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ABSTRACT

Recent literature has witnessed a rising interest in learning Nash equilibrium
with a guarantee of last-iterate convergence. In this paper, we introduce a novel
approach called Regularized Follow-the-Regularized-Leader (RegFTRL) for the
purpose of learning equilibria in two-player zero-sum games. RegFTRL is an
efficient variant of FTRL, enriched with an adaptive regularization that encom-
passes the well-known entropy regularization as a special case. In the context of
normal-form games (NFGs), our proposed RegFTRL algorithm exhibits the desir-
able property of last-iterate linear convergence towards an approximated equilib-
rium. Furthermore, it converges to an exact Nash equilibrium through adaptive ad-
justments of the regularization. In extensive-form games (EFGs), we demonstrate
that the entropy-regularized Multiplicative Weights Update (MWU), a specific in-
stance of RegFTRL, can achieve a last-iterate linear convergence rate towards the
quantal response equilibrium, all without the need for either an optimistic update
or reliance on uniqueness assumptions. These results show that regularization is
enough for last-iterate convergence. Additionally, we propose FollowMu, a prac-
tical implementation of RegFTRL with a neural network as the function approxi-
mator, for model-free learning in sequential non-stationary environments. Finally,
empirical results substantiate the theoretical properties of RegFTRL, and demon-
strate that FollowMu achieves favorable performance in EFGs.

1 INTRODUCTION

Online learning has a rich history that is inextricably intertwined with the advancement of game
theory, convex optimization, and machine learning. One of the earliest manifestations of online
learning can be attributed to Brown (1949)’s proposal of fictitious play as a method for solving two-
player zero-sum games. Ensuing result (Robinson, 1951) has revealed that iteratively computing a
best response to each other’s history of play in (zero-sum) matrix games leads to convergence to
the set of Nash equilibria. This kind of learning paradigm can be linked to the notion of no-regret
learning (Cesa-Bianchi & Lugosi, 2006), which shares a common historical thread with game theory
that dates back to Blackwell’s approachability theorem (Blackwell, 1956; Abernethy et al., 2011).

It is folklore that the time-average policies of no-regret algorithms in self-play converge to a Nash
equilibrium in two-player zero-sum games (called average-iterate convergence) (Cesa-Bianchi &
Lugosi, 2006). A plethora of online learning algorithms, including the celebrated Online Mirror
Descent (OMD) (Warmuth et al., 1997) and Follow-the-Regularized-Leader (FTRL) (Abernethy
et al., 2008), ensure that the worst case regret is upper bounded sublinearly with learning itera-
tions (Shalev-Shwartz, 2012), thus allowing for a global on-average convergence to the Nash equi-
librium over time. A myriad of studies have significantly expanded the applicability of the no-regret
theorem to a broader class of settings, covering extensive-form games (EFGs) (Zinkevich et al.,
2007; Hoda et al., 2010), Markov games (MGs) (Bai et al., 2020; Tian et al., 2021), differential
games (i.e. smooth games) (Vlatakis-Gkaragkounis et al., 2019), and auctions (Deng et al., 2021).

However, the average-iterate convergence characteristic poses significant challenges in game theory
and its practical applications, especially when representing policies using deep networks (Heinrich &
Silver, 2016). In most game settings, averaging neural network weights does not directly correspond
to an average of the policies represented by those networks (Heinrich et al., 2015; Daskalakis et al.,
2018). To mimic agents’ average behaviors, it is often required to maintain an additional reservoir
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buffer, typically hundreds or even thousands of times the size of the game, to store past transition
data (Heinrich & Silver, 2016) or historical network parameters (Lanctot et al., 2017), leading to
extremely high memory demands. Moreover, the average policy cannot be represented precisely
due to the inherent neural network approximation error.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

(a)  r(x, y) = xy

(b)  r(x, y) = 1
2 (x2 y2)

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Figure 1: Learning dynamics (black
arrows) and second-order dynamics
(blue arrows) in the (A) Hamilto-
nian game, and (B) potential game.

Accordingly, it is imperative to develop no-regret algorithms
that converge to (approximate) Nash equilibrium without av-
eraging (called last-iterate convergence). However, previous
researches have demonstrated that the standard no-regret al-
gorithms can lead to cyclic behaviors (Zinkevich et al., 2005;
Omidshafiei et al., 2019) or even chaotic behaviors (Sato
et al., 2002) of the real-time policy. In recent literature, meth-
ods based on optimistic gradients (Daskalakis & Panageas,
2019; Wei et al., 2021), predictive updates (Yadav et al.,
2018), and opponent learning awareness (Foerster et al.,
2018) shed lights on how to break the cyclic behaviors by
predicting opponents’ next moves. Algorithmically, these
methods can be considered variations of the optimistic/extra-
gradient methods, where the gradient dynamics are modified
through the introduction of approximate second-order infor-
mation (Schäfer & Anandkumar, 2019). However, in differ-
ent types of games, the second-order information may have
different effects on the learning dynamics. The top plots in
Figure 1 depict the rotations of gradient dynamics around the equilibrium in a Hamiltonian game 1

where the second-order dynamics converge. This highlights the effectiveness of introducing (ap-
proximate) second-order information in jumping out of cycles. However, in some potential games
(as depicted in the bottom plots), the use of second-order information can impede convergence,
particularly when the real-time policy exhibits chaotic behavior.

The contributions of this paper are mainly three-fold: (1) instead of using the approximate second-
order information, we introduce an extra regularization, independent of the game types, into the
underlying game to enhance its potential component and thus establish general-case last-iterate con-
vergence; (2) by incorporating the regularization, we present a variant of FTRL called Regularized
FTRL (RegFTRL) that is able to converge at an exponentially fast rate in both NFGs and EFGs
without either the optimistic update or the uniqueness assumptions, and investigate two approaches,
annealing and adaption approaches, to build algorithms that converge to an exact Nash equilibrium;
and (3) we propose a model-free reinforcement learning algorithm, FollowMu, as a practical imple-
mentation of RegFTRL, and validate its performance in Kuhn & Leduc and Phantom Tic-Tac-Toe.

1.1 RELATED WORK

Research in the realm of last-iterate convergence can be roughly divided into two lines: the opti-
mistic update paradigm and the regularization technique. In the optimistic update approach, previous
studies (Rakhlin & Sridharan, 2013; Daskalakis et al., 2018; Liang & Stokes, 2019; Mokhtari et al.,
2020) have investigated the last-iterate convergence in simple unconstrained cases, which are not
directly applicable to the NFG/EFG setting. In cases where a unique Nash equilibrium is assumed,
Daskalakis & Panageas (2019) and Wei et al. (2021) have extended the scope of research by pro-
viding last-iterate convergence guarantees for Optimistic Multiplicative Weights Update (OMWU)
(corresponds to Optimistic FTRL with an entropy regularizer) in NFGs, while Wei et al. (2021)
further prove the convergence of Optimistic Gradient Descent/Ascent (OGDA) (corresponds to op-
timistic OMD with a L2 regularizer) without the uniqueness assumption. In the context of EFGs,
the pioneering work by Farina et al. (2019) empirically demonstrates the last-iterate convergence
of OMWU, while Lee et al. (2021) subsequently establish theoretical proofs with the uniqueness
assumption. Recently, Gorbunov et al. (2022); Cai et al. (2022) have extended the convergence
properties of OGDA to monotone games, which include many common classes of games, such as
zero-sum polymatrix games and concave-convex games. However, the optimistic update is not
flawless. From a theoretical standpoint, OMWU still lacks an explicit last-iterate convergence rate,

1See Appendix C for discussions on Hamiltonian and potential games. In brief, an NFG is potential if there
is a single potential function g such that Vπ1,π2 − Vπ̂1,π2 = −g(π1, π2) + g(π̂1, π2) for all π1, π̂1, π2.
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even in NFGs, without the reliance on uniqueness assumption (Wei et al., 2021; Lee et al., 2021).
Additionally, the analysis of OMWU in EFGs is built over the sequence-form strategy (Wei et al.,
2021; Lee et al., 2021), which exhibits limitations in scaling to large games. In practical terms,
the implementation of the optimistic update approach often necessitates the computation of multi-
ple strategies at each iteration. Furthermore, OGDA has high per-iteration complexity due to the
costly projection operations at each iteration, which adds to the computational burden. In contrast,
our proposed approach, RegFTRL, offers distinct advantages. It obviates the requirement for the
uniqueness condition and emphasizes the behavior-form strategy, making it more compatible with
reinforcement learning and readily adaptable to large-scale games.

Within the realm of learning dynamics, regularization technique has emerged as pivotal tools for
accelerating convergence (Pérolat et al., 2021; Abe et al., 2022; Sokota et al., 2023; Abe et al.,
2023). Pérolat et al. (2021) conducted a comprehensive analysis of the impact of entropy regu-
larization on continuous-time dynamics, and propose a reward transformation method to achieve
linear convergence in EFGs using counterfactual values. However, it is imperative to note that their
theoretical findings pertaining to continuous-time dynamics do not inherently extend to the desired
discrete-time results. Moreover, the use of counterfactual values presents scalability challenges
in large-scale settings (McAleer et al., 2023). Furthermore, their reward transformation technique
can lead to estimation issues due to the arbitrarily cumulative sum. Wang et al. (2022) shows that
the GDA algorithm, with a decreasing learning rate, achieves last-iterate convergence in strongly
monotone games. In the context of monotone games, the establishment of strong monotonicity
is achievable through the incorporation of a strongly convex regularizer. Abe et al. (2022) pro-
posed Mutation-Driven MWU (M2WU), a variant of MWU for solving NFGs. M2WU incorpo-
rates an additional mutation term and, in essence, constitutes an instantiation of RegFTRL with
moment projection serving as the regularization. Similar to our work, Magnetic Mirror Descent
(MMD) (Sokota et al., 2023) and FTRL with Slingshot Perturbation (FTRL-SP) (Abe et al., 2023)
investigate the influences of general-case regularization on last-iterate convergence, and both pro-
vide the linear convergence rate to the regularized equilibrium, albeit FTRL-SP with a more strict
restriction on the learning rate. However, MMD exclusively achieves convergence towards an ap-
proximated equilibrium in NFGs, while the concurrent work FTRL-SP provides a convergence rate
to an exact Nash equilibrium with the L2 regularizer in monotone games. Furthermore, their analy-
ses could not encompass the behavior-form EFGs considered in our paper. Due to the uniqueness
of the quantal response equilibrium (QRE), certain endeavors have attempted to combine optimistic
update with additional entropy-regularization to remove the uniqueness assumption associated with
OMWU (Cen et al., 2021; Liu et al., 2022), but these approaches still inherit limitations of the
optimistic update paradigm.

Compared with the aforementioned related works that either focus on matrix games (Abe et al.,
2022; Sokota et al., 2023), only consider a special regularization (Abe et al., 2022), or assume
continuous-time feedback (Pérolat et al., 2021), we go one step further and prove that RegFTRL
converges to an exact Nash equilibrium via general-case regularization in NFGs, and converges ex-
ponential fast to the QRE in behavior-form EFGs without the continuous-time feedback assumption.
Additionally, through empirical observations, we substantiate that RegFTRL equipped with alter-
native regularization, consistently exhibits last-iterate convergence in behavior-form EFGs. Col-
lectively, our findings underscore that regularization is enough for the last-iterate convergence in
zero-sum games.

2 PRELIMINARIES

2.1 EXTENSIVE-FORM GAMES

The representation of a two-player zero-sum EFG ⟨N ,S,A, I,P, {rh}Hh=1⟩ is based on a game tree
of depthH , modeling the sequential interactions involving each player i ∈ N = {1, 2} and a chance
player c. At each history s ∈ S at time h ∈ [H], corresponding to a node at level h in the finite
rooted game tree, the player function P(s) 7→ i ∈ N ∪ {c} determines a player or chance to play
an action a ∈ A(s). As a result, player 1 will receive a reward rh(s, a) ∈ [0, 1] (and player 2 will
receive a reward −rh(s, a)), and the history will transition to its successor history s′ = sa at time
h + 1. We denote s′ ⊏ s if s′ is led from s. Due to the imperfect-information, at each history s,
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only an information state I ∈ I can be observed, where histories s ∈ I are indistinguishable for
the current player. We use I(s) to denote the information state I corresponding to a history s.

A behavior-form strategy π(a|I) is defined on each information state: π(·|I) 7→ ∆A(I) (∆ is
a probability simplex, and ∆◦ means the interior of ∆). We further denote the restriction of
π over Ii ⊆ I by πi, and thus π = (πi, π−i). If all players follow π, the reach probabil-
ity of a history s can be computed by ρπ(s) =

∏
s′a⊏s π(a|I(s′)). Thus we have rh(I, a) =∑

s∈I,a ρ
π(s, a)rh(s, a)/

∑
s∈I ρ

π(s), where ρπ(s, a) = ρπ(s)π(a|I(s)). For player 1, the regular-

ized value function is defined as V h,τπ (I) = E
[∑H

h′=h[r
h′
(Ih′ , ah′)−δ(Ih′)·τ ·∇g(π(·|Ih′))]|Ih =

I
]
, and the regularized Q-function as Qh,τπ (I, a) = rh(I, a) + EI′=I(ha),h∈I [V h+1,τ

π (I ′)], where
δ(I) = 2 · 11=P(I) − 1, and g is a continuously differentiable regularization function. The
un-regularized value functions V hπ (I), Q

h
π(I, a) can be obtained by setting τ = 0. The value

functions of player 2 are the negative one of player 1. Given a policy π, we define Eτ (π) =

maxp[V
1,τ
pi,π−i(sinit)− V 1,τ

πi,p−i(sinit)], and policy π is said to be a regularized equilibrium (or Nash
equilibrium if τ = 0) if Eτ (π) = 0, or ϵ-regularized equilibrium if Eτ (π) ≤ ϵ.

2.2 NORMAL-FORM GAMES AND FOLLOW-THE-REGULARIZED-LEADER

NFGs are strict sub-class of EFGs, where only one stage exists and all the players act simultaneously.
each player i selects action ai ∈ A, and then player 1 receives a reward r(a1, a2) ∈ [0, 1] while
player 2 receives a reward −r(a1, a2). For a given policy π = (π1, π2) ∈

∏2
i=1 ∆A, the Q-

function for player 1 is defined as Qπ(a1) = Ea2∼π2 [r(a1, a2)], and the value function as Vπ =
Ea1∼π1 [Qπ(a

1)]. The value functions of player 2 are the negative values of player 1.

FTRL 2 is an intuitive algorithm: for player i, at each time step it maximizes the sum of the
past returns yit =

∫ t
0
(2 · 11=i − 1)Qπk

dk with a regularization ψ : ∆A → R, i.e., πit+1 =

argmaxp∈∆A
[η⟨p, yit⟩ − ψ(p)] where ⟨·, ·⟩ means inner product and η > 0 is the learning rate.

2.3 OTHER NOTATIONS

For a strictly convex and continuously differentiable function ψ, we denote the Bregman diver-
gence as Dψ(p, q) = ψ(p) − ψ(q) − ⟨∇ψ(q), p− q⟩, and the Kullback-Leibler divergence (i.e.,
Bregman divergence with ψ(p) =

∑
a p(a) ln p(a)) as DKL. Then, we say that ψ is λ-strongly

convex with respect to ∥·∥ if Dψ(p, q) ≥ λ
2 ∥p− q∥

2, and g is λ-strongly convex relative to ψ
if ⟨∇g(p)−∇g(q), p− q⟩ ≥ λ⟨∇ψ(p)−∇ψ(q), p− q⟩. Note that ψ and Dψ(·, q) is 1-strongly
convex relative to ψ.

3 STABILIZE THE LEARNING DYNAMICS VIA REGULARIZATION

This section utilizes the regularization to stabilize the learning dynamics of FTRL in general games,
and presents a comprehensive study of its last-iterate convergence in NFGs and EFGs. We defer all
the proofs of our theoretical results to Appendix A.

3.1 LAST-ITERATE CONVERGENCE IN NFGS

Since the learning dynamics of FTRL will converge in potential games (Héliou et al., 2017) but
cycle in Hamiltonian games (Mertikopoulos et al., 2018; Balduzzi et al., 2018), an intuitive idea to
stabilize the FTRL dynamics is to add an extra potential component to the underlying game, i.e., to
enhance the potential component of the original game. In this subsection, we present this potential
enhancement method in NFGs.

2See Appendix C for a more detailed presentation of FTRL.
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With an arbitrary potential function g, we consider the potential-enhancement optimization problem:

max
π1∈∆A

min
π2∈∆A

Vπ1,π2 − τg(π1, π2), (1)

where τ > 0 is a weight parameter to control the strength of the additional potential component,
and thus the original game can be obtained by setting τ = 0. We further consider a decentralized
potential function, i.e., g(π1, π2) = g1(π1) − g2(π2), in terms of ease-of-use. It can be found that
problem (1) is a generalization of entropy-regularized problem by setting gi(p) = ⟨p, ln p⟩. Inspired
by that, we develop RegFTRL by incorporating the additional potential function into FTRL:

πit = argmax
p∈∆A

[η⟨p, yit⟩ − ψ(p)], (2)

yit(a) =

∫ t

0

[
δiQπk

(a)− τ [∇gi(πik)]a
]
dk, δi = 2 · 11=i − 1,

where η > 0 is the learning rate, and the regularization function ψ : ∆A → R is strictly
convex and continuously differentiable on ∆A. Note that

∫ t
0

[
δiQπk

(a) − τ [∇gi(πik)]a
]
dk =∑t−1

k=0

[
δiQπk

(a) − τ [∇gi(πik)]a
]

under discrete-time settings, and FTRL can be obtained by
setting τ = 0. It can be found that the learning dynamics of RegFTRL in the original game
is equivalent with the FTRL dynamics in the potential-enhancement optimization problem (1).
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Figure 2: The vector fields of
RegFTRL with varying weights in
biased Rock-Paper-Scissors.

.5In RegFTRL, the extra potential term is expected to force
the dynamics to escape from cycles. Figure 2 shows this in-
sight visually, which describes RegFTRL dynamics in a sim-
ple Hamiltonian game of biased Rock-Paper-Scissors. Here
we take gi(πi) = DKL(µ

i, πi) (µ is an uniform strategy) as
an example. As can be seen in Figure 2 (a), the FTRL dynam-
ics cycle and fail to converge to the interior Nash equilibrium,
while the RegFTRL dynamics with only the potential term
(i.e., yit = −

∫ t
0
∇gi(πik)dk) directly converge to a stationary

point in Figure 2 (d), although this stationary point is indepen-
dent of the original game. However, with some small weight
parameters, RegFTRL flows towards a stationary point near
the Nash equilibrium as shown in Figure 2 (b) and (c).

We now analyze the theoretical properties of RegFTRL. Be-
fore that, we make some necessary assumptions.
Assumption 1 (Well Defined). Assumeψ is 1-strongly convex
with respect to ∥·∥ and πt ∈ B = B1 × B2 ⊆

∏2
i=1 ∆

◦
A, where {πt}t≥0 is generated by RegFTRL.

Assumption 2. For i ∈ {1, 2}, assume gi is continuously differentiable and λ-strongly convex
relative to ψ over ∆◦

A. This also implies that ∇gi is L-smooth over B, i.e., ∥∇gi(p)−∇gi(q)∥ ≤
L∥p− q∥ for ∀p, q ∈ B. Furthermore, we assume gi has an interior minimum point µi ∈ Bi, and
re-denote gi as giµ for the sake of clarity. We call this minimum point µ as reference strategy.
Assumption 3 (Regularized Equilibrium). Assume πµ ∈ B is the interior stationary point of
continuous-time RegFTRL dynamics with ψ(p) = ⟨p, ln p⟩ and gµ.

Assumption 1 is to ensure that πt generated by RegFTRL is well defined. This assumption is
also required in MMD (Sokota et al., 2023). Assumption 2 allows RegFTRL to get fast conver-
gence via leveraging the curvature of gµ, and then the potential enhancement method actually is
the regularization technique. And Assumption 3 is guaranteed when giµ(π) = DKL(µ

i, πi) or
giµ(π) = DKL(π

i, µi) (more details refer to Appendix A.1). Under these assumptions, we first
present the properties of regularized equilibrium, and then give the linear convergence guarantees of
RegFTRL without the uniqueness condition in both continuous-time and discrete-time settings.
Theorem 1. Under Assumption 1∼3, regularized equilibrium πµ ∈ B satisfies: (1) πµ is unique; (2)
πµ is an ϵ-Nash equilibrium, where ϵ = E(πµ) = τ

∑2
i=1

(
maxa[∇gi(πiµ)]a−⟨πiµ,∇gi(πiµ)⟩

)
≥ 0.

Theorem 2. Let Assumption 1∼3 hold. Then,
(continuous-time) πt generated by continuous-time version of RegFTRL dynamics satisfies:

Dψ(πµ, πt) ≤ Dψ(πµ, π0) exp(−ητλ · t).
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(discrete-time) πt generated by discrete-time version of RegFTRL dynamics satisfies:

Dψ(πµ, πt) ≤ Dψ(πµ, π0)(1 + ητλ)−t, and E(πt) ≤ E(πµ) + 2
√
Dψ(πµ, π0)(1 + ητλ)−t/2,

if ψ(p) = ⟨p, ln p⟩ and 0 < η ≤ τλ
L̃2

, where L̃ = max{τL, 1}.
Remark 1. Theorem 1 implies that πµ is a Nash equilibrium if E(πµ) = 0, which means πµ = µ.
Additionally, by combining Theorem 1 and Theorem 2, it can be also found that the weight parameter
τ introduces a trade-off between the speed of convergence and the bias in the Nash equilibrium.
These observations inspire us to develop the two approaches mentioned in Section 3.3 to reach an
exact Nash equilibrium.

Remark 2. Take the QRE as an example, Theorem 2 implies that discrete-time RegFTRL is guar-
anteed to find an ϵ-QRE in O( 1

ln(1+ητ) ln
1
ϵ ) iterations. Besides, FTRL-SP (Abe et al., 2023) and

entropy-regularized OMWU (Cen et al., 2021) both require O( 1
− ln(1−ητ/2) ln

1
ϵ ) iterations.

3.2 LAST-ITERATE CONVERGENCE IN EFGS

This subsection generalizes ReFTRL to EFGs. We first present the RegFTRL algorithm.
Algorithm 1 (RegFTRL in EFGs). At any information state I ∈ I, the policy updated rule is:

πt(·|I) = argmax
p∈∆A(I)

[η⟨p, yh,τt (I, ·)⟩ − ψ(p)], (3)

yh,τt (I, a) =

t−1∑
k=0

[
δ(I)Qh,τk (I, a)− τ [∇gIµ(πk)]a

]
,

where gIµ(πk) := gµ(πk(·|I)), and update the value functions as:
Q0 = 0, V0(I) = −δ(I)τ⟨π0(·|I),∇gIµ(π0)⟩
Qh,τt (I, a) = rh(I, a) + EI′=I(ha),h∈I [V h+1,τ

t−1 (I ′)]

V h,τt (I) = (1− αt)V h,τt−1(I) + αt
∑
a πt(a|I)

[
Qh,τt (I, a)− δ(I)τ · ∇[gIµ(πt)]a

]
.

(4)

It can be found that Algorithm 1 conforms to the actor-critic framework, wherein the actor is re-
sponsible for policy updates through the utilization of RegFTRL (as delineated in Eq. (2)), while
the critic undertakes the task of value function updates on a relatively slower timescale. Given
the intricate structural complexities introduced by the extensive-form format inherent in EFGs, par-
ticularly the non-concave nature of the value functions within the behavior-form representation,
we focus on providing the convergence guarantee for a specialized instance of ReFTRL, wherein
gIµ(π) = DI

KL(π, µ) and ψ(π) = ⟨π, lnπ⟩. It is noteworthy that the entropy-regularized MWU is
readily attainable by setting the reference strategy µ as a uniform strategy.
Theorem 3. Let gIµ(π) = DI

KL(π, µ) := DKL(π(·|I), µ(·|I)), µ ≥ c
|A| , c ∈ (0, 1]. With 0 < ητ ≤ 2

3 ,
0 < τ ≤ 1

max{1,2 ln(|A|/c)} , and αt = ητ , Algorithm 1 satisfies:

max
I,a
|Qh,τπµ

−Qh,τt | ≤ (1− ητ)t−ThtH−h, and Eτ (πt) ≤ 8(1− ητ)t−T1
(5
3
H + 3tH

)
,

where t ≥ Th := (H − h)Ts, Ts = ⌈ 1
ητ ln 2(9H + 19)⌉.

Remark 3. Minimizing the bound over η, Theorem 3 implies that Algorithm 1 is guaranteed to
find an ϵ-QRE in Õ(Hτ ln 1

ϵ ) iterations, and thus find an ϵ-Nash equilibrium in Õ(H
2

ϵ ) iterations by
setting τ = O( ϵ

H ln(|A|/c) ) since E(π) ≤ Eτ (π) + 2τH ln(|A|/c).

3.3 CONVERGENCE TO AN EXACT NASH EQUILIBRIUM

Section 3.1 and Section 3.2 analyze the theoretical properties of RegFTRL with a fixed reference
strategy, and guarantee the linear convergence to an approximated equilibrium. In this subsection,
we introduce two approaches to find an exact Nash equilibrium.
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The first one is the annealing approach that gradually decrease weight parameter τ . This reduc-
tion serves the purpose of diminishing the bias associated with the equilibrium. Drawing insights
from Theorem 1 and Remark 3, the distance between the regularized equilibrium πµ and the set of
Nash equilibria Π∗ can be effectively controlled through the manipulation of the weight parame-
ter τ . Nonetheless, it is worth noting that, as implied by Theorem 2 and Theorem 3, the speed of
convergence might be adversely affected as the weight parameter τ undergoes reduction.

Another one is the adaption approach, similar to the direct convergence method (Pérolat et al.,
2021). As indicated in Remark 1, a Nash equilibrium can be achieved when πµ = µ, implying
that the regularized equilibrium will exhibit closer proximity to Π∗ if the reference strategy µ ap-
proximates a Nash equilibrium. Therefore, we set reference strategy µ to πt every N iterations,
with the expectation that πt will progressively converge towards a Nash equilibrium. Indeed, with
µk denoting the k-th reference strategy and a sufficiently large value for N , πt converges to πµk

from Theorem 2 and Theorem 3. Subsequently, the subsequent reference strategy µk+1 is adjusted
to coincide with πµk

. Intuitively, as k increases, πµk
coincides with µk, consequently driving the

reference strategies towards convergence with a Nash equilibrium in the underlying game. This
intuition is formally substantiated by the following theorem. It is important to highlight that, un-
like the annealing approach, the adaption approach obviates the necessity for a diminishing weight
parameter τ , thus preserving a consistent convergence rate.
Theorem 4. If gµ(π) = Dϕ(π, µ) and gµ(π) = DKL(µ, π), then for any interior point µ0, the
sequence of reference strategies {µk}k≥0 converges to a Nash equilibrium of the original game.
Remark 4. Moving magnet approach used in MMD (Sokota et al., 2023), wherein the reference
strategy is updated as µt+1 ∝ µ1−β

t πβt+1 (0 < β < 1), is also an efficient means to promote
convergence to a Nash equilibrium. However, the reference strategy updated in this form can be
perceived as an average strategy in a certain sense, potentially limiting its practical applicability.

4 FOLLOWMU: A PRACTICAL IMPLEMENTATION OF REGFTRL

This section proposes a novel model-free reinforcement learning algorithm, named FollowMu
(Follow the reference strategy µ), which combines ReFTRL with function approximation tech-
niques. We employ the actor-critic framework to develop FollowMu due to its scalability (Sutton &
Barto, 2018). Let A(I, a; θt) be the actor network parameterized by θt, and V (I;ωt) be the critic
network parameterized by ωt. At the time step t, the critic network V (I;ωt) is trained to approxi-
mate the value function Vπt

(I) of the real-time strategy, and the actor network A(I, a; θt) is trained
to fit the cumulative advantage function of past iterations plus the Q-function of the current-iterate
strategy (with the regularized term):

A(I, a; θt) ≃
t−1∑
k=0

[
Qπk

(I, a)− Vπk
(I)− τ log πk(a|I)

µ(a|I)

]
+Qπt

(I, a)− τ log πt(a|I)
µ(a|I)

≃ [A(I, a; θt−1)− V (I;ωt−1)] +G− τ log πt(a|I)
µ(a|I)

, (5)

where G is the empirical estimator of Qπt
(I, a). Then, if we take ψ to be the entropy regularizer,

the next-iterate strategy can be computed by:
πt+1(a|I) ∝ exp(zt(I, a)), zt(I, a) ≃ A(I, a; θt)− V (I;ωt). (6)

Here we employ the advantage function Qπt
(I, a) − Vπt

(I), as a substitution for the Q-function
Qπt

(I, a), a choice made for the sake of enhancing numerical stability and robustness. Despite this
alteration, the strategy update formulation in the manner of Eq.(6) remains equivalent to the updated
strategy employed in RegFTRL, attributed to the shift-invariant nature inherent in the softmax func-
tion. Meanwhile, the reference strategy will be updated µ← πt every N iterations. More details of
FollowMu are presented in the Appendix B.1.

5 EXPERIMENTS

In this section, we validate our methods on NFGs and EFGs utilizing the exploitability metric (i.e.,
E(π)) under two experimental settings, i.e., full-information feedback setting and neural-based sam-
ple setting. In full-information feedback setting, we evaluate the performance of RegFTRL as a

7
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Nash equilibrium solver, employing annealing approach and adaption approach. Note that the po-
tential function gµ in RegFTRL is set to gµ(π) = DKL(π, µ). In addition to this, we also consider
moment projection gµ(π) = DKL(µ, π) and L2 norm gµ(π) =

1
2∥π − µ∥

2
2 for examining the impact

brought by different regularization. We abbreviate RegFTRL equipped with gµ(π) = DKL(µ, π) as
M-RegFTRL, and RegFTRL with gµ(π) = 1

2∥π − µ∥
2
2 as 2-RegFTRL. In neural-based sample set-

ting, we assess the efficacy of FollowMu as a deep multi-agent reinforcement learning algorithm
through self-play. Further details about the experimental settings are included in Appendix B.2.

5.1 FULL-INFORMATION FEEDBACK SETTING
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Figure 3: M-NE & Random Game: Exploitability vs. Iterations
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Figure 4: Kuhn & Leduc Poker: Exploitability vs. Iterations

In this case, we compare the performances of RegFTRL-A (abbr. RegFTRL with annealing ap-
proach), RegFTRL-D (abbr. RegFTRL with adaption approach) with baselines: (i) FTRL, (ii) O-
FTRL (abbr. optimistic FTRL), (iii) CFR (Zinkevich et al., 2007), (iv)MMD-A (abbr. MMD with
annealing weight), and (v) MMD-M (abbr. MMD with moving magnet). For NFGs, we focus on two
games: Multiple Nash Equilibria (abbr. M-Ne) and a random utility game with 50 actions. M-Ne,
as introduced in the prior work (Wei et al., 2021), is characterized by a set of Nash equilibria. For
the random utility game, the 50 × 50 payoff matrix is drawn from a standard Gaussian distribution
in an i.i.d. manner. For EFGs, we consider games implemented in OpenSpiel (Lanctot et al., 2019):
Kuhn Poker and Leduc Poker, with 54 and 9300 non-terminal histories, respectively.

Figure 3 presents the NFG results. Across all games considered, it is evident that FTRL fails to
converge to an equilibrium. Conversely, all other algorithms consistently demonstrate linear con-
vergence rates, aligning with theoretical guarantees. This observation underscores the significant
impact of the optimistic update paradigm and regularization techniques in facilitating last-iterate
convergence. It is noteworthy that RegFTRL shares mathematical equivalence with MMD within
the NFG context. Consequently, RegFTRL-A exhibits performance comparable to that of MMD-
A. However, an interesting contrast emerges between RegFTRL-D and MMD-M, with the former
displaying superior performance. This discrepancy can potentially be attributed to the reference
strategy updated by the moving magnet approach, which retains past-iterate strategies, consequently
causing it to deviate from the Nash equilibrium.

Figure 4 provides the results observed within Kuhn & Leduc Poker. Unlike the performances in
NFGs, in both Poker games, O-FTRL performs poorly, which might be attributed to the behavior-
form based implement. In contrast, despite the absence of theoretical convergence guarantees under
EFGs, both M-RegFTRL and 2-RegFTRL exhibit an exponentially fast convergence rate. This
outcome underscores their potential utility in EFGs, despite the inherent lack of formal guarantees.
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Furthermore, an interesting trend emerges wherein the adaption approach consistently outperforms
the annealing approach in both NFGs and EFGs. This phenomenon can be elucidated by referring
to Theorem 2 and Theorem 3, which indicate that a decaying weight parameter τ can bring a slower
convergence rate, aligning with our empirical observations.

5.2 NEURAL-BASED SAMPLE SETTING
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Figure 5: Kuhn & Leduc Poker: Exploitability vs. Iterations

Table 1: Mean±standard deviation of the approximate exploitability on Phantom Tic-Tac-Toe.
FollowMu NFSP PPO Uniform Agent

1M step 0.39± 0.02 0.91± 0.04 0.94± 0.03 0.79± 0.02
10M step 0.21± 0.04 0.80± 0.03 0.91± 0.03 0.79± 0.02

In this case, we validate our practical implement of RegFTRL, i.e., FollowMu, can work effec-
tively with function approximator while preserving the theoretical guarantees. Within both Poker
benchmarks, as depicted in Figure 5, we conduct a comparative analysis involving FollowMu,
NFSP (Heinrich & Silver, 2016), FollowMu without regularization (i.e., practical implement of
FTRL), and FollowMu with transformed reward (Pérolat et al., 2021). Our observations reveal that
FollowMu consistently outperforms the other baselines in terms of exploitability. The noteworthy
disparity between FollowMu and FollowMu (τ = 0) aligns with the learning dynamics associated
with ReFTRL and FTRL, substantiating the effectiveness of the incorporated regularization term.
Furthermore, our findings indicate that FollowMu surpasses FollowMu with the transformed re-
ward. This distinction may be attributed to the fact that FollowMu introduces the regularization
term at the return level, mitigating the cumulative sum effect encountered at the reward level.

Table 1 reports the performances of FollowMu with NFSP, PPO (Schulman et al., 2017), and Uni-
form Agent (employing a uniform strategy consistently) on Phantom Tic-Tac-Toe. Phantom Tic-
Tac-Toe, which is also implemented in OpenSpiel, is an imperfect-information game where the
winner receives a payoff of +1 and the losing player receives −1. The evaluation of approximate
exploitability in Phantom Tic-Tac-Toe is computed through a trained DQN best response, owing
to the substantial scale of the game. The outcomes underscore that both FollowMu and NFSP ex-
hibit enhanced performance following 10 million steps of training compared to their performance
after 1 million steps. In contrast, PPO exhibits negligible improvement, consistent with the fact
that it is designed for single-agent environments. Notably, FollowMu emerges as the top performer,
significantly outperforming the baseline methods.

6 CONCLUSION

In this paper, we introduce RegFTRL, an algorithm that devised to enhance the stability of FTRL
dynamics through a general-case regularization, and establish the last-iterate linear convergence in
both NFGs and EFGs, without either the uniqueness condition or the optimistic update paradigm.
Furthermore, our investigation extends to probing the feasibility of achieving convergence towards
an exact Nash equilibrium through two straightforward yet highly efficient approaches. Addition-
ally, we propose a model-free reinforcement learning algorithm for zero-sum games, named Fol-
lowMu, which is theoretically justified as it is derived from RegFTRL. The numerical simulation
reveals RegFTRL outperforms FTRL and O-FTRL in various zero-sum games, and demonstrates
that FollowMu attains favorable performance levels, underscoring its practical utility.
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