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ABSTRACT

Influenced by the breakthroughs in Large Language Models (LLMs), single-cell
foundation models are emerging. While these models demonstrate successful
performance in cell type clustering, phenotype classification, and gene perturba-
tion response prediction, it remains to be seen if a simpler model could achieve
comparable or better results, especially with limited data. This is important, as the
quantity and quality of single-cell data typically fall short of the standards in textual
data used for natural language processing (NLP) training. Single-cell sequencing
often suffers from technical artifacts, dropout events, and batch effects. These
challenges are compounded in a weakly supervised setting, where the labels of cell
states can be noisy, further complicating the analysis. To tackle these challenges,
we present sc-OTGM, streamlined with less than 500K parameters, making it ap-
proximately 100x more compact than the foundation models, offering an efficient
alternative. sc-OTGM is an unsupervised model grounded in the inductive bias that
the scRNA-seq data can be generated from a combination of the finite multivariate
Gaussian distributions. The core function of sc-OTGM is to create a probabilistic
latent space utilizing a Gaussian mixture model (GMM) as its prior distribution and
distinguish between distinct cell populations by learning their respective marginal
probability density functions (PDFs). It uses a Hit-and-Run Markov chain sampler
to determine the optimal transport (OT) plan across these PDFs within the GMM
framework. We evaluated our model against a CRISPR-mediated perturbation
dataset, called CROP-seq, consisting of 57 one-gene perturbations. Our results
demonstrate that sc-OTGM is effective in cell phenotype classification, aids in the
analysis of differential gene expression, and ranks genes for target identification
through a recommender system. It also predicts the effects of single-gene pertur-
bations on downstream gene regulation and generates synthetic scRNA-seq data
conditioned on specific cellular phenotypes. Source code and documentation are
available at: https://github.com/Novartis/scOTGM.

1 INTRODUCTION

The molecular mechanisms that drive diseases are complex, often reflected in the high-dimensional
profiles of gene expression. Conducting detailed analyses of these gene expression matrices—across
various cell types, disease states, and control versus experimental subjects—is essential to understand
disease progression and identify targets for potential drug interventions. scRNA-seq technology
facilitates the detailed profiling of transcriptomes across a vast range of cells, from thousands to
millions, allowing for the exploration of cellular heterogeneity and the understanding of disease
pathogenesis at the single-cell level.

In recent years, Perturb-seq has emerged as a powerful high-throughput method that combines
CRISPR-based genetic perturbation with scRNA-seq Dixit et al. (2016); Adamson et al. (2016). It
enables the analysis of how specific gene modulations impact gene expression across numerous indi-
vidual cells. Within this framework, CRISPRi and CRISPRa allows for targeted downregulation and
upregulation of gene expression, respectively, offering insights into gene interactions and regulatory
networks at the granularity of single-cells.
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A significant hurdle in this research is that cellular responses to genetic perturbations are highly
heterogeneous Elsasser (1984); Rubin (1990). This variability arises from differences in mRNA and
protein levels Sonneveld et al. (2020), cell states Kramer et al. (2022), and the microenvironment
among single-cells Snijder et al. (2009). Given the heterogeneity of potential perturbations, and the
complexity of possible cellular phenotypes, understanding the inherent data geometries and distribu-
tions of distinct cell populations becomes crucial for effective analyses. sc-OTGM employs a GMM
to parametrize the marginal PDFs of diverse cellular phenotypes and states within a reduced subspace.
Not all subpopulations are well modeled by Gaussian distributions, and some subpopulations may
cover large regions of feature space due to skewed class proportions and need further subdivisions.
However, the use of GMM as priors enables the detection of local, high-density regions of phenotype
space and effectively incorporates an inductive bias to overcome the limitations of data quantity
and quality. This approach aligns with some recent methodologies in single-cell genomics, where
Gaussian mixture priors are adopted to address the challenges of noise and data scarcity inherent in
scRNA-seq datasets Wen et al. (2023); Xu et al. (2023); Grønbech et al. (2020); Slack et al. (2008).

While mixture modeling is not a new concept in scRNA-seq data analysis, we break new ground
from following perspective: First, sc-OTGM effectively learns the OT plan that facilitates the
mapping from one cell population to another on the manifold of Gaussian mixtures. To capture the
transformation from unperturbed to perturbed cell states, the model employs a Hit-and-Run Markov
chain sampler. This sampler guarantees a globally optimal solution to generate samples from the
target distribution and offers faster convergence than small-step random walks Smith (1996). Second,
modeling the PDF of perturbations allows us to identify perturbed genes and predict changes in the
expression of other genes following perturbation. Third, sc-OTGM provides a scalable and unified
framework for cell phenotype classification, differential gene expression analysis, gene ranking for
target identification, perturbation response prediction, and the generation of synthetic scRNA-seq
data by sampling from the posteriors of Gaussian components. It offers improved efficiency with
reduced runtime and memory requirements compared to LLMs and Variational Autoencoder (VAE)
variants, while maintaining competitive accuracy.

2 RELATED WORK

Recent advances in single-cell transcriptomics have led to the development of models such as
Geneformer Theodoris et al. (2023), scGPT Cui et al. (2023), and scBERT Yang et al. (2022), which
utilize masked language modeling (MLM) to learn gene embeddings. However, their effectiveness,
particularly in zero-shot learning and in addressing batch effects, is still questioned Kedzierska et al.
(2023); Boiarsky et al. (2023). Additionally, there have been significant developments in generative
models, including CPA Lotfollahi et al. (2021), which uses distinct encoder networks for cell states and
perturbations, and further advancements by Lopez et al. (2023) and SAMS-VAE Bereket & Karaletsos
(2023), which focus on disentangling representations with causal semantics for perturbation analysis.
Tejada-Lapuerta et al. (2023) has criticized these approaches for oversimplifying complex causal
relationships. Further details on these models and their comparative analyses can be found in the
Appendix A.1.

3 DATASET

To evaluate the performance of sc-OTGM, we used the CROP-seq dataset from in-vitro experiments on
human-induced pluripotent stem cell (iPSC)-derived neurons subjected to genetic perturbations Tian
(2023). These perturbations were executed via CRISPRi, enabling targeted gene knockdown to
investigate its effects on neuronal survival and oxidative stress. Using the rank genes groups
method from scanpy package Wolf et al. (2018) for differential expression analysis, we scrutinized
the effects of knocking down 185 genes identified as potentially relevant to neuronal health and
disease states. Of these, only 57 genes met our significance threshold (adjusted p-value less than
0.05), indicating a significant alteration in expression levels post-perturbation. These findings are
summarized in Table 2, which includes the genes that presented significant differential expression,
highlighting their potential roles in neuronal function and susceptibility to oxidative stress—a key
factor in the pathogenesis of neurodegenerative diseases. Additional information regarding the
pre-processing procedures can be found in Appendix A.4. Raw published data is available from the
Gene Expression Omnibus under accession code GSE152988.
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4 METHODOLOGY

4.1 GENERATIVE MIXTURE MODEL
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Figure 1: sc-OTGM represented as a generative graphical model.

We define the complete generative model for sc-OTGM as illustrated in Figure 1. Let Xproj denote
the gene expression matrix, with rows representing individual cells and columns representing features
in a reduced-dimensional space. The gene expression profile of cell i is Xproj, i. π represents the
cluster probabilities. Each πk, where k specifies a particular cellular phenotype, indicates the prior
probability of the k-th component in the mixture, subject to

∑
k πk = 1. The latent variable zi ∈ RK

determining the component generating each data point xproj, i, is one-hot encoded and follows a
categorical distribution parameterized by π. For each Gaussian component in the mixture model,
µkb

∈ Rm and Σkb
∈ Rm×m define the mean and covariance matrix for unperturbed cells of a

specific phenotype, respectively. We specify perturbations and heterogeneous cellular responses as
multivariate Gaussian-distributed variables e ∼ N (µke ,Σke) and h ∼ N (µkm ,Σkm), respectively.
We model perturbation as a dynamic system, where the cell outputs an impulse response function h,
when presented with a brief perturbation signal e. The convolution of these variables represents the
combined effect on the latent state zpi

, which is also distributed as a multivariate Gaussian:

zpi
= (ek∗hk)(z) =

∫ +∞

−∞
ek(τ)hk(z−τ)dτ ∼ N (µke

+µkm
,Σke

+Σkm
) ∼ N (µkp

,Σkp
), (1)

In the proposed generative mixture model, the joint probability distribution for observed data X, and
latent variables Zi, E, and H conditioned on π, µ,Σ is formulated as:

p(X,Zi,E,H | π, µ,Σ) =

[
N∏
i=1

p(zi|π)p(xproj,i|zi, µ,Σ)

][
N∏
i=1

e ∗ h

]
(2)

=

N∏
i=1

K∏
k=1

(
πzik

k N (wbi ;µkb
,Σkb

)zikN (wpi
;µkp

,Σkp
)
)
, (3)

where Z ∈ {0, 1}N×K denotes latent class indicators for N cells across K phenotypes, E ∈ RN×m

captures perturbation effects, and H ∈ RN×m represents the cellular responses to these perturbations.
Each datum wbi , wpi

∈ Rm is drawn independently and identically distributed (i.i.d.) from their
respective marginal PDFs. To prevent numerical instability due to arithmetic underflow or overflow
during likelihood calculations in the E-step of the Expectation-Maximization (EM) algorithm, we
use the log-sum-exp trick. This method transforms the product of Gaussian probabilities into a sum,
ensuring more stable computations. Let L denote p(X,Zi,E,H | π, µ,Σ):

logL =

N∑
i=1

K∑
k=1

(
zik logπk + zik logN (wbi ;µkb

,Σkb
) + logN (wpi

;µkp
,Σkp

)
)

(4)
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The Maximum-a-Posteriori (MAP) parameter updates for the GMM via the EM algorithm are detailed
in Algorithm 3. To address numerical instability in Σ’s inversion due to its near singularity or non-
positive semi-definiteness, Tikhonov regularization is applied Alberti et al. (2021). See Appendix A.8
for additional details.

4.2 PLANNING OPTIMAL TRANSPORT VIA HIT-AND-RUN MARKOV CHAIN SAMPLER

OT problems, central to measuring the cost of optimally transporting mass from one distribution to
another, are traditionally solved via the Monge (1781) and Kantorovich (1942) formulations, which,
however, scale poorly for large datasets due to their reliance on linear programming (LP)Bunne et al.
(2023). A breakthrough by Cuturi (2013) introduces entropic regularization into OT, resulting in the
Sinkhorn algorithm, which significantly reduces computational complexity, enabling efficient large-
scale applications. This methodological advancement, detailed in Section A.2.3, represents a pivotal
shift towards practical OT computation in machine learning. While OT is conventionally represented
by a scalar value indicating the minimum cost required for such transport under specific constraints,
sc-OTGM conceptualizes OT as a distribution to focus on the distribution of transportation costs
and paths rather than summarizing these costs into a single scalar. A distribution-based approach
encapsulates more information about the transport process, such as the variance of transport costs,
providing not just the minimum cost but also how costs are distributed across different transport
paths. Additionally, it provides a more robust measure of similarity between distributions, as it does
not collapse the transport problem into a single metric but rather considers the entire cost landscape,
potentially mitigating the influence of outliers.

We model the latent states of unperturbed and perturbed cells as Gaussian distributions, with un-
perturbed cells described by X = N (µkb

,Σkb
) and perturbed cells by Y = N (µky

,Σky
). MAP

estimates for µkb
,Σkb

, µky
,Σky

were derived using the EM Algorithm within a GMM framework.
To quantify the perturbation effect, we introduce a distribution, Z = N (µkp

,Σkp
), resulting from

the linear displacement between X and Y . Specifically, Z is characterized by µkp
= µky

− µkb

and Σkp = Σkb
+Σky − 2Σcross. Z captures the OT cost distribution required to transition between

these states. The coupling (joint distribution) of X and Y is unknown, therefore we approximate
Σcross via Hit-and-Run Markov Chain Monte Carlo (MCMC). This generates a Markov chain that,
in its stable state, converges to the uniform distribution over a convex polytope van Valkenhoef
& Tervonen (2015), and under certain regularity conditions, converges in distribution to the target
distribution Smith (1996). The steps to compute Σcross are elaborated in Algorithm 1. For recursive
updates of Σcross we use follow-the-leader (FTL) strategy which is prominently used in online density
estimation and active learning Azoury & Warmuth (2001); Dasgupta & Hsu (2007). Details on the
implementation and synthetic data experiments are provided in the Appendix A.9.

sc-OTGM samples transportation paths (vectors) directly from the OT landscape, rooted in the pertur-
bation distribution Z, within a dimensionally reduced subspace: xpath ∼ N (µkp

,Σkp
), which effec-

tively captures the essence of gene expression dynamics under perturbation. The high-dimensional
gene expression profiles corresponding to these paths are reconstructed via inverse PCA, expressed
as: x

′′

path = xpathV
T
m , where Vm represents the matrix comprising the top m eigenvectors derived

from the covariance matrix of the pre-processed gene expression data. See Appendix A.4 and A.5
for more details. For each gene expression profile within the OT landscape, we derive a parametric
representation, as follows:

µgene,i = the ith element of (µkp
V T
m ) and σ2

gene,i = the ith diagonal entry of (VmΣkp
V T
m ),

where µgene,i denotes the degree of change in a gene’s expression in response to perturbation, indi-
cating potential activation or suppression of the gene. Similarly, σgene,i quantifies the confidence in
these expression changes, providing insights into the variability or reliability of our computations.
While biological systems are often complex and nonlinear, under specific conditions or within certain
ranges, linear approximations can provide valuable insights and simplify modeling efforts. van
Someren et al. (2000) presents a methodology for modeling genetic networks that employs clustering
to tackle the dimensionality problem and a linear model to infer the regulatory interactions. By ana-
lyzing the covariance matrix Σkp

of the perturbation distribution, we can explore the interconnected
behavior between genes, examining how they co-vary or influence each other. Consider the scenario
where the expression level of gene i changes, denoted as ∆Xi. The covariance matrix Σkp

, upon
transformation via Vm, becomes Σ

′′

kp
= VmΣkpV

T
m . The expected change in gene j’s expression
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Algorithm 1 Estimation of Cross-Covariance Matrix via Hit-and-Run Markov Chain Monte Carlo

1: Input: Domains DX and DY with non-zero density for X and Y , number of iterations N , mean
vectors µX , µY , covariance matrices ΣX , ΣY , and confidence interval for the bounds α.

2: Output: Estimated cross-covariance matrix ΣXY .
3: Initialize (x(0), y(0)) uniformly from DX ×DY .
4: Initialize Σ

(0)
XY as a random matrix, ensuring it is symmetric and positive definite.

5: Compute the z-score, z, for the specified confidence interval α using the inverse of the standard
normal CDF: z = Φ−1

(
1+α
2

)
.

6: for i = 1 to N do
7: Calculate non-zero density bounds [aX , bX ] for X:
8: Generate a random unit direction dX in X’s space.
9: Normalize dX to unit length: dX,normalized = dX

∥dX∥
10: Project x(i−1) onto dX,normalized: pX,projection = x(i−1) · dX,normalized

11: Compute standard deviation σX,projection =
√
dT
X,normalizedΣXdX,normalized

12: Determine [aX , bX ] using pX,projection ± z · σX,projection
13: Calculate non-zero density bounds [aY , bY ] for Y :
14: Generate a random unit direction dY in Y ’s space.
15: Normalize dY to unit length: dY,normalized = dY

∥dY ∥
16: Project y(i−1) onto dY,normalized: pY,projection = y(i−1) · dY,normalized

17: Compute standard deviation σY,projection =
√

dT
Y,normalizedΣY dY,normalized

18: Determine [aY , bY ] using pY,projection ± z · σY,projection
19: Update ΣXY :
20: Sample x(i) ∼ Uniform(aX , bX) and Sample y(i) ∼ Uniform(aY , bY )
21: ∆x(i) = x(i) − µX , ∆y(i) = y(i) − µY

22: Σ
(i)
XY = i

i+1Σ
(i−1)
XY + i

(i+1)2∆x(i)(∆y(i))T ▷ FTL Online Density Estimation
23: end for

level, ∆Xj , resulting from a change in gene i, is linearly approximated as follows:

∆Xj =
Σ

′′

kp,ij

Σ
′′
kp,ii

∆Xi (5)

5 RESULTS

We evaluated several statistical methods for differential gene expression in CRISPRi experiments,
including the Mann-Whitney U test, t-test, and sc-OTGM, as shown in Table 1. Using a top-k
accuracy metric (Top-1, Top-5, Top-10, Top-50, and Top-100), we assessed how often each method
placed the true perturbed gene within the top k results. Lower p-values from the Mann-Whitney U test
and t-test correlate with higher rankings. Notably, the sc-OTGM performs exceptionally well in Top-1
accuracy, showing its effectiveness in identifying the most likely perturbed gene. The performance
advantage of sc-OTGM decreases as the ranking threshold increases.

Table 1: Benchmarking differential gene expression analysis techniques. The highest performance is highlighted
in bold, the best baseline method is underlined, and improvements over this baseline are color-coded in orange.

Diff. Expression Analysis Top-1 Acc.
x Top-5 Acc.

x Top-10 Acc.
x Top-50 Acc.

x Top-100 Acc.
x

Mann–Whitney U test 0.37 0.40 0.42 0.58 0.60
t-test 0.39 0.67 0.70 0.79 0.86

sc-OTGM 0.56 0.68 0.74 0.82 0.91

Relative gains 43.6% 1.5% 5.7% 3.8% 5.8%
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Figure 2: Cell phenotype
classification.

In our experiments, we investigated the impact of 57 single-gene knock-
downs, featuring BIN1 as a case study in the paper. We tested the capa-
bilities of Geneformer and sc-GPT for target identification and in silico
perturbation analysis. The limited dataset of 382 cells (315 control and
67 target) posed challenges in fine-tuning the foundation models. Gene-
former, in particular, struggled with gene ranking for target identification
due to its inherent combinatorial complexity. Figure 2 shows a confu-
sion matrix for phenotype classification via the sc-OTGM model, and
Figure 3 shows sc-OTGM’s perturbation distribution. Here, clustering
around the center suggests minimal impact on most genes, whereas dif-
ferentially expressed genes (blue points) significantly diverge. sc-OTGM
accurately ranked BIN1 as a knockeddown gene, placing it at the top
of the recommendation list. Additionally, we used in silico perturbation
response predictions to analyze gene expression variations between BIN1-
knockdown and control cells, depicted in Figure 4. The results confirm
that sc-OTGM accurately predicts the direction in gene expression changes, differentiating between
upregulated and downregulated genes following BIN1 knockdown. However, the differences between
the magnitudes of model predictions and actual values highlight the potential advantages of nonlinear
models in capturing the complex dynamics of gene regulation.

−1.5 −1 −0.5 0 0.5 1

1

1.5

2

Non-differentially Expressed Genes (8047 genes) 
Differentially Expressed Genes (10 genes) 
Perturbed Gene of Interest (1 gene)

Perturbation Mean

Pe
rt

ur
ba

ti
on

 S
td

 D
ev

Figure 3: Analysis of perturbation from the OT landscape as a distribution, and ranking genes for target
identification through a recommender system.
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Figure 4: In silico perturbation response prediction of differentially expressed genes following the knockdown
of BIN1.

6 CONCLUSION

The sc-OTGM framework efficiently detects genes with significant activity changes, providing an
alternative to single-cell foundational models in data-limited, high-noise scenarios, alleviating the
need for extensive fine-tuning. Additionally, it can identify up/down-regulated genes post-perturbation
without establishing causality.
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A APPENDIX

A.1 RELATED WORK

Recent developments in foundational models have garnered attention in single-cell biology. Models
like Geneformer Theodoris et al. (2023), scGPT Cui et al. (2023), and scBERT Yang et al. (2022)
have emerged as potential tools in this field. scBERT randomly masks a fraction of non-zero gene
expression values and predicts them based on the remaining data. scGPT introduces a variant of
masked language modeling (MLM) that mimics the auto-regressive generation in natural language
processing, where the masked genes are iteratively predicted according to the model’s confidence.
Geneformer completely abandons the precise expression levels of genes. Instead, it models the
rank of gene expressions and constructs sequences of genes according to their relative expression
levels within each cell. The assessment of Geneformer and scGPT revealed significant limitations
in their zero-shot performance Kedzierska et al. (2023). In various tasks, particularly in cell type
annotation, these models are outperformed by simpler models, such as scVI Lopez et al. (2018) and
strategies focusing on highly variable genes (HVGs). Kedzierska et al. (2023) also highlighted that
aligning the pretraining dataset’s tissue of origin with the target task did not consistently improve
scGPT’s performance, and broader pretraining datasets sometimes resulted in decreased effectiveness.
Additionally, both Geneformer and scGPT showed inadequate handling of batch effects in zero-shot
settings. Comparisons of scBERT and scGPT with L1-regularized logistic regression in cell type
annotation under limited training data suggest that logistic regression performs more accurately,
questioning the complexity needed for cell type annotation and the efficacy of MLM in learning
gene embeddings Boiarsky et al. (2023). The failure of these models to accurately predict gene
expression in zero-shot or limited data scenarios emphasizes the necessity for advancements in model
design and training methodologies. CellPLM aggregates gene embeddings since gene expressions
are bag-of-word features and leverages spatially-resolved transcriptomic (SRT) data in pre-training to
facilitate learning cell-cell relationships and introduce a Gaussian mixture prior distribution as an
additional inductive bias to overcome data limitation Wen et al. (2023).

The field has also seen advancements in generative modeling. CPA has been developed to learn
embeddings for both cell states and perturbations Lotfollahi et al. (2021). This is achieved within a
unified framework, utilizing input data comprising two main components: gene expression data and
perturbation data, such as drug types and dosages. CPA employs distinct encoder networks for cell
states and perturbations, respectively. These encoders map input data into a latent space, from which
the decoder network reconstructs the expected cellular response to a specific perturbation. Building
on that concept, Lopez et al. (2023) leverages sparse mechanism shift assumption in order to learn
disentangled representations with a causal semantic to the analysis of single-cell genomics data with
genetic or chemical perturbations. However, in single-cell transcriptomics, such a setting might be
overly simplistic. Tejada-Lapuerta et al. (2023) argues that disentanglement simplifies the problem
of recovering meaningful causal representations assuming independence among latent variables by
the use of mean field approximation to ease the computation of variational inference. Similarly,
SAMS-VAE adopts the idea to disentangle cellular latent spaces into basal and perturbation latent
variables Bereket & Karaletsos (2023). Specifically, the proposed method models the latent state of
perturbed samples as a combination of a local latent variable capturing sample-specific variation and
sparse global variables of latent intervention. These global variables are formulated as the point-wise
product between latent perturbation variables and a binary mask.

A.2 OPTIMAL TRANSPORT

A.2.1 MONGE’S FORMULATION

Monge’s formulation of the OT problem seeks a mapping T : X → Y that transports a mass
distribution µ on a space X to a mass distribution ν on a space Y in the most cost-effective way. The
cost of transporting a unit mass from point x ∈ X to point y ∈ Y is given by a cost function c(x, y).
The goal is to minimize the total transportation cost:

min
T

∫
X

c(x, T (x)) dµ(x)

subject to the constraint that T#µ = ν, where T#µ is the pushforward measure of µ by T , ensuring
that the mass distribution after transportation is ν.
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A.2.2 KANTOROVICH’S RELAXATION

Kantorovich’s formulation relaxes Monge’s problem by considering a probabilistic coupling π in the
product space X × Y , which represents a joint distribution of source and target points that respects
the marginal distributions µ and ν. The problem is formulated as:

min
π∈Π(µ,ν)

∫
X×Y

c(x, y) dπ(x, y)

where Π(µ, ν) is the set of all couplings π with marginals µ on X and ν on Y . This formulation is
more flexible than Monge’s because it allows for mass splitting, making it possible to find solutions
in situations where Monge’s problem has none.

The Kantorovich problem leads to a dual formulation that expresses the OT cost as:

sup
(f,g)∈Φ

{∫
X

f(x) dµ(x) +

∫
Y

g(y) dν(y)

}
where Φ consists of all pairs of functions (f, g) such that f(x)+g(y) ≤ c(x, y) for all (x, y) ∈ X×Y .

The p-Wasserstein distance between µ and ν for p ≥ 1 is derived from Kantorovich’s problem with
the cost function c(x, y) = ∥x− y∥p, providing a metric on the space of probability measures:

Wp(µ, ν) =

(
min

π∈Π(µ,ν)

∫
X×Y

∥x− y∥p dπ(x, y)
)1/p

This distance measures the minimal amount of work required to transform the distribution µ into the
distribution ν under the given cost function.

A.2.3 REGULARIZED TRANSPORT WITH SINKHORN’S ALGORITHM

The Sinkhorn distance introduces an entropic regularization to the OT problem, making it computa-
tionally more tractable by allowing the use of efficient algorithms. The entropic regularization term,
ϵKL(π∥µ⊗ ν), where ϵ is a positive regularization parameter and KL denotes the Kullback-Leibler
divergence between π and the product distribution µ ⊗ ν, adds strong convexity to the optimiza-
tion problem. This convexity ensures that the smoothness of the objective function allows for the
application of gradient-based optimization methods that are known to converge quickly.

min
π∈Π(µ,ν)

∫
X×Y

c(x, y) dπ(x, y) + ϵKL(π∥µ⊗ ν)

A.3 DATASET STATISTICS

Table 2: Quantitative Analysis of Gene Expression Alterations Post-CRISPRi Knockdown

Gene log2(fold change) p-Value Adjusted
p-Value

Num.
Control
Cells

Num.
Targeted
Cells

TUBB4A −5.60 1.30× 10−29 1.06× 10−25 317 86
ATP1A3 −5.57 1.11× 10−25 9.08× 10−22 354 87
KIFAP3 −5.34 1.50× 10−26 1.23× 10−22 358 100
MAPT −5.13 2.26× 10−23 1.84× 10−19 368 101
CASP3 −4.73 1.53× 10−20 1.25× 10−16 307 83
APEX1 −4.72 8.08× 10−18 6.60× 10−14 346 76
COX10 −4.56 5.61× 10−14 3.28× 10−10 97 55
NDUFS8 −4.52 1.57× 10−15 1.29× 10−11 352 73
ZNF292 −4.36 4.91× 10−13 4.01× 10−9 339 60
GSTA4 −4.12 3.74× 10−14 3.06× 10−10 337 73
STX1B −4.01 3.34× 10−16 2.72× 10−12 235 72
OPTN −3.95 4.06× 10−16 3.32× 10−12 338 88

Continued on next page
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Table 2 – Continued from previous page

Gene log2(fold change) p-Value Adjusted
p-Value

Num.
Control
Cells

Num.
Targeted
Cells

SOD1 −3.84 3.71× 10−15 3.03× 10−11 364 85
NDUFV1 −3.72 8.89× 10−11 5.80× 10−7 320 62
CALB1 −3.62 4.02× 10−7 8.21× 10−4 50 64
EEF2 −3.60 2.61× 10−12 5.32× 10−9 367 63
BIN1 −3.57 3.12× 10−11 2.55× 10−7 315 67
SCFD1 −3.56 2.38× 10−6 3.60× 10−4 249 32
PON2 −3.50 6.35× 10−11 5.18× 10−7 99 74
BAX −3.45 3.23× 10−14 2.63× 10−10 230 86
SCAPER −3.07 1.37× 10−9 1.12× 10−5 311 71
CYB561 −3.06 1.15× 10−5 1.57× 10−3 138 32
AKAP9 −3.00 1.13× 10−9 9.21× 10−6 366 79
VPS35 −2.97 1.38× 10−8 3.76× 10−5 334 65
PRNP −2.92 8.65× 10−9 2.35× 10−5 253 72
AP2A2 −2.87 2.51× 10−11 2.05× 10−7 332 99
SOD2 −2.80 6.16× 10−8 5.03× 10−5 188 61
BECN1 −2.79 7.42× 10−5 1.89× 10−2 148 27
SNCB −2.71 3.35× 10−8 9.12× 10−5 144 68
CDH11 −2.71 1.55× 10−6 1.58× 10−3 97 61
ELOVL5 −2.66 1.36× 10−9 1.11× 10−5 173 92
NTRK2 −2.66 2.21× 10−4 1.62× 10−2 237 31
DAP −2.65 8.90× 10−8 3.63× 10−4 156 70
EIF4G1 −2.49 1.17× 10−6 1.63× 10−3 281 68
TRPM7 −2.46 5.46× 10−7 4.46× 10−3 100 85
COASY −2.37 1.06× 10−7 4.32× 10−4 120 101
TRAP1 −2.34 1.82× 10−7 7.44× 10−4 206 86
CYP46A1 −2.32 5.03× 10−7 4.11× 10−3 163 86
PARP1 −2.25 2.66× 10−7 9.08× 10−4 320 88
FOXRED1 −2.25 4.29× 10−5 1.78× 10−2 139 53
AFG3L2 −2.24 2.13× 10−6 8.69× 10−3 274 79
RAB7A −2.14 9.64× 10−8 3.94× 10−4 344 95
PPP2R2B −2.13 8.95× 10−6 8.84× 10−3 324 77
RGS2 −2.10 1.73× 10−5 1.09× 10−2 118 78
AMFR −2.08 1.61× 10−4 4.88× 10−2 96 69
MRPL10 −2.06 7.03× 10−5 1.34× 10−2 127 69
ANO10 −1.94 1.86× 10−5 8.91× 10−3 145 92
DMXL1 −1.94 6.13× 10−5 2.15× 10−2 107 89
HYOU1 −1.91 2.91× 10−5 1.83× 10−2 177 86
HTT −1.89 9.44× 10−7 3.85× 10−3 200 125
ECHS1 −1.88 2.57× 10−6 6.12× 10−3 332 96
CYCS −1.85 1.45× 10−6 3.04× 10−3 365 65
CEP63 −1.84 3.53× 10−5 1.92× 10−2 158 87
FARP1 −1.80 6.95× 10−5 3.14× 10−2 327 74
FRMD4A −1.72 7.80× 10−4 2.36× 10−3 246 67
RPL6 −1.66 3.29× 10−9 2.69× 10−5 368 87
PFN1 −1.50 2.87× 10−5 2.93× 10−2 366 76

A.4 PRE-PROCESSING

Cell Filtering Cells expressing fewer than θg genes are excluded. Formally, cell i is removed if its
gene count

∑
j 1{Xij>0} is less than θg, where Xij denotes the expression level of gene j in cell i,

and 1 represents the indicator function.

Gene Filtering Similarly, genes expressed in fewer than θc cells are discarded. A gene j is eliminated
if
∑

i 1{Xij>0} falls below θc.
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Normalization and Logarithmic Scaling The gene expression dataset undergoes normalization to
equalize expression levels across cells, parameterized by ’counts per cell after’. Post-normalization,
logarithmic scaling is applied: X ′

ij = log(1 +Xij), with Xij being the normalized expression of
gene j in cell i.

Identification of Highly Variable Genes Genes are deemed highly variable based on their mean
expression µj and dispersion σ2

j , constrained within specified thresholds. A gene j qualifies as highly
variable if it satisfies θµ,min < µj < θµ,max and σ2

j > θσ .

Scaling Subsequently, gene expression levels are standardized, ensuring zero mean and unit variance
for each gene: X ′

ij =
Xij−X̄j

σj
, where X̄j and σj denote the mean and standard deviation of gene j’s

expression, respectively.

Final Steps Post-selection of highly variable genes, further scaling is applied: X ′′
ij =

min(max(X ′
ij ,−θmax), θmax). This step ensures that the data range remains within predefined limits,

specified by θmax.

A.5 PROJECTION TO REDUCED SUBSPACE

In downstream analysis, Principal Component Analysis (PCA) is utilized to reduce the dimensionality
of a gene expression matrix, X′′ ∈ RN×d, comprising N cells and d genes. This process involves the
eigendecomposition of the covariance matrix Σ of pre-processed data X′′, to compute eigenvectors vi
and their corresponding eigenvalues λi, satisfying the equation Σvi = λivi. The top m eigenvectors,
selected based on the magnitude of their eigenvalues, are represented as a matrix Vm ∈ Rd×m.
The data X′′ is then projected onto the lower-dimensional subspace defined by Vm, resulting in the
projected data Xproj = X′′Vm, where Xproj ∈ RN×m and m ≪ d.

A.6 RELIABILITY TESTING: KOLMOGOROV-SMIRNOV TEST

Algorithm 2 K-S Test for Each Principal Component of a High-Dimensional Sample against a
Gaussian Reference Distribution

1: Null Hypothesis H0: The data for principal component i follows the reference distribution f(x).
2: Significance Level α: Threshold (α = 0.05) to decide on the null hypothesis based on the K-S

statistic.
3: for each principal component i in xproj ∈ RN×m do
4: Extract all data points in dimension i to form Si = {x1,i

proj, x
2,i
proj, . . . , x

N,i
proj}

5: Compute mean µi and variance σ2
i of Si

6: Define the Gaussian reference distribution f(x) = N (x;µi, σ
2
i )

7: Sort Si in ascending order
8: for j = 1 to N do
9: Femp(x

j,i
proj) =

j
N ▷ Empirical Cumulative Distribution Function (ECDF)

10: Fref(x
j,i
proj) =

∫ xj,i
proj

−∞ f(x) dx ▷ CDF of the Reference Gaussian Distribution
11: Dj,i = |Femp(x

j,i
proj)− Fref(x

j,i
proj)| ▷ K-S Statistic

12: end for
13: Di = maxj D

j,i

14: if Di is greater than the critical value at significance α for dimension i then
15: Reject H0 for dimension i
16: else
17: Do not reject H0 for dimension i
18: end if
19: end for

To ascertain if GMM is an appropriate to model the scRNA-seq data, we apply Kolmogorov-Smirnov
(K-S) Test to all principal components as detailed in Algorithm 2. If the K-S test suggests that the
data is not drawn from a single Gaussian, this can be an initial hint (though not definitive proof) that
a GMM might be suitable. Although this approach may not capture the true multivariate nature of
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the data or account for inter-feature dependencies, it is useful in identifying the presence of multiple
modes or clusters in the data.

A.7 MAP PARAMETER ESTIMATION

Algorithm 3 MAP Parameter Estimation for the GMM via the EM Algorithm

1: Input: {k,x}. k denotes the number of Gaussian components. x ∈ RN×m denotes N samples,
each with m dimensions after PCA.

2: Output: {π1:k,µ1:k,Σ1:k} MAP parameter estimates, where πk is the prior probability, µk ∈
Rm is the mean vector, and Σk ∈ Rm×m is the covariance matrix of cluster k.

3: Initialize πi,µi,Σi for i = 1 : k.
4: repeat
5: for i = 1 : k do ▷ Iterate through each Gaussian component in the mixture.
6: for j = 1 : N do ▷ Calculate log-likelihood & posterior for each sample.
7: logP (xj | πi) = −m

2 log(2π)− 1
2 log |Σi| − 1

2 (xj − µi)
TΣ−1

i (xj − µi)
8: ai,j = logP (xj | πi) + logP (πi)

9: logP (xj) = log
∑k

l=1 exp(al,j −maxl al,j) + maxl al,j ▷ Log-Sum-Exp trick
10: P (πi | xj) = exp(ai,j − logP (xj)) ▷ E-Step
11: end for
12: µi =

∑N
j=1 P (πi|xj)xj∑N
j=1 P (πi|xj)

13: Σi =
∑N

j=1 P (πi|xj)(xj−µi)(xj−µi)
T∑N

j=1 P (πi|xj)
▷ M-Step

14: πi =
1
N

∑N
j=1 P (πi | xj) ▷ Update the priors for each component

15: α = 0.01× mean(diag(Σi))
16: Σi = Σi + αI ▷ Tikhonov regularization
17: end for
18: until Convergence or maximum number of EM iterations

A.8 TIKHONOV REGULARIZATION

We introduce a bias to stabilize the covariance matrix by adding a scaled identity matrix:

Σ̃ = Σ + αI (6)

where α is a small positive regularization parameter and I is the identity matrix of the same dimension
as Σ. The choice α = 0.01 × mean(diag(Σi)) is a heuristic wherein the covariance matrix is
regularized by adding 1% of its average variance to its diagonal. This represents an arbitrary yet
small perturbation. Benefits of covariance regularization include:

• Invertibility: When the number of dimensions is close to or exceeds the number of data
points, Σ might be singular. Regularization ensures its invertibility.

• Stability: For ill-conditioned matrices, their inversion can be highly sensitive to slight
changes in the data. Regularization stabilizes the inversion process. The condition number
is a commonly used measure to gauge the stability of a matrix, especially when it comes
to measuring how a matrix will amplify errors in problems involving matrix inversion or
solving linear systems. The condition number of a matrix A in terms of its norm is defined
as:

κ(A) = ∥A∥ · ∥A−1∥
For the 2-norm (or Euclidean norm), it can be expressed in terms of the singular values σmax
and σmin of A as:

κ2(A) =
σmax

σmin

Given a linear system Ax = b:
If κ(A) ≈ 1, then A is well-conditioned. This implies that for small relative changes in b or
δA, the corresponding changes in the solution x are also small.
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If κ(A) ≫ 1, then A is ill-conditioned. In this scenario, even minor relative perturbations in
b or δA can lead to significant variations in the solution x.

• Positive Definiteness: Covariance matrices should be positive semi-definite. Regularization
ensures the resulting matrix is positive definite.

• Eigenvalue Shrinkage: The regularization effectively increases each eigenvalue of Σ by α,
beneficial when there is a need to dampen the influence of high variance variables.

A.9 IMPLEMENTATION OF HIT-AND-RUN MARKOV CHAIN SAMPLER

We implemented this code to simulate the performance of Hit-and-Run sampling in estimating
the cross-covariance matrix between two distributions. Two sets of parameters (means and covari-
ances) for two different multivariate normal distributions are used to generate two sets of samples:
base samples and noise. base samples are generated using the first set of parameters
(mean1, cov1) by sampling from the corresponding multivariate normal distribution. Similarly,
noise is generated using the second set of parameters (mean2, cov2). To create a correlation
between these two sets of samples, the function uses a correlation factor. This factor deter-
mines how much of the final synthetic data (correlated samples) will be influenced by the
base samples versus the noise. This introduces a controlled amount of dependence between
the two sets of samples, simulating correlated data. By controlling the correlation factor,
the code can simulate different degrees of correlation between the two sets of data. This synthetic
data is then used in the code to evaluate the performance of the Hit-and-Run sampler in estimating the
cross-covariance of correlated distributions. It evaluates the accuracy of the estimation by comparing
it to a ground truth and measures performance using Root Mean Square Error (RMSE) and Frobenius
norm.
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import numpy as np
from scipy.stats import multivariate_normal, norm
import matplotlib.pyplot as plt

def generate_random_params(dimension: int) -> tuple:
"""
Generate random means and covariances for a given dimension.

Args:
dimension (int): The dimensionality of the mean and covariance.

Returns:
tuple: A tuple containing the mean vector and covariance matrix.
"""
mean = np.random.randn(dimension)
random_matrix = np.random.randn(dimension, dimension)
# Symmetric, positive-definite matrix
cov = np.dot(random_matrix, random_matrix.T)
# Small positive value to the diagonal for numerical stability
cov += np.eye(dimension) * 1e-6
return mean, cov

def generate_non_independent_data(
mean1: np.ndarray,
cov1: np.ndarray,
mean2: np.ndarray,
cov2: np.ndarray,
num_samples: int,
correlation_factor: float,

) -> tuple:
base_samples = np.random.multivariate_normal(mean1, cov1, num_samples)
noise = np.random.multivariate_normal(mean2, cov2, num_samples)
correlated_samples = base_samples * correlation_factor + noise * (

1 - correlation_factor
)
return base_samples, noise, correlated_samples

def get_non_zero_density_bounds(
cov: np.ndarray,
point: np.ndarray,
direction: np.ndarray,
confidence: float = 0.95,

) -> tuple:
"""
Calculate the bounds for non-zero density in a specified direction.

Args:
cov (np.ndarray): Covariance matrix of the distribution.
point (np.ndarray): Current point in the distribution.
direction (np.ndarray): Direction vector for calculating bounds.
confidence (float, optional): Confidence level for the bounds.

Default is 0.95.

Returns:
tuple: A tuple of lower and upper bounds.
"""
# Normalize the direction vector
direction_normalized = direction / np.linalg.norm(direction)

# Project the point onto the direction
point_projection = np.dot(point, direction_normalized)
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# Calculate the variance of the projection
variance_projection = np.dot(

direction_normalized.T, np.dot(cov, direction_normalized)
)
# Calculate the standard deviation of the projection
std_deviation = np.sqrt(variance_projection)
# Find the z-scores for the specified confidence interval
z_score = norm.ppf((1 + confidence) / 2)

# Calculate the bounds
lower_bound = point_projection - z_score * std_deviation
upper_bound = point_projection + z_score * std_deviation
return lower_bound, upper_bound

def estimate_cross_covariance(
mean1: np.ndarray,
cov1: np.ndarray,
mean2: np.ndarray,
cov2: np.ndarray,
ground_truth: np.ndarray,
num_iterations: int = 1000,

) -> tuple:
"""
Estimate the cross-covariance matrix using Hit-and-Run Markov chain
sampling and calculate the RMSE and Frobenius norm at each iteration.

Args:
mean1, mean2 (np.ndarray): Mean vectors of the first and

second distributions.
cov1, cov2 (np.ndarray): Covariance matrices of the first and

second distributions.
ground_truth (np.ndarray): Ground truth cross-covariance matrix.
num_iterations (int, optional): Number of iter. for sampling.

Default is 1000.

Returns:
tuple: Estimated cross-covariance matrix, list of RMSE values,

and list of Frobenius norms.
"""
rmse_values, frobenius_norms = [], []

# Random initialization of cross-covariance matrix
dimension = mean1.shape[0]
random_matrix = np.random.randn(dimension, dimension)
cross_covariance = (

np.dot(random_matrix, random_matrix.T) + np.eye(dimension) * 1e-6
)

# Initialize starting points
x_current = np.random.multivariate_normal(

mean1, np.diag(np.ones(dimension))
)
y_current = np.random.multivariate_normal(

mean2, np.diag(np.ones(dimension))
)

for i in range(1, num_iterations + 1):
# Hit-and-Run sampling for X
direction_x = np.random.randn(len(mean1))
lb_x, ub_x = get_non_zero_density_bounds(

cov1, x_current, direction_x
)
x_current = np.random.uniform(lb_x, ub_x)
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# Hit-and-Run sampling for Y
direction_y = np.random.randn(len(mean2))
lb_y, ub_y = get_non_zero_density_bounds(

cov2, y_current, direction_y
)
y_current = np.random.uniform(lb_y, ub_y)

# Sequential update on cross-covariance matrix
deviation_x = x_current - mean1
deviation_y = y_current - mean2
cross_covariance = (i / (i + 1)) * cross_covariance + (

i / (i + 1) ** 2
) * np.outer(deviation_x, deviation_y)

# Update rmse values and frobenius_norms
rmse = np.sqrt(np.mean((cross_covariance - ground_truth) ** 2))
rmse_values.append(rmse)
fro_norm = np.linalg.norm(cross_covariance - ground_truth, "fro")
normalized_fro_norm = fro_norm / np.sqrt((dimension**2))
frobenius_norms.append(normalized_fro_norm)

return cross_covariance, rmse_values, frobenius_norms

def main(
dimension: int,
num_iterations: int = 1000,
correlation_factor: float = 0,

) -> list:
"""
Process and estimate cross-covariance for a given dimension with an
imposed correlation factor.

Args:
dimension (int): The dimensionality of the distribution.
num_iterations (int, optional): Number of iter. for sampling.

Default is 1000.
correlation_factor (float, optional): Factor to impose

correlation between the two distributions. Default is 0.

Returns:
list: List of RMSE values over iterations and list of Frobenius

norms for iterations.
"""
mean1, cov1 = generate_random_params(dimension)
mean2, cov2 = generate_random_params(dimension)

# Generate correlated samples
_, _, correlated_samples = generate_non_independent_data(

mean1, cov1, mean2, cov2, num_iterations, correlation_factor
)

# Calculate the ground truth cross-covariance matrix
ground_truth = np.cov(correlated_samples, rowvar=False)

_, rmse, frobenius_norms = estimate_cross_covariance(
mean1, cov1, mean2, cov2, ground_truth, num_iterations

)
return rmse, frobenius_norms

if __name__ == "__main__":
dimensions = [100]
num_iterations = 1000
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correlation_factors = [0.0, 0.1, 0.2, 0.5]

# Dictionary to store results for each correlation factor
all_results = {}

# Compute results for each correlation factor and dimension
for factor in correlation_factors:

all_results[factor] = {
dim: main(dim, num_iterations, factor) for dim in dimensions

}

plt.figure(figsize=(16, 5))
lines = [] # To store line objects for the legend
labels = [] # To store label strings for the legend

for i, factor in enumerate(correlation_factors):
plt.subplot(2, 4, i + 1)

# Retrieve results for this correlation factor
results = all_results[factor]

# Plotting RMSE values
for dim, (rmse, _) in results.items():

(line,) = plt.plot(rmse, label=f"d={dim}", linewidth=1)
if i == 0: # Only add to legend for the first subplot

lines.append(line)
labels.append(f"d={dim}")

plt.title(f"$\\rho$: {factor}", fontsize=12)
plt.xlabel("# of iterations", fontsize=10)
plt.ylabel("RMSE", fontsize=10)
plt.xlim(0, num_iterations)
plt.grid(True)

for i, factor in enumerate(correlation_factors):
plt.subplot(2, 4, i + 5)

# Retrieve results for this correlation factor
results = all_results[factor]

# Plotting Frobenius norms
for dim, (_, fro_norm) in results.items():

plt.plot(fro_norm, label=f"d={dim}", linewidth=1)

plt.title(f"$\\rho$: {factor}", fontsize=12)
plt.xlabel("# of iterations", fontsize=10)
plt.ylabel("Frobenius norm", fontsize=10)
plt.xlim(0, num_iterations)
plt.grid(True)

plt.figlegend(
lines,
labels,
loc="upper center",
ncol=len(dimensions),
fontsize=10,

)
plt.tight_layout(rect=[0, 0, 1, 0.95])
plt.show()
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(a) d = 100: Convergence trends at high-dimensional setting.
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(b) d = 50: Mid-dimensional performance.
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(c) d = 20: Comparative analysis in a moderate/low dimensional space.

Figure 5: Performance Analysis of the Hit-and-Run Markov Chain Sampler on Synthetic Data. The
plots demonstrate the convergence behavior of the sampler in terms of RMSE and Frobenius norm
over 1000 iterations, across varying levels of correlation factor ρ ranging from 0.0 to 0.5. These
results show the efficiency and accuracy of the sampler for different dimensions d of the synthetic
data.
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