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Abstract

Predicting linearized Abstract Meaning Rep-
resentation (AMR) graphs using pre-trained
sequence-to-sequence Transformer models
has recently led to large improvements on
AMR parsing benchmarks. These parsers
are simple and avoid explicit modeling of
structure but lack desirable properties such as
graph well-formedness guarantees or built-in
graph-sentence alignments. In this work we
explore the integration of general pre-trained
sequence-to-sequence language models and
a structure-aware transition-based approach.
We depart from a pointer-based transition
system and propose a simplified transition set,
designed to better exploit pre-trained language
models for structured fine-tuning. We also
explore modeling the parser state within the
pre-trained encoder-decoder architecture and
different vocabulary strategies for the same
purpose. We provide a detailed comparison
with recent progress in AMR parsing and
show that the proposed parser retains the de-
sirable properties of previous transition-based
approaches, while being simpler and reaching
the new parsing state of the art for AMR 2.0.

1 Introduction

The task of Abstract Meaning Representation
(AMR) parsing translates a natural sentence into
a rooted directed acyclic graph capturing the se-
mantics of the sentence, with nodes representing
concepts and edges representing their relations
(Banarescu et al., 2013). Recent works utiliz-
ing pre-trained encoder-decoder language models
show great improvements in AMR parsing results
(Xu et al., 2020; Bevilacqua et al., 2021). These
approaches avoid explicit modeling of the graph
structures. Instead, they directly predict the lin-
earized AMR graphs treated as free text and exploit
strongly pre-trained language models to overcome
data sparsity and maintain current state-of-the-art
results (Bevilacqua et al., 2021).

These approaches however lack certain desirable
properties. There are no structural guarantees of
graph well-formedness, i.e. the model may predict
strings that can not be decoded into valid graphs,
and post-processing is required. Furthermore, pre-
dicting AMR linearizations ignores the implicit
alignments between graph nodes and words, which
provide a strong inductive bias and are useful for
downstream AMR applications (Mitra and Baral,
2016; Liu et al., 2018; Vlachos et al., 2018).

On the other hand, transition-based AMR parsers
(Wang et al., 2015; Ballesteros and Al-Onaizan,
2017a; Astudillo et al., 2020; Zhou et al., 2021)
operate over the tokens of the input sentence, gen-
erating the graph incrementally. They implicitly
model graph structural constraints through transi-
tions and yield alignments by construction, thus
guaranteeing graph well-formedness1. However,
it remains unclear whether explicit modeling of
structure is still beneficial for AMR parsing in the
presence of powerful pre-trained language models
and their strong free text generation abilities.

In this work, we integrate pre-trained sequence-
to-sequence (seq-to-seq) language models with the
transition-based approach for AMR parsing, and
explore to what degree they are complementary. To
fully utilize the generation power of the pre-trained
language models, we propose a transition system
with a small set of basic actions – a generaliza-
tion of the action-pointer transition system of Zhou
et al. (2021). We use BART (Lewis et al., 2019) as
our pre-trained language model, since it has shown
significant improvements in linearized AMR gen-
eration (Bevilacqua et al., 2021). Unlike previous
approaches that directly fine-tune the model with
linearized graphs, we modify the model structure to
work with our transition system, and encode parser
states in BART’s attention mechanism (Astudillo
et al., 2020; Zhou et al., 2021). We also explore dif-

1The only exception being disconnected graphs, which
happen infrequently in practice.



ferent vocabulary strategies for action generation.
These changes convert the pre-trained BART to a
transition-based parser where graph constraints and
alignments are internalized.

We provide a detailed comparison with top-
performing AMR parsers and perform ablation ex-
periments showing that our proposed transition sys-
tem and BART modifications are both necessary to
achieve strong performance. Although BART has
great language generation capacity, it still benefits
from parser state encoding with hard attention, and
can efficiently learn structural output. Our model
establishes a new state of the art for AMR 2.0 while
maintaining graph well-formedness guarantees and
producing built-in alignments.

2 Intricacies of AMR Parsers

A frequent complaint about AMR parsers is
that they involve combining many different tech-
niques and hand-crafted rules, resulting in complex
pipelines that are hard to analyze and generalize
poorly. This situation has notably improved in the
past few years but there are still two main sources
of complexity present in almost all recent parsers:
graph re-categorization and subgraph actions.

Graph re-categorization (Wang and Xue, 2017;
Lyu and Titov, 2018; Zhang et al., 2019a) normal-
izes the graph prior to learning, including join-
ing certain subgraphs such as entities, dates and
other constructs into single nodes, removing special
types of nodes like polarity and normalizing prop-
bank names (see examples in Figure 1). Training
and decoding of models using this technique hap-
pens in this re-categorized space. Re-categorized
graphs are expanded to normal valid AMR graphs
in a post-processing stage. The type and number of
subgraphs normalized vary across implementations
but most high performing approaches (Cai and
Lam, 2020; Bevilacqua et al., 2021) utilize the re-
categorization described in Appendix A.1 of Zhang
et al. (2019a), which requires an external NER sys-
tem to anonymize named entities. It also makes use
of look-up tables for nominalizations (e.g. English
to England) and other hand-crafted rules. Graph
re-categorization has been criticised for its lack of
generalization to new domains such as biomedical
domain or even AMR 3.0 corpus (Bevilacqua et al.,
2021). Recent top performing systems e.g. Cai and
Lam (2020); Bevilacqua et al. (2021) also provide
results without re-categorization, but this is shown
to hurt performance notably on AMR 2.0 corpus.
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Figure 1: AMR graph of the sentence I have no opinion
on the New York Mets. Examples of subgraphs for en-
tity anonymization, collapsing of verbalized nouns and
removal of the polarity node and edge.

Subgraph actions (Ballesteros and Al-Onaizan,
2017b) are used in transition-based systems and
play a role similar to re-categorization. Instead of
normalizing and reverting, transition-based parsers
apply a subgraph action that generates an entire
subgraph at once. This subgraph action coin-
cides with many of the subgraphs collapsed in
re-categorization. Subgraph actions bring no ex-
ternal dependencies, since the parser learns to
segment and identify subgraphs during training.
It still suffers however from data sparsity since
some subgraphs appear very few times. As in
re-categorization, subgraph actions also make use
of lookup tables for nominalization and similar
constructs that hinder generalization. Further-
more, it creates the problem of unattachable nodes,
adressed in Zhou et al. (2021) by ignoring sub-
graphs for a set of heuristically determined cases.
Subgraph actions have been used in all transition-
based AMR systems (Naseem et al., 2019a; As-
tudillo et al., 2020; Zhou et al., 2021).

Aside from NER, past AMR parsers have other
external dependencies such as POS taggers (Zhang
et al., 2019a; Cai and Lam, 2020) and lemmatizers
(Cai and Lam, 2020; Naseem et al., 2019b).

3 A Simplified Transition System

In this section we propose a transition system for
AMR parsing designed with two objectives: maxi-
mize the use of strong pre-trained decoders such as
BART, and minimize the complexity and dependen-
cies of the transition system compared to previous
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Figure 2: From top to bottom: graph (solid lines), sentence (source), addressable action positions and action
sequence (target) for the sentence Employees liked their Boston trip, aligned (dotted lines) to its AMR graph. Arc-
creating actions are displayed vertically due to space constraints. Words are repeated in grey to indicate the word
under cursor for each action. The node Boston in dotted box is created by copying the token under cursor via COPY
action at position 13. LA(1,ARG0) creates a left arc with label ARG0 from the top concept like-01 to the concept
person at position 1. For the concept trip-03, LA(1,ARG0) is a co-reference (re-entrancy) to the concept person.

approaches. Similar to Zhou et al. (2021), we scan
the sentence from left to right using a token cursor
while performing node and edge creation actions.
The proposed set of actions is as follows:

SHIFT moves token cursor one word to the right.

<string> creates node of name <string>.

COPY creates node where the node name is the
token under the current cursor position.

LA(j,LBL) creates an arc with label LBL from
the last generated node to the node generated at the
jth transition step.

RA(j,LBL) same as LA but with arc direction re-
versed.

ROOT declares the last predicted node as the root.

Unlike previous transition-based approaches, we
do not use a reserved action, such as PRED (Zhou
et al., 2021) or CONFIRM (Ballesteros and Al-
Onaizan, 2017b), to predict nodes; instead we di-
rectly use the node name <string> as the action
symbol generating that node. This opens the pos-
sibility of utilizing BART’s target side pre-trained
vocabulary. We avoid using any copy actions that
involve copying from lemmatizer outputs or lookup
tables. Our COPY action is limited to copying the
lower cased word to the node name. We also elim-
inate the use of SUBGRAPH (Zhou et al., 2021) or
ENTITY (Ballesteros and Al-Onaizan, 2017b) ac-
tions producing multiple nodes simultaneously and

MERGE action creating spans of words. In previous
approaches these actions were derived from align-
ments or hand-crafted. They thus did not cover
all possible cases limiting the scalability of the ap-
proach. Finally, we discard the REDUCE action
previously used to delete a source token. The ac-
tion is redundant when token cursor is modeled; the
effect can be achieved by simply using SHIFT with-
out performing any other action. Figure 2 shows
an example sentence with an action sequence and
the corresponding graph (contrast with Figure 1 for
handling of verbalization and named entities).

To train a parser with a transition system, we
need an action sequence for each training sentence
that will produce the gold graph when executed.
This action sequence then serves as target for seq-
to-seq models. An oracle algorithm creates these
ground-truth sequences using the transition system,
with knowledge of sentence, AMR graph and node-
to-word alignments. Nodes are generated at the
aligned token cursor position with either COPY or
<string>. For each generated node, LA and RA ac-
tions connect it with previously generated nodes to
create edges before performing any other actions.
Note that the edges are formed by pointing to po-
sitions in the action history, where a graph node is
represented by the action that creates it. Multiple
nodes can be generated at a single source word
before the cursor is moved by SHIFT. The process
ends when the cursor moves past the last token.

The above oracle always recovers the gold graph
as long as every node in the graph is aligned to



some token. We use the alignments of Naseem et al.
(2019b) and deal with unaligned nodes similarly to
Astudillo et al. (2020) by aligning them to places
based on graph proximity. Furthermore, by using
only the atomic node and edge creation actions, we
manage to avoid the problem of unattachable nodes
caused by merged subgraph actions, obtaining full
oracle coverage on training data.

Our proposed transition system makes better use
of BART pre-trained decoder compared to previous
transition-based approaches (see Section 6) while
greatly simplifying the transition set. It naturally
produces node-to-word alignments via source to-
ken cursor.

4 Parsing Model

We build our model on top of the pre-trained seq-
to-seq Transformer, BART (Lewis et al., 2019).
We modify its architecture to incorporate a pointer
network and internalize parser states induced by
our transition system, and fine-tune for sentence-
to-action generation.

4.1 Structure-aware Architecture

We adopt similar modifications on the Transformer
architecture as in Zhou et al. (2021) since our tran-
sition system is based on the same action-pointer
mechanism. The modifications do not introduce
new modules or extra parameters, which naturally
fit our need to adapt BART into a transition-based
parser with internal graph well-formedness.

In particular, the target actions consist of two
parts: bare action symbols (containing labels) and
pointer values for edges. We use the BART stan-
dard output for the former, and a pointer network
for the latter. As the pointing happens on the histor-
ical actions, essentially a self-attention mechanism,
we re-purpose one decoder self-attention head as
the pointer network. It is supervised with additional
cross entropy loss during fine-tuning and decoded
for building graph edges at inference.

We encode the monotonic action-source align-
ments induced by the parser state with hard atten-
tion, i.e. by masking some decoder cross-attention
heads to only focus on aligned words. Since BART
processes source sentences with subwords, we ap-
ply an additional average pooling layer on top of
its encoder to return states of original source words,
used for the decoder layers for our hard attention.
At last, as the possible actions are constrained with
transition rules and states at every step, we restrict

the decoder output space via hard masking of the
BART final softmax layer. For simplicity, we do
not incorporate the step-wise decoder graph embed-
ding technique in Zhou et al. (2021) as their gain
was shown to be modest.

4.2 Action Generation
According to how we treat the target-side vocabu-
lary for action generation, we propose two vari-
ations of the model. The first one is to use a
completely separate vocabulary for target actions,
where the decoder input side and output side use
stand-alone embeddings for actions, separate from
the pre-trained BART subword embeddings.2 We
denote this setup as our sep-voc model.

However, this might not fully utilize the power
of the pre-trained BART since it is an encoder-
decoder model with a single vocabulary and all em-
beddings shared. Although our generation targets
are action symbols, the node generating actions
are closely related to natural words in their surface
forms, which are what BART was pre-trained on.
Therefore, we propose a second variation where we
use a shared vocabulary for both the source tokens
and target actions. Naively relying on the original
BART subword vocabulary would end up splitting
action symbols blindly, which is not desired as the
structures such as alignments and edge pointers
would be disrupted. For the non-node actions, they
control the parsing states and graph structure in
the transitional parsing process, thus we add them
as-is to the BART vocabulary, similar to Bevilac-
qua et al. (2021). For the node actions, we add
the frequent ones to vocabulary in order to capture
common AMR concepts intact, and split the re-
maining concepts with BART subword vocabulary.
In this setup, a single node string can potentially be
generated with multiple steps; we modify the arc
transitions to always point to the beginning posi-
tion of a node string for attachment. With shared
vocabulary setup, the model could learn to generate
unseen nodes with BART’s subword vocabulary,
eliminating potential out-of-vocabulary problems.
We refer to this setup as our share-voc model.

4.3 Training and Inference
We load the pre-trained BART parameters except
for the standalone vocabulary embeddings for sep-
voc model and the extended embeddings for the

2In practice the separate embeddings are initialized with
the average subword embeddings from the original BART
vocabulary, this gave small gains over random initialization.



share-voc model. We then fine-tune the model
with the updated structure-aware architectures on
sentence-action pairs with addition of pointer loss.

For decoding, we use similar constrained beam
search algorithm as in Zhou et al. (2021), but with
our own transition set and rules. We run a state
machine on the side to get parser states used by the
model. Note that for our share-voc model, we only
allow subword split for node (<string>) actions.
Since our fine-tuned model is already structure-
aware, the graph well-formedness is always guar-
anteed so no post-processing is needed to return
valid graphs (Xu et al., 2020; Bevilacqua et al.,
2021). The only post-processing we use is to add
wikification nodes as used in all previous parsers.

5 Experimental Setup

Datasets We evaluate our models on 3
AMR benchmark datasets, namely AMR 1.0
(LDC2014T12), AMR 2.0 (LDC2017T10), and
AMR 3.0 (LDC2020T02). They have around 10K,
37K, and 56K sentence-AMR pairs for training,
respectively.3 Both AMR 2.0 and AMR 3.0 have
wikification nodes but AMR 1.0 does not.

Evaluation We assess our models with SMATCH

(F1) scores4 (Cai and Knight, 2013). We also re-
port the fine-grained evaluation metrics (Damonte
et al., 2016) to further investigate different aspects
of parsing results, such as concept identification,
entity recognition, re-entrancies, etc.

Model Configuration We follow the original
BART configuration (Lewis et al., 2019) and code
5. We use the large model configuration as default,
and also the base model for ablation studies. The
pointer network is always tied with one head of
the decoder top layer, and the pointer loss is added
to the model cross-entropy loss with 1:1 ratio for
training. Transition alignments are used to mask
cross-attentions in 2 heads of all decoder layers.
For sep-voc model, we build separate embedding
matrices for target actions from the training data
for decoder input and output space. For share-voc
model, we add new embedding vectors for non-
node action symbols and node action strings with
a default minimum frequency of 5 (only accounts
for about one third of all nodes due to sparsity).

3See Appendix A for detailed dataset sizes. Data source:
https://amr.isi.edu/download.html.

4https://github.com/snowblink14/smatch/tree/v1.0.4.
5https://github.com/pytorch/fairseq/

tree/v0.10.2/examples/bart.

Implementation Details Our models are trained
with Adam optimizer with batch size 2048 tokens
and gradient accumulation of 4 steps. Learning rate
is 1e−4 with 4000 warm-up steps using the inverse-
sqrt scheduling scheme (Vaswani et al., 2017). The
hyper-parameters are fixed and not tuned for dif-
ferent models and datasets, as we found results are
not sensitive within small ranges. We train sep-voc
models for 100 epochs and share-voc models for
40 epochs as the latter is found to converge faster.
The best 5 checkpoints based on development set
SMATCH from greedy decoding are averaged, and
default beam size of 10 is used for decoding for
our final parsing scores. We implement with the
FAIRSEQ toolkit (Ott et al., 2019). More details can
be found in the Appendix.

6 Results

Main Results We present parsing performances
of our model in comparison with previous ap-
proaches in Table 1. For each model, we also list
its features such as utilization of pre-trained lan-
guage models and graph simplification methods
such as re-categorization. This gives a comprehen-
sive overview of how systems compare in terms of
complexity aside from performance.

All recent systems rely on pre-trained language
models, either as fixed features or through fine-
tuning. The pre-trained BART is particularly bene-
ficial due to its encoder-decoder structure. Among
all the models, the graph linearization models (Xu
et al., 2020; Bevilacqua et al., 2021) have the
least number of extra dependencies when not us-
ing graph re-categorization. Our model only re-
quires aligned training data, a trait common to all
transition-based approaches. This bears the advan-
tage of producing reliable alignments at decoding
time, which are useful for downstream tasks and as
explanation of the graph constructing process.

Both our sep-voc and share-voc model variations
work well on all datasets. Without using extra
silver data, our model achieves the SMATCH score
of 84.2 ±0.1 on AMR 2.0, which is the same as
the previous best model (Bevilacqua et al., 2021)
with 200K silver data. With the input of only 47K
silver data (consisting of ∼20K example sentences
of propbank frames and randomly selected ∼27K
SQuAD-2.0 context sentences6), we achieve the
highest score of 84.7 ±0.1 for AMR 2.0. We also
attain the high score of 81.7 ±0.2 on the smallest

6https://rajpurkar.github.io/SQuAD-explorer/.

https://github.com/pytorch/fairseq/tree/v0.10.2/examples/bart
https://github.com/pytorch/fairseq/tree/v0.10.2/examples/bart


ID Model
Pre-trained

Model
Collapse
Subgraph

External Dependency Extra
Data

Train
Align.

SMATCH F1 (%)
POS NER Lemma. AMR 1.0 AMR 2.0 AMR 3.0

1 Naseem et al. (2019a) BERT S.A. 3 3 - 75.5 -
2 Zhang et al. (2019a) BERT G.R. 3 3 70.2 ±0.1 76.3 ±0.1 -
3 Zhang et al. (2019b) BERT G.R. 3 3 71.3 ±0.1 77.0 ±0.1 -
4 Cai and Lam (2020) BERT 3 3 3 74.0 78.7 -
5 Cai and Lam (2020) BERT G.R. 3 3 3 75.4 80.2 -
6 Astudillo et al. (2020) RoBERTa S.A. 3 3 76.9 ±0.1 80.2 ±0.0 -
7 Lyu et al. (2020) RoBERTa G.R. 3 3 - - 75.8
8 Bevilacqua et al. (2021) BART= - 83.8 83.0
9 Bevilacqua et al. (2021) BART= G.R. 3 - 84.5 80.2

10 Zhou et al. (2021) RoBERTa S.A. 3 3 78.3 ±0.1 81.7 ±0.1 80.3 ±0.1

11 Xu et al. (2020) Custom= 4M - 81.4 -
12 Lee et al. (2020) RoBERTa S.A. 3 85K 3 78.2 ±0.1 81.3 ±0.0 -
13 Bevilacqua et al. (2021) BART= 200K - 84.3 83.0
14 Zhou et al. (2021) RoBERTa S.A. 3 70K 3 - 82.6 ±0.1 -

15 Ours (sep-voc) BART= 3 81.6 ±0.1 84.0 ±0.1 82.3 ±0.0

16 Ours (share-voc) BART= 3 81.7 ±0.2 84.2 ±0.1 82.0 ±0.0

17 Ours (sep-voc) BART= 47K 3 - - 82.7 ±0.1

18 Ours (share-voc) BART= 47K 3 - 84.7 ±0.1 82.6 ±0.1

19 Ours (sep-voc) ensem. BART= 47K 3 - - 83.1
20 Ours (share-voc) ensem. BART= 47K 3 - 84.9 -

Table 1: SMATCH (%) scores on AMR 1.0, 2.0, and 3.0 test data, associated with each model’s dependency
on various resources. 1-10/11-14: previous models without/with extra data; 15-18: our models; 19-20: ensemble
decoding. Symbols indicate: G.R. - graph re-categorization, S.A. - subgraph action used in transition-based parsers
(both detailed in Section 2), POS - part of speech tagger, NER - named entity recognizer, Lemma. - lemmatizer,
Align. - alignments (only used at training time). = indicates fine-tuning on top of pre-trained model. All models
rely on a external wikification method (ommited). Our results are average of 3 runs with different random seeds.
We also report standard deviation and provide ensemble results for the 3 seed combination.

ID Model SMATCH Unlabel NoWSD Concepts NER Negation Wiki. Re-entrancy SRL

1 Naseem et al. (2019a) 75.5 80 76 86 83 67 80 56 72
4 Cai and Lam (2020) 78.7 81.5 79.2 88.1 87.1 66.1 81.3 63.8 74.5
6 Astudillo et al. (2020) 80.2 84.2 80.7 88.1 87.5 64.5 78.8 70.3 78.2
8 Bevilacqua et al. (2021) 83.8 86.1 84.4 90.2 90.6 74.4 84.4 70.8 79.6
10 Zhou et al. (2021) 81.8 85.5 82.3 88.7 88.5 69.7 78.8 71.1 80.8

15 Ours (sep-voc) 84.1 87.5 84.4 90.4 92.2 71.0 79.6 73.9 83.0
16 Ours (share-voc) 84.3 87.9 84.7 90.6 92.1 72.5 80.8 74.3 83.4

Table 2: Fine-grained F1 scores on the AMR 2.0 test set, among models that do not use extra silver data and graph
re-categorization. The model IDs are matched with those in Table 1 for detailed model features. We report results
with our single best model (selected on development data) for fair comparison.

AMR 1.0 benchmark, and the second best score
of 82.7 ±0.1 on the largest AMR 3.0 benchmark.
Ensemble of the 3 models from the silver training
further improves the performances to 84.9 for AMR
2.0 and 83.1 for AMR 3.0.

Fine-grained Results We further examine the
fine-grained parsing results on AMR 2.0 in Ta-
ble 2. We compare models not relying on extra
data nor graph re-categorizationn since silver data
sets differ across methods, and re-categorization
comes with limitations outlined in Section 2. Our
models achieve the highest scores across most of
the categories, except for negation and wikification.

The former may be due to alignment errors and
the latter is solved as a separate post-processing
step independent of the parser. Compared with
the closely related model from Bevilacqua et al.
(2021) which also fine-tunes BART but directly on
linearized graphs, we achieve significant gains on
re-entrancy and SRL (:ARG-I arcs), proving our
model generate AMR graphs more faithful to their
topological structures.

7 Analysis

Transition System Table 3 and Table 4 com-
pare different transition systems used by recent



Transition System
Features Model Results on AMR 2.0 Model Results on AMR 3.0

#Base
Actions

Distant
Edges

Special
Subgraph

APT∗

(Zhou et al., 2021)
Our Model
(sep-voc)

APT∗

(Zhou et al., 2021)
Our Model
(sep-voc)

Astudillo et al. (2020) 12 SWAP merge - - - -
Zhou et al. (2021) 10 pointer merge 81.5 ±0.1 83.4 ±0.1 79.8 ±0.1 81.6 ±0.0

Ours 6 pointer no 81.6 ±0.1 84.0 ±0.1 79.6 ±0.0 82.3 ±0.1

Table 3: Transition system comparison, including their effects on different parsing models. ∗ we adopt the cited
model without graph structure embedding to run on our proposed oracle.

Transition System Avg. #actions Oracle SMATCH

Astudillo et al. (2020) 76.2 98.0
Zhou et al. (2021) 41.6 98.9

Ours 45.6 99.9

Table 4: Average action sequence length and oracle
coverage on AMR 2.0 training data from different tran-
sition systems. Average source sentence length is 18.9.

transition-based AMR parsers with strong perfor-
mances. Our proposed system has the smallest
set of base actions, utilizes the action-side pointer
mechanism for flexible edge creation as in Zhou
et al. (2021), but does not rely on special treat-
ment of certain subgraphs such as named entities
and dates. This results in slightly longer action
sequences compared to Zhou et al. (2021), but with
almost 100% coverage7 (Table 4). Our transition
system and oracle can always find action sequences
with full recovery of the original AMR graph, re-
gardless of graph topology and alignments.

To assess whether our proposed transition sys-
tem helps integration with pre-trained BART, we
train both the APT model from Zhou et al. (2021)
and our sep-voc model on the transition system of
Zhou et al. (2021) and the one introduced in this
work (Table 3 last 4 columns). The APT model,
based on fixed RoBERTa features, does not bene-
fit from the proposed transition system. However,
our proposed model gains 0.6 on AMR 2.0 and 0.7
on AMR 3.0. This confirms the hypothesis that
the proposed transitions are better able to exploit
BART’s powerful language generation ability.

Structural Alignment Modeling In Table 5, we
evaluate the effects of our structural modeling
of parser states within BART during fine-tuning.
Action-source alignments are natural byproduct of
the parser state, providing structural information of

7We can recover 100% of AMR 2.0 training graphs ex-
cluding 4 with notation errors. Imperfect SMATCH is due to
ambiguities of our parser in recovering Penman notation.

Model
Variation

SMATCH (%)
sep-voc share-voc

Ours (hard attention) 84.0 ±0.1 84.2 ±0.1

No align. modeling 83.5 ±0.0 83.4 ±0.2

Align. soft supervision 82.9 ±0.0 83.0 ±0.0

Align. add src emb. 83.9 ±0.0 84.1 ±0.0

No COPY action 83.1 ±0.1 84.1 ±0.0

Table 5: Ablation study of structure modeling with tran-
sition alignments. Results are on AMR 2.0 data.

where and how to generate the next graph compo-
nent. Our default use of hard attention to encode
such alignments works the best. We explore two
other strategies for modeling alignments. One is to
supervise cross-attention distributions for the same
heads with inferred alignments during training, in-
spired by Strubell et al. (2018). The other is to
directly add the aligned source contextual embed-
dings from the encoder top layer to the decoder
input at every generation step. The former hurts
the model performance, indicating the model is un-
able to learn the underlying transition logic to infer
correct alignments, while the latter does equally
well as our default model. These results justify the
modeling of structural constraints, even when fine-
tuning strong pre-trained models such as BART.

We also ablate the use of COPY action in our
transition system. The sep-voc model suffers but
the share-voc model is not affected. Without the
COPY action, the share-voc model would rely more
on BART’s pre-trained subword embeddings to
split node concepts more frequently, whereas the
sep-vocab model would need to learn to generate
more rare concepts from scratch. This indicates
that BART’s strong generation power is fully used
to tackle concept sparsity problems when we allow
to use its subwords.8

8In fact, when we vary the minimum frequency for a node
string to be added to the shared vocabulary, we only observe
±0.2 score variations. The model works equally well even



#
Model Initialization SMATCH (%)

src emb encoder decoder tgt emb Base Large

1 71.2 72.7
2 3 3 71.7 72.8
3 3 3 3 81.4 82.8
4 3 3 3 69.2 9.5∗

5 3 71.2 72.8
6 3 3 80.9 82.5
7 3 3 3 82.2 83.9
8 3 3 3 3 82.7 84.1

9 freeze BART src emb 82.6 84.0
10 freeze BART src emb + encoder 80.9 81.8

Table 6: Effects of pre-trained BART parameters. Re-
sults are with our sep-voc model on AMR 2.0 data. ∗

failed to converge with a range of hyper-parameters.

Pre-trained Parameters We study the contribu-
tion of different pre-trained BART components in
Table 6. With our sep-voc model, we decompose
the whole seq-to-seq Transformer into four com-
ponents for BART initialization, i.e. the source
embedding (mapped with BART shared embed-
ding), encoder, decoder, and the separate target
embedding (initialized with the average subword
embeddings from BART shared embedding). We
run both the BART base model and the BART large
model with different combinations of parameter ini-
tialization, on the top part of Table 6. We can see
that a randomly initialized model of the same size
(#1) performs badly. There is an accumulative ef-
fect of BART initialization in helping the model
performance, except that BART decoder can not
work alone well without its encoder (#4). The en-
coder gives the largest performance gains (#3 vs.
#2, #6 vs. #5) of about 10 points. Adding the de-
coder further gives around 1.4 points on top (#7 vs.
#6), justifying its importance as well.

We also experiment with freezing BART param-
eters during training in the bottom part of Table 6.
Our results of freezing the BART encoder are on
similar levels of previous best RoBERTa feature
based models, which is behind the full fine-tuning.

8 Related Work

Predicting linearized graph sequences for syntactic
and semantic parsing with seq-to-seq models was
adpoted in Vinyals et al. (2015); Van Noord and
Bos (2017); Ge et al. (2019); Rongali et al. (2020).
Its simplicity is favored to work directly with pre-
trained Transformers to improve performance. Xu

when all node names are split and generated by BART (see
Appendix D).

et al. (2020) proposed custom pre-training tasks for
AMR parsing as previously used encoder-only pre-
trained models such as BERT were not effective for
fine-tuning (Zhu et al., 2020), whereas Bevilacqua
et al. (2021) found the pre-trained encoder-decoder
model BART is very effective. The importance of
strongly pre-trained decoders is justified as BART
gains popularity in various semantic generation
tasks (Chen et al., 2020; Shi et al., 2020). Our
work aims at capitalizing on the outstanding per-
formance shown by BART, while providing a more
structured approach that guarantees well-formed
graphs and yields other desirable sub-products such
as alignments. We show that indeed this is possi-
ble and attain strong parsing results overall. Our
detailed analysis also shows that contrary to Xu
et al. (2020) vocabulary sharing is not necessary
for good performance and pre-trained BART de-
coder is quite dependent on its encoder.

Encoding of the parser state into neural parsers
has been undertaken in various works, including
seq-to-seq RNN models (Liu and Zhang, 2017;
Zhang et al., 2017; Buys and Blunsom, 2017),
encoder-only Transformers (Ahmad et al., 2019),
and seq-to-seq Transformers (Astudillo et al., 2020;
Zhou et al., 2021). Here we explore the application
of these approaches to pre-trained seq-to-seq Trans-
formers. Borrowing ideas from Zhou et al. (2021),
we overlay a pointer network within BART to be
fine-tuned together with the model, and encode
alignment states into the pre-trained BART. How-
ever, we rely on a minimal set of actions targeted to
utilize BART’s generation power and reduce other
complexities such as graph encoding. We are the
first to explore transition-based parsing applied on
fine-tuning strongly pre-trained models, and we
demonstrate that parser state encoding is still im-
portant for performance, even when implemented
inside of a pre-trained decoder such as BART.

9 Conclusion

We explore the integration of pre-trained sequence-
to-sequence language models and transition-based
approaches for AMR parsing, with the purpose of
retaining the high performance of the former and
structural advantages of the latter. We show that
both approaches are complementary, establishing
the new state of the art for AMR 2.0. Our results
indicate that it is possible to effectively re-purpose
a generic pre-trained model to a structure-aware
one achieving strong performance.
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A Dataset Statistics

We list the dataset sizes of AMR benchmarks in
Table 7. The sizes increase with the release version
number. AMR 2.0 is the most used by far. AMR
2.0 shares the same set of sentences for develop-
ment and test data with AMR 1.0, but with revised
annotations and wikification links. AMR 3.0 is
released most recently, which is under-explored.

Our silver data originate from two sources.
First, we use ∼20K example sentences (∼386K
tokens) from the propbank frames included in
the AMR 3.0 distribution. Second, we use
randomly selected ∼27K sentences (∼620K to-
kens) from SQuAD 2.0 context sentences avail-
able from https://rajpurkar.github.
io/SQuAD-explorer/.

Data Split AMR 1.0 AMR 2.0 AMR 3.0

Training 10,312 36,521 55,635
Development 1,368 1,368 1,722

Test 1.371 1.371 1,898

Table 7: Number of sentence-AMR instances in the
AMR benchmark datasets.

B Details of Model Structures and
Number of Parameters

In Table 8, we list the detailed model configuration
and number of parameters of the official pre-trained
BART models. Our fine-tuned BART is with dif-
ferent action vocabulary strategies which builds
additional embedding vectors for certain action
symbols. The numbers vary from training dataset.
We list the detailed number of parameters of our
fine-tuned model in Table 9. The fine-tuned model
only increases about 3%-8% more parameters for
sep-voc model and 0.4%-1% more parameters for
share-voc model.

C Implementation Details

We use the Adam optimizer with β1 = 0.9 and
β2 = 0.98. Batch size is set to 2048 maximum
number of tokens, and gradient is accumulated
over 4 steps. The the learning rate schedule is
the same as Vaswani et al. (2017), where we use
the maximum learning rate of 1e−4 with 4000
warm-up steps. Dropout of rate 0.2 and label
smoothing of rate 0.01 are used. These hyper-
parameters are fixed and not tuned for different
models and datasets, as we found results are not

Configuration BART Base BART Large

Encoder layers 6 12
Heads per layer 12 16

Hidden size 768 1024
FFN size 3072 4096

Size of vocab 51201∗ 50265

Size of emb. matrix 39,322,368 51,471,360
#parameters trained 140,139,266 406,291,458

Table 8: Original model configurations of
pre-trained BART from FAIRSEQ (https:
//github.com/pytorch/fairseq/tree/
v0.10.2/examples/bart). The embeddings
for source, decoder input and output are all shared
and thus the same (not counted as extra in training
parameters). ∗vocabulary for the base model is larger
due to additional paddings at the end, but effective
vocabulary symbols are the same as the large model.

Model Param. AMR 1.0 AMR 2.0 AMR 3.0

sep-voc
Src vocab size 50265 50265 50265
Tgt vocab size 6976 12752 16180

#param. trained 420,578,304 432,407,552 439,436,288

share-voc
shared vocab size 51921 53487 54388
#param. trained 407,987,200 409,590,784 410,517,504

Table 9: Model parameters of our modified BART
(large model). The sizes differ based on the target side
vocabulary, which is dependent on different training
data. Addition of silver training data adds only a frac-
tion of the parameters to the benchmark datasets.

sensitive within small ranges. Without silver data,
we train sep-voc models for 100 (AMR 1.0 & 2.0)
or 120 (AMR 3.0) epochs and share-voc models
for 40 epochs as the latter is found to converge
faster. The best 5 (AMR 1.0 & 2.0) or 10 (AMR
3.0) checkpoints among the last 40/30 epochs are
selected based on development set SMATCH from
greedy decoding and averaged over the model pa-
rameters as our final model. With the 50k silver
data, we train both sep-voc and share-voc models
for 20 epochs and select the best 10 checkpoints for
model parameter averaging. We use a default beam
size of 10 for decoding for our final parsing scores.
Our models are implemented with the FAIRSEQ

toolkit (Ott et al., 2019), trained and tested on a
single Nvidia Tesla V100 GPU with 32GB mem-
ory. We use fp16 mixed precision training when-
ever possible, with which training a large model
on AMR 2.0 takes about 10 hours for sep-vocab
models and 7 hours for share-vocab models, and
the time varies proportionally with data size for
other datasets and with silver data.

https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://github.com/pytorch/fairseq/tree/v0.10.2/examples/bart
https://github.com/pytorch/fairseq/tree/v0.10.2/examples/bart
https://github.com/pytorch/fairseq/tree/v0.10.2/examples/bart


Min Node Freq. 1 5 10 100 ∞

Number of Nodes 12,475 4,310 2,827 476 0
SMATCH (%) 84.0 84.2 84.0 84.0 84.1

Table 10: Effect of special AMR node names added
to the BART vocabulary in share-voc model on AMR
2.0 dataset. Remaining AMR concepts are split and
generated with BART sub-tokens and sense numbers.

D More Analysis on Share-voc

In Table 10, we run share-voc models with differ-
ent sized shared vocabularies by controlling the
minimum frequency of AMR concepts added to
the vocabulary. The model can work equally well
even when no such special concepts are added to
the vocabulary (minimum node frequency is∞),
where all the node names are split and generated
with BART subword tokens. This indicates that
BART’s strong generation power is properly used
to tackle concept sparsity problems when we allow
to use its subwords.


