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(a) Comprehensive performance comparison

(b) Instruction-following text-to-audio comparison

Figure 1: Performance comparison of AudioX against baselines. (a) Comprehensive comparison
across multiple benchmarks via Inception Score. (b) Results on instruction-following benchmarks.

ABSTRACT

Audio and music generation based on flexible multimodal control signals is a
widely applicable topic, with the following key challenges: 1) a unified multi-
modal modeling framework, and 2) large-scale, high-quality training data. As
such, we propose AudioX, a unified framework for anything-to-audio generation
that integrates varied multimodal conditions (i.e., text, video, and audio signals)
in this work. The core design in this framework is a Multimodal Adaptive Fusion
module, which enables the effective fusion of diverse multimodal inputs, enhanc-
ing cross-modal alignment and improving overall generation quality. To train this
unified model, we construct a large-scale, high-quality dataset, [F-caps, compris-
ing over 7 million samples curated through a structured data annotation pipeline.
This dataset provides comprehensive supervision for multimodal-conditioned au-
dio generation. We benchmark AudioX against state-of-the-art methods across a
wide range of tasks, finding that our model achieves superior performance, espe-
cially in text-to-audio and text-to-music generation. These results demonstrate our
method is capable of audio generation under multimodal control signals, showing
powerful instruction-following potentiaﬂ We will release the code, model, and
dataset.

1 INTRODUCTION

In recent years, audio generation, especially for sound effects and music, has emerged as a crucial
element in multimedia creation, showing practical values in enhancing user experiences across a

!Generated samples can be found in https: //anonymous . 4open.science/w/audiox_gen/
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wide range of applications. For example, in social media, film production, and video games, sound
effects and music significantly intensify emotional resonance and engagement with the audience.
The ability to create high-quality audio not only enriches multimedia content but also opens up new
avenues for creative expression.

However, the manual production of audio is time-consuming and requires specialized skills, pre-
senting a compelling research opportunity to automate audio generation. Despite notable advance-
ments (Liu et al.| 2023} |Copet et al., [2024; Wang et al.| 2024), the field has predominantly focused
on specialized models with constrained inputs and outputs. These models often operate with a
single conditioning modality, such as text-to-audio or video-to-audio, and are typically restricted
to a single output domain, like generating either sound effects (Cheng et al., 2025) or music (Tian
et al.,|2025)) exclusively. While a recent trend towards unification is emerging, with some pioneering
works accommodating multiple inputs (Polyak et al.| 2024} Zhang et al.| 2024)), they often lack the
flexibility to support diverse modal combinations and exhibit weak instruction-following abilities.
As a result, the potential of unified models still remains underexplored. We find that a major factor
behind these limitations is the scarcity of high-quality, multimodal data suitable for training unified
systems. Existing datasets are often task-specific, typically providing supervision for only one con-
ditioning modality, such as text-to-audio (Kim et al., 2019), video-to-audio (Chen et al., 2020), or
video-to-music (Tian et al., 2025)). This lack of datasets with diverse and combinable control signals
has significantly hindered the development and training of unified models.

To this end, we propose a unified framework termed AudioX for anything-to-audio generation. We
observe that Transformer-based works (Wu et al.,[2023a;; [Liu et al., [2024b; [Lin et al., [2023)) have ef-
fectively tackled multi-modal alignment, and we build on this success by incorporating Transformer-
based methods into our framework for multi-modal condition handling. Furthermore, diffusion mod-
els have increasingly become leading-edge techniques in the field of high-quality audio and music
generation (Evans et al.| 2024a3b)), outperforming next-token prediction in terms of audio fidelity
(Evans et al., 2024a; |[Majumder et al., 2024). Therefore, we mainly build on Diffusion Transformer
(DiT) to unify multimodal conditions and generate high-fidelity audio. To further enhance mul-
timodal representation learning and alignment, we introduce a lightweight Multimodal Adaptive
Fusion module that adaptively weights and aligns conditioning modalities before fusion, enabling
stronger cross-modal control and yielding significant improvements in generation quality.

To support the training of a unified model, we designed a pipeline using structured annotation and
data augmentation to build IF-caps (Instruction-Following), a large-scale, high-quality multimodal
dataset. The dataset serves as a robust foundation for our approach, containing over 1.3 million
general audio samples and 5.7 million music samples. Training on this large-scale, fine-grained
dataset allows our model to handle flexible multimodal conditions and generate diverse audio genres,
including music and sound effects. Consequently, AudioX enables a range of tasks, including text-
to-audio generation, video-to-audio generation, audio inpainting, and text-guided music completion.

With this unified design and trained on our large-scale dataset, our model demonstrates exceptional
performance and strong instruction-following capabilities. To validate our model’s capabilities, we
benchmark it against state-of-the-art methods across a comprehensive suite of tasks and established
benchmarks. In addition, to rigorously evaluate its instruction-following ability on T2A tasks, we
construct a new benchmark, T2A-bench. As demonstrated in Sec. AudioX achieves state-of-
the-art or comparable results across multiple benchmarks and various tasks, while substantially out-
performing prior methods in instruction-following capabilities. A notable finding from our unified
training approach is that we observe a cross-modal regularization effect under unified training:
improving the quality and granularity of textual supervision reduces alignment noise and leads to
better modality alignment, which jointly improves performance across conditioning modalities (see
Sec.[5.4). This observation provides empirical insight for future multimodal audio generation.

In summary, the main contributions of this work are as follows: 1) We propose AudioX, a unified
framework for anything-to-audio generation that overcomes the limitations of constrained inputs and
outputs. The proposed framework supports audio and music generation from varied multi-modal
conditions, contributing to a new insight into studying generalist models for audio generation.

2) To overcome data scarcity for unified training, we design a data curation pipeline and construct
a large-scale, high-quality dataset, IF-caps, containing over 7 million samples with fine-grained
annotations.
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3) We conduct comprehensive experiments on a wide array of tasks, systematically benchmarking
state-of-the-art methods categorized by their input modalities and output domains. Our extensive ex-
periments demonstrate our model’s strong multi-task capabilities and superior instruction-following
ability.

2 RELATED WORK

Audio and music generation. Recent advances in deep generative models have greatly broadened
the scope of audio and music synthesis. However, most existing methods remain confined to a single
modality or support only limited types of conditioning. For instance, text-to-audio approaches (Liu
et al., 2023} [Kreuk et al.| [2022} |Ghosal et al., 2023; Majumder et al.| 2024} [Evans et al.| [2024aib;
Jiang et al., 2025} Huang et al.,[2023) focus on generating diverse soundscapes from textual prompts,
while text-to-music systems (Copet et al.| 2024} |Liu et al., 2023;2024a;|Ghosal et al., 2023 |Ziv et al.}
2024b) specialize in composing coherent musical pieces. Separate lines of work tackle tasks like
audio inpainting (L1u et al.| 2023} 2024al), primarily with text conditioning. Meanwhile, video-to-
audio methods (Zhang et al.| 2024} [Luo et al.| [2024; [Wang et al., |2024; [Polyak et al.| 2024} (Chen
et al.| 2024) typically generate foley or environmental sounds synchronized to visual cues. Some of
these also incorporate text for additional context, thereby bridging visual and textual modalities. Be-
yond sound effects, video-to-music approaches (Kang et al., 2024; [Liu et al., 2024c; D1 et al.} 2021}
Tian et al.| 2025} [Li et al.| 2024b; |Lin et al., |2024; Li et al., |2024a) align musical compositions with
the visual content to enhance narrative depth in multimedia applications. Despite these advances,
current frameworks often specialize in only one modality or rely on a limited set of input conditions,
hindering multi-task adaptation and restricting their ability to scale or transfer knowledge across
related tasks. In contrast, our unified approach supports both audio and music generation for a broad
range of input conditions—including text, video, and audio—all within a single framework.

Audio Datasets. While substantial research efforts

have led to the creation of valuable datasets for spe-

cific tasks like text-to-audio (Kim et al., 2019; Me1 '|"'||‘l|l|'|l‘||'|l'|'|]|||'|"‘||||H||‘”“||l'|'|l|||“'||"
et al., 2024} |Drossos et al., [2020; |Wu et al., | 2023b),

text-to-music (Copet et al., 2024; |Liu et al., 2024c;
Ramires et al.l 2020), video-to-audio (Chen et al.,
2020; Hershey et al., [2021}; Tian et al., |2020), and
video-to-music (T1an et al., 2025 Zhou et al., [2025)),
their utility for training a generalist unified model
remains limited. These resources are typically con- Audio Music

Gemini

Raw caption

strained to a single conditioning modality and a nar- ( v G ] ( e Car ]
row output domain (e.g., only sound effects or only P pron
music). This fragmentation of data has significantly [ Gty & @ ] ( Genre & Mood ]
hindered progress towards developing more versa-

tile and robust systems. To overcome this critical ( Ordering Relation ] ( Instrument ]
data scarcity, we introduce a large-scale, multimodal ‘

dataset constructed via a novel annotation and aug- [S"“"dEve"’ b e’“""”] ( Tempo ]
mentation pipeline, specifically designed to provide

the comprehensive supervision required for unified l

audio and music generation. “; Qwen2-Audio
Diffusion models. Denoising diffusion models (Ho l Augmentation

et al.| |2020; Song et al. 2020) have become a cor-

nerstone of modern generative modeling, achiev-

ing state-of-the-art results in image (Rombach et al.

2022; Ramesh et al., 2022 Brooks et al., [2023)),
video (Chen et al., 2023; |Ho et al., 2022; |Guo et al.,
2023} |He et al. 2024), and audio synthesis (Popov
et al., [2021; Jeong et al.| 2021} [Liu et al.| [2024a}; 2023} |2022; |[Evans et al., [2024a)). However, their
application in the audio domain has predominantly been limited to single-condition tasks (e.g., text-
to-audio), falling short of the more generalized “anything-to-audio” scenarios where inputs can be
multimodal. To bridge this gap, our unified framework leverages the power of diffusion models for
multi-condition generation, offering a more flexible and universal solution.

Figure 2: Dataset process pipeline.
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3 DATASET PROCESS

Existing audio datasets often lack the high-quality, multimodal conditioning signals necessary to
train versatile, unified models. To address this gap, we designed an effective annotation pipeline that
processes existing video datasets (Chen et al.,[2020; Hershey et al.,2021; Tian et al., 2025)), allowing
us to construct IF-caps, a large-scale dataset with diverse, multi-modal conditions. Our pipeline, as
shown in Fig. [2] operates as follows: First, we employ a powerful multimodal LLM (Gemini 2.5
Pro) to generate a comprehensive set of initial annotations by processing the audio track of each 10-
second video-audio clip. These annotations consist of a holistic global caption and a set of structured
fields. For general audio, these fields include sound event classification and count; for music, they
specify attributes like genre and instrumentation. Then, since using the resource-intensive Gemini
model for the entire dataset is costly, we leverage the open-source Qwen2-Audio (Chu et al., [2024)
model to augment these structured fields at a large scale. Conditioned on both the initial annotations
and the raw audio, the model generates varied captions, enhancing data diversity while manag-
ing costs. Finally, this process yields comprehensive, fine-grained captions for approximately 1.3
million video-audio clips and 5.7 million video-music clips. The diversity of our curated dataset
is highlighted by the word clouds in Fig. 3] More details and samples of our annotated data are
provided in the Appendix [A-T.2]
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Figure 3: Word clouds for our curated dataset, illustrating the diversity of terms for the general audio
(left) and music (right) domains.

4 METHOD

4.1 MODEL DESIGN

Our framework, AudioX, as shown in Fig. 4] is built upon a DiT backbone designed for high-
fidelity audio synthesis. Given video X, text X, and audio X, each modality is passed through
corresponding specialized encoders. To capture the temporal dynamics, the resulting video and
audio features are then processed by a temporal transformer. Finally, the features from all three
modalities are mapped through a projection head to produce the domain-specific embeddings (H,,
H., H,). These embeddings are then fused into a unified condition embedding, which is ultimately
passed to the Diffusion Transformer to guide the generation process.

A key challenge in training a unified model is that signals from different modalities can interfere
with each other, making effective fusion and well-aligned conditioning critical. To address this, we
introduce the lightweight Multimodal Adaptive Fusion (MAF) module. As shown in Fig. E| (right),
the MAF module operates as follows: First, the initial feature embeddings from each modality are
fed into gates, which filter and reweight them to suppress noise and retain the most informative cues.
Next, the gated embeddings are concatenated and attended by learnable queries via cross-attention.
These queries are organized into three modality-specific sets, acting as experts to assess and ag-
gregate evidence across the different data streams. Finally, a self-attention layer consolidates this
aggregated context, and the refined information is dispatched back to the modality paths via residual
updates. This process yields calibrated, modality-specific outputs which are then concatenated to
form the final multimodal condition embedding, H

H,, H., 0. = MAF(H,, H., H,), H. = Concat (ﬁv, H,, H) . (1)



Under review as a conference paper at ICLR 2026

Loss

# Audi
h Trainable GT latent «— " AU410 <—v<|w\| |||\n|||||w‘lw\<\||||v\\"|||‘”|l” M'll-l-llllh-qp.
GT

Encoder
S5 Freeze

& Diffusion Transformer

& Multimodal Adaptive Fusion Module

\% v % A \% T T T T T A A A A A
&  Projection &  Projection &  Projection
#% Visual Encoder #%  Text Encoder # Audio Encoder
t t
A vehicle moves swiftly by in the distance. x-|r~||‘||‘\-||||\w]|x|-|||||uju-||\‘Hh|H“I|l-lvl|k\|ml|w-
Video Text Audio

Figure 4: The AudioX Framework. Specialized encoders process diverse modalities, and a MAF
module unifies these signals into a conditioning embedding H.. The DiT backbone processes the
noisy latent input 2;, conditioning on H,. via cross-attention to generate high-quality audio and
music. (z; and H. notations are omitted for visual clarity).

This final embedding, along with a diffusion timestep ¢, is what conditions the DiT backbone for
the final audio synthesis. As we demonstrate in our ablation studies (Sec. |3E[), the MAF module is
essential for reducing cross-modal interference while improving both the overall generation quality
on multimodal tasks and the model’s instruction-following capabilities.

4.2 TRAINING

The objective of the training process is to effectively integrate multimodal inputs and optimize the
DiT model for generating high-quality audio or music through a robust diffusion and denoising
framework. The details of the training data are provided in Table [A1]in the Appendix. During
training, for each pair (X, X, X, | A), where A is the ground truth we aim to generate, if the
pair lacks video or audio modality input, we use zero-padding to fill the missing modality. If it
lacks text modality input, we substitute with natural language descriptions, such as “Generate music
for the video.” for the video-to-music generation task. For the tasks of audio inpainting and music
completion, the audio modality input is required. In audio inpainting, X, is a masked version
of the ground truth audio A, and the model’s objective is to fill in the masked sections. For music
completion, X is the preceding music segment of A, and the model aims to generate the subsequent
music segment of X.

Diffusion process. The DiT model processes the multimodal embedding H. in the latent space
through a denoising diffusion process. Initially, the ground truth A is encoded using an encoder &,
which projects A into the latent space, yielding the latent representation z = £(A). The data then
undergoes a forward diffusion process, producing noisy latent states at each timestep ¢.

The forward diffusion is defined as a Markov process over T' timesteps, where the latent state at
timestep ¢ is produced based on the latent state at £ — 1:

Q(Zt|Zt71) = N(Zt§ V1= Bizi1, Bil), (2)
where f3; represents the predefined variance at timestep ¢, and A denotes a Gaussian distribution.
The forward diffusion process gradually adds noise to the latent state.

The reverse denoising process involves training a transformer network ey to gradually remove noise
at each timestep and reconstruct the clean data. The reverse process is modeled as follows:

Po (Zt—l‘zt) = N(Zt—l; Ko (Zt7ta HC) ?29 (ZtathC)) ) (3)

where g9 and 3y are the predicted mean and covariance of the reverse diffusion, conditioned on z;,
t, and H.. These parameters define the Gaussian distribution from which z;_; is sampled.

The denoiser network €y takes as input the noisy latent state z;, timestep ¢, and the multimodal
condition embedding H.. The goal is to minimize the noise estimation error at each timestep,
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which is formulated as:
mgnEt,zt,e lle — eq (24, t, He) |l 4)

where e is the simulated noise at timestep ¢, and €4(z¢, t, H.) is the predicted noise from the model.
The training objective is to minimize the mean squared error between the simulated and predicted
noise across all timesteps.

By training the DiT model in this manner, we effectively unify multimodal inputs into a latent space,
enabling the generation of high-quality audio or music that is coherent and aligned with the input
conditions.

5 EXPERIMENTS

In this section, we provide the implementation details of our experiments and conduct extensive
evaluations. These assessments comprehensively measure the effectiveness of our proposed method
from both subjective and objective viewpoints. The evaluations aim to offer valuable insights into
the generation of audio and music from various inputs.

5.1 IMPLEMENTATION DETAILS

For encoding the visual features, we use CLIP-ViT-B/32 (Radford et al., |2021) to extract video
frame features at a rate of 5 fps, and Synchformer (lashin et al., [2024) to extract synchronization
features at 25 fps. The CLIP and Synchformer features are fused via addition. The text inputs
are encoded using T5-base (Raffel et al., [2020), while the audio is encoded and decoded using an
audio Autoencoder (Evans et al.||2024b). The model has a total of 2.4B parameters (1.1B trainable).
Our proposed MAF module constitutes only 60M of these parameters, highlighting its lightweight
nature. The DiT model, consisting of 24 layers, uses a pretrained model from (Evans et al.,|[2024b).

The training process uses the AdamW optimizer with a base learning rate of le-5, weight decay of
0.001, and a learning rate scheduler incorporating exponential ramp-up and decay phases. To im-
prove inference stability, we maintain an exponential moving average of the model weights. Training
is conducted on three clusters of NVIDIA H800 GPUs, each with 80GB of memory, requiring ap-
proximately 4k GPU hours in total. The batch size is set to 48. During inference, we perform 250
steps using classifier-free guidance with a scale of 7.0. Please refer to Appendix for further
details on our training and evaluation datasets.

5.2 EVALUATION METRICS

To provide a comprehensive assessment of our model, we employ a suite of objective and subjective
metrics. Further details for each metric are provided in the Appendix

Objective Evaluation. For overall audio quality and semantic alignment, we use several estab-
lished metrics. These include: Kullback-Leibler Divergence (KL); Inception Score (IS); Fréchet
Distance (FD) with PANNs embeddings (Kong et al., 2020); Fréchet Audio Distance (FAD) with
VGGish embeddings (Hershey et al., [2017); Production Complexity (PC) and Production Quality
(PQ) (Tjandra et al.l 2025). As a prompt-free metric for both quality and diversity, we chose IS for
the unified comparison in Fig. E} For alignment, we use the CLAP score (Wu et al., [2023b)) for text
inputs and the Imagebind AV score (Girdhar et al., | 2023) for video inputs. To assess the model’s
instruction-following capabilities in T2A, we report metrics on two benchmarks. On our proposed
T2A-bench (detailed in Appendix[A.3]), we measure category, count, ordering, and timestamp accu-
racy (Cat-acc, Cnt-acc, Ord-acc, TS-acc). On AudioTime (Xie et al., [2025), we use its established
metrics for Ordering, Duration, Frequency, and Timestamp.

Subjective Evaluation. We conducted a formal user study with 10 professional audio experts to
evaluate the subjective quality of our generated samples against baselines. The study followed the
established methodologies of prior work (Kreuk et al.| 2022} [Liu et al.| [2023)), where experts rated
anonymized samples from 1 to 100 on Overall Quality (OVL) and Relevance (REL) to the prompt.
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Table 1: Performance evaluation across various tasks and datasets. Task abbreviations are: T2A
(Text-to-Audio), V2A (Video-to-Audio), TV2A (Text-and-Video-to-Audio), T2M (Text-to-Music),
V2M (Video-to-Music), and TV2M (Text-and-Video-to-Music). For alignment (Align.), we use the
CLAP score for text and the Imagebind AV score for video inputs.

Dataset Method Task KL, ISt FD| FAD] PCT PQ?t Alignt
AudioGen(Kreuk et al.![2022) T2A 1.39 1022 13.29 1.72 326 525 0.27
AudioLDM-L-Full(L1u et al.[[2023} T2A 2.00 6.51 37.27 8.37 282 5.67 0.20
AudioLDM-2-Large(L1u et al.|l2024a) T2A 1.49 8.46 26.34 1.97 286 577 0.22

AudioCaps  Tango 2(Majumder et al.{|2024) T2A 1.11 10.37 12.22 3.20 3.63 5.82 0.36
Stable Audio Open(Evans et al.|2024b)  T2A 2.01 10.37  29.01 3.15 277  6.16 0.21
MAGNET-large(Z1v et al.[[2U024a} T2A 1.62 7.46 24.88 2.99 3.25 5.15 0.15
MMAudio(Cheng et al.][2025) T2A 1.35  12.03 12.63 4.71 3.06 5.64 0.30
AudioX T2A 127 1248 11.51 1.59 332  5.80 0.30
AudioGen(Kreuk et al.|[2022) T2A 2.16 11.09 15.94 248 330 545 0.29
AudioLDM-L-Full(L1u et al.I[2023} T2A 2.41 6.52 31.15 7.05 293 599 0.27
AudioLDM-2-Large(L1u et al.|[2024a) T2A 2.10 1386 1632 2.05 295  6.35 0.30
Tango 2(Majumder et al.[[2024) T2A 2.31 10.00  22.96 3.47 393 599 0.29
Stable Audio Open(Evans et al.|2024b)  T2A 2.36 14.45 26.00 2.60 2.64  6.53 0.33
MAGNET-large(Ziv et al.[[2024a} T2A 2.03 8.53 22.17 2.74 3.65 525 0.26
MMAudio(Cheng et al.][2025} T2A 217 17.83 11.52 2.50 302 6.12 0.32
AudioX T2A 1.74 19.58 9.01 1.33 334  6.31 0.33

VGGSound
Seeing&Hearing(Xing et al.![2024) V2A 2.58 5.15 27.21 5.23 342 533 0.36
FoleyCrafter(Zhang et al.[[2024) V2A 2.39 8.70 17.68 2.23 331 599 0.27
Diff-Foley(Luo et al.ll2024) V2A 3.01 8.35 56.54 5.89 257 585 0.20
FRIEREN(Wang et al.|[2024) V2A 2.58 6.91 50.88 3.13 298  6.06 0.20
MMAudio(Cheng et al.[2025) V2A 197 14.95 6.18 2.04 338 591 0.35
AudioX V2A 221 12.60 7.84 1.28 349 6.21 0.26
FoleyCrafter(Zhang et al.|[2024) TV2A 1.94 1132  19.16 2.13 3.38  6.06 0.26
MMAudio(Cheng et al.][2025) TV2A 151  17.79 6.60 2.20 331 599 0.33
AudioX TV2A 148 1791 6.97 1.06 346 6.29 0.26
Seeing&Hearing(Xing et al.![2024) V2A 2.30 4.02 40.38 8.66 3.64 5.16 0.35
FoleyCrafter(Zhang et al.![2024) V2A 2.13 6.46 28.68 3.77 325 587 0.28
Diff-Foley(Luo et al.[[2024) V2A 3.14 5.97 76.96 10.95 2.55 5.71 0.16
FRIEREN(Wang et al.[[2024) V2A 2.73 4.71 66.46 6.49 3.08 5.88 0.17

AVVP MMAudio(Cheng et al.][2025) V2A 122 840 13.51 3.25 355 5.89 0.34
AudioX V2A 1.89 8.60 17.2 2.24 3.65 6.09 0.28
FoleyCrafter(Zhang et al.|2024) TV2A 1.81 6.22 26.76 2.85 3.62  5.60 0.27
MMAudio(Cheng et al.][2025) TV2A 1.74 9.52 14.18 2.74 3.64 5381 0.34
AudioX - TV2A 188 9.03 1633 238 3.65 604 028
MusicGen(Copet et al.!|2024) T2M 1.43 2.24 25.40 4.55 5.19 7.16 0.18
AudioLDM-L-Full{L1u et al.![2023) T2M 1.45 2.49 34.44 6.34 472  6.10 0.22

. AudioLDM-2-Large(Lu1u et al./[2024a) T2M 1.26 2.84 15.61 2.80 522  6.70 0.23

MusicCaps TangoMusic(Ghosal et al.[[2023} T2M 1.13 2.86 15.00 1.88 5.57  7.06 0.23
Stable Audio Open(Evans et al.|2024b) T2M 1.51 2.94 36.33 3.23 391 718 0.23
MAGNET-large(Ziv et al.][2024a} T2M 1.32 1.98 23.88 4.24 584 6.71 0.19
AudioX M 0.96 3.55 9.76 1.47 5.21 6.70 0.24
MusicGen(Copet et al.|[2024) T2M 0.76 1.31 40.59 3.25 557 743 0.14
AudioLDM-L-Full(L1u et al.1[2023} T2M 0.72 1.37 36.63 2.97 5.08 7.01 0.16
AudioLDM-2-Large(Liu et al.[[2024a) T2M 0.62 1.46 25.80 1.63 557  6.90 0.14
TangoMusic(Ghosal et al.[[2023) M 0.72 146 38.19 2.43 5.78 746 0.14
Stable Audio Open(Evans et al.[2024b) T2M 0.72 1.34 42.02 2.72 436 7.72 0.17

. MAGNET-large(Ziv et al.][2024a) T2M 0.60 1.26 34.24 3.15 5.89 7.04 0.17

V2M-bench  AydioX ™M 047 150 1962 168 591 7.2  0.14
Video2Music(Kang et al.|[2024) V2M 1.78 1.01 144.88 18.72 334 8.14 0.14
MuMu-LLaMA(Lu1u et al.|[20Z4c) V2M 1.00 1.25 52.25 5.10 5.60 797 0.18
CMT(Di et al.l2021) V2M 1.22 1.24 85.70 8.64 4.98 8.20 0.12
VidMuse( L1an et al.]2025) V2M 073 132 2995 246 588 689 0.0
AudioX V2M 0.70 1.37 24.01 1.67 524 7.04 0.23
AudioX TV2M 045 1.52 18.64 1.44 542 724 0.22

5.3 MAIN RESULTS

This work introduces a unified model capable of generating audio and music from flexible combina-
tions of video, text, and audio inputs. Through extensive experimentation, we benchmark our model
against SOTA specialist models across all supported tasks. Results demonstrate that our single
model consistently achieves SOTA or highly competitive performance on the majority of metrics.

Audio generation. Results of our audio generation are in Table |1} which includes the outcomes of
generating audio or music from any combination of video and text modalities. The upper part of the
table presents the audio generation tasks, while the lower part displays the music generation tasks.

For text-to-audio generation, we evaluate on the AudioCaps (Kim et al. [2019) and VGGSound
(Chen et al.l [2020) datasets. On AudioCaps, our model achieves SOTA performance, while on
VGGSound, the advantage is even more pronounced. This demonstrates that our model is a powerful
text-to-audio generator. Furthermore, both our model and baseline results on VGGSound confirm
the effectiveness of our curated caption data. For video-to-audio generation, we experiment on
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VGGSound and AVVP (Tian et al., 2020), AVVP is an out-of-domain test dataset for all methods.
Our model achieves results comparable to SOTA on both VGGSound and AVVP, proving that it
is not only a strong video-to-audio generator but also exhibits excellent generalization on out-of-
domain datasets. For audio generation conditioned on both text and video, we benchmark against
the strong baselines FoleyCrafter (Zhang et al.,[2024) and MMAudio (Cheng et al., [2025)), achieving
results that are comparable to them. We find that when both text and video inputs are provided, the
model effectively integrates the information from both modalities to generate better results.

The bottom part of Table [I] shows the results of music generation tasks. On the V2M dataset (Tian
et al.| [2025), we evaluate text-to-music, video-to-music, and video-and-text-to-music. The text-
to-music task is additionally evaluated on the MusicCaps (Copet et al.| [2024) dataset. Our model
achieves SOTA performance across these tasks, demonstrating its effectiveness in generating high-
quality music conditioned on diverse inputs.

Table 2: Evaluation of instruction-following T2A ability on the T2A-bench and AudioTime.

Method T2A-bench AudioTime
Cat-accT Cnt-accT Ord-acct TS-acctT Ordering| Duration| Frequency| Timestamp?

AudioGen 24.40 5.40 6.00 18.40 0.91 3.73 1.58 0.54
AudioLDM 18.60 4.00 3.40 11.60 0.97 3.41 1.54 0.41
AudioLDM-2 20.10 7.40 1.20 13.40 0.96 3.40 1.64 0.54
Tango 2 25.20 4.60 10.20 18.80 0.86 3.70 1.52 0.61
Make-An-Audio2 32.40 4.00 19.80 18.80 0.76 3.40 142 0.56
Stable Audio Open 31.20 9.80 6.00 21.80 0.98 3.07 1.46 0.53
MMAudio 26.60 4.80 2.40 21.40 0.98 3.33 1.54 0.50
AudioX 34.20 12.40 23.60 28.20 0.34 1.30 0.74 0.81

Instruction-following text-to-audio generation. As shown in Figure[T]and Table[2] AudioX sub-
stantially outperforms all baselines in tasks requiring fine-grained control. On our T2A-bench, Au-
dioX demonstrates a commanding lead across all dimensions, from category generation to count
and temporal control. For instance, it surpasses the temporally-enhanced Make-An-Audio2 base-
line in Ord-acc. This advantage is reaffirmed on the AudioTime benchmark. We also note that the
performance trends between AudioTime’s Ordering metric and our Ord-acc are consistent across all
models, which helps validate the design of our benchmark for evaluating temporal adherence. Fur-
thermore, an insight from these comparisons is that high audio fidelity does not necessarily correlate
with instruction-following prowess. For instance, Tango2, despite its high-quality synthesis, delivers
only moderate performance on these control-focused metrics. Collectively, these results underscore
our model’s superior fine-grained control, setting a new standard for controllable T2A generation.

User study. We conducted a user study to evaluate the quality of the generated audio and music.
We randomly selected 25 samples for each audio generation task, including T2A, T2M, V2A, and
V2M. 10 audio experts are asked to rate the quality of the generated audio and music. The results
are shown in Fig.[A2]in the Appendix. The evaluation shows that our model achieves subjective
SOTA performance in terms of OVL and REL scores in most tasks, indicating high user satisfaction.

To further demonstrate the versatility of our model, we present results for additional tasks, including
audio inpainting, music completion, and image-to-audio generation, in Appendix[A.4.1} The results
further underscore our model’s strong performance and broad applicability across a variety of audio
generation tasks.

5.4 ABLATION STUDY

In this section, we conduct a series of ablation studies to investigate the contribution of our key
design choices. We systematically validate the efficacy of our data curation strategy and the ar-
chitectural integrity of the proposed MAF module. An additional ablation study on the impact of
different conditioning modalities is detailed in Appendix [A.4.2]

Efficacy of data curation strategy.

To verify the impact of our data curation strategy, we evaluate models trained on different textual
supervision sources (Table E[): 1) Labels: using raw class labels from the source datasets; 2)
AudioSetCaps: using captions from a recent concurrent dataset (Bai et al.|2025); 3) QwenCap:
using captions generated directly by Qwen2-Audio; 4) GeminiCap: using only the initial annota-
tions generated by Gemini 2.5 Pro; and 5) GeminiCap-aug: our full pipeline. The results show
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that GeminiCap—aug outperforms all baselines, including the external AudioSetCaps dataset and
the single-stage generation methods. It not only achieves the best scores on general-purpose tasks
(T2A, V2A, TV2A) but also enhances the model’s instruction-following capabilities. Collectively,
these results validate the superior quality of our constructed dataset and the effectiveness of the
proposed two-stage curation pipeline. Notably, we observe that the benefits of high-quality textual
supervision are not limited to text-to-audio generation. The marked improvement in the V2A task
provides strong empirical evidence of a cross-modal regularization effect. This insight leads to a
crucial conclusion for future work: high-quality textual data should be viewed not only as an input,
but also as an effective strategy for building more capable and robust multimodal models.

Table 3: Ablation study on data curation strategies. We compare our model’s performance when
trained with captions from different sources. The results show a clear trend of improvement with
higher-quality data. Our full pipeline (GeminiCap—-aug) not only achieves the best performance
on all general tasks (T2A, V2A, TV2A) but is also essential for enabling fine-grained control.

Caption Method Instruction-following T2A T2A V2A TV2A
Cat-accT Cnt-acct Ord-acct IST FADJ] ISt FAD|] ISt FADJ|
Labels 17.35 2.80 4.60 7.59 6.02 10.46 1.81 10.62 341
AudioSetCaps 27.85 6.40 4.80 10.08 3.19 11.35 1.33 12.39 1.56
QwenCap 24.60 6.40 6.20 9.74 4.40 10.57 1.67 11.79 1.95
GeminiCap 28.05 9.60 7.60 10.81 3.02 11.48 1.31 12.78 1.70
GeminiCap-aug 2891 10.20 7.80 10.93 291 11.69 1.15 12.90 1.48

Table 4: Ablation study of the MAF architecture components. We evaluate the contribution of
the Gate and Query mechanisms by removing them individually. The results show that the Full
MAF, which includes both components, achieves the best performance across most metrics. This
confirms that our complete design is essential for effective multimodal fusion.

Components Gate Query KL| IST FDJ| FAD| Duration| Frequency | Ordering |
w/o MAF X X 1.83 10.70 11.60 2.67 3.022 1.359 0912
w/o Gate X v 1.69 11.66 9.72  2.00 2.945 1.348 0.876
w/o Query v X .71 11.72 9.65 2.08 2.841 1.328 0.912
Full MAF v v 1.68 11.84 9.64 1.98 2.827 1.302 0.388

Architectural ablation of the MAF module. We conduct an architectural ablation of the MAF
module to validate its design (Table ). The results confirm that each component is integral, with
the most severe performance deterioration observed when the MAF module is omitted entirely. Re-
moving the Gate mechanism or the Query-based attention individually also results in a performance
decline, confirming their respective contributions. This analysis validates our design choices, un-
derscoring that the complete MAF architecture is critical for optimal multimodal fusion, thereby
enhancing cross-modal alignment and improving generation quality.

5.5 DISCUSSION

Our extensive experiments provide a multi-faceted validation of AudioX, consistently demonstrating
state-of-the-art performance from broad audio generation to a commanding lead in fine-grained
instruction-following. Our ablation studies confirm that this success is directly attributable to two
core principles: a data curation strategy that provides a rich semantic foundation via a powerful
cross-modal regularization effect, and an MAF architecture essential for translating these signals
into precisely controlled outputs. The synergy between this data-centric foundation and purpose-
built architecture culminates in our model’s SOTA performance on challenging instruction-following
benchmarks, validating our approach for unifying generative versatility with fine-grained control.

6 CONCLUSION

In this work, we present AudioX, a unified framework that transcends the modality and domain con-
straints prevalent in prior specialist models for audio generation. By leveraging a DiT backbone and
our designed MAF module, our model effectively unifies diverse inputs like text, video, and audio
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to produce high-quality outputs. The training of our model is supported by IF-caps, our large-scale,
fine-grained dataset, which provides a robust foundation for unified training and evaluation. No-
tably, our training methodology induces an effective cross-modal regularization effect, enhancing the
model’s internal representations. Extensive experiments demonstrate that our single, unified model
not only matches or outperforms specialist models but also unlocks superior instruction-following
capabilities, showcasing its command of both generative versatility and fine-grained control.
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A APPENDIX

USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) are utilized in two parts in this work. As components of our
methodology, Gemini 2.5 Pro is employed for high-quality initial data annotation, benchmark gen-
eration, and as an automated evaluator, while Qwen2-Audio performs large-scale data augmentation.
Additionally, an LLM assistant (Google’s Gemini) is used as a writing tool to improve the clarity,
grammar, and vocabulary of the manuscript. All scientific ideation, experimental design, and analy-
sis are conceived and performed exclusively by the human authors.

APPENDIX OVERVIEW

This appendix supplements the main paper with expanded details on our datasets, evaluation
methodologies, and a broader range of experimental results. We begin by detailing our data and
evaluation frameworks: Section [A.T] delves into the specifics of our datasets and the annotation
process, Section introduces evaluation metrics, while Section introduces T2A-bench, our
benchmark for instruction-following, along with its automated evaluation pipeline. Subsequently,
we present an expanded set of results. Section [A.4] provides further quantitative comparisons, and
finally, Section[A.5]showcases a comprehensive gallery of qualitative examples and analyses.

A.1 DATASETS

A.1.1 TRAINING AND TEST DATASETS

Table[A.T|provides an overview of all datasets used in this work. Table[A.2]outlines the new captions
we annotated for training and testing our unified model. We will open-source these caption datasets
to facilitate further research.

A.1.2 FURTHER DETAILS ON THE IF-CAPS DATASET

As described in the main text, the [F-caps dataset is generated via a multi-step pipeline designed to
produce rich, structured annotations for existing video-audio clips. This section provides a detailed
breakdown of our annotation schema and showcases representative samples.

Annotation Schema. Each sample in IF-caps is accompanied by a comprehensive set of annotations
designed to provide multi-faceted supervision for training. The key fields are as follows:

* caption: A holistic, high-level natural language description of the audio content, summa-
rizing the main events and their context.

 category: A structured dictionary that provides sound event classification and, where ap-
plicable, the discrete count of each event. For continuous or unquantifiable sounds (e.g.,
background noise, speech), the count is marked as null.

* SED (Sound Event Detection): A list providing fine-grained temporal localization. Each
entry in the list maps a precise timestamp (e.g., ’00:02-00:06") to a description of the sound
event occurring within that specific time frame.

* time_relation: A field describing the temporal relationship between distinct sound events.
This can specify a sequential order (e.g., "Event A, Event B”) or more complex relation-
ships like “interleave” for overlapping sounds.

This structured format allows our model to learn not just what sounds are present, but also how
many, when, and in what order, which is critical for developing advanced instruction-following
capabilities.

Annotation Samples. Below are two examples from IF-caps that illustrate the richness and de-
tail of our annotation schema. The first example demonstrates a complex scene with overlapping,
continuous, and countable events. The second example shows a clear sequence of discrete events.
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Table A.1: Comprehensive overview of training and test datasets, detailing the number of clips (#
Clips), average duration per clip (Dur./Clip in seconds), and total duration (Dur. in hours) for each
task and split. T2A: Text-to-Audio, V2A: Video-to-Audio, TV2A: Text-and-Video-to-Audio, T2M:
Text-to-Music, V2M: Video-to-Music, TV2M: Text-and-Video-to-Music.

Split  Task Dataset #Clips Dur./Clip (s) Dur. (h)
AudioCaps 45.0K 10 125.1
TOA WavCaps 108.3K 10 300.8
IF-caps 1.3M 10 3524.4
AudioTime 20.0K 10 355.5
VGGSound 176.9K 10 4914
V2A AudioSet Strong  67.3K 10 187.1
. Greatest Hits 1.0K 10 2.7
Train
IF-caps 1.3M 10 3.5K
TV24 Greatest Hits 1.0K 10 2.7
Private 175.2K 240 11.7K
M [F-caps 5. M 10 15.8K
MUCaps 22.0K 208 1.3K
VM V2M 5.7M 10 15.8K
TV2M V2M 5.7M 10 15.8K
Audio Inpainting All audio data 398.5K 10 1.1K
Music Completion  All music data 5.9M 17.6 28.8K
AudioCaps 49K 10 13.5
ToA VGGSound 149K 10 41.5
T2A-bench 2.0K 10 5.6
AudioTime 2.0K 10 5.6
V2A VGGSound 149K 10 41.5
Test AVVP 1.1K 10 3.1
TV2A VGGSound 14.9K 10 41.5
MusicCaps 5.5K 10 15.4
M VaM 31K 10 9.0
V2M V2M 300 108 9.0
TV2M V2M 300 108 9.0
. . AudioCaps 49K 10 13.5
Audio Inpainting AVVP L1K 10 3]
Music Completion V2M 300 108 9.0

Table A.2: Overview of our labeled captions, detailing the number of clips, average duration per
clip, and total duration for each source dataset.

Source Dataset Data Type #Clips Dur./Clip(s)  Dur. (h)
VGGSound Audio 191.8K 10 532.81
AudioSet Strong Audio 67.3K 10 187.14
AVVP Test Split Audio 1.1K 10 3.11
Greatest Hits Audio 1.0K 10 2.71
V2M Music 5.7M 10 15793.58

{

"caption": "A woman is speaking continuously, while a dog yips
twice in the background.",
"category": {
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"Female speech": null,

"Yip": 2,
"Background noise": null
}y
"SED": [
{"00:00-00:09": "A woman is speaking throughout the audio,
accompanied by faint background noise."},
{"00:00-00:01": "A dog lets out a yip in the background."},
{"00:08-00:09": "A dog yips again in the background."}
I
"time_relation": "interleave",
"audio_id": "TATdZPmzMU8_90000"

}

{

"caption": "The audio features the mechanical sound of a firearm
being handled, immediately followed by two separate bursts of
machine gun fire.",

"category": {
"Machine gun": 2,
"Generic impact sounds": 1
br
"SED": [
{"00:00-00:01": "The mechanical sound of a firearm being
handled, possibly being cocked or loaded."},
{"00:01-00:05": "A sustained burst of automatic gunfire from
a machine gun."},
{"00:06-00:08": "A second, shorter burst of machine gun fire
"}
1y
"time_relation": "Generic impact sounds, Machine gun",
"audio_id": "c90nubhhvZy_0O"

}

Data Augmentation Process. As mentioned in the main text, a key step in our pipeline is to leverage
a cost-effective model (Qwen2-Audio) to augment the initial, high-quality annotations generated by
Gemini 2.5 Pro. The goal is to increase the linguistic and structural diversity of our dataset. By
generating multiple, semantically equivalent but stylistically different captions for the same audio
clip, we train our model to be robust to variations in user prompts and to develop a more generalized
understanding of the relationship between language and sound. The augmentation process is guided
by the structured fields of the original annotation. The model is prompted to generate new cap-
tions from different perspectives: rephrasing the original description, or generating new descriptions
based purely on the category and count, the SED timestamps, or the time_relation fields. Below, we
use the second example from the previous section to illustrate this structured augmentation process.

Original Audio Annotation (Generated by Gemini 2.5 Pro)

{"caption": "The audio features the mechanical sound of a firearm
being handled, immediately followed by two separate bursts of
machine gun fire.", "category": {"Machine gun": 2, "Generic
impact sounds": 1}, "SED": [...], "time_relation": "Generic
impact sounds, Machine gun", "audio_id": "c90nubhhvzY_0"}

This single, rich annotation serves as the seed for generating a variety of new training captions, each
emphasizing a different aspect of the audio content.
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Augmented Audio Captions (Generated by Qwen2-Audio)

1. Caption Rephrasing (Linguistic Diversity)

“A gun is cocked, followed by two bursts of machine gun fire.”
“After the sharp, metallic sound of a firearm mechanism, two rapid-fire
bursts from a machine gun are heard.”

2. Augmentation from Category and Count

“The audio contains two sounds of a machine gun and one generic impact
sound.”

3. Augmentation from SED

“The sound of a firearm being handled is audible for the first second, fol-
lowed by a burst of machine gun fire from 1 to 5 seconds and a second
burst from 6 to 8 seconds.”

4. Augmentation from Time Relation

“In this audio, the sound of a generic impact occurs first, followed by two
distinct machine gun sounds.”

This structured augmentation strategy ensures our model is exposed to a wide variety of textual
descriptions, learning to associate not only high-level captions but also explicit instructions about
count, timing, and order with the corresponding audio features. Similarly, for music data, this
process generates varied descriptions of genre, mood, instrumentation, and tempo, teaching the
model to comprehend both high-level artistic direction and specific musical components.

Original Music Annotation (Generated by Gemini 2.5 Pro)

{"caption": "A heartwarming acoustic track featuring a blend of
softly strummed guitar and a simple, melodic piano line,
creating a gentle and uplifting atmosphere.", "genre": "Acoustic

Pop, Instrumental", "mood": "Heartwarming, Gentle, Uplifting",
"instrument": ["Acoustic Guitar", "Piano"], "tempo": "Slow to
Moderate"}

This structured music annotation is then used to generate diverse new training captions, each focus-
ing on a different attribute:

Augmented Music Captions (Generated by Qwen2-Audio)

1. Caption Rephrasing

“A gentle instrumental piece with the interwoven sounds of an acoustic
guitar and piano.”

“Soft guitar strumming and a simple piano melody combine to create an
uplifting acoustic pop track.”

2. Augmentation from Genre
“An instrumental acoustic pop track featuring piano and guitar.”
3. Augmentation from Mood

“A heartwarming, gentle, and uplifting piece of music featuring acoustic
guitar and piano.”

4. Augmentation from Tempo

“A slow to moderate tempo instrumental track with piano and acoustic
guitar.”
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A.2 DETAILS OF EVALUATION METRICS

Fréchet Audio Distance (FAD). To evaluate the perceptual quality of the generated audio, we em-
ploy FAD, a reference-free metric analogous to the FID (Heusel et al.| [2017) score used in image
generation. The metric functions by comparing the statistical distance between embedding distribu-
tions of generated audio and real-world audio. A smaller distance suggests the generated audio is of
higher acoustic quality. For our calculations, we utilize the VGGish (Hershey et al.| [2017) feature
extractor.

Fréchet Distance (FD). While similar in principle to FAD, FD serves as a distinct measure of
audio similarity by employing a different feature extractor. We use an FD variant based on PANNs
(Kong et al.|2020) embeddings. Given that PANNs models are pretrained on the extensive AudioSet
(Gemmeke et al.||2017)), this metric is considered to be highly robust for evaluating audio fidelity.

Kullback-Leibler Divergence (KL). The KL divergence is used to approximate the acoustic simi-
larity between generated and reference audio samples. This is achieved by measuring the divergence
between the multi-label class prediction distributions produced by a PANNs model for both sets of
samples.

Inception Score (IS). The IS is a widely used metric to evaluate the performance of generative
models. Besides assessing the diversity of the generated samples, IS also evaluates their quality,
measuring the clarity and recognizability of individual audio events (Donahue et al., 2018} |Ma-
jumder et al.| 2024} Liu et al. [2023). Given its ability to provide a single, holistic score reflecting
both of these aspects without needing a reference prompt, we selected IS as the unified metric for the
comprehensive performance comparison in our teaser Fig.|lI} This allows for a fair and consistent
visualization of our model’s capabilities across the wide array of supported tasks.

ImageBind Score (Girdhar et al., 2023). We assess the semantic alignment between generated
audio and conditioning videos using the ImageBind Score. This score is calculated as the cosine
similarity between the audio and video embeddings from the respective branches of the ImageBind
model.

CLAP Score. The Contrastive Language-Audio Pretraining (CLAP) model (Elizalde et al., 2023)
learns a joint embedding space where audio clips and their corresponding text descriptions are
aligned. We use the CLAP Score to evaluate the semantic alignment between generated audio
and a text prompt, calculated as the cosine similarity between their respective embeddings from
the pretrained CLAP encoders (Wu et al.,|2023b)). A higher score indicates better alignment.

Production Complexity (PC) and Production Quality (PQ). These metrics are derived from the
Meta Audiobox Aesthetics framework (Tjandra et al.l[2025). PQ focuses on the objective, technical
aspects of an audio recording, such as its clarity, fidelity, dynamics, and frequency balance. In
contrast, PC evaluates the complexity of an audio scene by measuring the number of distinct audio
components present, such as multiple instruments or the co-occurrence of speech, music, and sound
effects. Both are designed as no-reference metrics, allowing for the assessment of individual audio
clips without needing a ground-truth comparison sample.

Ordering, Duration, Frequency, and Timestamp. These metrics are components of the STEAM
evaluation framework, proposed in the AudioTime (Xie et al.,|[2025) to assess the temporal control-
lability of audio generation models. Ordering is an error rate that measures whether sound events are
generated in the specified sequence. Duration and Frequency are calculated as the L1 error between
the specified and detected event durations and occurrence counts, respectively. Timestamp evaluates
the precise timing of events (onset and offset) using the F1-score, a common metric in sound event
detection.

Category, Count, Ordering, and Timestamp accuracy. See

Overall Quality (OVL) and Relevance (REL). For our subjective evaluation, 10 professional audio
experts rated each generated sample on a scale of 1 to 100 on two standard criteria. OVL assesses the
intrinsic perceptual fidelity of the audio itself—focusing on aspects like clarity and freedom from
artifacts—independent of the prompt. In parallel, REL measures the semantic alignment between
the audio and its conditioning input, evaluating how accurately the content reflects the instructions
from the provided text or video. This evaluation protocol follows the established methodologies of
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prior work (Kreuk et al.l 2022} [Liu et al.,[2023)). Example of the questionnaire interface is shown in

Table[A3]

Table A.3: Simplified example of the questionnaire for human evaluation, showcasing the four main
task types. Experts provided scores for OVL and REL.

File Name Prompt (Text or Video) OVL (1-100) REL (1-100)
9964.wav A loud white noise and then some beeping. 55 65
0928.wav An uplifting folk-pop instrumental track. 70 55
1441.wav [Video of a person walking on dry leaves] 80 70
1701.wav [Video of a drone shot over a sunrise mountain] 65 60

A.3 BENCHMARK AND METRICS FOR INSTRUCTION-FOLLOWING IN T2A

To rigorously and scalably evaluate the instruction-following capabilities of Text-to-Audio genera-
tion models, we introduce a new benchmark, T2A-bench, and a corresponding automated evaluation
pipeline. This framework is designed to dissect a model’s ability to adhere to complex compositional
instructions.
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(a) Sound category word cloud. (b) Task & Category distribution.

Figure A.1: The composition of the T2A-bench benchmark. (a) Word cloud of sound event cate-
gories. (b) Distribution of task types and category counts.

T2A-bench Composition and Design. T2A-bench is a prompt-based benchmark comprising 2k
challenging, natural language prompts generated by Gemini 2.5 Pro. It is structured to systemat-
ically probe four key dimensions of controllability. As illustrated in Figure [A.1] our benchmark
encompasses a diverse vocabulary of sound categories and a balanced task structure to enable a rig-
orous and comprehensive evaluation. The benchmark is divided into four task types, each containing
500 prompts:

» Category-only: Evaluates the generation of correct sound events. Prompts contain be-
tween one and five distinct sound categories (100 prompts for each count).

» Category+Count: Assesses the ability to generate a precise number of sound events. To
avoid ambiguity, prompts in this category feature only a single sound type, with the required
count ranging from one to five (100 prompts for each count).

e Category+Ordering: Measures adherence to temporal sequence. Prompts specify an order
for either two or three distinct sound categories.

* Category+Timestamp: Tests temporal localization. To ensure clarity, prompts specify a
start and end time for a single sound category.

Below are representative examples for each task type, including the prompt and its corresponding
structured metadata.
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T2A-bench Examples

{

"id": "T2A_01565",

"type": "category-only",

"prompt": "A violent storm at sea, with a loud clap of thunder and a
huge wave crashing over the deck.",

"category": "thunder, wave crash"

}

{
"id": "T2A_00031",

"type": "category+count",
"prompt": "A single, loud bark from a dog in the distance.",
"category": "dog bark",

"count": {"dog bark": 1}

}

{

"id": "T2A_00575",

"type": "category+ordering",

"prompt": "The sound of a person gargling, followed by the splash of
water in the sink.",

"category": "gargle, water splash",

"time_relation": "gargle, water splash"

}

{

"id": "T2A_01105",

"type": "category+timestamp",

"prompt": "The sound of a crowd cheering is present from 2.0 seconds
to 6.0 seconds.",

"category": "crowd cheering",

"timestamp": {"crowd cheering": {"start": 2.0, "end": 6.0}}

}

Evaluation Metrics. Corresponding to the benchmark’s structure, we define four strict, accuracy-
based metrics: Category Accuracy (Cat-acc), Count Accuracy (Cnt-acc), Ordering Accuracy (Ord-
acc), and Timestamp Accuracy (TS-acc). The final score for each metric is the percentage of “cor-
rect” judgments.

» Cat-acc: A judgment is “correct” only if all sound categories specified in the prompt are
detected in the generated audio. This is evaluated on all 2,000 samples.

* Cnt-acc: A judgment is “correct” only if the detected count for the specified category
exactly matches the prompt’s instruction.

* Ord-acc: A judgment is “correct” only if the detected temporal order of sound events
exactly matches the specified sequence.

* TS-acc: A judgment is “correct” only if the detected event’s start and end times fall within
a 1-second tolerance window of the target times specified in the prompt.

Automated Evaluation Pipeline. To ensure objective and scalable evaluation while preventing
information leakage, we designed a novel two-step pipeline that leverages the state-of-the-art audio
understanding of a powerful Multimodal Large Model (MLLM), Gemini 2.5 Pro, as an automated
judge.

* Step 1: Blind Audio Annotation. In the first step, the MLLM judge receives only the audio
sample generated by the model under evaluation. It performs a blind, detailed analysis to
produce a structured annotation of the audio’s content. This annotation includes detected
sound categories, their counts, temporal relationships, and precise sound event detection
(SED) timestamps. For sounds where counting is ambiguous (e.g., continuous water flow)
or ordering is not distinct, the corresponding fields are populated with null.
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Example of Step 1 Output (Structured Annotation)

{

"caption": "The audio contains two distinct loud sounds.
First, there is a deep, rolling thunderclap. After a
brief pause, a powerful and sudden explosion is heard.",

"category": {"Thunder": 1, "Explosion": 1},

"SED" : [
{"00:01.734-00:03.514": "A deep, rolling thunderclap
is heard."},
{"00:08.241-00:09.511": "A loud and sudden explosion
with a distinct boom."}],
"time_relation": "Thunder, Explosion",

}

* Step 2: LLM-based Judgment. In the second step, the MLLM judge is provided with
the original prompt from T2A-bench and the structured annotation generated in Step 1.
Acting like an examiner with an answer key, the MLLM compares the annotated audio
content against the prompt’s instructions. It then outputs a binary score (1 for correct, 0
for incorrect) for the relevant metric, along with a detailed textual analysis explaining its
decision.

Example of Step 2 Output (Final Judgment)

{

"prompt": "A medieval battlefield, with the sound of a
catapult launching a stone and the subsequent explosion."

"prediction": {"cat_acc": 0, "cnt_acc": null, "ord_acc": null

"ts_acc": null,

"analysis": "The audio contains a clear and prominent sound
of thunder, which is audible from the beginning and
culminates in a loud clap around 00:03. However, the
required category ’'wave crash’ is missing. While there is

a sound of water starting around 00:05, it is
acoustically identifiable as heavy rain rather than a
distinct, powerful wave crashing."}

In summary, our framework, combining T2A-bench, fine-grained metrics, and a robust two-step
evaluation pipeline, provides a comprehensive and replicable methodology for quantifying the
instruction-following capabilities of T2A models. We will open-source our proposed benchmark
and evaluation pipeline to facilitate future research in this area.

A.4 MORE RESULTS

A.4.1 COMPARISON RESULTS

Audio inpainting. As shown in Table [A.4] we conducted experiments on audio inpainting tasks,
where our model outperformed the baselines (Liu et al.,2023};/2024a)) on the AudioCaps (Kim et al.,
2019) and AVVP (Tian et al., 2020) test datasets. Additionally, to explore audio inpainting with
various input modalities, we performed experiments on unconditioned audio inpainting, as well
as video-guided and text-and-video-guided audio inpainting tasks (on AVVP). The results indicate
that both text and video can effectively guide the audio inpainting task, with text providing better
guidance than video. When both text and video are conditioned, the model can integrate the two
modalities to achieve superior results.

Music Completion. Music completion is a task where the model generates music based on a given
music clip. We evaluate our model on the V2M-bench (Tian et al., 2025)) dataset. The results are
shown in Table[A.5] We find that our model can generate music that extends the input music clip.
As the number of input modalities increases, the model’s performance improves, demonstrating its
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Table A.4: Inpainting Performance Comparison. This table shows the performance comparison
for audio inpainting on the AudioCaps and AVVP datasets. The values before and after the slash
represent the IS and FAD metrics, respectively. A, V, and T represent Audio, Video, and Text
conditions. The baseline methods are all under audio and text conditions.

Dataset
Method Input
AudioCaps AVVP

Unprocessed - 6.51/11.34  4.94/6.70
AudioLDM-L-Full(Liu et al.|[2024a) A+T 8.06/2.64 5.11/3.30
AudioLDM-2-Full-Large(Liu et al.|[2024a) A+T 4.24/10.17  3.99/11.58
AudioX A 4.63/5.35 3.94/5.44
AudioX A+T 9.84/2.25 6.12/2.05
AudioX A+V N/A 5.63/2.16
AudioX A+T+V N/A 6.25/1.99

strong inter-modal learning capability and ability to leverage multi-modal information to generate
better music.

Table A.5: Performance for our method under different conditions in the music completion
task. M, T, and V represent Music, Text, and Video, respectively.

Input KL| ISt FD| FADJ

M 096 121 5277 5.76
T+M 051 149 2142 214
V+M 070 137 2428 229

T+V+M 046 152 18.69 1.67

Image-to-audio generation. To evaluate the model’s capability in handling static visual inputs, we
conduct a zero-shot image-to-audio generation experiment. Adopting the experimental protocol
of Seeing&Hearing (Xing et al.| [2024), we perform evaluations on 3k clips from the VGGSound test
set, where keyframes were processed using AnimeGANvV2 (Chen| [2022) to transfer them into “Pa-
prika style” prior to generation. For comparison, we benchmark AudioX against Seeing&Hearing
(Xing et al., 2024), Im2Wav (Sheffer & Adi, 2023), and also constructed a baseline by combining
an image caption model (Bai et al.| 2023) with a text-to-audio model (Majumder et al., [2024). The
results are shown in Table [A.6] in the Appendix. We find that our model demonstrates excellent
performance in the image-to-audio generation task even without any specific training with image
data.

Table A.6: Comparison of Methods for the Image2Audio Task.

Method KLy ISt FDJ] FAD| Align. 1
Caption2Audio 276 748 3297 554 0.21
Im2Wav(Sheffer & Adi![2023) 261 706 19.63  7.58 0.41
Seeing&Hearing(Xing et al.|[2024) 2.69  6.15  20.96 6.87 0.29
AudioX 290 1348 1642 271 0.23

User study. We conducted a user study to evaluate the quality of the generated audio and music. We
randomly selected 25 samples for each audio generation task, including text-to-audio (T2A), text-
to-music (T2M), video-to-audio (V2A), and video-to-music (V2M). 10 audio experts are asked to
rate the quality of the generated audio and music. The results are shown in Fig.[A2] The evaluation
shows that our model achieves subjective SOTA performance in terms of OVL and REL scores in
most tasks, indicating high user satisfaction.

A.4.2 ABLATION RESULTS

Unified model performance.
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Figure A.2: User study results of generated audio and music. The values represent the average OVL
and REL scores across Text-to-Audio (on AudioCaps), Text-to-Music (on MusicCaps), Video-to-
Audio (on VGGSound), Video-to-Music (on V2M-bench).

We investigate our unified model’s intra- and inter-modal performance in Fig.[A3] For the intra-
modal study, we compare our single unified model against specialist models trained on individual
tasks (T2A, V2A, and audio inpainting). The results show our unified model consistently outper-
forms these specialist models, demonstrating strong intra-modal capabilities. For the inter-modal
study on music generation, we find that performance progressively improves as more conditioning
modalities are added (e.g., from video-only to video+text). This confirms the model’s robust ability
to effectively integrate multiple modalities to enhance generation quality.

== Single Modality
= Uni
2 116 1163 v

10.94

435 44

$)°\o & &
Sl & &

& 4&”‘ &

(a) Intra-Modal Performance Comparison (b) Inter-Modal Integration Comparison

Figure A.3: Ablation study comparing intra-modal and inter-modal performance of the unified
model. The left compares single-modality models on text-to-audio, video-to-audio, and audio in-
painting tasks. The right shows the effect of adding modalities on music generation, with perfor-
mance improvements noted for each added modality. Results are based on the Inception Score (IS)
metric.

A.5 QUALITATIVE RESULTS

Figures[A4]and [A25] present comprehensive qualitative results.
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Input <rexr>: A small dog barks repeatedly at multiple intervals.

A clock ticking. Music performed on a steelpan instrument.

B

hdwd R &°F

Input <video>: reference for <audio> to be inpainted

Ground Truth

Input <andio>: Unprocessed

AudioGen MusicGen

Ground Truth

TangoMusic

Stable Audio Open Stable Audio Open

FoleyCrafter

Ground Truth

Ours

(c) V2A Results.

Figure A.4: Qualitative comparison across various tasks: (a) In Text-to-Audio (T2A) and Text-to-
Music (T2M) tasks, our model uniquely excels by consistently generating the “ticking” sound of a
clock and accurately following the prompt "Music performed on a steelpan instrument,” outperform-
ing baselines in both rhythmic precision and genre fidelity. (b) Audio inpainting results demonstrate
our model’s strong context-aware capabilities and its ability to effectively integrate different input
modalities. (c) Video-to-Audio (V2A) results show our model’s proficiency in capturing dynamic
motion sounds, such as the immersive “drifting” of a car, providing a richer auditory experience
compared to baselines.
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Text-to-Audio Text-to-Music

Prompt: Orchestral movie music with strings, brass, and percussion, emotional and epic.

Prompt: A melody is being played on the violin Prompt: An electric guitar lead harmony with a groovy bass line.

(a) Text-to-Audio and Text-to-Music

Video-to-Audio Video-to-Music

(b) Video-to-Audio and Video-to-Music

Audio Inpainting (with text) Music Completion (with text)
Prompt: A fire engine horn blows, followed by a fire engine siren blowing. Prompt: Orchestral, dramatic, epic, intense, powerful, suspenseful, thrilling, cinematic.
e _ e _
o _ o

Prompt: Instrumental with ambient synth, piano, and drums, meditative and relaxing.

Prompt: Brief speech followed by loud applause and cheering.

Unpmcessec‘- e

Result Result
Prompt: Action-packed orchestral music with strings, brass, and percussion.
- - —

(c) Audio Inpainting and Music Completion
Figure A.5: Comprehensive qualitative analysis of our model’s performance across various tasks:

(a) Text-to-Audio and Text-to-Music synthesis, (b) Video-to-Audio and Video-to-Music generation,
and (c) Audio Inpainting and Music Completion.
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