt(x) satisfies
the continuity equation

∂tpt +∇ ⋅ (ptvt) = 0,

is an affine function of x. And the instantaneous velocity field follows,

vt(X) = µ̇t +
1

2
Σ̇tΣ

−1
t (X −µt) .

Dirac Measure. When the measure is a Dirac function,

pt(x) = δ (⋅,µt) .

We can just consider it as the limited case of the Gaussian measure, when Σt → 0. So that the velocity at simply takes

vt(x) = µ̇t.

We then move to prove the following propensity for Bures-wasserstein velocity.

Proposition 8 (Bures-Wasserstein velocity). For the graph Gt following BW interpolation in Proposition 2, the
conditional velocity at time t with observation Gt is given as,

vt(Et ∣ G0,G1) = Ẇt = diag(L̇t) − L̇t, vt(Xt ∣ G0,G1) =
1

1 − t(X1 −Xt)

with L̇t = 2Lt − TLt −LtT and T = L1/2
0 (L

†/2
0 L†

1L
†/2
0 )1/2L

1/2
0

(69)

where Wt =Dt −Lt and Lt defined in Equation (11).

Proof:

20



Bures-Wasserstein Flow Matching for Graph Generation

The graph structure velocity. As we assume the edges, Et ∼ δ(⋅,Wt), following a dirac distribution, the velocity is
defined as

vt(Et) = Ẇt.

Given that, Ẇt = diag(L̇t) − L̇t, we transit fo deriving the derivative of the Laplacian matrix, L̇t. Using the fact that,

d

dt
(A−1) = −A−1 dA

dt
A−1

we obtain the derivate of Laplacian matrix,

L̇t =
d(Σ†

t)
dt

= Σ†
t

dΣt

dt
Σ†

t = Lt
dΣt

dt
Lt (70)

According to Equation (68) and Equation (67), the covariance matrix is defined through the interpolation,

Σt = ((1 − t)I + tT )L†
0((1 − t)I + tT ) ∶=RtL

†
0Rt (71)

where Rt = (1 − t)I + tT . Taking the derivative, we get,

Σ̇t =
d

dt
(RtΣ0Rt) =R′tΣ0Rt +RtΣ0R

′
t = (T − I)Σ0Rt +RtΣ0(T − I) (72)

Using the fact that Σ0Rt =RtΣ0 = Σt, we obtain the covariance gradient

Σ̇t = (T − I)Σt +Σt(T − I) (73)

So that,

−L̇t =
d(Σ†

t)
dt

= Σ†
t

dΣt

dt
Σ†

t = Lt
dΣt

dt
Lt

= Lt((T − I)L†
t +L†

t(T − I))Lt

= Lt(T − I) + (T − I)Lt

= LtT + TLt − 2Lt

(74)

Thus, L̇t = 2Lt −LtT − TLt.

Given that Lt =Dt −Wt so that Wt = diag(Lt) −Lt, taking the derivative gives Ẇt = diag(L̇t) − L̇t. As we assume the
edges, Et ∼ δ(⋅,Wt), the derivate directly yields the velocity,

vt(Et ∣ G0,G1) = Ẇt = diag(L̇t) − L̇t.

The node feature velocity. The instantaneous velocity field follows,

vt(X ∣ G0,G1) = µ̇t +
1

2
Σ̇tΣ

−1
t (X −µt) .

The mean gradient interpolating η0 and η1 can be written as µ̇t =X1 −X0 and Xt = (1 − t)X0 + tX1. So that the velocity
leads to,

vt(X ∣ G0,G1) =X1 −X0 +
1

2
L̇†

tLt (X −Xt) .

However, in practice, we do not need such a complicated velocity term. We wish to avoid the estimation of complex
gradient-inverse term so that we can escape from the complicated computation. Under the assumption that the amplitude of
covariance is much smaller than the mean difference, we can omit the second term and just keep the mean difference. Hence
the instantaneous velocity is simply described as

vt(Xt ∣ G0,G1) =X1 −X0 =X1 −X0 =
1

1 − t(X1 −Xt) (75)

21



Bures-Wasserstein Flow Matching for Graph Generation

Algorithm 1: BWFlow Training
Input: Ref. dist p0 and dataset D ∼ p1.
Output: Trained model fθ(Gt, t).
Initialize model fθ(Gt, t);
while fθ not converged do

/* Sample Boundary Graphs */
Sample batched {G0} ∼ p0, {G1} ∼ D;
/* Prob.path Construction */
Sample t ∼ U(0,1);
Calculate the BW interpolation p(Gt ∣ G0,G1)
via Equation (11);
/* Denoising -- x-prediction */

pθ1∣t(⋅ ∣ Gt) ← fθ(Gt, t);
Loss calculation via Equation (4);
optimizer.step();

Algorithm 2: BWFlow Sampling
Input: Reference distribution p0, Trained Model

fθ(Gt, t), Small time step dt,
Output: Generated Graphs {Ĝ1}.
Initialize samples {Ĝ0} ∼ p0;
Initialize the model pθ1∣t(⋅ ∣ Gt) ← fθ(Gt, t) for t← 0

to 1 − dt by dt do
/* Denoising - x-prediction */

Predict G̃1 ← pθ1∣t(⋅ ∣ Ĝt);
/* Velocity calculation */

Calculate vθ(Ĝt ∣ Ĝ0, G̃1) via Equation (12);
/* Numerical Sampling */

Sample Ĝt+dt ∼ Ĝt + vθ(Ĝt)dt

D. Discrete Bures-Wasserstein flow matching for graph generation
D.1. Probability path construction for discrete Bures-Wasserstein flow matching

The discrete probability path. We design the probability path as discrete distributions,

pt(xv ∣ G0,G1) = Categorical([Xt]v), pt(euv ∣ G0,G1) = Bernoulli([Wt]uv)
s.t. p0(G) = δ(G0, ⋅), p1(G) = δ(G1, ⋅)

(76)

where Wt =Dt −Lt with Xt and Lt defined the same in Equation (11). We consider the fact that the Dirac distribution
is a special case when the Categorical/Bernoulli distribution has probability 1 or 0, so the boundary condition p0(G) =
δ(G0, ⋅), p1(G) = δ(G1, ⋅) holds. As such, Xt = (1 − t)X0 + tX1 ∈ [0,1]∣V∣×K . Since the boundary condition for each
entry, [X0]v and [X1]v are two one-hot embeddings, [Xt]v = t[X0]v + (1− t)[X1]v would sum to one, which works as a
valid probability vector. Thus, Categorical([Xt]v) is a K-class categorical distribution.

For the edge distribution, we just consider euv is conditionally independent of the other given [Wt]uv. One thing to
emphasize is that, given the nature of Bures-Wasserstein interpolation, the yielded Wt is not always bounded by [0,1] thus
we have to hard-clip the boundary.

D.2. Approximating Wasserstein distance in Bernoulli distributions

To make sure that the individual nodes are structured and developed jointly while doing flow matching, we assume that
the vec(X) still maintains a covariance matrix similar to Equation (8), which gives Λ = (νI +L) ⊗V ⊺V given that X is
emitted from a latent variableH through an affine transformation and the latent variable has a covariance matrix (νI +L)−1.
Different from the Gaussian case, the latent variable would still be a discrete distribution, so that the affine transformation
carries the covariance matrix out.

Unfortunately, the Wasserstein distance between two discrete graph distributions that follow Equation (13) does not have a
closed-form solution given the complex interwined nature. However, it is possible to use the central limit theorem applied to
X so that we can approximate the Wasserstein distance of two Bernoulli distributions with the Gaussian counterpart. This
approximation works when we are in high-dimensional case (high dimension means ∣V∣d is moderately large.), and the
OT-distance between two such Bernoulli distributions is well-captured by the corresponding Gaussian formula, which we
already introduced in Equation (57).

With such nature, even though we are not sampling from Gaussian distributions anymore, it is possible to approximate the
Wasserstein distance between two multivariate discrete distributions with the Gaussian counterpart, so the conclusions, such
as optimal transport displacements, still hold. And we can similarly derive the Bures-Wasserstein velocity as in the next
section.

22



Bures-Wasserstein Flow Matching for Graph Generation

D.3. Velocity for discrete Bures-Wasserstein flow matching

Node Velocity. For node-wise, the path of node features Xt can be re-written as pt(X) = (1 − t)δ(⋅,X0) + tδ(⋅,X1) so
the conditional velocity can be accessed through vt(Xt ∣ G0,G1) = [δ(⋅,X1) − δ(⋅,Xt)]/(1 − t) similar as the derivation
in (Gat et al., 2024).

Edge Velocity. For edge-wise, we look into each entry of the adjacency matrix W , and consider a time-dependent
Bernoulli distribution, the probability density function is:

pt(euv) = [Wt]euv
uv (1 − [Wt]uv)1−euv , euv ∈ {0,1}. (77)

To properly define a velocity v(x, t), it should follow the continuity equation

∂

∂t
pt(euv) + ∇ ⋅ (pv)t(euv) = 0. (78)

We use x and y to denote two states of euv (p(euv = x) ∶= p(x), p(euv = y) ∶= p(y)), then the divergence term is

∇ ⋅ (pv)(euv = x) = ∑
y≠x

[pt(y) vt(y → x) − pt(x) vt(x→ y)]. (79)

As we are working on a Bernoulli distribution, then the forward equations become

⎧⎪⎪⎨⎪⎪⎩

∂tp(0) = p(1) vt(1→ 0) − p(0) vt(0→ 1),
∂tp(1) = p(0) vt(0→ 1) − p(1) vt(1→ 0).

(80)

Since pt(1) = [Wt]uv,, we have ∂tp(1) = [Ẇt]uv and ∂tp(0) = −[Ẇt]uv . Hence

p(0) vt(0→ 1) − p(1) vt(1→ 0) = [Ẇt]uv.

There are many solutions to the above equation. We chose a symmetric solution so that the transition of euv → 1 − euv with

vt(0→ 1) = [Ẇt]uv
1 − [Wt]uv

, vt(1→ 0) = −[Ẇt]uv
[Wt]uv

.

Finally for concise, we can write write it as a velocity field on states euv ∈ {0,1}, note 1 − 2euv is +1 at euv = 0 and −1 at
euv = 1. Thus, we have

v(euv, t) = (1 − 2euv)
[Ẇt]uv

[Wt]uv (1 −Wt]uv)
, euv ∈ {0,1},

which in matrix form gives

vt(Et ∣ G1,G0) = (1 − 2Et)
Ẇt

Wt ○ (1 −Wt)
. (81)

Combine the node velocity and the edge velocity, we can now introduce the Discrete Bures-Wasserstein Flow matching
algorithm, with the training and inference part respectively introduced in Algorithm 3 and Algorithm 4.

E. Design space for Bures Wasserstein interpolation and velocity
In the introduction part, we have already compared different probability paths and how they are impacting the inference time
sampling. While the Bures-Wasserstein flow path is shown to produce a better probability path for the model to learn, as
we illustrated in Figure 1a, we have to point out that linear interpolation and the corresponding probability path can still
converge to the data distribution with sufficiently large flow steps. As if we conduct sampling with infinite flow steps during
the later stage of flow, the samples are still able to arrive at the target distributions. A similar pattern exists in diffusion
models when they are considered as a Monte-Carlo Markov Chain, and they need sufficiently large steps to converge. We
emphasize that the convergence gap in Figure 1c would be slowly recovered as the number of flow steps increases.

23



Bures-Wasserstein Flow Matching for Graph Generation

Algorithm 3: Discrete BWFlow Training
Input: Ref. dist p0 and dataset D ∼ p1.
Output: Trained model fθ(Gt, t).
Initialize model fθ(Gt, t);
while fθ not converged do

/* Sample Boundary Graphs */
Sample batched {G0} ∼ p0, {G1} ∼ D;
/* Prob.path Construction */
Sample t ∼ U(0,1);
Calculate the BW interpolation to obtain Xt,Wt

via Equation (11);
Sample Gt ∼ p(Gt ∣ G0,G1) according

to Equation (13);
/* Denoising -- x-prediction */

pθ1∣t(⋅ ∣ Gt) ← fθ(Gt, t);
Loss calculation via Equation (4);
optimizer.step();

Algorithm 4: Discrete BWFlow Sampling
Input: Reference distribution p0, Trained Model

fθ(Gt, t), Small time step dt,
Output: Generated Graphs {Ĝ1}.
Initialize samples {Ĝ0} ∼ p0;
Initialize the model pθ1∣t(⋅ ∣ Gt) ← fθ(Gt, t) for t← 0

to 1 − dt by dt do
/* Denoising - x-prediction */

Predict G̃1 ← pθ1∣t(⋅ ∣ Gt);
/* Velocity calculation */

Calculate vθ(Ĝt ∣ Ĝ0, G̃1) via Equation (14);
/* Numerical Sampling */

Sample Ĝt+dt ∼ Ĝt + vθ(Ĝt)dt

Given that different sampling algorithms can all bring the samples to the data distributions under certain conditions, we
wish to understand the huge design space of Bures Wasserstein interpolation. We list the advantages and disadvantages in
different techniques and discuss further when each techniques should be used.

In general, we consider two important steps to construct the flow matching for graph generation, specifically, training and
sampling. In training, the main challenge is to obtain a valid real velocity u(Gt) to be regressed to, so we listed a few
strategies that can help us with that. In sampling, the challenge becomes how to reconstruct the probability path through the
velocity estimated.

E.1. The Training Design

In general, the learning objective in flow matching depends on regressing the velocity term. There are several way to obtain
the velocity.

1. Exact velocity estimation. Use Equation (3) as the parameterization and learn pθ(G1 ∣ Gt)

2. Numerical Approximation. In the implementation of (Stärk et al., 2024), the derivative is calculated through numerical
approximation. To achieve better efficiency in calculating velocity, we simply consider a numerical estimation as
in (Stärk et al., 2024), where the velocity term is obtained as, L̇t = (Lt+∆t −Lt)/∆t. Regressing on the numerical
difference can provide an estimation for the velocity.

3. AutoDiff. In (Chen & Lipman, 2024), the derivative of the probability path is evaluated through Pytorch AutoDiff.
However, in practice we find this method unstable.

We summarized the training stage model parameterization in Table 4

Continuous Flow Matching Discrete Flow Matching

x-prediction vθt (Gt) = 1
1−t
[G̃θ

t (Gt) −Gt] vθt (Gt) = 1
1−t
[pθ1∣t (G1 ∣ Gt) − δ (⋅,Gt)]

Numerical Approximation vθt (Gt) ≈ Gt+dt −Gt vθt (Gt) ≈ p(Gt+dt ∣ G0,G1) − p(Gt ∣ G0,G1)
AutoDiff vθt (Gt) ≈ Ġt Discrete velocity introduced in Equation (14)

Table 4. The model parameterization for flow matching in training stage

24



Bures-Wasserstein Flow Matching for Graph Generation

E.2. The Sampling Design

As we described in the Equation (3), in our training framework, we actually train a denoised pθ(G1 ∣ Gt). With such a
parameterization and taking discrete flow matching as an example, the sampling can be done through one of the following
design choices:

1. Target Guided Velocity Sampling. The velocity is designed as,

vθ(Gt) =
1

1 − t(pθ(G1 ∣ Gt) − δ(Gt, ⋅)).

This design directly moves the current point Gt towards the direction pointing to the predicted G1. The target-guided
velocity is guaranteed to converge to the data distribution, but the interpolant might lie outside the valid graph domain.

2. BW velocity sampling. We use Equation (14) to directly estimate the velocity and flow the Bures-Wasserstein
probability path to generate new data points. This path is smooth in the sense of graph domain. However, this path
requires more computational cost.

3. Probability Path Reconstruction. The third option is directly reconstructing the probability path, i.e., we first obtain
an estimated point,

G̃1 ∼ pθ(G1 ∣ Gt)

and then construct the data point at t + dt, which gives

Gt+dt ∼ p(Gt ∣ G̃1,G0)

through Equation (12). This is the most computationally costly method, which is obtained through the diffusion models.
But this method also provide accurate probability path reconstruction.

In Section 4, we show BW velocity follows a path that minimizes the Wasserstein distance thus provides better performance,
but sampling following linear velocity also provides convergence with much lower computational cost. So it is a trade-off to
be considered in the real-world application.

Continuous Flow Matching Discrete Flow Matching

BW Velocity Equation (12) Equation (14)
Target-guided Velocity vθ(Gt) = 1

1−t
(G̃1 −Gt) vθ(Gt) = 1

1−t
(pθ(G1 ∣ Gt) − δ(Gt, ⋅))

Path Reconstruction Gt+dt = δ(Gt+dt ∣ G̃1,G0) Gt+dt ∼ p(Gt+dt ∣ G̃1,G0)

Table 5. Reconstructing probability path choices in flow matching during inference

F. Discussion and Limitations
F.1. The implicit manipulation of probability path

Though not explicitly mentioned, Qin et al. (2024) makes huge efforts to manipulate the probability path for better velocity
estimation by extensively searching the design space, and their finding aligns well with the statement that the velocity should
be smooth and consistently directing to the data points: 1) Time distortion: (The oragne line in Figure 5b) the polynomial
distortion of training and sampling focus on the later stage of the probability trajectory, providing better velocity estimation
in this area. This uneven sampling strategy is equivalent to pushing the probability path left to make it smooth. 2) Target
guidance: (The orange line in Figure 5a) the target guidance directly estimate the direction from a point along the path
towards the termination graph, so that the manipulated probability could smoothly pointing to the data distribution. and 3)
Stochasticity injection: (The green line in Figure 5a) Stochasticity explores the points aside from the path, which avoid the
path to be stuck in the platform area.

25



Bures-Wasserstein Flow Matching for Graph Generation

Target 
guided 
velocity

Real velocity

(a) Linear training path (b) Training path with manipulation

Figure 5. Techniques for manipulating probability path.

F.2. Potential extension to diffusion models

In order to extend the flow matching algorithms with diffusion models, one important thing is to convert the pair-conditioned
probability path and velocity to single boundary conditions. For instance, the probability path in flow matching has the form
p(Gt ∣ G1,G0) and the velocity follows v(Gt ∣ G1,G0). As suggested in (Siraudin et al., 2024; Campbell et al., 2022; Xu
et al., 2024), the discrete graph diffusion models require a velocity (which is equivalent to a ratio matrix) to perturb the data
distribution conditioned on the data points, which we denote as v(Gt ∣ G1). As long as the unilateral conditional velocity
has a tractable form, one can first sample a G1 and get Gt through iteratively doing to:

Gt−dt = Gt − v(Gt ∣ G1)dt

starting from G1. So that one can easily construct the probability path p(Gt ∣ G1) to fit into the diffusion model framework.
In practice, given that we know the explicit form of v(Gt ∣ G1,Gt′) (just replace G0 in the expression), the unilateral
conditional velocity can be obtained through taking the limitation,

v(Gt ∣ G1) = v(Gt ∣ G1,Gt) = lim
t′→t

v(Gt ∣ G1,Gt′).

Both linear interpolation and our Bures-Wasserstein interpolation can achieve this easily. We just provide a discussion here
and will leave this as future work as this paper does not focus on diffusion models but on flow matching models.

F.3. Permutation invariance

The Bures-Wasserstein distance between two graph distributions is not permutation invariant, and the minimal value is
obtained through the graph alignment. So ideally, to achieve optimal transport, graph alignment and mini-batch matching
could provide a better probability path. However, permutation invariance is not always a desired property since we only
want to find a path that better transforms from the reference distribution to the data distributions. As an illustration, the
widely used linear interpolation to construct graph flow (Qin et al., 2024) does not guarantee permutation invariance as well.
And it is proved that, if the measurement is based on Wasserstein distance between two Gaussian distributions.

dBW(ηG0 , ηG1) ≤ dArithmetic(ηG0 , ηG1)

with dBW(ηG0 , ηG1) = ∥X0 −X1∥2F + β trace(L
†
0 +L

†
1 − 2 (L

†/2
0 (P ⊺L1P )†L†/2

0 )
1/2
) ,

and dArithmetic(ηG0 , ηG1) = ∥X0 −X1∥2F + β∥L0 −P ⊺L1P ∥2,∀P ∈ potential permutation set

(82)

G. Related Works
G.1. Diffusion and Flow Models

Among contemporary generative models, diffusion (Ho et al., 2020) and flow models (Lipman et al., 2023) have emerged as
two compelling approaches for their superior performance in generating text and images. In particular, these generative

26



Bures-Wasserstein Flow Matching for Graph Generation

models can be unified under the framework of stochastic interpolation (Albergo & Vanden-Eijnden, 2023), which consists
of four procedures (Lipman et al., 2024) as we introduced in Section 1. These contemporary generative models rely on
constructing a probability path between data points of an easy-to-sample reference distribution and of the data distribution,
and training a machine learning model to simulate the process (Lipman et al., 2024). So that one can sample from the
reference (a.k.a source) distribution and iteratively transform it to approximate data samples from the target distribution.
Diffusion models construct the probability path with a unilateral path conditioned on the data distribution, where one start
sampling from a data point X1 and construct the path p(Xt ∣X1). While flow models can condition on either two boundary
conditions, {X1,X0} or just one-side boundary condition X1.

Depending on the space that the algorithm operates on, both models can be categorized into continuous or discrete models.
The continuous generative models assume the data distributions are themself lying in continuous space (such as Gaussian)
and build models, with examples in diffusion (Ho et al., 2020; Song et al., 2021; Wang et al., 2024) and flow (Lipman
et al., 2023; Liu et al., 2023b). The discrete generateive models assume the data follows a discrete distribution, for instance
categorical or Bernoulli distributions. Examples include discrete diffusion (Campbell et al., 2022; Sun et al., 2023) and
discrete flow models (Campbell et al., 2024; Gat et al., 2024; Minello et al., 2025).

Under the stochastic interpolation framework, the interpolation methods are commonly selected through optimal transport
(OT) displacement interpolant (Liu et al., 2023b; Albergo & Vanden-Eijnden, 2023; McCann, 1997). Optimal transport is a
classical topic in mathematics that was originally used in economics and operations research (Villani & Society, 2003), and
has now become a popular tool in generative models. OT aims for finding the best transport plan between two probability
measures with the smallest associated transportation cost. It has been shown that generative models can be combined with
technologies such as iterative matching (Tong et al., 2024) and mini batching (Pooladian et al., 2023) to approximate the OT
cost, and get a significant boost in their performance in generative modeling.

G.2. Graph Generation Models

Thanks to the capability of graphs in representing complex relationships, graph generation (Zhu et al., 2022; Liu et al.,
2023a) has become an essential task in various fields such as protein design (Ingraham et al., 2019), drug discovery (Bilodeau
et al., 2022), and social network analysis (Li et al., 2023). The initial attempt at graph generation is formalized through
autoregression. For instance, GraphRNN (You et al., 2018) organizes the node interactions into a series of connection
events and conducts autoregressive prediction for generation. Later, one shot generation methods such as Variational Graph
Auto-Encoder were proposed (Kipf & Welling, 2016; Cao & Kipf, 2018).

Among various generative models, diffusion models and flow-based models have emerged as two compelling approaches
for their ability to achieve state-of-the-art performance in graph generation tasks (Niu et al., 2020; Vignac et al., 2023a;
Eijkelboom et al., 2024; Qin et al., 2024; Hou et al., 2024). In the early stage, continuous diffusion models were first
extended to the task of graph generation (Niu et al., 2020), where they just view the adjacency matrix as a special signal
living on the R∣V∣×∣V∣ domain. However, these methods fail to capture the natural discreteness of graphs, and Vignac et al.
(2023a) first brings discrete diffusion into graph generation. After that, more work (Siraudin et al., 2024; Xu et al., 2024)
starts to focus on designing better discrete diffusion models for graph generation.

On the other hands, with the development of flow matching techniques, a few works have been developed to utilize flow
models for graph generation and they have achieved huge success. Eijkelboom et al. (2024) utilizes variational flow
matching to process categorical data and Qin et al. (2024) developed discrete flow matching for graph generation tasks.

In parallel, there are a number of work that have managed to respect the intrinsic nature of graphs, such as global patterns.
For instance, Jo et al. (2024) brings a mixture of graph technique to enhance the performance by explicitly learning final
graph structures; Yu & Zhan (2025) mitigates exposure bias and reverse-start bias in graph generation; Hou et al. (2024)
improves graph geneartion through optimal transport flow matching techniques but they still assume the independence
between nodes and edges and use hamming distance to measure the transport cost; and Li et al. (2023) gives the large-scale
attributed graph generation framework through batching edges.

However, there remain a core challenge: constructing the probability path pt. Existing text and image generative mod-
els, operating either in the continuous (Ho et al., 2020; Song et al., 2021; Lipman et al., 2023; Liu et al., 2023b) or
discrete (Campbell et al., 2022; Sun et al., 2023; Campbell et al., 2024; Gat et al., 2024; Minello et al., 2025) space,
typically rely on linear interpolation between source and target distributions to construct the path. Graph generation models,
including diffusion (Niu et al., 2020; Vignac et al., 2023a; Haefeli et al., 2022; Xu et al., 2024; Siraudin et al., 2024) and

27



Bures-Wasserstein Flow Matching for Graph Generation

Table 6. Training and sampling time on each dataset. TG means using target-guided velocity; BW means using BW velocity.

Dataset Min Nodes Max Nodes Training Time (h) Graphs Sampled Sampling Time (h)

Planar 64 64 45 (1.55x) 40 0.07(TG); 0.13 (BW)
Tree 64 64 10 (1.25x) 40 0.07(TG);0.14(BW)
SBM 44 187 74 (0.98x) 40 0.07(TG) 0.14(BW)

Moses 8 27 35 (0.76x) 25000 5(TG); 6(BW)
Guacamol 2 88 251 (1.8x ) 10000 7(TG); 21(BW)

QM9 3 29 15 25000 5(TG) 6(BW)
GEOM / 181 141 10000 7(TG) 14(BW)

flow-based models (Eijkelboom et al., 2024; Qin et al., 2024; Hou et al., 2024), inherit this design by modeling every
single node and edge independently and linearly build paths in the disjoint space. However, this approach is inefficient
because it neglects the strong interactions and relational structure inherent in graphs, i.e., the significance of a node heavily
depends on the configuration of its neighbors. While empirical success have been achieved via fine-grained searching on the
training and sampling design (Qin et al., 2024) such as target guidance and time distortion, we argue that there remains a
fundamental issue of the linear probability path construction, and these strategies only mitigate the problem by manipulating
the probability path.

H. Comparison with other interpolation methods
In the experimental part, we compare our methods with arithmetic (linear) interpolation, geometric interpolation and
harmonic interpolation. We state the equation of them respectively as follows.

We consider the boundary graph G0 and G1 with X0,X1 ∈ R∣V∣×d and W0,W1 ∈ R∣V∣×∣V∣. Let t ∈ [0,1], we fixed the
feature interpolation as,

Xt = (1 − t)X0 + tX1,

the graph structure interpolation can be expressed as,

Linear interpolation:
Wt = (1 − t)W0 + tW1.

Geometric interpolation:
Wt =W 1/2

0 (W −1/2
0 W1W

−1/2
0 )tW 1/2

0 ,

Harmonic interpolation:

Wt = ((1 − t)W −1
0 + tW −1

1 )
−1

.

Each interpolation methods actually handle each special manifold assumption, which should be designed under a compre-
hensive understanding of the task. In our experimental part, we conduct intensive analysis on the impact of interpolation
methods to the graph generation quality.

I. Additional Experiment Results
I.1. Experiment setups and computational cost

The training and sampling computation time are provided in Table 6. The experiments were run on a single NVIDIA
A100-SXM4-80GB GPU. The hyperparameter configuration in producing Tables 1 to 3 is reported in Table 7.

I.2. Additional results for the training paths

Figure 6 gives the training probability path construction for planar graphs and tree graphs. While planar graphs have a
similar pattern as the SBM datasets as in Figure 3a, the probability path constructed for tree graphs does not follow a similar
pattern. We attribute this to the different geometry of tree graphs that reside in hyperbolic space (Yang et al., 2022).

28



Bures-Wasserstein Flow Matching for Graph Generation

Table 7. Best Configuration for Training and Sampling when producing Tables 1 to 3.

Train Sampling

Dataset Initial Distribution Train Distortion Sample Distortion Sampling steps

Planar Marginal Identity Identity 1000
Tree Marginal Polydec Polydec 1000
SBM Absorbing Identity Identity 1000

MOSES Marginal Identity Identity 500
GUACAMOL Marginal Identity Identity 500

QM9 Marginal Identity Identity 500
GEOM Marginal Identity Identity 500

(a) Probability Path for Planar Graphs (b) Tree Graph Probability Path

Figure 6. BW probability paths for planar and tree graphs.

I.3. More experiments on plain graph generations

Additional results for sampling paths. We then give the sampling path construction in Figure 7. To better illustrate the
advantage of BWFlow, we fix the sampling steps to be as small as 50. It is clear that in planar and SBM dataset, the BW
velocity can still provide a smooth probability and stable convergence towards the data distribution. While the linear velocity
does not give a good probability path and fails to converge to the optimal value, especially when the sampling size is small.

The maximum mean discrepancy (MMD) of four graph statistics between the set of generated graphs and the test set is
measured, including degree (Deg.), clustering coefficient (Clus.), count of orbits with 4 nodes (Orbit), the eigenvalues of the
graph Laplacian (Spec.), wavelet ratio (Wavelet.). To verify that the model learns to generate graphs with valid topology, we
gives the percentage of valid, unique, and novel (V.U.N.) graphs for where a valid graph satisfies the corresponding property
of each dataset (Planar, Tree, SBM, etc.).

Full results for plain graph generation. Table 8 gives the full results with other generative models aside from the
diffusion and flow models. Table 9 gives the results on smaller datasets, i.e., comm20

I.4. Full table for the synthetic graph generation

In Table 10, we illustrate the numerical results for comparing the interpolation methods in plain graph generation without
node features. It is clear that BWFlow outperforms other methods in planar and SBM graphs. But the performance was not
good in tree graph generations.

29



Bures-Wasserstein Flow Matching for Graph Generation

C
onvergence G

ap

(a) Sampling path comparision on Planar dataset (b) Sampling path comparision on SBM dataset

Figure 7. The probability path reconstruction in the sampling stage on a) Planar graphs and b) SBM graphs.

(a) QM9 with explicit hydrogen (b) Planar

Figure 8. Training curves on QM9 and planar datasets with explicit hydrogen.

I.5. 3D Molecule Generation: QM9 without explicit Hydrogen

In Table 11 we report the results of QM9 without explicit hydrogen. This task is relatively easy compared to the generation
task with explicit hydrogen, and both Midi and our BWFlow have achieved near-saturated performance with validity near to
100%.

I.6. Convergence Analysis

Figure 8 are the training convergence analysis on Planar and QM9 dataset, showing that BWFlow provides a fast convergence
speed than others.

30



Bures-Wasserstein Flow Matching for Graph Generation

Table 8. Graph Generation Performance on Synthetic Graphs. Results are obtained through tuning the probability path manipulation
techniques. The remaining values are obtained from Qin et al. (2024).

Planar Dataset

Model Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑

Train set 1.0 100 100 0.0 0.0

GRAN (Liao et al., 2019) 2.0 97.5 85.0 2.5 0.0
SPECTRE (Martinkus et al., 2022b) 3.0 25.0 100 100 25.0
DiGress (Vignac et al., 2023a) 5.1 77.5 100 100 77.5
EDGE (Chen et al., 2023) 431.4 0.0 100 100 0.0
BwR (Diamant et al., 2023) 251.9 0.0 100 100 0.0
BiGG (Dai et al., 2020) 16.0 62.5 85.0 42.5 5.0
GraphGen (Goyal et al., 2020) 210.3 7.5 100 100 7.5
HSpectre (one-shot) (Bergmeister et al., 2024) 1.7 67.5 100 100 67.5
HSpectre (Bergmeister et al., 2024) 2.1 95.0 100 100 95.0
GruM (Jo et al., 2024) 1.8 — — — 90.0
CatFlow (Eijkelboom et al., 2024) — — — — 80.0
DisCo (Xu et al., 2024) — 83.6 ±2.1 100.0 ±0.0 100.0 ±0.0 83.6 ±2.1
Cometh - PC (Siraudin et al., 2024) — 99.5 ±0.9 100.0 ±0.0 100.0 ±0.0 99.5 ±0.9
DeFoG 1.6 ±0.4 99.5 ±1.0 100.0 ±0.0 100.0 ±0.0 99.5 ±1.0

BWFlow 1.3 ±0.4 97.5 ±2.5 100.0 ±0.0 100.0 ±0.0 97.5±2.5

Tree Dataset

Train set 1.0 100 100 0.0 0.0

GRAN (Liao et al., 2019) 607.0 0.0 100 100 0.0
DiGress (Vignac et al., 2023a) 1.6 90.0 100 100 90.0
EDGE (Chen et al., 2023) 850.7 0.0 7.5 100 0.0
BwR (Diamant et al., 2023) 11.4 0.0 100 100 0.0
BiGG (Dai et al., 2020) 5.2 100 87.5 50.0 75.0
GraphGen (Goyal et al., 2020) 33.2 95.0 100 100 95.0
HSpectre (one-shot) (Bergmeister et al., 2024) 2.1 82.5 100 100 82.5
HSpectre (Bergmeister et al., 2024) 4.0 100 100 100 100
DeFoG 1.6 ±0.4 96.5 ±2.6 100.0 ±0.0 100.0 ±0.0 96.5 ±2.6

BWFlow 1.4±0.3 75.5 ±2.4 100.0±0 100.0±0 75.5±2.4

Stochastic Block Model (nmax = 187, navg = 104)

Model Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑

Training set 1.0 85.9 100 0.0 0.0

GraphRNN (You et al., 2018) 14.7 5.0 100 100 5.0
GRAN (Liao et al., 2019) 9.7 25.0 100 100 25.0
SPECTRE (Martinkus et al., 2022b) 2.2 52.5 100 100 52.5
DiGress (Vignac et al., 2023a) 1.7 60.0 100 100 60.0
EDGE (Chen et al., 2023) 51.4 0.0 100 100 0.0
BwR (Diamant et al., 2023) 38.6 7.5 100 100 7.5
BiGG (Dai et al., 2020) 11.9 10.0 100 100 10.0
GraphGen (Goyal et al., 2020) 48.8 5.0 100 100 5.0
HSpectre (one-shot) (Bergmeister et al., 2024) 10.5 75.0 100 100 75.0
HSpectre (Bergmeister et al., 2024) 10.2 45.0 100 100 45.0
GruM (Jo et al., 2024) 1.1 — — — 85.0
CatFlow (Eijkelboom et al., 2024) — — — — 85.0
DisCo (Xu et al., 2024) — 66.2 ±1.4 100.0 ±0.0 100.0 ±0.0 66.2 ±1.4
Cometh (Siraudin et al., 2024) — 75.0 ±3.7 100.0 ±0.0 100.0 ±0.0 75.0 ±3.7
DeFoG 4.9 ±1.3 90.0 ±5.1 100.0 ±0.0 100.0 ±0.0 90.0 ±5.1

BWFlow 3.8±0.9 90.5 ±4.0 100.0 ±0.0 100.0 ±0.0 90.5 ±4.0

31



Bures-Wasserstein Flow Matching for Graph Generation

FM type Interpolation comm-20

Deg. Clus. Orbit.

Discrete

Arithmetic 0.071 0.115 0.037
Harmonic 0.011 0.036 0.027
Geometric 0.047 0.083 0.02

BW 0.009 0.013 0.017

Table 9. Quantitative experimental results on COMM20 (smaller
dataset).

Dataset FM type Interpolation V.U.N metrics Spectral Metrics

Novelty Uniqueness Validity Orbit Spec Clustering Degree Wavelet Avg. Ratio

Planar Discrete

DeFog 100 100 78.25 8.98 1.45 2.09 2.65 2.38 3.51
Arithmetic 100 100 73.25 10.83 1.33 1.74 2.24 2.39 3.70
harmonic 100 100 0.00 4519.63 2.57 17.01 25.10 42.41 921.35
Geometric 100 100 23.25 655.66 1.61 10.17 13.25 6.68 137.47

BW 100 100 84.75 5.14 1.27 1.69 1.78 2.02 2.38

Tree Discrete

Defog 100 100 61.53 / 1.17 / 1.27 1.51 1.32
Arithmetic 100 100 56.91 / 1.16 / 1.04 1.45 1.22
harmonic 100 100 0.53 / 2.32 / 1.93 3.31 2.52
Geometric 100 100 48.38 / 1.62 / 2.13 2.10 1.94

BW 100 100 51.45 / 1.58 / 2.56 2.13 2.09

SBM Discrete

Arithmetic 100 100 44.63 2.57 1.40 1.46 15.55 7.88 5.77
harmonic 100 100 9.73 3.10 10.23 1.59 172.10 103.04 58.10
Geometric 100 100 0.0 3.11 4.45 1.80 150.41 60.60 54.65

BW 100 100 58.70 2.03 1.50 1.50 9.04 8.41 4.51

Table 10. Ablation study on interpolation methods when probability path manipulation techniques are all disabled. The clustering and
orbit ratios in tree graphs are omitted, given that in the training set, the corresponding statistics are 0. The results go over Exponential
Moving Average (decay 0.999) for the last 5 checkpoints. The table is produced with Marginal boundary distributions, without time
distortion.

Dataset Interpolation Metrics

µ V.U.N(%) Connected(%) Charges(10−2) Atom(10−2) Angles(○)

QM9
(w/o h)

MiDi 1.00 98.0 100.0 0.4 5.1 1.49
Linear Flow 1.60 79.33 52.3 0.7 14.0 8.77

BWFlow 1.02 99.8 100.0 0.4 4.8 1.53

Table 11. Quantitative experimental results on QM9 datasets without explicit hydrogen in 3D molecule generation.

32



Bures-Wasserstein Flow Matching for Graph Generation

Table 12. Graph generation performance on the synthetic datasets: Planar, Tree, and SBM. Given that the synthetic datasets are usually
unstable in evaluation, we applied an exponential moving average to stabilize the results and sample 5 times (each run generates 40
graphs) to calculate the mean and standard deviation. The experiment settings are in Table 7

Planar Tree SBM

Model Class V.U.N. ↑ A.Ratio ↓ V.U.N. ↑ A.Ratio ↓ V.U.N. ↑ A.Ratio ↓
Train set — 100 1.0 100 1.0 85.9 1.0

DiGress (Vignac et al., 2023a) Diffusion 77.5 5.1 90.0 1.6 60.0 1.7
EDGE (Chen et al., 2023) Diffusion 0.0 431.4 0.0 850.7 0.0 51.4
HSpectre (Bergmeister et al., 2024) Diffusion 95.0 2.1 100.0 4.0 75.0 10.5
GruM (Jo et al., 2024) Diffusion 90.0 1.8 — — 85.0 1.1
CatFlow (Eijkelboom et al., 2024) Flow 80.0 — — — 85.0 —
DisCo (Xu et al., 2024) Diffusion 83.6±2.1 — — — 66.2±1.4 —
Cometh (Siraudin et al., 2024) Diffusion 99.5±0.9 — — — 75.0±3.7 —
DeFoG (Qin et al., 2024) Flow 99.5±1.0 1.6±0.4 96.5±2.6 1.6±0.4 90.0±5.1 4.9±1.3

BWFlow Flow 97.5±2.5 1.3±0.4 75.5±2.4 1.4±0.3 90.5±4.0 3.8±0.9

DeFoG (EMA) Flow 77.5±8.37 3.5±1.7 73.1±11.4 1.50±0.3 85.0±7.1 3.7±0.9

BWFlow (EMA) Flow 84.8±6.44 2.4±0.9 68.1±12.2 1.24±0.2 83.5±6.0 2.4±0.6

Table 13. Comparison of interpolation methods on 3D Molecule Generation with explicit hydrogen in QM9 dataset.

Flow Type Interpolation Metrics

µ V.U.N(%) Mol Stable Atom Stable Connected(%) Charge(10−2) Atom(10−2) Angles(○)

Discrete

MiDi 1.01 93.13 93.98 99.60 99.21 0.2 3.7 2.21
Arithmetic 1.01 87.53 88.45 99.13 99.09 0.4 4.2 2.72
harmonic 1.01 94.91 94.54 99.65 99.03 0.6 6.4 2.21
Geometric 1.01 91.26 91.29 99.42 98.42 0.1 4.4 3.63

BW 1.01 96.45 97.84 99.84 99.24 0.1 2.3 1.96

Continuous

Arith 2.15 25.45 10.23 76.85 28.82 0.7 5.6 14.47
harmonic 1.01 11.38 11.64 73.48 99.65 1.2 17.2 15.04
Geometric 1.00 42.07 46.08 91.13 99.87 1.0 12.7 8.03

BW 1.02 62.02 61.76 95.99 97.72 0.6 8.7 7.80
∗ Clearly, continuous flow matching models are not as comparative as discrete flow matching models.

Table 14. Large molecule generation results. Only iterative denoising-based methods are reported.
Guacamol MOSES

Model Val. ↑ V.U. ↑ V.U.N.↑ KL div ↑ FCD ↑ Val. ↑ Unique. ↑ Novelty ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set 100.0 100.0 0.0 99.9 92.8 100.0 100.0 0.0 100.0 0.01 0.64 99.1

DiGress (Vignac et al., 2023a) 85.2 85.2 85.1 92.9 68.0 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo (Xu et al., 2024) 86.6 86.6 86.5 92.6 59.7 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh (Siraudin et al., 2024) 98.9 98.9 97.6 96.7 72.7 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG (Qin et al., 2024) 99.0 99.0 97.9 97.7 73.8 92.8 99.9 92.1 98.9 1.95 0.55 14.4

BWFlow (Ours) 98.8 98.9 97.4 / 69.2 92.0 100.0 94.5 98.4 1.32 0.56 15.3

Table 15. Large molecule generation results. Only comparing the representative diffusion and flow models. B.E. is the scenario that only
considers binary edge types. The results are almost saturated, thus not very informative.

Guacamol MOSES

Model Val. ↑ V.U. ↑ V.U.N.↑ Val. ↑ Unique. ↑ Novelty ↑
Digress (B.E.) 96.0 98.9 97.4 96.1 100 100
Defog (B.E.) 98.4 98.4 97.9 99.3 100 100
BWFlow (B.E.) 98.0 98.0 97.7 99.6 100 100

33


