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Abstract001

Vision tokens in multimodal large language002
models often dominate huge computational003
overhead due to their excessive length com-004
pared to linguistic modality. Abundant recent005
methods aim to solve this problem with token006
pruning, which first defines an importance cri-007
terion for tokens and then prunes the unimpor-008
tant vision tokens during inference. However,009
in this paper, we show that the importance is010
not an ideal indicator to decide whether a to-011
ken should be pruned. Surprisingly, it usually012
results in inferior performance than random to-013
ken pruning and leading to incompatibility to014
efficient attention computation operators. In-015
stead, we propose DART (Duplication-Aware016
Reduction of Tokens), which prunes tokens017
based on its duplication with other tokens, lead-018
ing to significant and training-free accelera-019
tion. Concretely, DART selects a small sub-020
set of pivot tokens and then retains the tokens021
with low duplication to the pivots, ensuring022
minimal information loss during token prun-023
ing. Experiments demonstrate that DART can024
prune 88.9% vision tokens while maintaining025
comparable performance, leading to a 1.99×026
and 2.99× speed-up in total time and prefilling027
stage, respectively, with good compatibility to028
efficient attention operators.029

1 Introduction030

Multimodal large language models (MLLMs) ex-031

hibit remarkable capabilities across a diverse range032

of multimodal tasks, including image captioning,033

visual question answering (VQA), video under-034

standing (Wang et al., 2024b), and multimodal035

reasoning (Wang et al., 2024c). However, such036

impressive performance is always accompanied by037

huge computation costs, which are mainly caused038

by massive vision tokens in the input data, espe-039

cially for high-resolution images (Li et al., 2024d)040

and multi-frame video (Tang et al., 2023), leading041

to challenges in their applications.042

Describe this image.

The image features a basketball 
player wearing a yellow jersey 
with the number 30 on it. The 
player is standing on the court, 
holding a basketball in his hand. 
He has a bandage on his nose, 
possibly indicating an injury or a 
recent play. 

The image features a man 
wearing a yellow sports jersey 
with the number 30 on it. He is 
standing in front of a crowd, 
possibly during a basketball game. 
The man is holding a toothbrush
in his mouth, which is an unusual 
sight during a sports event.

The image features a 
basketball player wearing a 
yellow jersey with the number 
30 on it. He is looking at the 
camera with a bandage on his 
nose, possibly due to an injury.

Figure 1: Comparison between DART and FastV. Red
text indicates hallucination from vanilla LLaVA-1.5-7B,
green text represents hallucination from DART, and blue
text represents hallucination from FastV.

To solve this problem, abundant recent meth- 043

ods introduce token pruning to remove the vision 044

tokens in a training-free manner, which usually 045

first defines the importance score of each token, 046

and then prunes the most unimportant tokens dur- 047

ing the inference phrase (Chen et al., 2024; Zhang 048

et al., 2024b; Liu et al., 2024e). The key to a token 049

pruning method is the definition of the importance 050

of vision tokens, where most existing methods are 051

based on the attention scores between vision-only 052

tokens and vision-language tokens. However, this 053

paper argues that these importance-based methods 054

have several serious problems. 055

(I) Ignoring interactions between tokens during 056

pruning: Although the interaction between differ- 057

ent tokens is considered in attention scores, how- 058

ever, importance-based methods directly remove 059

the most unimportant tokens, ignoring the truth that 060

the importance of each token should be adjusted 061

when other tokens are pruned or preserved. For 062
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Figure 2: Performance of FastV and SparseVLM
compared with random token pruning on the LLaVA-
1.5-7B, with a 88.9% token reduction ratio.

instance, for two similar tokens, if one of both is063

determined to be pruned, then the importance of064

the other token should be improved and vice versa.065

Unfortunately, previous importance-based token066

pruning methods fail to model such interaction.067

(II) Incompatibility to efficient attention: Ef-068

ficient attention operators such as FlashAtten-069

tion (Dao et al., 2022) have become the default070

configure in neural networks, which accelerates071

attention computation by around 2× and reduce072

the memory costs from O(N2) to O(N). How-073

ever, these efficient attention operators make at-074

tention scores not accessible during computation,075

indicating conflicts with most previous importance-076

based token pruning methods. Disabling FlashAt-077

tention for accessing attention scores significantly078

improves the overall latency and memory footprint.079

(III) Bias in token positions: As claimed by abun-080

dant recent works (Endo et al., 2024; Zhang et al.,081

2024a) and shown in Figure 1, attention scores082

have position bias, where the tokens are position-083

ally close to the last token tend to have a higher084

attention score, making attention score does not085

truly reveal the value of this token.086

(IV) Significant accuracy drop: Although the087

aforementioned three problems have reminded us088

of the ineffectiveness of importance-based token089

pruning, however, it is still extremely surprising090

to find that some influential importance-based to-091

ken pruning methods show inferior accuracy than092

random token pruning, (i.e., randomly selecting093

the tokens for pruning), as shown in Figure 2.094

The above observations demonstrates the disad-095

vantages of importance-based token pruning meth-096

ods, while also introducing the expectation for the097

ideal alternative: The expected method should con-098

sider both the individual value of a token and its099

interaction to other tokens. It should be cheap in100

computation and friendly to hardware, and shows101

no bias in the positions of tokens.102

These insights inspire us to incorporate token 103

duplication into the token reduction. Intuitively, 104

when multiple tokens exhibit identical or highly 105

similar representations, it is natural to retain only 106

one of them for the following computation, thereby 107

maintaining efficiency without harming accuracy. 108

Building upon this idea, we introduce a simple 109

but effective token pruning pipeline referred to as 110

DART (Duplication-Aware Reduction of Tokens) 111

with the following two steps. 112

Firstly, we begin by selecting a small subset of 113

tokens as pivot tokens, which comprise no more 114

than 2% of the total tokens. Such pivot tokens can 115

be selected based on the norm of tokens or even 116

randomly selected, which does not introduce no- 117

table computations. Secondly, we then calculate 118

the cosine similarity between pivot tokens and the 119

remaining image tokens. Since the pivot tokens 120

are fewer than 2%, such computation is efficient in 121

both computing and memory. With a desired token 122

reduction ratio, we retain only those vision tokens 123

with the lowest cosine similarity to pivot tokens 124

and remove the similar ones. The entire process is 125

simple and highly efficient, completing in no more 126

than 0.08 seconds, friendly to efficient attention op- 127

erators, and leading to significantly higher accuracy 128

than previous methods. 129

In summary, our contributions are three-fold: 130

• Rethink Token Importance. Through empiri- 131

cal analysis, we demonstrate the suboptimality of 132

relying on attention scores to measure token im- 133

portance to guide the token reduction paradigm. 134

• Token Duplication as a Key Factor. Building 135

on token duplication, we introduce a training- 136

free, plug-and-play token reduction method that 137

seamlessly integrates with Flash Attention. 138

• Superior Performance with Extreme Com- 139

pression. Extensive experiments across four 140

diverse MLLMs and over 10 benchmarks demon- 141

strate the clear superiority of DART. For in- 142

stance, our method outperforms the second-best 143

method by 2.2% (93.7% vs. 91.5%) on LLaVA- 144

1.5-7B with an 88.9% reduction ratio. 145

2 Related Work 146

Multimodal Large Language Models Multi- 147

modal large language models (MLLMs) (Liu et al., 148

2024b; Li et al., 2023a; Zhu et al., 2023; Liu et al., 149

2024d) excel at image, video, and multimodal 150

reasoning by integrating vision and text. How- 151

ever, visual data processing is costly due to re- 152

dundancy, low information density (Liang et al., 153
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(a) Pivot Token Selection

Pivot Token

(c) Token Reduction to Keep Tokens
With Least Duplication

(b) Calculate ϵ-Duplicate Score Between 
Pivot Tokens and the Remainder

High ϵ-Dup to 
Pivot Token

Lowest ϵ-Dup 
Tokens

Figure 3: The overview of DART. The process includes (a) selecting pivot tokens, (b) calculating ϵ-Duplicate
scores between pivot tokens and other tokens, and (c) reducing tokens to retain those with the least duplication.

2022), and the quadratic cost of attention (Vaswani154

et al., 2017). For instance, models like LLaVA155

(Liu et al., 2023) and mini-Gemini-HD (Li et al.,156

2024d) encode high-resolution images into thou-157

sands of tokens, while video models like Vide-158

oLLaVA (Lin et al., 2023) and VideoPoet (Kon-159

dratyuk et al., 2023) handle even more tokens160

across frames. These challenges highlight the need161

for efficient token representations and longer con-162

text. Recent work like Gemini (Team et al., 2023)163

and LWM (Liu et al., 2024a) addresses this by164

improving token efficiency and extending context,165

enabling more scalable MLLMs.166

Visual Token Compression Visual tokens often167

outnumber text tokens by tens to hundreds of times,168

as visual signals are more spatially redundant than169

information-dense text (Marr, 2010). LLaMA-VID170

(Li et al., 2024c) employs a Q-Former with context171

tokens, and DeCo (Yao et al., 2024a) uses adaptive172

pooling. DTMFormer (Wang et al., 2024d) im-173

proves ViTs’ efficiency in medical image segmen-174

tation by merging redundant tokens during training.175

MADTP (Cao et al., 2024) reduces computation by176

aligning cross-modal features and pruning tokens.177

However, these require modifying components and178

additional training. ToMe (Bolya et al., 2023)179

merges tokens without training but disrupts cross-180

modal interactions (Xing et al., 2024). FastV (Chen181

et al., 2024) selects via attention scores, while Spar-182

seVLM (Zhang et al., 2024b) uses text guidance.183

Yet, these forgo Flash-Attention (Dao et al., 2022;184

Dao, 2024), neglecting token duplication. We pre-185

serve hardware acceleration (i.e., Flash-Attention)186

and target duplication for efficient token reduction.187

3 Methodology188

3.1 Preliminary189

Architecture of MLLM. The architecture of Mul-190

timodal Large Language Models (MLLMs) typi-191

cally comprises three core components: a visual en-192

coder, a modality projector, and a language model193

(LLM). Given an image I , the visual encoder and194

a subsequent learnable MLP are used to encode195

I into a set of visual tokens ev. These visual to- 196

kens ev are then concatenated with text tokens et 197

encoded from the text prompt pt, forming the in- 198

put for the LLM. The LLM decodes the output 199

tokens y sequentially, which can be formulated as: 200

yi = f(I, pt, y0, y1, · · · , yi−1). 201

3.2 Beyond Token Importance: Questioning 202

the Status Quo 203

Given the computational burden associated with the 204

length of visual tokens in MLLMs, numerous stud- 205

ies have embraced a paradigm that utilizes attention 206

scores to evaluate the significance of visual tokens, 207

thereby facilitating token reduction. Specifically, 208

in transformer-based MLLMs, each layer performs 209

attention computation as illustrated below: 210

Attention(Q,K,V) = softmax
(
Q ·K⊤
√
dk

)
·V,

(1) 211

where dk is the dimension of K. The result of 212

Softmax(Q ·K⊤/
√
dk) is a square matrix known 213

as the attention map. Existing methods extract the 214

corresponding attention maps from one or multiple 215

layers and compute the average attention score for 216

each visual token based on these attention maps: 217

ϕattn(xi) =
1

N

N∑
j=1

Attention(xi, xj), (2) 218

where Attention(xi, xj) denotes the attention score 219

between token xi and token xj , ϕattn(xi) is re- 220

garded as the importance score of the token xi, 221

N represents the number of visual tokens. Finally, 222

based on the importance score of each token and 223

the predefined reduction ratio, the most important 224

visual tokens are selectively retained: 225

R = {xi | (ϕattn(xi) ≥ τ)}, (3) 226

where R represents the set of retained visual tokens, 227

and τ is a threshold determined by the predefined 228

reduction ratio. 229
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Problems: Although this paradigm has demon-230

strated initial success in enhancing the efficiency231

of MLLMs, it is accompanied by several inherent232

limitations that are challenging to overcome.233

One key limitation is disregarding the dynamic234

nature of token importance during pruning. For235

a token sequence {x1, . . . , xn}, importance-based236

methods compute static token importance via a237

scoring function si = F(xi|X), where X is the238

full token set. The strategy retains Top-k tokens:239

Xpruned = arg max
X′⊆X,|X′|=k

∑
xj∈X′

sj (4)240

This implies an independence assumption: the241

score sj remains unchanged for any subset X ′ ⊂242

X , ignoring dynamic token interactions. For ex-243

ample, if two similar tokens xp, xq have sp ≈ sq,244

removing xq should recalibrate sp as:245

s′p = F(xp|X ′ \ {xq}) > sp, (5)246

which leads to a bias in importance estimation ∆ =247

s′p − sp. This contradiction between static scoring248

and dynamic interaction can be quantified as:249

EX′⊂X

 ∑
xi∈X′

(
F(xi|X ′)−F(xi|X)

) (6)250

Additionally, Figure 1 visualizes the results of to-251

ken reduction, revealing that selecting visual tokens252

based on attention scores introduces a noticeable253

bias toward tokens in the lower-right region of the254

image, those appearing later in the visual token se-255

quence. However, this region is not always the most256

significant in every image. Further, we present the257

outputs of various methods. Notably, FastV gen-258

erates more hallucinations than the vanilla model,259

while DART effectively reduces them. We attribute260

this to the inherent bias of attention-based methods,261

which tend to retain tokens concentrated in spe-262

cific regions, often neglecting the broader context263

of the image. In contrast, DART removes highly264

duplication tokens and preserves a more balanced265

distribution across the image, enabling more accu-266

rate and consistent outputs.267

Furthermore, methods relying on attention268

scores for token importance are incompatible with269

Flash Attention, compromising speed, and some-270

times even underperforming random token reduc-271

tion in effectiveness (See Fig. 2).272

3.3 Token Duplication: Rethinking Reduction 273

Given the numerous drawbacks associated with 274

the paradigm of using attention scores to evaluate 275

token importance for token reduction, what addi- 276

tional factors should we consider beyond token 277

importance in the process of token reduction? In- 278

spired by the intuitive ideas mentioned in §1 and 279

the phenomenon of tokens in transformers tending 280

toward uniformity (i.e., over-smoothing) (Nguyen 281

et al., 2023; Gong et al., 2021), we propose that 282

token duplication should be a critical focus. 283

Due to the prohibitively high computational cost 284

of directly measuring duplication among all tokens, 285

we adopt a paradigm that involves selecting a mini- 286

mal number of pivot tokens. 287

Definition 1 (Pivot Tokens). Let P = 288

{p1, p2, . . . , pk} ⊆ X denote the pivot to- 289

kens, where k ≪ n and n is the total length 290

of the tokens X = {x1, x2, . . . , xn}. The pivot 291

tokens P are a subset of X , selected for their 292

representativeness of the entire set. 293

Given the pivot tokens, we can define the dupli- 294

cation score based on it. 295

Definition 2 (ϵ-duplicate Score). The token dupli- 296

cation score between a pivot token pi and a visual 297

token xj is defined as: 298

dup(pi, xj) =
p⊤i xj

∥pi∥∥xj∥
, (7) 299

where ∥·∥ denotes the Euclidean norm. Two tokens 300

pi, xj are ϵ-duplicates if 301

dup(pi, xj) > ϵ. (8) 302

With the ϵ-duplicate score, for each pivot pi, the 303

associated retained token set is defined as: 304

Ri = {xj | dup(pi, xj) ≤ ϵ} (9) 305

The final retained set is: 306

R = P ∪

 ⋃
pi∈P

Ri

 (10) 307

where ϵ is the threshold dynamically determined for 308

each pivot pi based on reduction ratio. This ensures 309

that only tokens that are sufficiently different from 310

the pivot tokens are kept. 311

Our method is orthogonal to the paradigm of 312

using attention scores to measure token importance, 313

meaning it is compatible with existing approaches. 314
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Figure 4: Performance-Latency trade-off comparisons across different datasets on LLaVA-Next-7B. DART
consistently achieves better performance under varying latency constraints compared to other approaches.

Specifically, we can leverage attention scores to315

select pivot tokens, and subsequently incorporate316

token duplication into the process.317

However, this still does not fully achieve com-318

patibility with Flash Attention. Therefore, we ex-319

plored alternative strategies for selecting pivot to-320

kens, such as using K-norm, V-norm1, or even ran-321

dom selection. Surprisingly, all these strategies322

achieve competitive performance across multiple323

benchmarks. This indicates that our token reduc-324

tion paradigm based on token duplication is not325

highly sensitive to the choice of pivot tokens. More-326

over, it suggests that removing duplicate tokens327

may be more critical than identifying “important328

tokens”, highlighting token duplication as a more329

significant factor in token reduction. Detailed dis-330

cussion on pivot token selection is provided in §5.2.331

3.4 Theoretical Analysis332

To further justify trustworthiness of our proposed333

method, we provide a theoretical analysis of it.334

Assumption 1 (Transformer Property). For trans-
former property, we assume the following:
(A1). (Lipschitz continuity under Hausdorff dis-
tance). The model f is Lipschitz continuous with
respect to the Hausdorff distance between token
sets. Formally, there exists K > 0 such that for
any two token sets X1,X2 ⊆ Rd:

∥f(X1)− f(X2)∥ ≤ K · dH(X1,X2),

where dH(X1,X2) ≜ max{
sup

x1∈X1

inf
x2∈X2

∥x1 − x2∥, sup
x2∈X2

inf
x1∈X1

∥x1 − x2∥
}

.

(A2). (Bounded embedding). All tokens have
bounded Euclidean norms:

∥x∥ ≤ B, ∀x ∈ X ,

where B > 0 is a constant.335

1Here, the K-norm and V-norm refer to the L1-norm of K
matrix and V matrix in attention computing, respectively.

Lemma 1 (Bounded Distance). minpi∈P |pi − 336

xj | ≤ (2(1− ϵ))1/2B, ∀xj ∈ X \ R. 337

Proof. Using A2 and Definition 2, we obtain: 338

min
pi∈P

|pi − xj |2 = min
pi∈P

(|pi|2 + |xj |2 − 2p⊤i xj)

≤ min
pi∈P

(B2 +B2 − 2ϵ ·B ·B) ≤ 2(1− ϵ)B2
339

Therefore, the duplication distance bound is given 340

by: minpi∈P |pi − xj |2 ≤ (2(1− ϵ))1/2B 341

Lemma 2 (Bounded Approximation Error). Un-
der Assumption 1, the Hausdorff distance between
original and retained tokens satisfies:

dH(X ,R) ≤
√
2(1− ϵ)B.

Proof. For any x ∈ X : 342

• If x ∈ R, then infr∈R ∥x− r∥ = 0 343

• If x /∈ R, by definition and Lemma 1 there exists 344

pi ∈ P ⊆ R with ∥x− pi∥ ≤
√

2(1− ϵ)B 345

Thus:

sup
x∈X

inf
r∈R

∥x− r∥ ≤
√
2(1− ϵ)B.

Since R ⊆ X , Hausdorff distance simplifies 346

to: dH(X ,R) = supx∈X infr∈R ∥x − r∥ ≤ 347√
2(1− ϵ)B. 348

Theorem 1 (Performance Guarantee). Under As-
sumptions 1, the output difference between original
and pruned token sets is bounded by:

∥f(X )− f(R)∥ ≤ K
√
2(1− ϵ)B.

Proof. Direct application of Lipschitz continuity 349

(A1) with Lemma 2: ∥f(X ) − f(R)∥ ≤ K · 350

dH(X ,R) ≤ K
√
2(1− ϵ)B. 351

This provides a theoretical guarantee that DART 352

preserves model output within a controllable bound, 353

thereby supporting the trustworthiness and robust- 354

ness of our method. 355
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Method GQA MMB MMB-CN MME POPE SQA VQAV2 VQAText VizWiz OCRBench Avg.
LLaVA-1.5-7B Upper Bound, 576 Tokens (100%)

Vanilla 61.9 64.7 58.1 1862 85.9 69.5 78.5 58.2 50.0 297 100.0%
LLaVA-1.5-7B Retain 192 Tokens (↓ 66.7%)
ToMe (ICLR23) 54.3 60.5 - 1563 72.4 65.2 68.0 52.1 - - -
FastV (ECCV24) 52.7 61.2 57.0 1612 64.8 67.3 67.1 52.5 50.8 291 91.2%

HiRED (AAAI25) 58.7 62.8 54.7 1737 82.8 68.4 74.9 47.4 50.1 190 91.5%
FitPrune (AAAI25) 60.4 63.3 56.4 1831 83.4 67.8 - 57.4 50.9 - -

LLaVA-PruMerge (2024.05) 54.3 59.6 52.9 1632 71.3 67.9 70.6 54.3 50.1 253 90.8%
SparseVLM (ICML25) 57.6 62.5 53.7 1721 83.6 69.1 75.6 56.1 50.5 292 96.3%

PDrop (CVPR25) 57.1 63.2 56.8 1766 82.3 68.8 75.1 56.1 51.1 290 96.7%
FiCoCo-V (2024.11) 58.5 62.3 55.3 1732 82.5 67.8 74.4 55.7 51.0 - 96.1%
MustDrop (2024.11) 58.2 62.3 55.8 1787 82.6 69.2 76.0 56.5 51.4 289 97.2%

DART (Ours) 60.0 63.6 57.0 1856 82.8 69.8 76.7 57.4 51.2 296 98.8%
DART † (Ours) 60.9 66.3 59.5 1829 85.3 70.1 78.2 56.8 51.3 304 100.4%
LLaVA-1.5-7B Retain 128 Tokens (↓ 77.8%)
ToMe (ICLR23) 52.4 53.3 - 1343 62.8 59.6 63.0 49.1 - - -
FastV (ECCV24) 49.6 56.1 56.4 1490 59.6 60.2 61.8 50.6 51.3 285 86.4%

HiRED (AAAI25) 57.2 61.5 53.6 1710 79.8 68.1 73.4 46.1 51.3 191 90.2%
FitPrune (AAAI25) 58.5 62.7 56.2 1776 77.9 68.0 - 55.7 51.7 - -

LLaVA-PruMerge (2024.05) 53.3 58.1 51.7 1554 67.2 67.1 68.8 54.3 50.3 248 88.8%
SparseVLM (ICML25) 56.0 60.0 51.1 1696 80.5 67.1 73.8 54.9 51.4 280 93.8%

PDrop (CVPR25) 56.0 61.1 56.6 1644 82.3 68.3 72.9 55.1 51.0 287 95.1%
FiCoCo-V (2024.11) 57.6 61.1 54.3 1711 82.2 68.3 73.1 55.6 49.4 - 94.9%
MustDrop (2024.11) 56.9 61.1 55.2 1745 78.7 68.5 74.6 56.3 52.1 281 95.6%

DART (Ours) 58.7 63.2 57.5 1840 80.1 69.1 75.9 56.4 51.7 296 98.0%
DART † (Ours) 59.8 65.6 58.3 1849 84.4 70.7 77.5 56.4 52.6 299 99.9%
LLaVA-1.5-7B Retain 64 Tokens (↓ 88.9%)
ToMe (ICLR23) 48.6 43.7 - 1138 52.5 50.0 57.1 45.3 - - -
FastV (ECCV24) 46.1 48.0 52.7 1256 48.0 51.1 55.0 47.8 50.8 245 77.3%

HiRED (AAAI25) 54.6 60.2 51.4 1599 73.6 68.2 69.7 44.2 50.2 191 87.0%
FitPrune (AAAI25) 52.3 58.5 49.7 1556 60.9 68.0 - 51.2 51.1 - -

LLaVA-PruMerge (2024.05) 51.9 55.3 49.1 1549 65.3 68.1 67.4 54.0 50.1 250 87.4%
SparseVLM (ICML25) 52.7 56.2 46.1 1505 75.1 62.2 68.2 51.8 50.1 180 84.6%

PDrop (CVPR25) 41.9 33.3 50.5 1092 55.9 68.6 69.2 45.9 50.7 250 78.1%
FiCoCo-V (2024.11) 52.4 60.3 53.0 1591 76.0 68.1 71.3 53.6 49.8 - 91.5%
MustDrop (2024.11) 53.1 60.0 53.1 1612 68.0 63.4 69.3 54.2 51.2 267 90.1%

DART (Ours) 55.9 60.6 53.2 1765 73.9 69.8 72.4 54.4 51.6 270 93.7%
DART † (Ours) 57.1 64.7 56.7 1823 79.3 71.1 74.6 54.7 52.1 286 97.2%

Table 1: Comparative experiments on image understanding. In all experiments for DART, tokens are pruned after
the second layer with 8 pivot tokens. The pivot tokens are selected based on the maximum K-norm. DART †

indicates that DART is applied during the training stage of LLaVA-1.5-7B.

Methods Tokens ↓ Total Time ↓ Prefilling Time ↓ FLOPs ↓ KV Cache ↓ POPE ↑ Speedup ↑
(Min:Sec) (Min:Sec) (MB) (F1-Score) (Total) (Prefilling)

Vanilla LLaVA-Next-7B 2880 36:16 22:51 100% 1512.1 86.5 1.00× 1.00×
+ FastV 320 18:17 7:41 12.8% 168.0 78.3 1.98× 2.97×
+ SparseVLM 320 23:11 - 15.6% 168.0 82.3 1.56× -
+ DART 320 18:13 7:38 12.8% 168.0 84.1 1.99× 2.99×

Table 2: Inference costs of the number of tokens, Total-Time, Prefilling-Time, FLOPs, and KV Cache Memory.

4 Experiments356

Experiment Setting. We conduct experiments on357

over four MLLMs across ten image-based and four358

video-based benchmarks. For details on implemen-359

tation, please refer to Appendix C.360

4.1 Main Results361

Image understanding task. The results presented362

in Tables 1 and 3 highlight DART’s exceptional363

performance across diverse image understanding364

tasks under varying token configurations. We ob-365

serve that (i) with only 192 tokens, DART achieves366

an impressive 98.8% average performance, sub-367

stantially outperforming second-best MustDrop by368

1.6%. (ii) This trend strengthens under aggressive369

reduction ratios, with DART leading by 2.2% us-370

ing just 64 tokens. (iii) Moreover, DART scales371

seamlessly to advanced and larger models like 372

LLaVA-Next-7B and Qwen2-VL-72B (See Tab. 7), 373

achieving 93.9% with only 11.1% tokens, outper- 374

forming all competitors significantly. (iv) Inspired 375

by (Wen et al., 2025), we apply DART during train- 376

ing. DART † in Table 1 shows better performance- 377

efficiency trade-offs, maintaining full performance 378

with just 192 visual tokens, highlighting the strong 379

adaptability of our method. These results demon- 380

strate DART’s efficiency in leveraging limited to- 381

kens while preserving critical information, show- 382

casing robust performance across tasks, model ar- 383

chitectures, and model size. For more comparisons, 384

please refer to Tables 4, 5, and Appendix A.3. 385

Video Understanding Task. To assess DART’s 386

capabilities in video understanding, we integrate 387

it with Video-LLaVA (Lin et al., 2023) and bench- 388

mark it against state-of-the-art methods, including 389
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Method GQA MMB MMB-CN MME POPE SQA VQAV2 VQAText VizWiz OCRBench Avg.
LLaVA-Next-7B Upper Bound, 2880 Tokens (100%)

Vanilla 64.2 67.4 60.6 1851 86.5 70.1 81.8 64.9 57.6 517 100.0%
LLaVA-Next-7B Retain 320 Tokens (↓ 88.9%)

FastV (ECCV24) 55.9 61.6 51.9 1661 71.7 62.8 71.9 55.7 53.1 374 86.4%
HiRED (AAAI25) 59.3 64.2 55.9 1690 83.3 66.7 75.7 58.8 54.2 404 91.8%

LLaVA-PruMerge (2024.05) 53.6 61.3 55.3 1534 60.8 66.4 69.7 50.6 54.0 146 79.9%
SparseVLM (ICML25) 56.1 60.6 54.5 1533 82.4 66.1 71.5 58.4 52.0 270 85.9%

PDrop (CVPR25) 56.4 63.4 56.2 1663 77.6 67.5 73.5 54.4 54.1 259 86.8%
MustDrop (2024.11) 57.3 62.8 55.1 1641 82.1 68.0 73.7 59.9 54.0 382 90.4%

FasterVLM (2024.12) 56.9 61.6 53.5 1701 83.6 66.5 74.0 56.5 52.6 401 89.8%
GlobalCom2

(2025.01) 57.1 61.8 53.4 1698 83.8 67.4 76.7 57.2 54.6 375 90.3%
DART (Ours) 61.7 65.3 58.2 1710 84.1 68.4 79.1 58.7 56.1 406 93.9%

Table 3: Comparative experiments are performed on LLaVA-Next-7B using the same settings as LLaVA-1.5-7B.

FastV (Chen et al., 2024). Following established390

protocols, Video-LLaVA processes videos by sam-391

pling 8 frames and extracting 2048 vision tokens,392

with 50% retained for evaluation. As demonstrated393

in Table 6, DART surpasses FastV across all bench-394

marks, achieving a notable 4.0 score on MSVD,395

46.3% accuracy on TGIF, and 56.7% accuracy on396

MSRVT. With an average accuracy of 58.0% and397

an evaluation score of 3.7, DART demonstrates398

superior reasoning over complex multimodal data.399

5 Analysis and Discussion400

5.1 Efficiency Analysis401

As shown in Table 2, we compare the total infer-402

ence time, prefill time, FLOPs, and KV cache mem-403

ory of multiple methods. (i) DART achieves a404

2.99× speedup in prefill and 1.99× speedup in in-405

ference, while its performance on POPE degrades406

by less than 3% versus the vanilla model. (ii) Anal-407

ysis reveals although FLOPs reduction is similar408

across methods, their speeds vary significantly. For409

instance, SparseVLM increases FLOPs by 2.8%410

versus DART, but its speedup drops 21.6%, show-411

ing FLOPs alone poorly measure acceleration. (iii)412

We evaluate performance-latency trade-offs using413

actual latency. Figure 4 shows some methods un-414

derperform random token retention. SparseVLM415

and MustDrop suffer speed degradation from se-416

quential token processing. FastV’s biased attention417

scores yield worse performance. In contrast, DART418

integrates Flash Attention with under 0.08s over-419

head, achieving better performance-speed balance.420

5.2 Influence from Selection of Pivot Tokens421

In this section, we investigate whether pivot token422

selection in DART significantly affects its perfor-423

mance. Table 8 in Appendix A.1 evaluates pivot to-424

kens based on criteria such as maximum (♠), min-425

imum (♡) attention scores, K-norm, V-norm, and426

random selection. Results show that various strate-427

gies achieve over 94.9% of the vanilla model’s per-428

formance across benchmarks. Even DART with429

randomly selected pivot tokens incurs only a 1.2%430

performance drop compared to the best strategy 431

and outperforms the previous importance-based 432

methods by 2.1%. This observation shows the ro- 433

bustness in the selection of pivot tokens in DART, 434

and highlights the crucial role of duplication in 435

token reduction, as selecting “important” pivot to- 436

kens based on attention scores is only 0.2% better 437

than selecting “unimportant” ones as pivot tokens. 438

Furthermore, on the MME benchmark, we ana- 439

lyze the visual tokens retained by selecting pivot 440

tokens based on K-norm♠ and K-norm♡. Inter- 441

estingly, statistical analysis shows that the overlap 442

between tokens preserved by these two strategies 443

is, on average, less than 50%. Despite this low 444

overlap, both strategies achieve highly effective re- 445

sults, indicating the existence of multiple distinct 446

groups of tokens which should not be pruned. This 447

finding challenges the conventional notion of a sin- 448

gle critical token set defined by importance scores, 449

demonstrating that diverse token subsets with mini- 450

mal overlap can yield comparable performance. 451

5.3 Influence from Choice of the Pruned 452

Layer and the Number of Pivot Tokens 453

M
M

E
-S

co
re

A
cc

u
ra

cy

Figure 5: Impact of the num-
ber of pivot tokens.

We explore the im- 454

pact of layer on 455

model performance. 456

As expected, prun- 457

ing deeper layers 458

yields performance 459

closer to the vanilla 460

model but increases 461

latency, as shown in 462

Figure 6. However, 463

we observe two intriguing findings: (i) Pruning at 464

layers 10, 15, and 20 surprisingly outperforms the 465

vanilla model (Fig. 6(a)), consistent with Fig. 1, 466

suggesting that removing duplicate tokens may re- 467

duce hallucinations in MLLMs on the POPE. (ii) At 468

deeper layers (e.g., 15, 20), the latency-minimizing 469

points correspond to pruning all vision tokens, yet 470

performance drops only by 0.1%∼1.6%. This 471
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Method GQA MMB MMB-CN MME POPE SQA VQAText Avg.

Qwen2-VL-7B Upper Bound, All Tokens (100%)
Vanilla 62.2 80.5 81.2 2317 86.1 84.7 82.1 100%

Qwen2-VL-7B Token Reduction (↓ 66.7%)

+ FastV (ECCV24) 58.0 76.1 75.5 2130 82.1 80.0 77.3 94.0%
+ DART (Ours) 60.2 78.9 78.0 2245 83.9 81.4 80.5 97.0%

Qwen2-VL-7B Token Reduction (↓ 77.8%)

+ FastV (ECCV24) 56.7 74.1 73.9 2031 79.2 78.3 72.0 91.0%
+ DART (Ours) 58.5 77.3 77.1 2175 82.1 79.6 75.3 94.3%

Qwen2-VL-7B Token Reduction (↓ 88.9%)

+ FastV (ECCV24) 51.9 70.1 65.2 1962 76.1 75.8 60.3 84.0%
+ DART (Ours) 55.5 72.0 71.7 2052 77.9 77.6 61.8 87.5%

Table 4: Comparative Experiments on Qwen2-VL-7B.

Method GQA MMB MMB-CN MME POPE SQA VQAText Avg.

MiniCPM-V2.6 Upper Bound, All Tokens (100%)
Vanilla 51.5 79.7 77.9 2267 83.2 95.6 78.5 100%

MiniCPM-V2.6 Token Reduction (↓ 66.7%)

+ FastV (ECCV24) 43.2 74.9 73.1 1895 75.4 89.8 67.1 89.0%
+ DART (Ours) 47.8 76.5 74.8 1951 77.4 91.8 70.9 92.9%

MiniCPM-V2.6 Token Reduction (↓ 77.8%)

+ FastV (ECCV24) 41.3 72.9 70.4 1807 70.2 86.5 54.9 83.4%
+ DART (Ours) 47.8 73.8 71.4 1821 71.6 88.9 65.7 88.6%

MiniCPM-V2.6 Token Reduction (↓ 88.9%)

+ FastV (ECCV24) 35.5 61.4 60.8 1376 56.9 80.4 33.4 68.4%
+ DART (Ours) 42.5 66.2 64.0 1405 58.0 83.5 51.9 76.1%

Table 5: Comparative Experiments on MiniCPM-V2.6.

Methods
TGIF MSVD MSRVT Avg.

Accuracy Score Accuracy Score Accuracy Score Accuracy Score
FrozenBiLM-1B 41.9 - 32.2 - 16.8 - 30.3 -
VideoChat-7B 34.4 2.3 56.3 2.8 45.0 2.5 45.1 2.5
LLaMA-Adapter-7B - - 54.9 3.1 43.8 2.7 - -
Video-LLaMA-7B - - 51.6 2.5 29.6 1.8 - -
Video-ChatGPT-7B 51.4 3.0 64.9 3.3 49.3 2.8 55.2 3.0
Video-LLaVA-7B 47.0 3.4 70.2 3.9 57.3 3.5 58.2 3.6

+ FastV-7B 45.2 3.1 71.0 3.9 55 3.5 57.1 3.5
+ DART-7B (Ours) 46.3 3.4 71.0 4.0 56.7 3.6 58.0 3.7

Table 6: Comparing MLLMs on Video Understand-
ing tasks with 50% visual tokens retained.

highlights a modality imbalance in MLLMs, indi-472

cating underutilization of the visual modality. Fur-473

thermore, we delved into the impact of the number474

of pivot tokens on performance. As depicted in475

Figure 5, choosing either an insufficient or an ex-476

cessive number of pivot tokens leads to suboptimal477

outcomes. When a limited number of pivot to-478

kens (e.g., one or two), the lack of diversity among479

these tokens may impede their ability to compre-480

hensively represent the entire feature space. In481

contrast, when an overly large number of pivot482

tokens, for example, 20 or more, are chosen, the483

majority of retained visual tokens tend to be pivot484

tokens. In extreme cases, our approach starts to re-485

semble the importance-based method, where pivot486

tokens essentially transform into important tokens,487

overlooking the impact of duplication factors.488

Latency: 2174s

(a) POPE

Latency: 551s

(b) MME

Figure 6: Influence from the layer for token pruning.

5.4 Influence from Modalities of Pivot Tokens489

We further analyze the impact of the source of pivot490

tokens on the overall performance of DART, with491

a particular focus on understanding whether guid-492

ance from the language modality is essential for493

effective token reduction. We evaluate the perfor-494

mance implications of selecting pivot tokens exclu- 495

sively from either the visual or text modality, aim- 496

ing to quantify the influence of each modality. As 497

illustrated in Figure 7, the absence of pivot tokens 498

from either modality leads to a noticeable decline 499

in performance. This demonstrates that informa- 500

tion from both modalities contributes to the token 501

reduction process to varying degrees. Moreover, 502

it highlights that we provide an effective method 503

for incorporating textual guidance without the need 504

to explicitly compute cross-modal attention scores 505

while remaining compatible with Flash Attention.
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Figure 7: Analysis of pivot token sources: “ALL To-
kens” selects from both visual and textual modalities,
while “Visual Tokens” and “Text Tokens” select exclu-
sively from visual or textual modalities, respectively. 506

6 Conclusion 507

The pursuit of efficient token reduction in MLLMs 508

has traditionally focused on token “importance”, 509

often measured by attention scores, but sometimes 510

performs worse than random pruning. This study 511

introduces DART, which targets token duplica- 512

tion, removing tokens similar to others and achiev- 513

ing better balance between performance and la- 514

tency across multiple benchmarks and MLLMs 515

(Tab. 1, 2, 3, 4, 5, 7, 9 and Fig. 4). Our exploration 516

yields surprising insights: distinct retained token 517

sets, with under 50% overlap, deliver similarly 518

strong performance (§5.2). Moreover, token prun- 519

ing may reduce hallucinations (§5.3). These find- 520

ings expose limits of importance-based methods 521

and offer insights into vision tokens in MLLMs. 522
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7 Limitations523

Similar to many other methods aimed at improving524

efficiency, such as network pruning, quantization,525

distillation, model merging, and speculative decod-526

ing, one of the limitations of our work is that it527

cannot be applied to black-box models like the528

GPT (e.g. GPT 3.5 and more advanced versions)529

and Claude series, as we are unable to access their530

encoded tokens during the inference process. More-531

over, due to space limitations in the main text, we532

had to move some experimental results that we be-533

lieve are particularly insightful and interesting to534

the appendix. These include, for example, our in-535

vestigation of strategies for pivot token selection, a536

more detailed analysis of the impact of the number537

of pivot tokens, and validations of our method on538

larger-scale models, which may slightly affect the539

overall reading experience.540
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A Additional Experiments936

A.1 Supplementary Results on Pivot Token937

Selection938

This section presents comprehensive experimen-939

tal results conducted on the LLaVA-1.5-7B model,940

supporting the analysis of pivot token selection941

strategies within DART. Table 8 details perfor-942

mance metrics across multiple benchmarks, includ-943

ing GQA, MMB, MME, POPE, SQA, and VQA,944

with all experiments retaining 128 vision tokens.945

These findings further validate the robustness of946

DART under various pivot token selection criteria,947

ranging from random selection to methods based948

on attention scores and norm-based approaches.949

The table also includes comparisons with baseline950

methods (e.g., SparseVLM and FastV), highlight- 951

ing the consistent superiority of DART across dif- 952

ferent configurations. For additional insights, refer 953

to the main discussion in §5.2. 954

A.2 Influence from the Number of Pivot 955

Tokens 956

Beyond the investigation of pivot token numbers on 957

MME and TextVQA in §5.3, we conduct additional 958

experiments on several representative visual bench- 959

marks to further support our insight. Figure 8 illus- 960

trates that our observations on benchmarks such as 961

POPE and SQA align with those in §5.3—namely, 962

that both insufficient and excessive pivot tokens 963

can lead to suboptimal performance. While an in- 964

sufficient or excessive number of pivot tokens may 965

result in suboptimal outcomes, our statistical anal- 966

ysis reveals that even the worst-performing set- 967

tings still match or surpass the performance of 968

existing token pruning approaches. This further 969

demonstrates the superiority of DART. 970

A.3 More Experimental Results on Larger 971

MLLMs 972

Method MME POPE GQA TextVQA SQA Avg.
Qwen2-VL-72B Upper Bound, Full Tokens (100%)

Vanilla 2521 87.4 65.3 82.8 91.6 100%
Qwen2-VL-72B Token Reduction (↓ 66.7%)

FastV (ECCV24) 2376 83.8 62.5 81.5 87.6 96.0%
DART (Ours) 2511 85.7 64.2 82.1 90.9 98.9%

Qwen2-VL-72B Token Reduction (↓ 77.8%)

FastV (ECCV24) 2219 81.1 59.2 79.6 85.1 92.1%
DART (Ours) 2496 83.8 62.5 80.4 88.1 96.8%

Qwen2-VL-72B Token Reduction (↓ 88.9%)

FastV (ECCV24) 2089 78.7 55.7 75.4 83.3 88.0%
DART (Ours) 2350 79.3 59.2 76.6 86.0 92.2%

Table 7: Comparative experiments on Qwen2-VL-72B.

While prior experiments primarily focused on 973

models with 7B parameters, we further validate the 974

effectiveness and robustness of DART on substan- 975

tially larger models, including LLaVA-v1.5-13B2 976

and Qwen2-VL-72B3. Our results demonstrate that 977

DART consistently outperforms prior token prun- 978

ing methods such as FastV (Chen et al., 2024) and 979

SparseVLM (Zhang et al., 2024b) across various 980

pruning ratios and downstream tasks, while main- 981

taining near-Vanilla performance. 982

2https://huggingface.co/liuhaotian/llava-v1.
5-13b

3https://huggingface.co/Qwen/
Qwen2-VL-72B-Instruct
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Benchmark Vanilla Pivot Token Selection Other Methods
Random A-Score♠ A-Score♡ K-norm♠ K-norm♡ V-norm♠ V-norm♡ SparseVLM FastV

GQA 61.9 59.0±0.3 59.2 58.4 58.7 59.1 57.3 59.4 56.0 49.6

MMB 64.7 63.2±0.7 63.1 62.9 63.2 64.0 62.5 64.3 60.0 56.1

MME 1862 1772±17.9 1826 1830 1840 1820 1760 1825 1745 1490

POPE 85.9 80.6±0.49 81.1 81.0 80.1 80.2 76.8 81.6 80.5 59.6

SQA 69.5 69.0±0.3 69.9 68.9 69.1 68.7 69.2 68.9 68.5 60.2

VQAV2 78.5 75.2±0.2 75.9 76.0 75.9 75.6 75.4 76.1 73.8 61.8

VQAText 58.2 56.0±0.3 55.7 56.5 56.4 55.4 55.5 56.0 54.9 50.6

Avg. 100% 96.0% 96.9% 96.7% 96.8% 96.8% 94.9% 97.2% 93.9% 81.5%

Table 8: Analysis on how to select the pivot token. This study evaluates pivot tokens, comprising a fixed set of
4 visual and 4 text tokens, using various criteria with 128 retained tokens. A-Score denotes the Attention Score.
♠ represents selecting token with the highest value as the pivot token. ♡ represents selecting the token with the
smallest value as the pivot token. For instance, A-Score♠ means selecting the token with the highest value of
Attention Score as the pivot token. For the Random pivot token selection strategy, we conducted experiments five
times using five different random seeds, and report the corresponding standard deviation to reflect variability.
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Figure 8: Impact of the number of pivot tokens on performance across additional visual benchmarks. All experiments
are conducted with a token reduction ratio of 77.8%. It is noteworthy that even under relatively extreme numbers of
pivot tokens, our worst-case performance still matches or surpasses that of existing token pruning methods.

As shown in Table 9, on LLaVA-1.5-13B with983

an 88.9% pruning ratio, DART achieves 94.7%984

average performance, significantly outperforming985

SparseVLM (79.7%) and FastV (81.0%). Simi-986

larly, on Qwen2-VL-72B, DART reaches 92.2%987

under the same pruning ratio, surpassing FastV988

(88.0%) (Table 7). At a moderate 66.7% pruning989

ratio, DART retains 99.5% and 98.9% accuracy on990

LLaVA-1.5-13B and Qwen2-VL-72B, respectively,991

with minimal degradation.992

DART also excels on specific tasks, achieving993

60.9 GQA on LLaVA-1.5-13B at 77.8% pruning994

and 90.9 ScienceQA on Qwen2-VL-72B at 66.7%,995

both outperforming FastV. These results demon-996

strate DART ’s scalability and its ability to balance997

compression and performance in large MLLMs.998

999

B Extensions to Other Scenarios1000

B.1 Exploring the Effectiveness of DART in1001

Audio Modalities1002

In recent years, the integration of audio as a core1003

modality (Abouelenin et al., 2025; Team, 2024;1004

Chu et al., 2024) within Multimodal Large Lan- 1005

guage Models (MLLMs) has garnered increasing 1006

attention. As these models evolve to handle com- 1007

plex, real-world tasks that span language, vision, 1008

and sound, the ability to effectively process spo- 1009

ken language becomes crucial. Audio understand- 1010

ing, particularly in the form of automatic speech 1011

recognition (ASR), plays a foundational role in 1012

applications such as virtual assistants, transcrip- 1013

tion services, voice-controlled systems, and mul- 1014

timodal reasoning agents. Therefore, beyond the 1015

widely explored domains of image and video under- 1016

standing in the visual modality, we further extend 1017

our investigation to evaluate the effectiveness of 1018

our proposed method on tasks within the audio 1019

modality. To conduct our study, we select Phi-4- 1020

Multimodal-Instruct4, an MLLM with strong audio 1021

modality capabilities, and evaluate it on two repre- 1022

sentative speech benchmarks: FLEURs-en (Con- 1023

neau et al., 2023) and LibriSpeech-long (Park et al., 1024

2024). As demonstrated in Table 10, our proposed 1025

method DART consistently outperforms baseline 1026

4https://huggingface.co/microsoft/
Phi-4-multimodal-instruct
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Method GQA MMB MMB-CN MME POPE SQA VQAText VizWiz Avg.
LLaVA-1.5-13B Upper Bound, 576 Tokens (100%)

Vanilla 63.3 68.9 62.3 1818 85.9 72.8 61.3 56.6 100%
LLaVA-1.5-13B Retain 192 Tokens (↓ 66.7%)
FastV (ECCV24) 59.1 54.0 51.2 1641 82.3 56.4 51.6 56.9 87.8%

SparseVLM (ICML25) 58.7 67.4 61.0 1768 82.2 73.1 45.4 56.5 94.5%
DART (Ours) 62.1 68.2 61.4 1855 84.0 73.6 60.2 57.3 99.5%

LLaVA-1.5-13B Retain 128 Tokens (↓ 77.8%)
FastV (ECCV24) 57.7 57.9 48.8 1673 79.3 57.0 56.0 55.3 88.2%

SparseVLM (ICML25) 57.9 65.8 55.8 1774 81.1 69.9 49.9 56.3 93.2%
DART (Ours) 60.9 67.4 60.7 1839 81.8 74.3 59.0 57.3 98.5%

LLaVA-1.5-13B Retain 64 Tokens (↓ 88.9%)
FastV (ECCV24) 53.7 50.9 42.1 1567 69.3 56.8 47.1 56.7 81.0%

SparseVLM (ICML25) 50.6 61.3 54.8 1402 65.0 69.0 22.7 54.5 79.7%
DART (Ours) 57.1 65.4 59.3 1722 75.4 74.1 55.9 57.4 94.7%

Table 9: Comparative experiments on LLaVA-1.5-13B. In all experiments for DART, tokens are pruned after the
second layer with 8 pivot tokens. The pivot tokens are selected based on the maximum K-norm.

Method FLEURs ↓ LibriSpeech ↓ Avg. ↓
Phi-4-Multimodal-Instruct Upper Bound, Full Audio Tokens (100%)

Vanilla 3.49 6.40 4.95
Phi-4-Multimodal-Instruct Token Reduction (↓ 20%)

+ Random 8.15 25.23 16.69
+ FastV (ECCV24) 19.82 27.90 23.86
+ DART (Ours) 5.05 6.95 6.00

Phi-4-Multimodal-Instruct Token Reduction (↓ 30%)
+ Random 13.18 39.42 26.3
+ FastV (ECCV24) 34.10 51.60 42.85
+ DART (Ours) 5.84 11.64 8.74

Phi-4-Multimodal-Instruct Token Reduction (↓ 50%)
+ Random 37.57 76.85 57.21
+ FastV (ECCV24) 180.0 88.38 134.19
+ DART (Ours) 18.93 49.13 34.03

Table 10: Comparative experiments on Automatic
Speech Recognition tasks. In all experiments for DART,
tokens are pruned after the 2nd layer with 8 pivot tokens.
The pivot tokens are selected based on the maximum K-
norm. The evaluation metric is Word Error Rate (WER).

approaches under varying token reduction ratios1027

on both FLEURs-en and LibriSpeech-long bench-1028

marks. While random pruning and FastV result1029

in substantial degradation in recognition perfor-1030

mance, particularly under higher reduction rates,1031

DART maintains significantly lower Word Error1032

Rates (WER), showcasing its robustness and effec-1033

tiveness in preserving critical audio information1034

even with limited token usage.1035

B.2 Enhancing VLA Efficiency with DART1036

Building on recent progress in multimodal under-1037

standing from vision-language models (Awadalla1038

et al., 2023; Li et al., 2022; Radford et al., 2021;1039

An et al., 2024; Luo et al., 2024), Vision-Language-1040

Action (VLA) models represent a significant step1041

toward embodied intelligence. Systems such as1042

OpenVLA (Kim et al., 2024), CogACT (Li et al.,1043

2024a), pi0(Black et al., 2024), and RT-2(Brohan1044

et al., 2023) seamlessly translate multimodal inputs1045

into executable actions. Leveraging large-scale1046

datasets (Fang et al., 2024; O’Neill et al., 2024),1047

these models have demonstrated impressive capa- 1048

bilities in complex robotic manipulation and rea- 1049

soning tasks. As a potential pathway toward Arti- 1050

ficial General Intelligence (AGI), we place great 1051

emphasis on improving the efficiency of VLA mod- 1052

els through our approach. 1053

To this end, we employ the SIMPLER environ- 1054

ment (Li et al., 2024b), a simulation-based bench- 1055

mark specifically designed for table-top manipu- 1056

lation to evaluate our method. SIMPLER aims to 1057

closely mirror real-world dynamics observed in 1058

robots such as the Google Robot and WidowX, ex- 1059

hibiting strong consistency between simulated and 1060

real-world performance. In this setup, the Vision- 1061

Language-Action (VLA) model receives 224×224 1062

RGB image observations along with natural lan- 1063

guage task instructions (e.g., “Pick coke can”) and 1064

generates a sequence of actions in 7-DoF Carte- 1065

sian space. SIMPLER supports two evaluation 1066

configurations: Visual Matching, which empha- 1067

sizes visual fidelity to real-world scenes, and Vari- 1068

ant Aggregations, which introduces variability 1069

through changes in lighting, background, and sur- 1070

face textures. For the Google Robot, both configu- 1071

rations include the same set of four tasks: Pick coke 1072

can; Move near; Open/close drawer and Open top 1073

drawer and place apple. Performance is assessed 1074

using success rate as the evaluation metric. 1075

As shown in Table 11, DART demonstrates su- 1076

perior performance compared to other baseline 1077

methods in the SIMPLER environment. With 1078

only 56 retained visual tokens, DART achieves 1079

the highest average success rates of 75.2% and 1080

64.4% in Visual Matching and Variant Aggrega- 1081

tion, respectively, outperforming Random Drop- 1082

ping (Wen et al., 2025), FastV (Chen et al., 2024), 1083

VLA-Cache (Xu et al., 2025), and even vanilla 1084
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SIMPLER Method Retained Tokens PickCan MoveNear Drawer DrawerApple Average FLOPs ↓ Speedup ↑

Visual
Matching

CogACT 256 91.3% 85.0% 71.8% 50.9% 74.8% 100.0% 1.00×
Random Dropping 112 9.7% 20.4% 53.5% 0.0% 20.9% 58.5% 1.20×

FastV 56 92.6% 81.4% 69.8% 52.4% 74.1% 42.0% 1.21×
VLA-Cache - 92.0% 83.3% 70.5% 51.6% 74.4% 80.1% 1.38×

DART 56 95.6% 85.8% 69.9% 49.5% 75.2% 44.7% 1.25×

Variant
Aggregation

CogACT 256 89.6% 80.8% 28.3% 46.6% 61.3% 100.0% 1.00×
Random Dropping 112 4.0% 16.1% 15.6% 0.0% 8.9% 58.5% 1.20×

FastV 56 91.4% 78.6% 27.6% 50.6% 62.1% 42.0% 1.19×
VLA-Cache - 91.7% 79.3% 32.5% 45.8% 62.3% 82.6% 1.37×

DART 56 92.4% 77.0% 35.9% 52.4% 64.4% 44.7% 1.25×

Table 11: Performance of DART on the CogACT versus the other baselines in the SIMPLER environment. Random
Dropping denotes a method involving the random retention of visual tokens.

CogACT (Li et al., 2024a). Moreover, DART sig-1085

nificantly reduces computational cost, achieving1086

the lower FLOPs (44.7%), which corresponds to a1087

speedup of 1.25× compared to the CogACT. These1088

results highlight DART ’s efficiency in maintaining1089

high task performance while substantially reducing1090

computational demands.1091

C Detailed Experiment Settings1092

C.1 Datasets1093

Our experiments are conducted on a suite of widely1094

recognized benchmarks, each designed to evaluate1095

distinct aspects of multimodal intelligence. For im-1096

age understanding task, we performed experiments1097

on ten widely used benchmarks, including GQA1098

(Hudson and Manning, 2019), MMBench (MMB)1099

and MMB-CN (Liu et al., 2025b), MME (Fu et al.,1100

2023), POPE (Li et al., 2023b), VizWiz (Bigham1101

et al., 2010), SQA (Lu et al., 2022), VQAV2 (VQA1102

V2) (Goyal et al., 2017), VQAText (TextVQA)1103

(Singh et al., 2019), and OCRBench (Liu et al.,1104

2024f). For video understanding task, we evalu-1105

ated our method on three video-based benchmarks:1106

TGIF-QA (Jang et al., 2017), MSVD-QA (Xu et al.,1107

2017), and MSRVTT-QA (Xu et al., 2017). Further-1108

more, to validate the effectiveness and applicability1109

of our approach, we extended the evaluation sce-1110

narios of DART. Specifically, we tested our token1111

reduction method in both the speech modality—on1112

automatic speech recognition (audio token reduc-1113

tion) (Conneau et al., 2023; Park et al., 2024), and1114

on a vision-language-action model within a simu-1115

lated environment (Li et al., 2024b).1116

C.1.1 Image Understanding1117

GQA. GQA is structured around three core com-1118

ponents: scene graphs, questions, and images. It1119

includes not only the images themselves but also1120

detailed spatial features and object-level attributes. 1121

The questions are crafted to assess a model’s ability 1122

to comprehend visual scenes and perform reason- 1123

ing tasks based on the image content. 1124

MMBench. MMBench offers a hierarchical evalu- 1125

ation framework, categorizing model capabilities 1126

into three levels. The first level (L-1) focuses on 1127

perception and reasoning. The second level (L-2) 1128

expands this to six sub-abilities, while the third 1129

level (L-3) further refines these into 20 specific di- 1130

mensions. This structured approach allows for a nu- 1131

anced and comprehensive assessment of a model’s 1132

multifaceted abilities. MMBench-CN is the Chi- 1133

nese version of the dataset. 1134

MME. The MME benchmark is designed to rigor- 1135

ously evaluate a model’s perceptual and cognitive 1136

abilities through 14 subtasks. It employs carefully 1137

constructed instruction-answer pairs and concise 1138

instructions to minimize data leakage and ensure 1139

fair evaluation. This setup provides a robust mea- 1140

sure of a model’s performance across various tasks. 1141

POPE. POPE is tailored to assess object hallucina- 1142

tion. It presents a series of binary questions about 1143

the presence of objects in images, using accuracy, 1144

recall, precision, and F1 score as metrics. This ap- 1145

proach offers a precise evaluation of hallucination 1146

levels under different sampling strategies. 1147

ScienceQA. ScienceQA spans a wide array of do- 1148

mains, including natural, language, and social sci- 1149

ences. Questions are hierarchically categorized into 1150

26 topics, 127 categories, and 379 skills, providing 1151

a diverse and comprehensive testbed for evaluating 1152

multimodal understanding, multi-step reasoning, 1153

and interoperability. 1154

VQA V2. VQA V2 challenges models with open- 1155

ended questions based on 265,016 images depict- 1156

ing a variety of real-world scenes. Each question 1157

is accompanied by 10 human-annotated answers, 1158
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enabling a thorough assessment of a model’s abil-1159

ity to accurately interpret and respond to visual1160

queries.1161

TextVQA. TextVQA emphasizes the integration of1162

textual information within images. It evaluates a1163

model’s proficiency in reading and reasoning about1164

text embedded in visual content, requiring both1165

visual and textual comprehension to answer ques-1166

tions accurately.1167

OCRBench. OCRBench is a comprehensive1168

benchmark for evaluating the OCR capabilities of1169

multi-modal language models across five key tasks:1170

text recognition, scene text-centric and document-1171

oriented VQA, key information extraction, and1172

handwritten mathematical expression recognition.1173

C.1.2 Video Understanding1174

TGIF-QA. TGIF-QA extends the image question-1175

answering task to videos, featuring 165,0001176

question-answer pairs. It introduces tasks that re-1177

quire spatio-temporal reasoning, such as repetition1178

count and state transition, as well as frame-based1179

questions, promoting advancements in video ques-1180

tion answering.1181

MSVD-QA. Based on the MSVD dataset, MSVD-1182

QA includes 1970 video clips and approximately1183

50.5K QA pairs. The questions cover a broad spec-1184

trum of topics and are open-ended, categorized into1185

what, who, how, when, and where types, making it1186

a versatile tool for video understanding tasks.1187

MSRVTT-QA. MSRVTT-QA comprises 10K1188

video clips and 243K QA pairs. It addresses the1189

challenge of integrating visual and temporal infor-1190

mation in videos, requiring models to effectively1191

process both to answer questions accurately. Sim-1192

ilar to MSVD-QA, it includes five types of ques-1193

tions, further enriching the evaluation landscape.1194

C.1.3 Automatic Speech Recognition.1195

FLEURS. FLEURS is a benchmark for evaluating1196

universal speech representations across 102 lan-1197

guages, built on top of the FLoRes-101 dataset. It1198

contains 12 hours of speech data per language, with1199

parallel speech and text for tasks like ASR, Speech1200

LangID, and cross-modal retrieval.1201

LibriSpeech-Long. LibriSpeech-Long is a bench-1202

mark dataset for long-form speech generation, de-1203

rived from the original LibriSpeech dataset. It pro-1204

vides 4-minute long continuous speech and cor-1205

responding transcripts, enabling the evaluation of1206

long-form speech continuation. This benchmark1207

supports reference-based evaluation for long-form1208

speech tasks and facilitates research in generating 1209

coherent and contextually relevant speech over ex- 1210

tended durations. 1211

C.1.4 Vision-Language-Action Models 1212

Simulation Platform 1213

SIMPLER. SIMPLER is a simulation platform 1214

for evaluating real-world robot manipulation poli- 1215

cies. It features realistic simulated environments 1216

that match common real robot setups (e.g., Google 1217

Robot and WidowX) and tasks (e.g., picking and 1218

moving objects). By addressing control and visual 1219

disparities between simulation and reality, SIM- 1220

PLER achieves strong correlation with real-world 1221

performance, providing a scalable and reproducible 1222

evaluation tool. 1223

C.2 Models 1224

We evaluate DART using various open-source 1225

MLLMs. For image understanding tasks, exper- 1226

iments are conducted on the LLaVA family, includ- 1227

ing LLaVA-1.5-7B5 (Liu et al., 2024d) and LLaVA- 1228

Next-7B6 (Liu et al., 2024c), with the latter used 1229

to validate performance on high-resolution images. 1230

Furthermore, we validate our method on more ad- 1231

vanced models, including Qwen2-VL-7B7 (Wang 1232

et al., 2024a) and MiniCPM-V-2.68 (Yao et al., 1233

2024b). Moreover, to enhance the effectiveness 1234

of our proposed method, we also validate DART 1235

on larger MLLMs, such as Qwen2-VL-72B and 1236

LLaVA-1.5-13B. For video understanding tasks, 1237

we use Video-LLaVA (Lin et al., 2023) as the base- 1238

line model. following the settings reported in their 1239

paper to ensure a fair comparison. 1240

C.3 Baselines 1241

We analyze multiple representative methods for ac- 1242

celerating multi-modal language models (MLLMs) 1243

through token reduction. These methods share the 1244

goal of improving efficiency by reducing redundant 1245

tokens, yet differ in their strategies, such as token 1246

merging, pruning, or adaptive allocation. 1247

ToMe (Bolya et al., 2023) merges similar tokens 1248

in visual transformer layers through lightweight 1249

matching techniques, achieving acceleration with- 1250

out requiring additional training. 1251

5https://huggingface.co/liuhaotian/llava-v1.
5-7b

6https://huggingface.co/liuhaotian/llava-v1.
6-vicuna-7b

7https://huggingface.co/Qwen/
Qwen2-VL-7B-Instruct

8https://huggingface.co/openbmb/MiniCPM-V-2_6
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FastV (Chen et al., 2024) focuses on early-stage1252

token pruning by leveraging attention maps, ef-1253

fectively reducing computational overhead in the1254

initial layers.1255

SparseVLM (Zhang et al., 2024b) ranks token1256

importance using cross-modal attention and intro-1257

duces adaptive sparsity ratios, complemented by a1258

novel token recycling mechanism.1259

HiRED (Arif et al., 2024) allocates token budgets1260

across image partitions based on CLS token atten-1261

tion, followed by the selection of the most informa-1262

tive tokens within each partition, ensuring spatially1263

aware token reduction.1264

LLaVA-PruMerge (Shang et al., 2024) combines1265

pruning and merging strategies by dynamically re-1266

moving less important tokens using sparse CLS-1267

visual attention and clustering retained tokens1268

based on key similarity.1269

PDrop (Xing et al., 2024) adopts a progressive1270

token-dropping strategy across model stages, form-1271

ing a pyramid-like token structure that balances1272

efficiency and performance.1273

MustDrop (Liu et al., 2024e) integrates multiple1274

strategies, including spatial merging, text-guided1275

pruning, and output-aware cache policies, to reduce1276

tokens across various stages.1277

FasterVLM (Zhang et al., 2024a) evaluates token1278

importance via CLS attention in the encoder and1279

performs pruning before interaction with the lan-1280

guage model, streamlining the overall process.1281

GlobalCom2 (Liu et al., 2025a) introduces a hierar-1282

chical approach by coordinating thumbnail tokens1283

to allocate retention ratios for high-resolution crops1284

while preserving local details.1285

FiCoCo (Han et al., 2024) introduces a unified1286

“filter-correlate-compress” paradigm to streamline1287

training-free token reduction in Multimodal Large1288

Language Models (MLLMs).1289

FitPrune (Ye et al., 2025) proposes a method that1290

generates an efficient token pruning strategy for1291

multi-modal large language models by removing1292

redundant visual tokens. FitPrune is easy to deploy1293

and is designed to meet a predefined computational1294

budget while maintaining model performance.1295

These methods collectively highlight diverse ap-1296

proaches to token reduction, ranging from attention-1297

based pruning to adaptive merging, offering com-1298

plementary solutions for accelerating MLLMs.1299

C.4 Implementation Details1300

All of our experiments are conducted on Nvidia1301

A100-80G GPU. The implementation was carried1302

out in Python 3.10, utilizing PyTorch 2.1.2, and 1303

CUDA 11.8. All baseline settings follow the 1304

original paper. 1305

1306

D Computational Complexity. 1307

To evaluate the computational complexity of 1308

MLLMs, it is essential to analyze their core com- 1309

ponents, including the self-attention mechanism 1310

and the feed-forward network (FFN). The total 1311

floating-point operations (FLOPs) required can be 1312

expressed as: 1313

Total FLOPs = T×(4nd2+2n2d+2ndm), (11) 1314

where T denotes the number of transformer layers, 1315

n is the sequence length, d represents the hidden 1316

dimension size, and m is the intermediate size of 1317

the FFN. This equation highlights the significant 1318

impact of sequence length n on computational com- 1319

plexity. Notable, we follow FastV (Chen et al., 1320

2024) to roughly estimate various token reduction 1321

baseline FLOPs. The FLOPs after token pruning 1322

can be represented as: 1323

Post-Pruning FLOPs

= L× (4nd2 + 2n2d+ 2ndm) +

(T − L)× (4n̂d2 + 2n̂2d+ 2n̂dm),

(12)

1324

where L denotes the pruned layer, n̂ represents to- 1325

ken sequence length after pruning. The theoretical 1326

FLOPs reduction ratio related to visual tokens is 1327

computed as: 1328

1− Post-Pruning FLOPs
Total FLOPs

. (13) 1329

E Future Works 1330

As can be observed from Figure 1 and Figure 6(a), 1331

in certain cases, token pruning contributes to the 1332

reduction of hallucinations. Our method achieved 1333

better results than the vanilla model on the POPE 1334

benchmark, which is specifically designed for eval- 1335

uating the hallucination issues of multimodal large 1336

language models. Therefore, we believe that it is 1337

worth exploring in the future why token pruning is 1338

beneficial for reducing hallucinations and how we 1339

can better utilize efficient techniques (e.g., token 1340

pruning, and token merge) to reduce hallucinations 1341

while achieving acceleration benefits. 1342
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F Sparsification Visualization on1343

Different Pivot Token Selection1344

Strategy1345

Figure 9 showcases a diverse array of sparsifica-1346

tion visualization examples on different pivot token1347

selection strategy, including K-norm♠, K-norm♡,1348

V-norm♠, V-norm♡, Attention Score♠, Attention1349

Score♡, and Random. Here, we can observe two in-1350

teresting points: (i) The commonality is that DART1351

employs different pivot token selection strategies1352

for token reduction, and the retained tokens are1353

distributed in a relatively scattered manner without1354

obvious bias, i.e., spatial uniformity, which con-1355

tributes to a more accurate understanding of the1356

entire image and consistent responses. (ii) The dif-1357

ference lies in the fact that although each strategy1358

achieves comparable performance, it is noticeable1359

that the final set of retained tokens varies signif-1360

icantly across strategies, indicating the existence1361

of multiple token sets that can deliver satisfactory1362

results. This further corroborates the limitation of1363

selecting a unique set of tokens based solely on1364

importance scores.1365
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K-norm K-norm♡ V-norm V-norm♡ A-Score A-Score♡ RandomOrigin

Figure 9: Sparsification Visualization examples of DART on different Pivot Token Selection Strategy.
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