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Abstract

In industrial control settings, practitioners need not only accurate off-policy evaluation (OPE)
but also transparent, target-unit-based uncertainty estimates. We introduce VALOR (Validation
via Linear Offline Residuals), a lightweight protocol that fits linear surrogate models to pro-
duction data and uses Mahalanobis-based residual sampling to generate confidence intervals in
physical key performance indicator (KPI) units. We apply VALOR to different set-point rec-
ommendations made by RL agents trained on a large chlor-alkali plant dataset, and discuss how
it enables engineers and plant operators to compare policies with clear, bias-corrected return
estimates, facilitating informed, risk-aware decision making, helping bridge the gap between
RL research and industrial adoption.

1 Introduction

Chemical manufacturing is the backbone of modern industry, converting bulk feedstocks into the polymers,
solvents, fertilizers, and specialized reagents that enable everything from food production to electronics
fabrication. Because many of these transformations rely on large-scale electro- or thermochemical steps,
the sector is simultaneously a cornerstone of the global economy and one of its most energy-intensive seg-
ments. Chlor-alkali electrolysis, defined as the membrane-cell production of chlorine, caustic soda, and
hydrogen, underpins ∼ 2% of world chemical sales, yet it is notoriously electricity-hungry. Each tonne
of chlorine demands 2.2 − 2.6 MWh of power, driving a total load of ∼ 150 TWh/yr for the aggregate of
plants globally. To place this in perspective, industry consumes about 22 PWh of electricity annually, of
which 41.9% (≈ 9.2 PWh) is used by manufacturing and heavy processing (International Energy Agency,
2022); chlor-alkali alone therefore accounts for roughly 1.6% of all industrial manufacturing electricity.
Even marginal efficiency gains—fractions of a kilowatt-hour per tonne, if adopted industry-wide, translate
into multi-million-dollar savings and sizeable CO2 abatements (Eurochlor, 2023).

Classical control architectures rely on nested PID loops and heuristic set-point tables tuned to nominal
operating conditions. These strategies degrade when chemical composition drift, membrane ageing, and
volatile power tariffs shift the true optimum away from its calibrated set-point. Reinforcement learning
(RL) (Sutton et al., 1998) promises adaptive policies, but three deployment blockers persist in safety-critical
plants:
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(i) Transition modeling: training on existing data logs inhibits exploration and requires offline methods
to estimate transition probabilities.

(ii) Policy opacity: black-box neural policies erode the confidence of engineers who must audit every
deviation from long-established practice.

(iii) Contextual risk: managers need statistically relevant error bars before accepting any setpoint recom-
mendation likely to affect hardware component life or product yield.

While each of these challenges is fundamental in real-world RL applications, we specifically address the sec-
ond and third, as they pertain to policy trustworthiness rather than performance itself. For a high-stakes use
case such as chlor-alkali, establishing a common language for model validation is paramount to widespread
adoption. Off-policy evaluation (OPE) should therefore be, where possible, grounded in transparent and in-
terpretable statistical methods, allow various domain experts to audit, and ultimately trust, any AI-generated
operation policy.

Contributions. This paper introduces VALOR (Validation via Linear Off-policy Residuals), an OPE pro-
tocol for validating control recommendations in industrial systems such as chlor-alkali electrolysis, where
relationships between control variables and performance objectives can be represented via linear models or
linear composites. The method combines interpretable linear surrogates with empirical residual analysis and
Monte Carlo sampling to estimate uncertainty-adjusted key performance indicator (KPI) values resulting
from a candidate policy. Thus, our contributions are:

(i) A novel validation protocol, VALOR, that produces statistically grounded, bias-corrected confidence
intervals for evaluating RL-derived control actions;

(ii) Insights gained from testing VALOR on data from a real chlor-alkali plant data historian;

(iii) A practical argument for favoring transparent, low-complexity uncertainty quantification frameworks
in industrial deployments, where auditability and safety remain paramount.

We apply our protocol to a behaviour clone (BC) and a twin-delayed deep deterministic policy gradient agent
with BC regularizer (TD3+BC) trained on a full-scale chlor-alkali plant data historian, demonstrating how
VALOR enables robust, engineer-auditable decision support. As a caveat, for anonymity, this work provides
very limited detail on the specific optimization problem and solution methods, instead focusing analysis on
our proposed evaluation protocol.

2 Related Work

2.1 Off-Policy Evaluation

Off-policy evaluation (OPE) seeks to estimate the value of a target policy using a fixed batch of logged data.
Three strands dominate the literature:

(i) Importance-Sampling (IS) methods provide unbiased estimates but exhibit exponential variance in
horizon length (Precup et al., 2000). Doubly-robust and weighted estimators (Jiang & Li, 2016; Fara-
jtabar et al., 2018; Thomas & Brunskill, 2016) reduce variance if accurate models or Q-functions are
available.
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(ii) Model-based OPE fits an approximate dynamics model to generate synthetic rollouts (Kidambi
et al., 2020). Bias arises from model mis-specification, prompting pessimistic or ensemble vari-
ants (Ghasemipour et al., 2022).

(iii) Value-function methods such as Fitted Q Evaluation (FQE) (Le et al., 2019) regress Bellman targets to
learn Qπ directly (Uehara et al., 2020). They are data-efficient and stable, but inherit the opacity of
deep function approximators and inherently don’t provide uncertainty measures.

Benchmark studies (Dann et al., 2014; Fu et al., 2021) show that no single family dominates across tasks:
variance control, extrapolation risk, and ease of hyper-parameter tuning remain open challenges.

2.2 Uncertainty Quantification in OPE

Reliable confidence intervals are essential for deploying policies in safety-critical settings. Common tech-
niques include resampling methods such as bootstrap or jackknife on collected trajectories (McIntosh, 2016),
which suffer from shrinkage over long horizons; Bayesian value-function approaches (e.g., Bayesian DQN
or Bayesian FQI) (Azizzadenesheli et al., 2018), which directly estimate posterior distributions but incur
high computational cost; and conformal OPE (Kim et al., 2025), which converts any point-estimate into
a finite-sample prediction set but remains rare in continuous-control applications. However, most of these
methods express uncertainty in abstract reward units, complicating interpretation by domain experts.

2.3 Industrial Control and Adoption Barriers

Surveys of RL in process industries (Hoi et al., 2021; Nian et al., 2020) attribute slow uptake to three factors:
model opacity, lack of hard safety guarantees, and mismatch between RL metrics and operational KPIs.
Successful deployments typically rely on either grey-box models augmented with first-principles constraints,
or on interpretable surrogates embedded in Model Predictive Control (MPC) loops (Peitz & Dellnitz, 2018).
However, a principled framework for validating RL recommendations from a transparencly angle remains
under-explored.

2.4 Positioning of VALOR

Our work bridges the gap between academic OPE and industrial requirements by:

(i) replacing high-capacity Q-networks with highly data-efficient ordinary-least-squares surrogates that
map control vectors directly to KPI values, retaining transparency;

(ii) introducing a bias-corrected residual injection scheme that yields Monte-Carlo confidence intervals
in physical KPI units (such as energy use), facilitating engineer review;

(iii) demonstrating compatibility with sequential roll-outs, thereby complementing—rather than
replacing—value-based OPE.

To our knowledge, no prior work combines linear surrogates, Mahalanobis-based residual conditioning,
and trajectory-level Monte-Carlo propagation into a unified validation protocol, making VALOR a novel
contribution to both OPE methodology and industrial RL practice.

3 Background

Chlor-Alkali Electrolysis: A Broad Overview. A modern chlor-alkali plant is, in essence, a large electro-
chemical factory that turns a continuous stream of purified brine into three commodity products—chlorine
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gas, caustic soda (sodium hydroxide), and hydrogen—using massive membrane-cell electrolyzers powered
by grid electricity. The site is organized around four unit blocks: (i) brine preparation, where raw salt so-
lution is filtered, softened, and chemically conditioned; (ii) the cell room, a hall of electrolyzers made up of
hundreds of membrane cells operating at tens of kilo-amps each; (iii) product handling, where wet chlorine
is cooled, dried, compressed, and optionally liquefied, while caustic soda is concentrated by multi-effect
evaporation; and (iv) utilities and balance-of-plant—cooling water, steam, power-distribution, and process-
control systems. Energy costs dominate operating expenditures, so even small efficiency gains in cell-room
set-points or utility scheduling translate into substantial economic and environmental benefits. Continuous
automation is standard, but most facilities still rely on nested PID loops and fixed rule sheets that must be
retuned as membranes age, brine purity drifts, or electricity tariffs fluctuate.

Behaviour Cloning (BC). Behaviour cloning is the simplest offline-RL baseline: it treats policy learning
as a supervised-learning task, directly regressing the agent’s policy onto the logged behaviour data. Given a
batch D = {(si, ai)}Ni=1 collected under some unknown policy µ, BC fits the parameters θ of a policy πθ by
maximizing the log-likelihood

max
θ

1

N

N∑
i=1

log πθ(ai | si) (cross-entropy for discrete actions, MSE for continuous).

The resulting policy exactly mimics historical operator actions and is therefore safe with respect to distri-
butional shift, but it cannot exceed the performance of the log, nor does it provide value estimates. Conse-
quently, BC serves both as a conservative performance floor and as a source of trajectories whose returns
can be estimated by VALOR.

Twin-Delayed Deep Deterministic Policy Gradient with Behaviour-Cloning regularizer (TD3+BC).
TD3 (Fujimoto et al., 2018) is an off-policy actor-critic algorithm for continuous control that counters Q-
value over-estimation by maintaining twin critics and updating the actor less frequently ("twin-delayed").
TD3+BC (Fujimoto & Gu, 2021) adapts TD3 to the offline setting by augmenting the actor loss with a
behaviour-cloning term that keeps the learnt policy close to logged actions:

Lactor(θ) = (1− α)
[
−Qϕ(s, πθ(s))

]
+ α ∥πθ(s)− a∥2︸ ︷︷ ︸

BC penalty

, (s, a) ∼ D,

where Qϕ(s, ·) = mink=1,2 Qϕk
(s, ·) is the conservative twin-critic target and α ∈ [0, 1] trades performance

improvement against conservatism. For moderate choices α ≈ 0.05–0.2 the method typically outperforms
pure BC while remaining far more stable than unconstrained off-policy RL, so we treat TD3+BC as a state-
of-the-art agent for offline continuous-control in this work.

4 Methodology

In this section, we broadly outline our plant control problem on which we learn policies via two solution
methods: BC and TD3+BC. Following this, we outline VALOR, which we apply to the learned policies.

4.1 Problem Formulation

Let the plant historian record the full collection of time-stamped variables S =
{
s
(k)
t

∣∣ t = 1, . . . , T, k =

1, . . . , D
}
, where D is the total number of available channels and T the horizon length. The control problem
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uses only a subset of these channels whose relevance is established by a domain expert,

X =
{
x
(j)
t

∣∣ t = 1, . . . , T, j = 1, . . . , d
}
⊆ S (d≪ D).

Their retained trajectories gives X =
[
x(1), . . . ,x(d)

]
∈ RT×d, where x(j) =

(
x
(j)
1 , . . . , x

(j)
T

)⊤
. Here

x
(j)
t denotes the recorded value of the j-th selected variable at time t, and d is the number of variables

retained for control. Logged values of x(j)
t reflect the current behavioral policy implemented by operators

and determined by a plant’s standard operating procedures (SOP).

RL Objective. Let a scalar key-performance indicator (KPI) be defined as a function of the trajectory,

KPI(X) = F
(
x
(1)
1:T , . . . , x

(d)
1:T

)
,

for some plant-specific F : RT×d→ R. The control task is to choose inputs so as to find maxπ J(π) =
Eπ[ KPI(X) ] , where the expectation is over trajectories generated by a policy π. A natural KPI could be
power consumption under domain constraints.

MDP formalization. For training an RL agent, we model the plant as a Markov Decision Process
(S,A, P, r, γ) with state st = xt ∈ Rd, action at ∈ A (set-points), transition kernel P , instantaneous re-
ward r(st, at) and discount γ∈ (0, 1]. Then J(π) = Eπ

[∑T
t=1 γ

t−1r(st, at)
]

coincides with the KPI when
r is chosen appropriately.

Learning approach. Our BC baseline imitates the historical policy πhist (Torabi et al., 2018), while
TD3+BC seeks an off-policy πθ that maximizes J(π) (Fujimoto & Gu, 2021), using the same logged dataset.
Both methods therefore pursue the KPI-maximization objective defined above. Since RL agent performance
itself falls outside this work’s focus, we assume these have been trained adequately using default hyperpa-
rameters.

4.2 Linear Surrogate Fit

Let f be a linear mapping f : Rd → R modeling the target key performance indicator (KPI), taking the
functional form f = β⊤X + β0. By carefully selecting a (recent) window of control inputs X on which
to regress KPI, we obtain a simple model of the plant, representative of current operating conditions and
equipment wear.

4.3 Validation via Linear Offline Residuals (VaLOR)

Algorithm 1 turns a cheap surrogate model into a statistically-sound validator that decides, at each times-
tamp, whether a candidate set-point vector xrec (proposed by BC or TD3+BC) is expected to improve the
KPI relative to the logged baseline xbase while providing uncertainty estimates via Monte Carlo sampling of
residuals from surrogate predictions on control vectors falling within a ρ-Mahalanobis neighborhood of the
recommended control vector.

Algorithm Description. In detail, VALOR first computes KPI estimates ŷbase from behavioral control
vector xrec (found in plant historian), and ŷrec from a candidate policy’s recommended control vector xrec
using surrogate model f . Following this, it computes residual rbase from xbase and its corresponding KPI
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Algorithm 1 VALIDATION VIA LINEAR OFFLINE RESIDUALS

1: procedure VALOR(xbase,xrec, f, ρ,N )
2: ŷbase, ŷrec←f(xbase), f(xrec) ▷ Surrogate predictions
3: rbase← ŷbase − ytrue

base ▷ Baseline residual

4: BM←{xj : dM (xj ,xrec)≤ρ}; rrec←
1

|BM |
∑

j∈BM
(ŷrec,j − ytrue

rec,j) ▷ Mahalanobis ball

5: Draw ε ∼ Empirical{rrec,j}j∈BM
▷ Stochastic error

6: ∆y←(ŷrec−ŷbase) + (ytrue
base−ŷbase) + ε ▷ KPI delta

7: for each time step do
8: Bootstrap: repeat Steps 1–6 N times→ {∆y(n)}N1
9: CI← 95% CI of {∆y(n)} ▷ Construct 95% CI

10: if CI > 0 then accept xrec

value ytrue
base. This value will be used to capture the surrogate’s prediction error at the current operating point,

allowing VALOR to subtract that bias when computing the true KPI improvement.

Following this, we construct a Mahalanobis ball consisting of control vectors xj falling within a radius ρ of
the recommended control vector xrec, and from them compute a mean residual value rrec. While not strictly
necessary, storing rrec is convenient for quantifying the surrogate’s expected bias at the recommended point,
and can be used to evaluate whether the surrogate’s quality deteriorates out-of-distribution. However, in
practice, VALOR bootstraps an error estimate ε over N Monte Carlo draws to predict a KPI improvement
∆y and construct its corresponding 95% confidence interval CI. Finally, if CI entirely falls above 0 (or some
other decision criterion), indicating a KPI improvement, VALOR accepts the policy recommendation.

Bias-variance dial. The Mahalanobis-radius ρ is expected to govern the classical bias-variance trade-off:
a smaller ball uses few, very local residuals, while a large ball pools many potentially distant points.

This VALOR layer therefore acts as a lightweight, data-driven safety gate: it certifies each RL recommen-
dation with a transparent confidence interval before any new set-point is deployed.

5 Results and Discussion

Using merely a day of logged control data, we learn linear surrogates for our optimization target, with which
we apply VALOR to assess the performance of two different learning agents: a BC and a TD3 agent with BC
regularizer. Figure 1 reveals that regressing our KPI on control variables X obtains an almost-perfect fit, with
R2 just below 1.0 over a 7-day evaluation window. Given that our KPI measure itself is largely grounded in
linear expressions established in electro-chemical theory, this high goodness-of-fit is unsurprising. However,
equipment deterioration and other confounders may affect the magnitudes of β, therefore a linear regression
is nonetheless necessary to obtain a representation of the true current state of the plant. Having trained

R2 RMSE MAE

Linear Regression 0.9999 0.0012 0.0010

Table 1: Normalized KPI regression diagnostics on the evaluation window (N = 10081).
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models over historical data logs, we test them over the same evaluation timeframe, and visualize policy
recommendations corresponding to BC and TD3+BC agents in Figure 1.

Figure 1: Set-point recommendations for candidate policies for a single control vector (normalized).

5.1 OPE with VALOR

Interpretability & Auditability. Our linear-surrogate design exposes an explicit mapping K̂PI = f(X)
and a closed-form decomposition of bias and stochastic error. A plant engineer can therefore trace every
numerical contribution in Algorithm 1 to the final confidence interval.

(a) BC (b) TD3+BC

Figure 2: (a) CI width increases with ρ for the BC agent and (b) decreases for the TD3+BC agent.

CI-width and Mahalanobis Radius ρ. TD3+BC recommendations lie further from the logged data so a
small ρ produces very few local residuals and hence large sampling variance; as ρ grows, more neighbors
(even if somewhat distant) are included, reducing Monte-Carlo variance and narrowing the CI. Conversely,
BC actions remain close to the logged policy, so at small ρ it already draws from many similar residuals
(low variance); increasing ρ forces it to include more heterogeneous, farther-away residuals, which raises
sampling variance and widens the CI. Figures 2a and 2b report 95 % CI widths on set-point recommendations
from both agents using VALOR across 7 held-out production days.

Ease of Stakeholder Communication. For a power consumption task, a simple acceptance criterion could
be: "CI below zero implies expected savings". This aligns with existing energy-efficiency dashboards. In



Transparent Uncertainty Quantification for Offline RL in Chlor-Alkali Control

Figure 3: Comparison of estimated KPI improvements from BC and TD3+BC policies.

addition, this produces reward estimates that require no additional mapping to process KPIs, unlike value-
based OPE methods like Fitted-Q Evaluation. Examples of estimated KPI improvements for different values
of ρ are found in Figure 3.

Sequential Validity. Although VALOR is inherently one-step, repeating the procedure over an evaluation
horizon and summing ∆KPIt yields a trajectory-level estimate, ∆KPI1:T =

∑T
t=1 ∆KPIt. This approxima-

tion is valid when (i) dynamics are slow or weakly coupled and (ii) control vectors stay within the surrogate’s
training envelope, which tends to be the case when action-level constraints are imposed.

5.2 Limitations and Future Work

While we find our method to be promising for our use case, VALOR has limitations which should be high-
lighted. Firstly, while the instanteneous reward estimates are beneficial for interpretability, compounding
errors may arise in highly coupled processes. Thus, incorporating a lightweight grey-box transition surro-
gate is a promising extension. Secondly, current Monte-Carlo draws treat residuals as i.i.d. across timesteps.
A block-bootstrap variant could capture temporal correlation. Thirdly, while linearity contributes to trans-
parency, some operating regions may require second-order terms, notably during operating mode transi-
tions. A piecewise-linear or sparse-polynomial surrogate could be be explored with minimal sacrifice in
auditability. Finally, A/B testing and collecting qualitative feedback from plant engineers on interpretability
of generated risk-assessments is vital for adoption.

6 Conclusion

VALOR contributes to the industrial RL literature by offering a transparent workflow for estimating and
auditing policy returns in engineering-relevant units. By combining linear surrogates with a Monte Carlo
residual-sampling correction, VALOR produces bias-adjusted confidence intervals that plant engineers and
operators can interpret directly in terms of operational KPIs. In our chlor-alkali electrolysis case study with
BC and TD3+BC agents, we show that VALOR’s clearly communicated uncertainty bounds allow domain
experts to compare candidate policies with confidence. Beyond chlor-alkali, this simplicity addresses key
barriers to RL deployment in energy-intensive processes, taking steps towards transparent, interpretable and
auditable OPE.
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