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ABSTRACT

This perspective argues that evaluating AI virtual cells requires moving beyond
predictive accuracy toward assessing their ability to function as causal world mod-
els of biology. Existing benchmarks emphasize fit to observed data, rewarding pat-
tern matching but failing to test responses to interventions. We propose that trust-
worthy virtual cells require causal evaluation: metrics and benchmarks that as-
sess intervention validity, counterfactual consistency, trajectory faithfulness, and
mechanistic alignment. Our contribution is two-fold: (1) a survey of recent ap-
proaches to virtual cell modeling, and (2) a taxonomy of causal evaluation metrics
mapped to available perturbation datasets and benchmarks. By outlining gaps and
proposing unified causal benchmarks, we position causal evaluation as the key
step toward making virtual cells reliable world models of biology.

1 INTRODUCTION

Modern biology sits at a crossroads: even with the complete genetic code and vast single-cell at-
lases such as the Human Cell Atlas (Regev et al., 2017), CELLxGENE (Program et al., 2025),
Tahoe-100M (Zhang et al., 2025), and scPerturb (Peidli et al., 2024), our ability to predict cellular
responses to drugs, mutations, or environmental change remains limited (Wen et al., 2023; Rood
et al., 2024). The bottleneck is not lack of data, but models that fail to capture how biological sys-
tems actually work (Glocker et al., 2021; Listgarten, 2024). Recent biological Foundation Models
(FMs) such as GeneFormer (Zheng & Gao, 2023), Evo2 (Brixi et al., 2025), scFoundation (Hao
et al., 2024), and AIDO (Ellington et al., 2025) show impressive predictive power, but are often
limited to a single biological layer and capture associations rather than causal mechanisms. Despite
their variety, these models remain predictive rather than causal, with evaluations centered on ac-
curacy or likelihood rather than causal validity. Some advanced models fail to outperform simple
linear baselines (Rood et al., 2024; Peidli et al., 2024). Efforts like PerturBench (Peidli et al., 2024)
have begun to standardize predictive benchmarking, but there is still no equivalent of ImageNet
(Deng et al., 2009) or GLUE (Wang et al., 2018) for causal evaluation. Biology is hierarchical (i.e.,
genome, transcriptome, proteome, metabolome, phenome), and disregarding this interdependence
yields models that are fundamentally misaligned with the underlying biology (Kitano, 2002; Hood
& Flores, 2012).

This raises the motivating question: When does a predictive model of cells become a true world
model, able to answer counterfactuals and generalize beyond its training data? Because no dataset
fully captures the multilayered complexity of the cell, uncertainty is an inherent property of both
biological systems and virtual models. Evaluation must therefore address not only whether a pre-
diction is correct, but also how confident we should be in that prediction. To this end, our vision of
AI virtual cells is simulation-ready representations that reason about mechanisms, predict perturba-
tion responses, and serve as in silico testbeds (Bunne et al., 2024; Carr et al., 2024; Noutahi et al.,
2025). These can be thought of as biological world models, not just reproducing observed data but
answering “what if” and “how” questions.

Our contribution is two-fold: (1) a survey of recent approaches to virtual cell modeling, and (2) a
taxonomy of causal evaluation metrics mapped to available perturbation datasets and benchmarks
(Figure 1). We do not prescribe how to build causal virtual cells; rather, we argue that without princi-
pled evaluation, progress toward trustworthy, mechanistic virtual biology will remain directionless.
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Figure 1: Summary of our proposed framework, which is described in Section 4.

2 RELATED WORK: PREDICTIVE APPROACHES

Predictive approaches to virtual cell modeling aim to reproduce observed cell states or transitions
rather than identify or test cause–effect relationships. In this section, we review predictive models,
the data used to create them, and how they are evaluated, before outlining their key limitations.

2.1 MODELS

Autoencoder-based and conditional architectures such as scGen (Lotfollahi et al., 2019), CPA (Lot-
follahi et al., 2021), GEARS (Roohani et al., 2024), scCade (Ou et al., 2024), and scPerb (Tang
et al., 2024) interpolate from control to perturbed states, while models like Biolord (Piran et al.,
2024), CoupleVAE (Wu et al., 2025), SAMS-VAE (Bereket & Karaletsos, 2023), scVI (Lopez et al.,
2018), and CRADLE-VAE (Baek et al., 2025b) enhance latent representations or capture combina-
torial and differential perturbations. Other architectures include MichiGAN, which applies GANs
for disentangled single-cell generation (Yu & Welch, 2021), CellFlow, which uses flow-matching
for phenotype modeling (Klein et al., 2025), and CellOT, which applies optimal transport to map
cellular trajectories (Bunne et al., 2023). Beyond autoencoders and GANs, diffusion models (Ho
et al., 2020; Song et al., 2020) have been adapted for imputation, denoising, and simulation tasks.

Biological FMs build on the same generative principles but distinguish themselves by scale and
scope: they are pretrained on millions of cells or sequences and fine-tuned across diverse down-
stream tasks, enabling broader transferability. However, these evaluations remain predictive, em-
phasizing reconstruction accuracy or classification performance. Genomic/DNA FMs are trained
on DNA sequences to understand regulatory functions and predict genetic outcomes. They enable
variant effect prediction, with Enformer (Avsec et al.) and Geneformer (Theodoris et al., 2023)
tackling regulatory variants, and EVO2 (Brixi et al., 2025) achieving breakthrough performance on
noncoding pathogenicity. FMs learn RNA sequence–structure relationships for tasks such as RNA
structure/function prediction (RiNALMo (Penić et al., 2025), HydraRNA (Li et al., 2025a)), mRNA
design (mRNA-FM (Li et al., 2025c)), and RNA modification site detection (AIDO.RNA (Zou et al.,
2024)). Protein FMs predict structures, attributes, and guide design. Beyond structure, they estimate
stability and binding affinity, critical for therapeutic applications. Use cases include de novo protein
design (ProtGen (Madani et al., 2023), ProtGPT2 (Ferruz et al., 2022)), structure prediction (ESM-2
(Lin et al., 2023), ESM-3 (Hayes et al., 2025), MSA-transformer (Rao et al., 2021), Boltz-2 (Pas-
saro et al., 2025), AlphaFold 3 (Abramson et al., 2024)), and single-sequence property prediction.
Single-cell FMs analyze omics data, often across modalities, to model cellular states. Applications
include cell type annotation (scBERT (Yang et al., 2022), scGPT (Cui et al., 2024), CellFM (Zeng
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et al., 2025)), batch correction (scPRINT (Kalfon et al., 2025b)), and perturbation response predic-
tion (scFoundation (Hao et al., 2024), CellFM (Zeng et al., 2025)). Multi-modal FMs are emerging
to unify layers. SCARF integrates scRNA-seq and scATAC-seq (Liu et al., 2025), LucaOne unifies
DNA, RNA, and protein (He et al., 2024), and ChatNT frames genomic tasks as text-to-text (Richard
et al., 2024). Simulation-aware models such as scMultiSim (Li et al., 2025b) and Xpressor (Kalfon
et al., 2025a) capture cross-modality dynamics. These highlight progress beyond single layers, but
integration remains challenging, with evaluation still dominated by predictive accuracy rather than
causal benchmarks.

2.2 DATA

The datasets highlighted here are widely used in virtual cell modeling, supporting training and eval-
uation of models that capture cell states or transitions without testing causal mechanisms. Large-
Scale Atlases. Projects such as Tahoe-100M (Zhang et al., 2025) and Parse-PBMC (Parse Bio-
sciences, 2023), now provide internally consistent datasets with millions to over one hundred million
cells. The success of baseline-only efforts such as Tabula Sapiens (Quake & Consortium, 2024) and
the Human Cell Atlas (Regev et al., 2017) highlights the importance of coordination across tissues
and donors. Aggregation initiatives such as scBaseCount (Youngblut et al., 2025) and CELLxGENE
(Program et al., 2025) have further created large harmonized resources by systematically combining
hundreds of smaller public datasets. Synthetic Data Generators. Splatter (Zappia et al., 2017),
SymSim (Zhang et al., 2019), and scDesign3 (Song et al., 2024) are increasingly used to generate
controlled transcriptomic data for benchmarking predictive models. Predictive virtual cell models
sometimes integrate Clinical and Phenotypic Data. The Cancer Genome Atlas (TCGA) (Tomczak
et al., 2015), for example, has been used to link single-cell embeddings to tumor states (Tao et al.,
2019; Chu et al., 2022), while UK Biobank (Bycroft et al., 2018) and EHR-derived datasets like the
All of Us Research Program (All of Us Research Program Investigators, 2019) support predictive
modeling of disease risk or treatment outcomes.

2.3 EVALUATION

Evaluation in predictive virtual cell modeling relies on established metrics and strategies that mea-
sure how well models reproduce observed cell states or transitions. We organize these into met-
rics that assess predictive fit (e.g., sequence modeling, classification, perturbation response) and on
strategies that give these metrics meaning through baseline comparisons and generalization tests.

2.3.1 METRICS

Predictive virtual cell models are typically evaluated using scalar metrics that quantify how well
model outputs match observed data, and provide the basic measures of predictive fit. Sequence
modeling metrics are used by Evo 2 as a proxy for evaluating how well the predicted biological
sequence distribution matches the ground truth, as we all as a measure of gene essentiality (Brixi
et al., 2025). Sequence classification metrics are computed by RNA FMs for distinguishing the
introns vs. exons regions, splice variations, and splice variations (Chen et al., 2022a). Categorical
cross entropy, for instance, can be used to assess the predicted output distribution in relation to la-
bels from the set of class labels. Epigenome prediction is a common task which requires predicting
expression values to compare to the ground truth expression values (Lotfollahi et al., 2019; 2021;
Roohani et al., 2024; Ou et al., 2024; Tang et al., 2024). Mean absolute error, mean squared error
(MSE), R2, and cosine similarity are commonly used as metrics for regressing continuous expres-
sion values. Detection metrics are applied to the prediction of genetic interaction (Roohani et al.,
2024). Subcellular localization evaluates predictions of spatial cell properties by comparing a set
of predicted, labeled 2D Euclidean clusters to the ground-truth labeled cellular subcomponenets.
Adjusted rand index (ARI) and adjusted mutual information are used to evaluate the SubCell (Gupta
et al., 2024), and average probability of correct label is used to evaluate DeepProfiler (Tomkinson
et al., 2024) and CellProfiler (Stirling et al., 2021). Macroscopic cell state detection (of cell type
and cell health, for example) is also commonly used as a benchmark for virtual cell models (Brixi
et al., 2025). This involves comparing the predicted per-state logistic labels, to the binary ground
truth labels. Typical retrieval metrics are employed by (Brixi et al., 2025), such as recall, preci-
sion, F1, ROC-AUC, etc. Similarly, drug Mechanism-of-Action (MoA) is also used as detection
benchmark in the same fashion. Epigenome delta prediction evaluates models on their ability to
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predict perturbation outcomes. Here, epigenetic deltas are extracted from the model and compared
against the ground truth deltas. Fold-change, log fold-change, DE overlap accuracy, directionality
agreement, Wilcoxon rank-sum, and Top-k precision are commonly applied metrics in this setting
(Adduri et al., 2025; Ou et al., 2024; Tang et al., 2024).

2.3.2 STRATEGIES

Evaluation strategies define how scalar metrics are applied to assess model capability and generaliza-
tion. Metrics provide raw measures of predictive fit, while strategies organize them into benchmarks,
baseline comparisons, and ablations that guide model selection and assess genuine progress. Rank
based metrics. As noted by PerturBench (Wu et al., 2024), scalar metrics on epigenome prediction
often wash out signal and may encourage effects like “mode collapse.” Rank-based interpretations
(e.g., Log-FC, cosine similarity) better capture differences and align with a common use of virtual
cell models: ranking perturbations by effect size.

Calibration. Many virtual cell models (e.g., scGen (Lotfollahi et al., 2019), CPA (Lotfollahi et al.,
2021), GEARS (Roohani et al., 2024)) are probabilistic, making calibration crucial. Measuring
calibration helps weight predictions by uncertainty and build trust. Negative log-likelihood can be
used for sequence metrics, while Expected Calibration Error (ECE) applies to classification tasks
(Naeini et al., 2015).

2.4 LIMITATIONS OF PREDICTIVE APPROACHES

Predictive frameworks excel at interpolating and extrapolating trajectories but remain black boxes
that lack mechanistic explanations (Moran & Aragam, 2025). They perform well on held-out data
yet struggle to generalize to unseen perturbations or conditions (Jiao et al., 2024; Tejada-Lapuerta
et al., 2025) and they predict outcomes without testing causal guarantees or answering counterfac-
tual questions (Laubach et al., 2021). These limits reflect the data: most resources are observational
or transcriptome-only with few true interventions (Rawal et al., 2025); multi-omic and temporal
datasets remain scarce (Carr et al., 2024); and scRNA-seq yields only static snapshots, prevent-
ing before–after comparisons (Noutahi et al., 2025). Most datasets capture a single layer, leaving
genome-to-proteome mechanisms unevaluated, while the combinatorial complexity of perturbations
demands coordinated community efforts (Tejada-Lapuerta et al., 2025).

Evaluation is likewise dominated by predictive metrics such as MSE, R2, and log-likelihood, which
capture correlations but not mechanisms (Goshisht, 2024). Even perturbation benchmarks empha-
size regression measures, insufficient for mechanistic alignment (Noutahi et al., 2025). Newer met-
rics, uncertainty quantification (e.g., calibration error (Yao et al., 2019)), distributional similarity
(e.g., MMD (Gretton et al., 2012)), and rank-based evaluation (e.g., LogFC rank in PerturBench
(Peidli et al., 2024)) are progress but still treat predictions as point estimates. In practice, uncer-
tainty guides how results are used: low-confidence predictions signal the need for more data or
refinement, while high-confidence results provide greater justification for moving forward. Uncer-
tainty is therefore a cross-cutting dimension of evaluation, shaping how validity, consistency, and
mechanistic alignment are interpreted.

3 CAUSAL METHODS

Compared to predictive methods that reproduce observed patterns, causal models aim to capture
cause–effect relationships and are judged on whether they reproduce intervention outcomes or gen-
erate counterfactuals consistent with known mechanisms (Zanga et al., 2022; Carr et al., 2024; Pearl,
2012; Bareinboim & Pearl, 2016; Niu et al., 2024). See Figure 2 for a visual comparison of pre-
dictive and causal approaches. Causal machine learning offers a path forward by treating perturba-
tions as structured interventions and seeking mechanisms invariant across environments (Glymour
et al., 2019; Tejada-Lapuerta et al., 2025). Causality in biology can be defined in complemen-
tary ways. (i) A mechanistic view emphasizes biochemical interactions and dynamical processes
(e.g., MAPK phosphorylation cascades that link receptor activation to downstream gene expression)
(Tejada-Lapuerta et al., 2025). (ii) A probabilistic view emphasizes conditional independences in
observational data (e.g., ERK activation being independent of receptor status once Ras activity is ac-
counted for) (Glymour et al., 2019). (iii) A counterfactual view highlights potential outcomes under
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Predictive Approaches Causal Approaches

! Main Goal: 
Pattern Matching

" Evaluation Metrics: 
Accuracy: MSE,  
Distributional: MMD, Adjusted Rand Index 
Classification/Ranking: Recall, F1, Top-k, Precision

R2

❌ Key Limitations: 
Capture correlations, not mechanisms.  
Fail on novel conditions

! Main Goal: 
Capturing Mechanisms

" Evaluation Metrics: 
Intervention Validity: ATE, ITE, SID 
Counterfactual Consistency: Counterfactual 
Reconstruction Error, NMI, ARI 
Mechanistic Alignment: Pathway Fidelity, SHD 
Trajectory Faithfulness: DTW, KL divergence 

❌ Key Limitations: 
Scalability issues 
Limited data 
Deterministic assumptions

Figure 2: Comparison of predictive (Section 2) and causal (Section 3) approaches.

interventions (e.g., asking how a tumor cell’s transcriptome would change if KRAS were knocked
out versus left intact) (Lobentanzer et al., 2024).

3.1 CAUSAL MODELS

Structural Causal Models (SCMs) represent variables as directed graphs with explicit rules for in-
terventions via the do-operator (Pearl, 2012; Rawal et al., 2025). Dynamical causal models extend
this framework, using ordinary or stochastic differential equations to describe how biological states
evolve under perturbation (Tejada-Lapuerta et al., 2025). Together, these perspectives form the foun-
dation for causal virtual cells: models that not only predict cellular responses but also explain them
in terms of mechanisms that remain invariant across conditions.

We highlight four broad families of causal models relevant to virtual cells. Early causal models
in systems biology and pharmacology used ODE-Based Models. Early causal models used ODEs
to describe biochemical networks (Kitano, 2002; Alon, 2019), with classical examples in electro-
physiology and metabolism (Hodgkin & Huxley, 1952; Strassberg & DeFelice, 1993; Noble, 1960;
Courtemanche et al., 1998; Higgins, 1964; Heinrich & Rapoport, 1974; Adamczyk et al., 2011).
Recent methods adapt to single-cell gene regulatory networks (GRN) inference and trajectories:
SCODE (Matsumoto et al., 2017), GRISLI (Aubin-Frankowski & Vert, 2020), SINCERITIES (Pa-
pili Gao et al., 2018); RNA-velocity extensions include scVelo (Bergen et al., 2020), UniTVelo (Gao
et al., 2022), Velorama (Singh et al., 2024), DynaMO (Kuang et al., 2018). GraphDynamo (Zhang
et al., 2023) and STORM (Peng et al., 2024) add graph/stochastic structure. SDEs help with noise but
raise scalability/identifiability challenges (Komorowski et al., 2011; Browning et al., 2020; Persson
et al., 2022). Hybrid Causal Deep Learning Models address the scalability limits of mechanis-
tic models by integrating neural networks. Neural ODEs (Chen et al., 2018) flexibly parameterize
dynamics, Latent ODEs (Rubanova et al., 2019) extend this to hidden states, and Universal Differen-
tial Equations (UDEs) (Rackauckas et al., 2020) embed neural nets within ODEs to learn unknown
processes while preserving structure. In single-cell biology, DeepVelo (Chen et al., 2022b) extends
RNA velocity with neural ODEs, PerturbODE (Lin et al., 2025) models perturbation dynamics, and
PHOENIX (Hossain et al., 2024) integrates lineage information. Knowledge-primed neural net-
works, including sparse MLPs and graph-informed architectures, constrain learning with pathway
priors (Fortelny & Bock, 2020). Graphical and Counterfactual approaches represent cellular de-
pendencies as Directed Acyclic Graphs (DAGs) or SCMs. Causal discovery methods aim to recover
such graphs: constraint-based algorithms such as Peter-Clark and Fast Causal Inference (Spirtes &
Glymour, 1991; Spirtes et al., 2000), score-based approaches like GES (Chickering, 2002), and dif-
ferentiable DAG learners including NOTEARS (Zheng et al., 2018), DAG-GNN (Yu et al., 2019),
and GraN-DAG (Lachapelle et al., 2019). Applications to single-cell data remain early but are grow-
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ing: CausalCell (Wen et al., 2023) integrates multiple strategies for GRN inference, LINEAGEOT
(Forrow & Schiebinger, 2021) combines lineage tracing with optimal transport, and CARDAMOM
(Yuan & Duren, 2025) applies a Bayesian SCM-inspired framework. Invariance-based methods, in-
cluding ICP (Peters et al., 2016), Causal Dantzig (Rothenhäusler et al., 2019), and anchor regression
(Rothenhäusler et al., 2021), identify gene modules stable across environments. Causal Perturba-
tion Prediction models embed causal structure into predictive architectures, enabling counterfactual
simulation and enforcing invariance. scCausalVI (An et al., 2025) disentangles baseline heterogene-
ity from treatment effects using a variational inference framework guided by SCM principles, while
CausCell (Gao et al., 2025) combines SCMs with diffusion-based generative modeling to generate
counterfactual single-cell states. CINEMA-OT (Dong et al., 2023) leverages independent compo-
nent analysis and optimal transport to separate confounding from treatment effects. Other methods
extend this paradigm: GPO-VAE (Baek et al., 2025a) aligns VAE latent spaces with GRN priors,
GraphVCI (Wu et al., 2022) predicts counterfactual responses on graphs, and DCD-FG (Lopez et al.,
2022) infers factor graphs with causal constraints.

3.2 CAUSAL DATA

Unlike predictive resources in Section 2.2, which are mostly observational or baseline-only, causal
modeling requires datasets with explicit interventions, perturbations, or synthetic counterfactuals.
These form the basis for testing whether models capture cause–effect relationships rather than cor-
relations. Perturbation datasets provide the closest analogue to randomized controlled trials in cell
biology (Laubach et al., 2021). High-throughput CRISPR-based screens such as Perturb-seq (Dixit
et al., 2016; Adamson et al., 2016) and its large-scale extensions (Replogle et al., 2022), as well as
Optical Pooled Screens (OPS) (Feldman et al., 2019), have become cornerstones of interventional
single-cell data. Recent large-scale initiatives such as X-Atlas (Huang et al., 2025) extend Perturb-
seq to tens of millions of cells, providing a reference-scale atlas of genetic perturbations that could
serve as a benchmark for causal modeling. These datasets enable direct measurement of how cellular
systems respond to interventions, though they remain sparse, noisy, and limited to subsets of pos-
sible perturbations. For causal inference, single-modality measurements (e.g., transcriptomes) are
often insufficient, as mechanisms span multiple regulatory layers. Emerging perturbational datasets
incorporate multi-omic readouts, including joint measurements of RNA and protein (perturbational
CITE-seq (Stoeckius et al., 2017; Hao et al., 2021)), and chromatin accessibility (Perturb-ATAC
(Rubin et al., 2019)).

3.3 EVALUATION

Evaluation of causal virtual cells requires metrics and strategies that assess whether models capture
underlying mechanisms, respect known biological pathways, and generalize to unseen interventions.

3.3.1 METRICS

Intervention Validity measures whether the model reproduces observed outcomes under experi-
mental interventions (e.g., CRISPR knockouts, drug perturbations). This can be tested through effect
size and causal effect estimation, including (Individual, Average, Conditional Average) Treatment
Effects (ITE, ATE, CATE; respectively), and population-level summaries such as log Fold-Change
(LogFC) (Hill, 2011; Shalit et al., 2017; Winship & Morgan, 1999; Hernán & Robins, 2006). At-
tribution accuracy and regression coefficients further quantify whether responses are correctly at-
tributed to latent or confounding factors (Johansson et al., 2016; Louizos et al., 2017; Schölkopf
et al., 2021). Distributional alignment metrics complement these by comparing predicted and ob-
served interventional outcomes: Structural Intervention Distance (SID, which measures discrep-
ancies in interventional distributions (Sachs et al., 2005; Peters & Bühlmann, 2013)) (Hauser &
Bühlmann, 2012), Maximum Mean Discrepancy (MMD) (Gretton et al., 2012), energy distance
(Székely & Rizzo, 2013), and cluster-preservation indices (e.g., ARI (Hubert & Arabie, 1985)) as-
sess how well causal structure and response space are preserved. Counterfactual Consistency
quantifies whether counterfactual predictions are biologically plausible, mechanistically grounded,
and consistent with both simulated and experimental causal effects. Evaluation involves: (i) coun-
terfactual reconstruction error, which compares predicted states against observed perturbation re-
sponses, using metrics such as Pearson correlation, MSE, Normalized Mutual Information (NMI),
ARI, and marker gene preservation (Gayoso et al., 2022; Lotfollahi et al., 2019); (ii) latent disentan-
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glement scores, to assess how causal factors are separated in latent space, and are quantified via clus-
tering and silhouette-based indices (Bengio et al., 2019; Gao et al., 2025; An et al., 2025); and (iii)
agreement with ground-truth, benchmarked against (semi)synthetic datasets such as GeneNetWeaver
(Schaffter et al., 2011), SynTReN (Van den Bulcke et al., 2006), PerturBench (Wu et al., 2024), and
real-world intervention datasets (e.g., Sachs flow cytometry, Perturb-seq). Trajectory Faithful-
ness measures alignment between predicted and observed time-resolved responses. Perturb-seq,
OPS, and synthetic benchmarks such as DREAM4 (Greenfield et al., 2010) and SynTReN (Van den
Bulcke et al., 2006) provide the experimental and simulated foundations for evaluating trajectory
faithfulness. Evaluation metrics include: (i) trajectory similarity, using Dynamic Time Warping
(DTW), KL divergence of state distributions, and optimal transport to compare predicted versus
experimental temporal profiles (Cuturi, 2013; Chen et al., 2018); (ii) trend alignment, where Pear-
son correlation, MSE, and RMSE quantify concordance between predicted and observed expression
dynamics, including treatment effects (Lotfollahi et al., 2019; An et al., 2025); and (iii) structural
consistency, such as SID and causal graph recovery scores assess whether perturbation trajectories
follow known pathways (Peters et al., 2016). Mechanistic Alignment quantifies overlap between
known pathways and mechanistic constraints. Evaluation includes: (i) pathway fidelity scores, mea-
sure overlap between inferred interactions and curated databases such as KEGG (Kanehisa, 2002)
and Reactome (Fabregat et al., 2018), and assess whether models recover literature-supported mech-
anisms; (ii) invariance tests, evaluate the stability of causal predictions across perturbations, using
conditional independence checks, out-of-distribution generalization, and robustness to modality or
context shifts (Peters et al., 2016; Heinze-Deml et al., 2018); and (iii) causal graph similarity, using
metrics like SID and Structural Hamming Distance (SHD). GRN Recovery tests whether models
recover both the statistical associations and causal intervention structure underlying biological reg-
ulatory graphs like GRNs. Standard measures include: (i) edge prediction accuracy, with AUROC
and AUPR quantifying discrimination between true and false regulatory edges across thresholds; (ii)
graph distance metrics, such as SHD and SID; and (iii) benchmark datasets, including DREAM4
challenges (Greenfield et al., 2010) and GeneNetWeaver (Schaffter et al., 2011) simulations, which
provide community standards for comparing GRN inference methods.

3.3.2 STRATEGIES

Causal evaluation strategies define how metrics are applied to probe causal validity. They specify the
setups, tasks, and comparisons that reveal whether models generalize beyond observed data. Syn-
thetic ground-truth tests enable precise quantification of GRN recovery and counterfactual consis-
tency. Simulation frameworks such as GeneNetWeaver (Schaffter et al., 2011), SERGIO (Dibaeinia
& Sinha, 2020), and scDesign3 (Song et al., 2024) generate datasets with known causal graphs.
Pathway fidelity tasks evaluate whether models preserve mechanistic structure by testing predicted
perturbation effects against curated pathways (e.g., KEGG (Kanehisa, 2002), Reactome (Fabregat
et al., 2018), BioModels (Le Novere et al., 2006)). Invariance-based evaluation tests whether
predictions remain stable across environments or cell contexts, using causal discovery frameworks
such as ICP (Peters et al., 2016) and anchor regression (Rothenhäusler et al., 2021). Generaliza-
tion regimes are examined under unseen single perturbations, novel combinations, and temporal
holdouts. These tasks parallel predictive benchmarks but require causal consistency rather than fit
alone (Arjovsky et al., 2019; Lotfollahi et al., 2019; Schölkopf et al., 2021; An et al., 2025). For
baselines and ablations, causal models are compared against predictive-only baselines (e.g., sc-
Gen (Lotfollahi et al., 2019), CPA (Lotfollahi et al., 2023)), to test whether causal inductive biases
improve counterfactual validity. Component ablations (e.g., removing causal regularizers, pathway
priors) clarify which features drive causal performance (An et al., 2025; Gao et al., 2025). Per-
turbation benchmarks enable systematic evaluation of interventional datasets (e.g., Perturb-seq,
OPS). Frameworks such as PerturBench (Wu et al., 2024) and OP3 (Szałata et al., 2024) provide
standardized tasks for perturbation response prediction, with OP3 emphasizing causal evaluation
criteria such as intervention validity and counterfactual prediction. General causal benchmarks
include broader efforts such as CausalBench (Wang, 2024), which provide reference standards for
evaluating causal inference methods across domains, including perturbation modeling.

3.4 CURRENT LIMITATIONS OF CAUSAL APPROACHES

Causal models for virtual cells provide interpretability and mechanistic grounding but remain lim-
ited by strong assumptions and scalability issues (Bunne et al., 2024; Carr et al., 2024; Lan et al.,
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2025; Noutahi et al., 2025). Many ODE-based and hybrid methods assume acyclicity or causal suf-
ficiency (Michoel & Zhang, 2023; Wen et al., 2023; Tejada-Lapuerta et al., 2025), restricting feed-
back loops and hidden confounders. They also rely on idealized interventions and face unresolved
parameter identifiability challenges (Klipp & Liebermeister, 2006). Consequently, most approaches
remain confined to small circuits, velocity-style embeddings, or low-dimensional summaries rather
than genome-wide, multi-omic contexts (Glymour et al., 2019; Lobentanzer et al., 2024; Lan et al.,
2025). Causal data availability remains a bottleneck (Carr et al., 2024). Perturbation assays such
as Perturb-seq and OPS expand access to interventional data but are sparse, noisy, and context-
biased. Ground-truth causal graphs are rare, temporal measurements limited, and destructive assays
like scRNA-seq prevent before–after comparisons. Synthetic benchmarks help but cannot fully cap-
ture biological complexity or generalize to real systems (Cheng et al., 2022). Evaluation remains
fragmented: efforts emphasize GRN recovery, pathway fidelity, or counterfactual validation, but
no unified taxonomy of causal metrics exists for virtual cells (Bunne et al., 2024). Most evalua-
tions also treat outcomes as deterministic, even though biological systems and perturbational data
are inherently uncertain. Noisy interventions, incomplete priors, and hidden confounders require
models and metrics to propagate uncertainty; otherwise, causal models risk overstating confidence
in fragile or context-specific findings. Overall, causal approaches remain proof-of-concept; without
standardized datasets, metrics, and benchmarks, virtual cells cannot yet reliably test mechanisms
over correlations (Rawal et al., 2025).

4 PROPOSED FRAMEWORK

4.1 MECHANISTIC APPROACHES TO MODEL DESIGN

The ambition for virtual cells is to represent cellular machinery in mechanistic detail, ideally as sys-
tems of differential equations capturing causal interactions and dynamics (Klipp et al., 2005; Alon,
2019). ODEs assume deterministic dynamics and face the “curse of dimensionality,” making whole-
cell simulation infeasible (Waltemath et al., 2011; Tomita et al., 1999). Extensions to SDEs capture
intrinsic noise and uncertainty, essential for models that must quantify confidence as well as mean
behavior. Progress will require hybrids that combine mechanistic grounding with deep learning flex-
ibility. Universal and neural ODEs (Rackauckas et al., 2020; Chen et al., 2018) integrate biological
priors with neural architectures, while causal constraints, sparsity, and disentangled representations
improve interpretability (Brunton et al., 2016; An et al., 2025). Crucially, model design is insepa-
rable from evaluation: benchmarks must test not only predictive accuracy but also causal validity
(Peters et al., 2017; Schölkopf et al., 2021), ideally within a lab-in-the-loop paradigm where models
are iteratively refined with experiments (Frey et al., 2025; Chandak et al., 2023).

4.2 CAUSAL EVALUATION FROM ESTABLISHED DATA

In an ideal setting, causal evaluation would use multi-omic interventional time-series data with
matched controls and rich context. A fundamental challenge is that most widely available datasets
are observational, whereas causal inference requires interventional data (Rawal et al., 2025). Below,
we propose four improvements to leverage existing data.

Quasi-Experimental Design can strengthen existing observational resources with matched controls
to approximate causal contrasts. Propensity score matching (Rosenbaum & Rubin, 1983), paired
sampling (Rubin, 1974), and distributional methods like optimal transport (Peyré et al., 2019) (ex-
emplified by CINEMA-OT (Dong et al., 2023)) illustrate how confounders can be separated from
perturbation effects to reconstruct counterfactual states. The goal is not full causal identification,
but extending robust statistical tools to high-dimensional single-cell settings. Furthermore, most as-
says capture only static snapshots, so obtaining temporal anchors and allowing evaluating trajectory
faithfulness requires proxies such as pseudotime (Trapnell et al., 2014; Saelens et al., 2019), RNA
velocity (La Manno et al., 2018; Bergen et al., 2020), dose–response designs (Subramanian et al.,
2017), and repeated sampling.

Biological Context Enhancement (in the absence of large-scale multi-omic interventional datasets)
can capture interdependencies across molecular layers. The following strategies offer partial solu-
tions: (i) Structured priors, such as KEGG (Kanehisa, 2002), Reactome (Fabregat et al., 2018),
STRING (Szklarczyk et al., 2021), and BioGRID (Oughtred et al., 2019), which provide pathway
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and interaction knowledge for fidelity tests. Meanwhile, ontologies such as GO (Consortium, 2019)
and Cell Ontology (Diehl et al., 2016)) enable dataset alignment, and domain-specific LMs like
BioBERT (Lee et al., 2020) enrich metadata. (ii) Synthetic data-based tools such as GeneNetWeaver
and DREAM (Schaffter et al., 2011; Marbach et al., 2012), SERGIO (Dibaeinia & Sinha, 2020),
DYNGEN (Cannoodt et al., 2021), and scDesign3 (Song et al., 2024) simulate perturbations and
multi-omic readouts, providing ground truth for benchmarking.

Experimental Metadata helps discriminate between experimental variation and true biological sig-
nal. Examples of models that explicitly take these variations into account can be found in (An et al.,
2025), (Gao et al., 2025), (Korsunsky et al., 2019), (Hao et al., 2021), and (Lopez et al., 2018).
The following strategies help prepare datasets to provide this context: (i) Metadata integration on
batch effects, protocols, and sample handling (GEO (Edgar et al., 2002), ArrayExpress (Parkinson
et al., 2009), CELLxGENE (Program et al., 2025)) can stratify analyses; protocol-aware covariates
improve comparability across assays (e.g. 10x vs. Smart-seq2) (Hicks et al., 2018). (ii) Quality con-
trol and robustness, such as UMIs, features, mitochondrial fraction, improve reliability (Luecken &
Theis, 2019), and invariance-based methods such as ICP (Peters et al., 2016) and anchor regression
(Rothenhäusler et al., 2021) test whether relationships remain stable across conditions.

Uncertainty Quantification (UQ) is essential to distinguish true signals from noise. While UQ
alone does not yield causal models, it improves robustness in data-sparse regimes and guides exper-
iment design. Approaches include: (i) Bayesian inference, (ii) Gaussian processes (iii) Ensembles
and resampling (iv) Calibration (v) Information-theoretic scores (e.g. entropy, mutual informa-
tion (BALD), and sensitivity indices (Houlsby et al., 2011)) (vi) Simulation-based inference (SBI)
likelihood-free methods (Cranmer et al., 2020) quantify uncertainty in complex mechanistic models,
with applications to stochastic gene expression (Toni et al., 2009), signaling dynamics (Golightly &
Wilkinson, 2005), and single-cell electrophysiology (Lueckmann et al., 2017). Together, these meth-
ods enable virtual cells to attach explicit confidence to hypotheses, prioritize robust discoveries, and
guide experimental validation in a lab-in-the-loop paradigm.

4.3 UNCERTAINTY-AWARE CAUSAL EVALUATION

A critical step is to adapt existing metrics to be uncertainty-aware, bridging current practice with
the needs of causal virtual cells. For intervention validity, measures such as effect size correla-
tion, treatment effect error, or distributional distances (Hill, 2011) could be extended with calibra-
tion (e.g., ECE (Naeini et al., 2015), Brier score (Glenn et al., 1950)), variance-aware distances,
or likelihood-based comparisons of full distributions. For counterfactual consistency, where out-
comes are unobservable, models should indicate high uncertainty for far out-of-distribution queries
rather than overconfident predictions. For trajectory faithfulness, metrics such as DTW (Berndt
& Clifford, 1994) or KL divergence (Kullback & Leibler, 1951) assume precise trajectories, but de-
structive assays prevent true before/after comparisons; evaluation should propagate error over time
and flag uncertain regions in dose–response or developmental dynamics. For mechanistic align-
ment, pathway fidelity scores and graph distances like SHD and SID are deterministic; uncertainty-
aware versions would weight edges by confidence, assigning higher certainty to well-established
interactions (KEGG (Kanehisa, 2002), Reactome (Fabregat et al., 2018)) and lower to novel ones.

5 DISCUSSION & CONCLUSION

Causal evaluation is the critical test of whether AI virtual cells can evolve from predictive simulators
into trustworthy world models of biology. We outlined a taxonomy of causal metrics, emphasiz-
ing uncertainty as a cross-cutting principle. Standardized benchmarks that integrate interventions,
trajectories, multi-omic context, and uncertainty are essential for robustness, interpretability, and
translational impact. Without them, virtual cells remain unproven; with them, they can become
reliable engines for discovery and therapeutic innovation. Embedding uncertainty at every level en-
sures evaluation asks not only ‘was the prediction correct?’ but also ‘how certain should we be, and
what should we do next?’, providing the foundation for virtual cells that are not just predictive, but
trustworthy and actionable.
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Yan, Rory Stark, Kun Zhang, and Thore Graepel. Perturbench: Benchmarking machine learning
models for cellular perturbation analysis. arXiv preprint arXiv:2408.10609, 2024.

Yulun Wu, Robert A Barton, Zichen Wang, Vassilis N Ioannidis, Carlo De Donno, Layne C Price,
Luis F Voloch, and George Karypis. Predicting cellular responses with variational causal infer-
ence and refined relational information. arXiv preprint arXiv:2210.00116, 2022.

Fan Yang, Wenchuan Wang, Fang Wang, Yuan Fang, Duyu Tang, Junzhou Huang, Hui Lu, and
Jianhua Yao. scbert as a large-scale pretrained deep language model for cell type annotation of
single-cell rna-seq data. Nature Machine Intelligence, 4(10):852–866, 2022.

Jiayu Yao, Weiwei Pan, Soumya Ghosh, and Finale Doshi-Velez. Quality of uncertainty quantifica-
tion for bayesian neural network inference. arXiv preprint arXiv:1906.09686, 2019.

Nicholas D Youngblut, Christopher Carpenter, Jaanak Prashar, Chiara Ricci-Tam, Rajesh Ilango,
Noam Teyssier, Silvana Konermann, Patrick D Hsu, Alexander Dobin, David P Burke, et al.
scbasecount: an ai agent-curated, uniformly processed, and continually expanding single cell
data repository. bioRxiv, pp. 2025–02, 2025.

Hengshi Yu and Joshua D Welch. Michigan: sampling from disentangled representations of single-
cell data using generative adversarial networks. Genome biology, 22(1):158, 2021.

Yue Yu, Jie Chen, Tian Gao, and Mo Yu. Dag-gnn: Dag structure learning with graph neural
networks. In International conference on machine learning, pp. 7154–7163. PMLR, 2019.

Qiuyue Yuan and Zhana Duren. Inferring gene regulatory networks from single-cell multiome data
using atlas-scale external data. Nature Biotechnology, 43(2):247–257, 2025.

Alessio Zanga, Elif Ozkirimli, and Fabio Stella. A survey on causal discovery: theory and practice.
International Journal of Approximate Reasoning, 151:101–129, 2022.

Luke Zappia, Belinda Phipson, and Alicia Oshlack. Splatter: simulation of single-cell rna sequenc-
ing data. Genome biology, 18(1):174, 2017.

Yuansong Zeng, Jiancong Xie, Ningyuan Shangguan, Zhuoyi Wei, Wenbing Li, Yun Su, Shuangyu
Yang, Chengyang Zhang, Jinbo Zhang, Nan Fang, et al. Cellfm: a large-scale foundation model
pre-trained on transcriptomics of 100 million human cells. Nature Communications, 16(1):4679,
2025.

Jesse Zhang, Airol A Ubas, Richard de Borja, Valentine Svensson, Nicole Thomas, Neha Thakar,
Ian Lai, Aidan Winters, Umair Khan, Matthew G Jones, et al. Tahoe-100m: A giga-scale single-
cell perturbation atlas for context-dependent gene function and cellular modeling. BioRxiv, pp.
2025–02, 2025.

Xiuwei Zhang, Chenling Xu, and Nir Yosef. Simulating multiple faceted variability in single cell
rna sequencing. Nature communications, 10(1):2611, 2019.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Yan Zhang, Xiaojie Qiu, Ke Ni, Jonathan Weissman, Ivet Bahar, and Jianhua Xing. Graph-dynamo:
Learning stochastic cellular state transition dynamics from single cell data. BioRxiv, pp. 2023–09,
2023.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in neural information processing systems, 31, 2018.

Yuxuan Zheng and George F Gao. Geneformer: a deep learning model for exploring gene networks.
Science China Life Sciences, 66(12):2952–2954, 2023.

Shuxian Zou, Tianhua Tao, Sazan Mahbub, Caleb N Ellington, Robin Algayres, Dian Li, Yonghao
Zhuang, Hongyi Wang, Le Song, and Eric P Xing. A large-scale foundation model for rna function
and structure prediction. bioRxiv, pp. 2024–11, 2024.

22


	Introduction
	Related Work: Predictive Approaches
	Models
	Data
	Evaluation
	Metrics
	Strategies

	Limitations of Predictive Approaches

	Causal Methods
	Causal Models
	Causal Data
	Evaluation
	Metrics
	Strategies

	Current Limitations of Causal Approaches

	Proposed Framework
	Mechanistic Approaches to Model Design
	Causal Evaluation from Established Data
	Uncertainty-Aware Causal Evaluation

	Discussion & Conclusion

