# Structure-aware Fine-tuning of Sequence-to-sequence Transformers for Transition-based AMR Parsing

Anonymous

### Abstract

Predicting linearized Abstract Meaning Representation (AMR) graphs using pre-trained sequence-to-sequence Transformer models has recently led to large improvements on AMR parsing benchmarks. These parsers are simple and avoid explicit modeling of structure but lack desirable properties such as graph well-formedness guarantees or built-in graph-sentence alignments. In this work we explore the integration of general pre-trained sequence-to-sequence language models and a structure-aware transition-based approach. We depart from a pointer-based transition system and propose a simplified transition set, designed to better exploit pre-trained language models for structured fine-tuning. We also explore modeling the parser state within the pre-trained encoder-decoder architecture and different vocabulary strategies for the same purpose. We provide a detailed comparison with recent progress in AMR parsing and show that the proposed parser retains the desirable properties of previous transition-based approaches, while being simpler and reaching the new parsing state of the art for AMR 2.0.

#### **1** Introduction

The task of Abstract Meaning Representation (AMR) parsing translates a natural sentence into a rooted directed acyclic graph capturing the semantics of the sentence, with nodes representing concepts and edges representing their relations (Banarescu et al., 2013). Recent works utilizing pre-trained encoder-decoder language models show great improvements in AMR parsing results (Xu et al., 2020; Bevilacqua et al., 2021). These approaches avoid explicit modeling of the graph structures. Instead, they directly predict the linearized AMR graphs treated as free text and exploit strongly pre-trained language models to overcome data sparsity and maintain current state-of-the-art results (Bevilacqua et al., 2021).

These approaches however lack certain desirable properties. There are no structural guarantees of graph well-formedness, i.e. the model may predict strings that can not be decoded into valid graphs, and post-processing is required. Furthermore, predicting AMR linearizations ignores the implicit alignments between graph nodes and words, which provide a strong inductive bias and are useful for downstream AMR applications (Mitra and Baral, 2016; Liu et al., 2018; Vlachos et al., 2018).

On the other hand, transition-based AMR parsers (Wang et al., 2015; Ballesteros and Al-Onaizan, 2017a; Astudillo et al., 2020; Zhou et al., 2021) operate over the tokens of the input sentence, generating the graph incrementally. They implicitly model graph structural constraints through transitions and yield alignments by construction, thus guaranteeing graph well-formedness<sup>1</sup>. However, it remains unclear whether explicit modeling of structure is still beneficial for AMR parsing in the presence of powerful pre-trained language models and their strong free text generation abilities.

In this work, we integrate pre-trained sequenceto-sequence (seq-to-seq) language models with the transition-based approach for AMR parsing, and explore to what degree they are complementary. To fully utilize the generation power of the pre-trained language models, we propose a transition system with a small set of basic actions - a generalization of the action-pointer transition system of Zhou et al. (2021). We use BART (Lewis et al., 2019) as our pre-trained language model, since it has shown significant improvements in linearized AMR generation (Bevilacqua et al., 2021). Unlike previous approaches that directly fine-tune the model with linearized graphs, we modify the model structure to work with our transition system, and encode parser states in BART's attention mechanism (Astudillo et al., 2020; Zhou et al., 2021). We also explore dif-

<sup>&</sup>lt;sup>1</sup>The only exception being disconnected graphs, which happen infrequently in practice.

ferent vocabulary strategies for action generation. These changes convert the pre-trained BART to a transition-based parser where graph constraints and alignments are internalized.

We provide a detailed comparison with topperforming AMR parsers and perform ablation experiments showing that our proposed transition system and BART modifications are both necessary to achieve strong performance. Although BART has great language generation capacity, it still benefits from parser state encoding with hard attention, and can efficiently learn structural output. Our model establishes a new state of the art for AMR 2.0 while maintaining graph well-formedness guarantees and producing built-in alignments.

# 2 Intricacies of AMR Parsers

A frequent complaint about AMR parsers is that they involve combining many different techniques and hand-crafted rules, resulting in complex pipelines that are hard to analyze and generalize poorly. This situation has notably improved in the past few years but there are still two main sources of complexity present in almost all recent parsers: graph re-categorization and subgraph actions.

Graph re-categorization (Wang and Xue, 2017; Lyu and Titov, 2018; Zhang et al., 2019a) normalizes the graph prior to learning, including joining certain subgraphs such as entities, dates and other constructs into single nodes, removing special types of nodes like polarity and normalizing propbank names (see examples in Figure 1). Training and decoding of models using this technique happens in this re-categorized space. Re-categorized graphs are expanded to normal valid AMR graphs in a post-processing stage. The type and number of subgraphs normalized vary across implementations but most high performing approaches (Cai and Lam, 2020; Bevilacqua et al., 2021) utilize the recategorization described in Appendix A.1 of Zhang et al. (2019a), which requires an external NER system to anonymize named entities. It also makes use of look-up tables for nominalizations (e.g. English to England) and other hand-crafted rules. Graph re-categorization has been criticised for its lack of generalization to new domains such as biomedical domain or even AMR 3.0 corpus (Bevilacqua et al., 2021). Recent top performing systems e.g. Cai and Lam (2020); Bevilacqua et al. (2021) also provide results without re-categorization, but this is shown to hurt performance notably on AMR 2.0 corpus.



Figure 1: AMR graph of the sentence *I have no opinion* on the New York Mets. Examples of subgraphs for entity anonymization, collapsing of verbalized nouns and removal of the polarity node and edge.

Subgraph actions (Ballesteros and Al-Onaizan, 2017b) are used in transition-based systems and play a role similar to re-categorization. Instead of normalizing and reverting, transition-based parsers apply a subgraph action that generates an entire subgraph at once. This subgraph action coincides with many of the subgraphs collapsed in re-categorization. Subgraph actions bring no external dependencies, since the parser learns to segment and identify subgraphs during training. It still suffers however from data sparsity since some subgraphs appear very few times. As in re-categorization, subgraph actions also make use of lookup tables for nominalization and similar constructs that hinder generalization. Furthermore, it creates the problem of unattachable nodes, adressed in Zhou et al. (2021) by ignoring subgraphs for a set of heuristically determined cases. Subgraph actions have been used in all transitionbased AMR systems (Naseem et al., 2019a; Astudillo et al., 2020; Zhou et al., 2021).

Aside from NER, past AMR parsers have other external dependencies such as POS taggers (Zhang et al., 2019a; Cai and Lam, 2020) and lemmatizers (Cai and Lam, 2020; Naseem et al., 2019b).

### **3** A Simplified Transition System

In this section we propose a transition system for AMR parsing designed with two objectives: maximize the use of strong pre-trained decoders such as BART, and minimize the complexity and dependencies of the transition system compared to previous



Figure 2: From top to bottom: graph (solid lines), sentence (source), addressable action positions and action sequence (target) for the sentence *Employees liked their Boston trip*, aligned (dotted lines) to its AMR graph. Arccreating actions are displayed vertically due to space constraints. Words are repeated in grey to indicate the word under cursor for each action. The node *Boston* in dotted box is created by copying the token under cursor via COPY action at position 13. LA(1,ARG0) creates a left arc with label ARG0 from the top concept *like-01* to the concept *person* at position 1. For the concept *trip-03*, LA(1,ARG0) is a co-reference (re-entrancy) to the concept *person*.

approaches. Similar to Zhou et al. (2021), we scan the sentence from left to right using a token cursor while performing node and edge creation actions. The proposed set of actions is as follows:

SHIFT moves token cursor one word to the right.

<string> creates node of name <string>.

**COPY** creates node where the node name is the token under the current cursor position.

LA(**j**,LBL) creates an arc with label LBL from the last generated node to the node generated at the  $j_{th}$  transition step.

**RA(j,LBL)** same as LA but with arc direction reversed.

**ROOT** declares the last predicted node as the root.

Unlike previous transition-based approaches, we do not use a reserved action, such as PRED (Zhou et al., 2021) or CONFIRM (Ballesteros and Al-Onaizan, 2017b), to predict nodes; instead we directly use the node name <string> as the action symbol generating that node. This opens the possibility of utilizing BART's target side pre-trained vocabulary. We avoid using any copy actions that involve copying from lemmatizer outputs or lookup tables. Our COPY action is limited to copying the lower cased word to the node name. We also eliminate the use of SUBGRAPH (Zhou et al., 2021) or ENTITY (Ballesteros and Al-Onaizan, 2017b) actions producing multiple nodes simultaneously and MERGE action creating spans of words. In previous approaches these actions were derived from alignments or hand-crafted. They thus did not cover all possible cases limiting the scalability of the approach. Finally, we discard the REDUCE action previously used to delete a source token. The action is redundant when token cursor is modeled; the effect can be achieved by simply using SHIFT without performing any other action. Figure 2 shows an example sentence with an action sequence and the corresponding graph (contrast with Figure 1 for handling of verbalization and named entities).

To train a parser with a transition system, we need an action sequence for each training sentence that will produce the gold graph when executed. This action sequence then serves as target for seqto-seq models. An oracle algorithm creates these ground-truth sequences using the transition system, with knowledge of sentence, AMR graph and nodeto-word alignments. Nodes are generated at the aligned token cursor position with either COPY or <string>. For each generated node, LA and RA actions connect it with previously generated nodes to create edges before performing any other actions. Note that the edges are formed by pointing to positions in the action history, where a graph node is represented by the action that creates it. Multiple nodes can be generated at a single source word before the cursor is moved by SHIFT. The process ends when the cursor moves past the last token.

The above oracle always recovers the gold graph as long as every node in the graph is aligned to some token. We use the alignments of Naseem et al. (2019b) and deal with unaligned nodes similarly to Astudillo et al. (2020) by aligning them to places based on graph proximity. Furthermore, by using only the atomic node and edge creation actions, we manage to avoid the problem of unattachable nodes caused by merged subgraph actions, obtaining full oracle coverage on training data.

Our proposed transition system makes better use of BART pre-trained decoder compared to previous transition-based approaches (see Section 6) while greatly simplifying the transition set. It naturally produces node-to-word alignments via source token cursor.

### 4 Parsing Model

We build our model on top of the pre-trained seqto-seq Transformer, BART (Lewis et al., 2019). We modify its architecture to incorporate a pointer network and internalize parser states induced by our transition system, and fine-tune for sentenceto-action generation.

#### 4.1 Structure-aware Architecture

We adopt similar modifications on the Transformer architecture as in Zhou et al. (2021) since our transition system is based on the same action-pointer mechanism. The modifications do not introduce new modules or extra parameters, which naturally fit our need to adapt BART into a transition-based parser with internal graph well-formedness.

In particular, the target actions consist of two parts: bare action symbols (containing labels) and pointer values for edges. We use the BART standard output for the former, and a pointer network for the latter. As the pointing happens on the historical actions, essentially a self-attention mechanism, we re-purpose one decoder self-attention head as the pointer network. It is supervised with additional cross entropy loss during fine-tuning and decoded for building graph edges at inference.

We encode the monotonic action-source alignments induced by the parser state with hard attention, i.e. by masking some decoder cross-attention heads to only focus on aligned words. Since BART processes source sentences with subwords, we apply an additional average pooling layer on top of its encoder to return states of original source words, used for the decoder layers for our hard attention. At last, as the possible actions are constrained with transition rules and states at every step, we restrict the decoder output space via hard masking of the BART final softmax layer. For simplicity, we do not incorporate the step-wise decoder graph embedding technique in Zhou et al. (2021) as their gain was shown to be modest.

### 4.2 Action Generation

According to how we treat the target-side vocabulary for action generation, we propose two variations of the model. The first one is to use a completely separate vocabulary for target actions, where the decoder input side and output side use stand-alone embeddings for actions, separate from the pre-trained BART subword embeddings.<sup>2</sup> We denote this setup as our *sep-voc* model.

However, this might not fully utilize the power of the pre-trained BART since it is an encoderdecoder model with a single vocabulary and all embeddings shared. Although our generation targets are action symbols, the node generating actions are closely related to natural words in their surface forms, which are what BART was pre-trained on. Therefore, we propose a second variation where we use a shared vocabulary for both the source tokens and target actions. Naively relying on the original BART subword vocabulary would end up splitting action symbols blindly, which is not desired as the structures such as alignments and edge pointers would be disrupted. For the non-node actions, they control the parsing states and graph structure in the transitional parsing process, thus we add them as-is to the BART vocabulary, similar to Bevilacqua et al. (2021). For the node actions, we add the frequent ones to vocabulary in order to capture common AMR concepts intact, and split the remaining concepts with BART subword vocabulary. In this setup, a single node string can potentially be generated with multiple steps; we modify the arc transitions to always point to the beginning position of a node string for attachment. With shared vocabulary setup, the model could learn to generate unseen nodes with BART's subword vocabulary, eliminating potential out-of-vocabulary problems. We refer to this setup as our share-voc model.

#### 4.3 Training and Inference

We load the pre-trained BART parameters except for the standalone vocabulary embeddings for sepvoc model and the extended embeddings for the

<sup>&</sup>lt;sup>2</sup>In practice the separate embeddings are initialized with the average subword embeddings from the original BART vocabulary, this gave small gains over random initialization.

share-voc model. We then fine-tune the model with the updated structure-aware architectures on sentence-action pairs with addition of pointer loss.

For decoding, we use similar constrained beam search algorithm as in Zhou et al. (2021), but with our own transition set and rules. We run a state machine on the side to get parser states used by the model. Note that for our share-voc model, we only allow subword split for node (<string>) actions. Since our fine-tuned model is already structureaware, the graph well-formedness is always guaranteed so no post-processing is needed to return valid graphs (Xu et al., 2020; Bevilacqua et al., 2021). The only post-processing we use is to add wikification nodes as used in all previous parsers.

### **5** Experimental Setup

**Datasets** We evaluate our models on 3 AMR benchmark datasets, namely AMR 1.0 (LDC2014T12), AMR 2.0 (LDC2017T10), and AMR 3.0 (LDC2020T02). They have around 10K, 37K, and 56K sentence-AMR pairs for training, respectively.<sup>3</sup> Both AMR 2.0 and AMR 3.0 have wikification nodes but AMR 1.0 does not.

**Evaluation** We assess our models with SMATCH (F1) scores<sup>4</sup> (Cai and Knight, 2013). We also report the fine-grained evaluation metrics (Damonte et al., 2016) to further investigate different aspects of parsing results, such as concept identification, entity recognition, re-entrancies, etc.

Model Configuration We follow the original BART configuration (Lewis et al., 2019) and code <sup>5</sup>. We use the large model configuration as default, and also the base model for ablation studies. The pointer network is always tied with one head of the decoder top layer, and the pointer loss is added to the model cross-entropy loss with 1:1 ratio for training. Transition alignments are used to mask cross-attentions in 2 heads of all decoder layers. For sep-voc model, we build separate embedding matrices for target actions from the training data for decoder input and output space. For share-voc model, we add new embedding vectors for nonnode action symbols and node action strings with a default minimum frequency of 5 (only accounts for about one third of all nodes due to sparsity).

**Implementation Details** Our models are trained with Adam optimizer with batch size 2048 tokens and gradient accumulation of 4 steps. Learning rate is 1e-4 with 4000 warm-up steps using the inversesqrt scheduling scheme (Vaswani et al., 2017). The hyper-parameters are fixed and not tuned for different models and datasets, as we found results are not sensitive within small ranges. We train sep-voc models for 100 epochs and share-voc models for 40 epochs as the latter is found to converge faster. The best 5 checkpoints based on development set SMATCH from greedy decoding are averaged, and default beam size of 10 is used for decoding for our final parsing scores. We implement with the FAIRSEQ toolkit (Ott et al., 2019). More details can be found in the Appendix.

### 6 Results

**Main Results** We present parsing performances of our model in comparison with previous approaches in Table 1. For each model, we also list its features such as utilization of pre-trained language models and graph simplification methods such as re-categorization. This gives a comprehensive overview of how systems compare in terms of complexity aside from performance.

All recent systems rely on pre-trained language models, either as fixed features or through finetuning. The pre-trained BART is particularly beneficial due to its encoder-decoder structure. Among all the models, the graph linearization models (Xu et al., 2020; Bevilacqua et al., 2021) have the least number of extra dependencies when not using graph re-categorization. Our model only requires aligned training data, a trait common to all transition-based approaches. This bears the advantage of producing reliable alignments at decoding time, which are useful for downstream tasks and as explanation of the graph constructing process.

Both our sep-voc and share-voc model variations work well on all datasets. Without using extra silver data, our model achieves the SMATCH score of 84.2  $\pm$ 0.1 on AMR 2.0, which is the same as the previous best model (Bevilacqua et al., 2021) with 200K silver data. With the input of only 47K silver data (consisting of ~20K example sentences of propbank frames and randomly selected ~27K SQuAD-2.0 context sentences<sup>6</sup>), we achieve the highest score of 84.7  $\pm$ 0.1 for AMR 2.0. We also attain the high score of 81.7  $\pm$ 0.2 on the smallest

<sup>&</sup>lt;sup>3</sup>See Appendix A for detailed dataset sizes. Data source: https://amr.isi.edu/download.html.

<sup>&</sup>lt;sup>4</sup>https://github.com/snowblink14/smatch/tree/v1.0.4. <sup>5</sup>https://github.com/pytorch/fairseq/ tree/v0.10.2/examples/bart.

<sup>&</sup>lt;sup>6</sup>https://rajpurkar.github.io/SQuAD-explorer/.

| ID | Madal                    | Pre-trained         | Collapse | Exter | rnal Dep | endency | Extra | Train  | SM             | MATCH F1 (4       | %)                |
|----|--------------------------|---------------------|----------|-------|----------|---------|-------|--------|----------------|-------------------|-------------------|
| ID | Widdel                   | Model               | Subgraph | POS   | NER      | Lemma.  | Data  | Align. | AMR 1.0        | AMR 2.0           | AMR 3.0           |
| 1  | Naseem et al. (2019a)    | BERT                | S.A.     |       |          | 1       |       | 1      | -              | 75.5              | -                 |
| 2  | Zhang et al. (2019a)     | BERT                | G.R.     | 1     | 1        |         |       |        | $70.2 \pm 0.1$ | $76.3 \ \pm 0.1$  | -                 |
| 3  | Zhang et al. (2019b)     | BERT                | G.R.     | 1     | 1        |         |       |        | $71.3 \pm 0.1$ | $77.0 \ {\pm}0.1$ | -                 |
| 4  | Cai and Lam (2020)       | BERT                |          | 1     | 1        | 1       |       |        | 74.0           | 78.7              | -                 |
| 5  | Cai and Lam (2020)       | BERT                | G.R.     | 1     | 1        | 1       |       |        | 75.4           | 80.2              | -                 |
| 6  | Astudillo et al. (2020)  | RoBERTa             | S.A.     |       |          | 1       |       | 1      | $76.9 \pm 0.1$ | $80.2 \pm 0.0$    | -                 |
| 7  | Lyu et al. (2020)        | RoBERTa             | G.R.     |       | 1        | 1       |       |        | -              | -                 | 75.8              |
| 8  | Bevilacqua et al. (2021) | BART <sup>†</sup>   |          |       |          |         |       |        | -              | 83.8              | 83.0              |
| 9  | Bevilacqua et al. (2021) | BART <sup>†</sup>   | G.R.     |       | 1        |         |       |        | -              | 84.5              | 80.2              |
| 10 | Zhou et al. (2021)       | RoBERTa             | S.A.     |       |          | 1       |       | 1      | $78.3 \pm 0.1$ | $81.7 \ {\pm}0.1$ | $80.3 \ {\pm}0.1$ |
| 11 | Xu et al. (2020)         | Custom <sup>†</sup> |          |       |          |         | 4M    |        | -              | 81.4              | -                 |
| 12 | Lee et al. (2020)        | RoBERTa             | S.A.     |       |          | 1       | 85K   | 1      | $78.2 \pm 0.1$ | $81.3 \pm 0.0$    | -                 |
| 13 | Bevilacqua et al. (2021) | BART <sup>†</sup>   |          |       |          |         | 200K  |        | -              | 84.3              | 83.0              |
| 14 | Zhou et al. (2021)       | RoBERTa             | S.A.     |       |          | 1       | 70K   | 1      | -              | $82.6 \pm 0.1$    | -                 |
| 15 | Ours (sep-voc)           | BART <sup>†</sup>   |          |       |          |         |       | 1      | 81.6 ±0.1      | $84.0 \pm 0.1$    | $82.3 \pm 0.0$    |
| 16 | Ours (share-voc)         | BART <sup>†</sup>   |          |       |          |         |       | 1      | 81.7 ±0.2      | $84.2 \pm 0.1$    | $82.0 \pm 0.0$    |
| 17 | Ours (sep-voc)           | BART <sup>†</sup>   |          |       |          |         | 47K   | 1      | -              | -                 | $82.7 \pm 0.1$    |
| 18 | Ours (share-voc)         | BART <sup>†</sup>   |          |       |          |         | 47K   | 1      | -              | $84.7 \pm 0.1$    | $82.6 \pm 0.1$    |
| 19 | Ours (sep-voc) ensem.    | BART <sup>†</sup>   |          |       |          |         | 47K   | 1      | -              | -                 | 83.1              |
| 20 | Ours (share-voc) ensem.  | BART <sup>†</sup>   |          |       |          |         | 47K   | 1      | -              | 84.9              | -                 |

Table 1: SMATCH (%) scores on AMR 1.0, 2.0, and 3.0 test data, associated with each model's dependency on various resources. 1-10/11-14: previous models without/with extra data; 15-18: our models; 19-20: ensemble decoding. Symbols indicate: G.R. - graph re-categorization, S.A. - subgraph action used in transition-based parsers (both detailed in Section 2), POS - part of speech tagger, NER - named entity recognizer, Lemma. - lemmatizer, Align. - alignments (only used at training time). <sup>†</sup> indicates fine-tuning on top of pre-trained model. All models rely on a external wikification method (ommited). Our results are average of 3 runs with different random seeds. We also report standard deviation and provide ensemble results for the 3 seed combination.

| ID | Model                    | SMATCH | Unlabel | NoWSD | Concepts | NER  | Negation | Wiki. | Re-entrancy | SRL  |
|----|--------------------------|--------|---------|-------|----------|------|----------|-------|-------------|------|
| 1  | Naseem et al. (2019a)    | 75.5   | 80      | 76    | 86       | 83   | 67       | 80    | 56          | 72   |
| 4  | Cai and Lam (2020)       | 78.7   | 81.5    | 79.2  | 88.1     | 87.1 | 66.1     | 81.3  | 63.8        | 74.5 |
| 6  | Astudillo et al. (2020)  | 80.2   | 84.2    | 80.7  | 88.1     | 87.5 | 64.5     | 78.8  | 70.3        | 78.2 |
| 8  | Bevilacqua et al. (2021) | 83.8   | 86.1    | 84.4  | 90.2     | 90.6 | 74.4     | 84.4  | 70.8        | 79.6 |
| 10 | Zhou et al. (2021)       | 81.8   | 85.5    | 82.3  | 88.7     | 88.5 | 69.7     | 78.8  | 71.1        | 80.8 |
| 15 | Ours (sep-voc)           | 84.1   | 87.5    | 84.4  | 90.4     | 92.2 | 71.0     | 79.6  | 73.9        | 83.0 |
| 16 | Ours (share-voc)         | 84.3   | 87.9    | 84.7  | 90.6     | 92.1 | 72.5     | 80.8  | 74.3        | 83.4 |

Table 2: Fine-grained F1 scores on the AMR 2.0 test set, among models that do not use extra silver data and graph re-categorization. The model IDs are matched with those in Table 1 for detailed model features. We report results with our single best model (selected on development data) for fair comparison.

AMR 1.0 benchmark, and the second best score of 82.7  $\pm$ 0.1 on the largest AMR 3.0 benchmark. Ensemble of the 3 models from the silver training further improves the performances to 84.9 for AMR 2.0 and 83.1 for AMR 3.0.

**Fine-grained Results** We further examine the fine-grained parsing results on AMR 2.0 in Table 2. We compare models not relying on extra data nor graph re-categorizationn since silver data sets differ across methods, and re-categorization comes with limitations outlined in Section 2. Our models achieve the highest scores across most of the categories, except for negation and wikification.

The former may be due to alignment errors and the latter is solved as a separate post-processing step independent of the parser. Compared with the closely related model from Bevilacqua et al. (2021) which also fine-tunes BART but directly on linearized graphs, we achieve significant gains on re-entrancy and SRL (:ARG-I arcs), proving our model generate AMR graphs more faithful to their topological structures.

### 7 Analysis

**Transition System** Table 3 and Table 4 compare different transition systems used by recent

|                         |                  | Features         |                     | Model Results on            | n AMR 2.0              | Model Results on AMR 3.0                                                                                            |                        |
|-------------------------|------------------|------------------|---------------------|-----------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------|
| Transition System       | #Base<br>Actions | Distant<br>Edges | Special<br>Subgraph | APT*<br>(Zhou et al., 2021) | Our Model<br>(sep-voc) | $\frac{1}{21} \frac{\text{Model Results or}}{\text{APT}^*}$ $(Zhou et al., 2021)$ $-$ $79.8 \pm 0.1$ $79.6 \pm 0.0$ | Our Model<br>(sep-voc) |
| Astudillo et al. (2020) | 12               | SWAP             | merge               | -                           | -                      | -                                                                                                                   | -                      |
| Zhou et al. (2021)      | 10               | pointer          | merge               | $81.5 \pm 0.1$              | $83.4 \pm 0.1$         | $79.8 \pm 0.1$                                                                                                      | $81.6 \pm 0.0$         |
| Ours                    | 6                | pointer          | no                  | $81.6 \pm 0.1$              | $84.0 \pm 0.1$         | $79.6 \pm 0.0$                                                                                                      | $82.3 \pm 0.1$         |

Table 3: Transition system comparison, including their effects on different parsing models. \* we adopt the cited model without graph structure embedding to run on our proposed oracle.

| Transition System       | Avg. #actions | Oracle SMATCH |
|-------------------------|---------------|---------------|
| Astudillo et al. (2020) | 76.2          | 98.0          |
| Zhou et al. (2021)      | 41.6          | 98.9          |
| Ours                    | 45.6          | 99.9          |

Table 4: Average action sequence length and oracle coverage on AMR 2.0 training data from different transition systems. Average source sentence length is 18.9.

transition-based AMR parsers with strong performances. Our proposed system has the smallest set of base actions, utilizes the action-side pointer mechanism for flexible edge creation as in Zhou et al. (2021), but does not rely on special treatment of certain subgraphs such as named entities and dates. This results in slightly longer action sequences compared to Zhou et al. (2021), but with almost 100% coverage<sup>7</sup> (Table 4). Our transition system and oracle can always find action sequences with full recovery of the original AMR graph, regardless of graph topology and alignments.

To assess whether our proposed transition system helps integration with pre-trained BART, we train both the APT model from Zhou et al. (2021) and our sep-voc model on the transition system of Zhou et al. (2021) and the one introduced in this work (Table 3 last 4 columns). The APT model, based on fixed RoBERTa features, does not benefit from the proposed transition system. However, our proposed model gains 0.6 on AMR 2.0 and 0.7 on AMR 3.0. This confirms the hypothesis that the proposed transitions are better able to exploit BART's powerful language generation ability.

**Structural Alignment Modeling** In Table 5, we evaluate the effects of our structural modeling of parser states within BART during fine-tuning. Action-source alignments are natural byproduct of the parser state, providing structural information of

| SMATCH (%)     |                                                                                   |  |  |  |
|----------------|-----------------------------------------------------------------------------------|--|--|--|
| sep-voc        | share-voc                                                                         |  |  |  |
| $84.0 \pm 0.1$ | $84.2 \pm 0.1$                                                                    |  |  |  |
| $83.5 \pm 0.0$ | $83.4 \pm 0.2$                                                                    |  |  |  |
| $82.9 \pm 0.0$ | $83.0 \pm 0.0$                                                                    |  |  |  |
| $83.9 \pm 0.0$ | $84.1 \pm 0.0$                                                                    |  |  |  |
| $83.1 \pm 0.1$ | $84.1 \pm 0.0$                                                                    |  |  |  |
|                | SMATC<br>sep-voc<br>84.0 ±0.1<br>83.5 ±0.0<br>82.9 ±0.0<br>83.9 ±0.0<br>83.1 ±0.1 |  |  |  |

Table 5: Ablation study of structure modeling with transition alignments. Results are on AMR 2.0 data.

where and how to generate the next graph component. Our default use of hard attention to encode such alignments works the best. We explore two other strategies for modeling alignments. One is to supervise cross-attention distributions for the same heads with inferred alignments during training, inspired by Strubell et al. (2018). The other is to directly add the aligned source contextual embeddings from the encoder top layer to the decoder input at every generation step. The former hurts the model performance, indicating the model is unable to learn the underlying transition logic to infer correct alignments, while the latter does equally well as our default model. These results justify the modeling of structural constraints, even when finetuning strong pre-trained models such as BART.

We also ablate the use of COPY action in our transition system. The sep-voc model suffers but the share-voc model is not affected. Without the COPY action, the share-voc model would rely more on BART's pre-trained subword embeddings to split node concepts more frequently, whereas the sep-vocab model would need to learn to generate more rare concepts from scratch. This indicates that BART's strong generation power is fully used to tackle concept sparsity problems when we allow to use its subwords.<sup>8</sup>

 $<sup>^{7}</sup>$ We can recover 100% of AMR 2.0 training graphs excluding 4 with notation errors. Imperfect SMATCH is due to ambiguities of our parser in recovering Penman notation.

<sup>&</sup>lt;sup>8</sup>In fact, when we vary the minimum frequency for a node string to be added to the shared vocabulary, we only observe  $\pm 0.2$  score variations. The model works equally well even

| #  |                               | Model Ini  |            | SMATCH (%) |      |       |  |
|----|-------------------------------|------------|------------|------------|------|-------|--|
|    | src emb                       | encoder    | decoder    | tgt emb    | Base | Large |  |
| 1  |                               |            |            |            | 71.2 | 72.7  |  |
| 2  | 1                             |            |            | 1          | 71.7 | 72.8  |  |
| 3  | 1                             | 1          |            | 1          | 81.4 | 82.8  |  |
| 4  | ✓                             |            | 1          | 1          | 69.2 | 9.5*  |  |
| 5  | 1                             |            |            |            | 71.2 | 72.8  |  |
| 6  | 1                             | 1          |            |            | 80.9 | 82.5  |  |
| 7  | 1                             | 1          | 1          |            | 82.2 | 83.9  |  |
| 8  | 1                             | 1          | 1          | 1          | 82.7 | 84.1  |  |
| 9  | freeze BART src emb 82.6 84.0 |            |            |            |      |       |  |
| 10 | freez                         | e BART sro | e emb + en | coder      | 80.9 | 81.8  |  |

Table 6: Effects of pre-trained BART parameters. Results are with our sep-voc model on AMR 2.0 data. \* failed to converge with a range of hyper-parameters.

Pre-trained Parameters We study the contribution of different pre-trained BART components in Table 6. With our sep-voc model, we decompose the whole seq-to-seq Transformer into four components for BART initialization, i.e. the source embedding (mapped with BART shared embedding), encoder, decoder, and the separate target embedding (initialized with the average subword embeddings from BART shared embedding). We run both the BART base model and the BART large model with different combinations of parameter initialization, on the top part of Table 6. We can see that a randomly initialized model of the same size (#1) performs badly. There is an accumulative effect of BART initialization in helping the model performance, except that BART decoder can not work alone well without its encoder (#4). The encoder gives the largest performance gains (#3 vs. #2, #6 vs. #5) of about 10 points. Adding the decoder further gives around 1.4 points on top (#7 vs. #6), justifying its importance as well.

We also experiment with freezing BART parameters during training in the bottom part of Table 6. Our results of freezing the BART encoder are on similar levels of previous best RoBERTa feature based models, which is behind the full fine-tuning.

### 8 Related Work

Predicting linearized graph sequences for syntactic and semantic parsing with seq-to-seq models was adpoted in Vinyals et al. (2015); Van Noord and Bos (2017); Ge et al. (2019); Rongali et al. (2020). Its simplicity is favored to work directly with pretrained Transformers to improve performance. Xu et al. (2020) proposed custom pre-training tasks for AMR parsing as previously used encoder-only pretrained models such as BERT were not effective for fine-tuning (Zhu et al., 2020), whereas Bevilacqua et al. (2021) found the pre-trained encoder-decoder model BART is very effective. The importance of strongly pre-trained decoders is justified as BART gains popularity in various semantic generation tasks (Chen et al., 2020; Shi et al., 2020). Our work aims at capitalizing on the outstanding performance shown by BART, while providing a more structured approach that guarantees well-formed graphs and yields other desirable sub-products such as alignments. We show that indeed this is possible and attain strong parsing results overall. Our detailed analysis also shows that contrary to Xu et al. (2020) vocabulary sharing is not necessary for good performance and pre-trained BART decoder is quite dependent on its encoder.

Encoding of the parser state into neural parsers has been undertaken in various works, including seq-to-seq RNN models (Liu and Zhang, 2017; Zhang et al., 2017; Buys and Blunsom, 2017), encoder-only Transformers (Ahmad et al., 2019), and seq-to-seq Transformers (Astudillo et al., 2020; Zhou et al., 2021). Here we explore the application of these approaches to pre-trained seq-to-seq Transformers. Borrowing ideas from Zhou et al. (2021), we overlay a pointer network within BART to be fine-tuned together with the model, and encode alignment states into the pre-trained BART. However, we rely on a minimal set of actions targeted to utilize BART's generation power and reduce other complexities such as graph encoding. We are the first to explore transition-based parsing applied on fine-tuning strongly pre-trained models, and we demonstrate that parser state encoding is still important for performance, even when implemented inside of a pre-trained decoder such as BART.

### 9 Conclusion

We explore the integration of pre-trained sequenceto-sequence language models and transition-based approaches for AMR parsing, with the purpose of retaining the high performance of the former and structural advantages of the latter. We show that both approaches are complementary, establishing the new state of the art for AMR 2.0. Our results indicate that it is possible to effectively re-purpose a generic pre-trained model to a structure-aware one achieving strong performance.

when all node names are split and generated by BART (see Appendix D).

### References

- Wasi Ahmad, Zhisong Zhang, Xuezhe Ma, Eduard Hovy, Kai-Wei Chang, and Nanyun Peng. 2019. On difficulties of cross-lingual transfer with order differences: A case study on dependency parsing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2440–2452, Minneapolis, Minnesota. Association for Computational Linguistics.
- Ramon Fernandez Astudillo, Miguel Ballesteros, Tahira Naseem, Austin Blodgett, and Radu Florian. 2020. Transition-based parsing with stacktransformers. *arXiv preprint arXiv:2010.10669*.
- Miguel Ballesteros and Yaser Al-Onaizan. 2017a. AMR parsing using stack-LSTMs. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1269–1275, Copenhagen, Denmark. Association for Computational Linguistics.
- Miguel Ballesteros and Yaser Al-Onaizan. 2017b. Amr parsing using stack-lstms. *arXiv preprint arXiv:1707.07755*.
- Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. 2013. Abstract meaning representation for sembanking. In *Proceedings of the 7th linguistic annotation workshop and interoperability with discourse*, pages 178–186.
- Michele Bevilacqua, Rexhina Blloshmi, and Roberto Navigli. 2021. One spring to rule them both: Symmetric amr semantic parsing and generation without a complex pipeline.
- Jan Buys and Phil Blunsom. 2017. Robust incremental neural semantic graph parsing. *arXiv preprint arXiv:1704.07092*.
- Deng Cai and Wai Lam. 2020. AMR parsing via graphsequence iterative inference. In *Proceedings of the* 58th Annual Meeting of the Association for Computational Linguistics, pages 1290–1301, Online. Association for Computational Linguistics.
- Shu Cai and Kevin Knight. 2013. Smatch: an evaluation metric for semantic feature structures. In *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 748–752.
- Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke Zettlemoyer, and Sonal Gupta. 2020. Low-resource domain adaptation for compositional task-oriented semantic parsing. *arXiv preprint arXiv:2010.03546*.
- Marco Damonte, Shay B Cohen, and Giorgio Satta. 2016. An incremental parser for abstract meaning representation. *arXiv preprint arXiv:1608.06111*.

- DongLai Ge, Junhui Li, Muhua Zhu, and Shoushan Li. 2019. Modeling source syntax and semantics for neural amr parsing. In *IJCAI*, pages 4975–4981.
- Young-Suk Lee, Ramon Fernandez Astudillo, Tahira Naseem, Revanth Gangi Reddy, Radu Florian, and Salim Roukos. 2020. Pushing the limits of amr parsing with self-learning. *arXiv preprint arXiv:2010.10673*.
- Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461.
- Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, and Noah A Smith. 2018. Toward abstractive summarization using semantic representations. *arXiv preprint arXiv:1805.10399*.
- Jiangming Liu and Yue Zhang. 2017. Encoder-decoder shift-reduce syntactic parsing. In Proceedings of the 15th International Conference on Parsing Technologies, pages 105–114, Pisa, Italy. Association for Computational Linguistics.
- Chunchuan Lyu, Shay B Cohen, and Ivan Titov. 2020. A differentiable relaxation of graph segmentation and alignment for amr parsing. *arXiv preprint arXiv:2010.12676*.
- Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as graph prediction with latent alignment. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 397–407, Melbourne, Australia. Association for Computational Linguistics.
- Arindam Mitra and Chitta Baral. 2016. Addressing a question answering challenge by combining statistical methods with inductive rule learning and reasoning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 30.
- Tahira Naseem, Abhishek Shah, Hui Wan, Radu Florian, Salim Roukos, and Miguel Ballesteros. 2019a. Rewarding smatch: Transition-based amr parsing with reinforcement learning. *arXiv preprint arXiv:1905.13370*.
- Tahira Naseem, Abhishek Shah, Hui Wan, Radu Florian, Salim Roukos, and Miguel Ballesteros. 2019b. Rewarding Smatch: Transition-based AMR parsing with reinforcement learning. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 4586–4592, Florence, Italy. Association for Computational Linguistics.
- Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. *arXiv preprint arXiv:1904.01038*.

- Subendhu Rongali, Luca Soldaini, Emilio Monti, and Wael Hamza. 2020. Don't parse, generate! a sequence to sequence architecture for task-oriented semantic parsing. In *Proceedings of The Web Conference 2020*, pages 2962–2968.
- Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Cicero Nogueira dos Santos, and Bing Xiang. 2020. Learning contextual representations for semantic parsing with generation-augmented pre-training. *arXiv* preprint arXiv:2012.10309.
- Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum. 2018. Linguistically-informed self-attention for semantic role labeling. *arXiv preprint arXiv:1804.08199*.
- Rik Van Noord and Johan Bos. 2017. Neural semantic parsing by character-based translation: Experiments with abstract meaning representations. *arXiv preprint arXiv:1705.09980*.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In *Advances in neural information processing systems*, pages 5998–6008.
- Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar as a foreign language. In *Advances in neural information processing systems*, pages 2773–2781.
- Andreas Vlachos et al. 2018. Guided neural language generation for abstractive summarization using abstract meaning representation. *arXiv preprint arXiv:1808.09160*.
- Chuan Wang and Nianwen Xue. 2017. Getting the most out of amr parsing. In *Proceedings of the 2017 conference on empirical methods in natural language processing*, pages 1257–1268.
- Chuan Wang, Nianwen Xue, and Sameer Pradhan. 2015. A transition-based algorithm for amr parsing. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 366–375.
- Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and Guodong Zhou. 2020. Improving amr parsing with sequence-to-sequence pre-training. *arXiv preprint arXiv:2010.01771*.
- Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin Van Durme. 2019a. Amr parsing as sequence-to-graph transduction. *arXiv preprint arXiv:1905.08704*.
- Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin Van Durme. 2019b. Broad-coverage semantic parsing as transduction. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language*

Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3784–3796, Hong Kong, China. Association for Computational Linguistics.

- Zhirui Zhang, Shujie Liu, Mu Li, Ming Zhou, and Enhong Chen. 2017. Stack-based multi-layer attention for transition-based dependency parsing. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1677– 1682, Copenhagen, Denmark. Association for Computational Linguistics.
- Jiawei Zhou, Tahira Naseem, Ramón Fernandez Astudillo, and Radu Florian. 2021. Amr parsing with action-pointer transformer. *arXiv preprint arXiv:2104.14674*.
- Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou, Houqiang Li, and Tie-Yan Liu. 2020. Incorporating bert into neural machine translation. *arXiv preprint arXiv:2002.06823*.

### A Dataset Statistics

We list the dataset sizes of AMR benchmarks in Table 7. The sizes increase with the release version number. AMR 2.0 is the most used by far. AMR 2.0 shares the same set of sentences for development and test data with AMR 1.0, but with revised annotations and wikification links. AMR 3.0 is released most recently, which is under-explored.

Our silver data originate from two sources. First, we use  $\sim 20$ K example sentences ( $\sim 386$ K tokens) from the propbank frames included in the AMR 3.0 distribution. Second, we use randomly selected  $\sim 27$ K sentences ( $\sim 620$ K tokens) from SQuAD 2.0 context sentences available from https://rajpurkar.github.io/SQuAD-explorer/.

| Data Split  | AMR 1.0 | AMR 2.0 | AMR 3.0 |
|-------------|---------|---------|---------|
| Training    | 10,312  | 36,521  | 55,635  |
| Development | 1,368   | 1,368   | 1,722   |
| Test        | 1.371   | 1.371   | 1,898   |

Table 7: Number of sentence-AMR instances in theAMR benchmark datasets.

# **B** Details of Model Structures and Number of Parameters

In Table 8, we list the detailed model configuration and number of parameters of the official pre-trained BART models. Our fine-tuned BART is with different action vocabulary strategies which builds additional embedding vectors for certain action symbols. The numbers vary from training dataset. We list the detailed number of parameters of our fine-tuned model in Table 9. The fine-tuned model only increases about 3%-8% more parameters for sep-voc model and 0.4%-1% more parameters for share-voc model.

### **C** Implementation Details

We use the Adam optimizer with  $\beta_1 = 0.9$  and  $\beta_2 = 0.98$ . Batch size is set to 2048 maximum number of tokens, and gradient is accumulated over 4 steps. The the learning rate schedule is the same as Vaswani et al. (2017), where we use the maximum learning rate of 1e-4 with 4000 warm-up steps. Dropout of rate 0.2 and label smoothing of rate 0.01 are used. These hyperparameters are fixed and not tuned for different models and datasets, as we found results are not

| Configuration                              | BART Base                 | BART Large                |
|--------------------------------------------|---------------------------|---------------------------|
| Encoder layers                             | 6                         | 12                        |
| Heads per layer                            | 12                        | 16                        |
| Hidden size                                | 768                       | 1024                      |
| FFN size                                   | 3072                      | 4096                      |
| Size of vocab                              | 51201*                    | 50265                     |
| Size of emb. matrix<br>#parameters trained | 39,322,368<br>140,139,266 | 51,471,360<br>406,291,458 |

Table 8: Original configurations of model pre-trained BART from FAIRSEQ (https: //github.com/pytorch/fairseg/tree/ v0.10.2/examples/bart). The embeddings for source, decoder input and output are all shared and thus the same (not counted as extra in training parameters). \*vocabulary for the base model is larger due to additional paddings at the end, but effective vocabulary symbols are the same as the large model.

| Model     | Param.            | AMR 1.0     | AMR 2.0     | AMR 3.0     |
|-----------|-------------------|-------------|-------------|-------------|
| sep-voc   | Src vocab size    | 50265       | 50265       | 50265       |
|           | Tgt vocab size    | 6976        | 12752       | 16180       |
|           | #param. trained   | 420,578,304 | 432,407,552 | 439,436,288 |
| share-voc | shared vocab size | 51921       | 53487       | 54388       |
|           | #param. trained   | 407,987,200 | 409,590,784 | 410,517,504 |

Table 9: Model parameters of our modified BART (large model). The sizes differ based on the target side vocabulary, which is dependent on different training data. Addition of silver training data adds only a fraction of the parameters to the benchmark datasets.

sensitive within small ranges. Without silver data, we train sep-voc models for 100 (AMR 1.0 & 2.0) or 120 (AMR 3.0) epochs and share-voc models for 40 epochs as the latter is found to converge faster. The best 5 (AMR 1.0 & 2.0) or 10 (AMR 3.0) checkpoints among the last 40/30 epochs are selected based on development set SMATCH from greedy decoding and averaged over the model parameters as our final model. With the 50k silver data, we train both sep-voc and share-voc models for 20 epochs and select the best 10 checkpoints for model parameter averaging. We use a default beam size of 10 for decoding for our final parsing scores. Our models are implemented with the FAIRSEQ toolkit (Ott et al., 2019), trained and tested on a single Nvidia Tesla V100 GPU with 32GB memory. We use fp16 mixed precision training whenever possible, with which training a large model on AMR 2.0 takes about 10 hours for sep-vocab models and 7 hours for share-vocab models, and the time varies proportionally with data size for other datasets and with silver data.

| Min Node Freq.  | 1      | 5     | 10    | 100  | $\infty$ |
|-----------------|--------|-------|-------|------|----------|
| Number of Nodes | 12,475 | 4,310 | 2,827 | 476  | 0        |
| SMATCH (%)      | 84.0   | 84.2  | 84.0  | 84.0 | 84.1     |

Table 10: Effect of special AMR node names added to the BART vocabulary in share-voc model on AMR 2.0 dataset. Remaining AMR concepts are split and generated with BART sub-tokens and sense numbers.

# D More Analysis on Share-voc

In Table 10, we run share-voc models with different sized shared vocabularies by controlling the minimum frequency of AMR concepts added to the vocabulary. The model can work equally well even when no such special concepts are added to the vocabulary (minimum node frequency is  $\infty$ ), where all the node names are split and generated with BART subword tokens. This indicates that BART's strong generation power is properly used to tackle concept sparsity problems when we allow to use its subwords.