
EPIC: Efficient Position-Independent Caching for Serving Large Language
Models

Junhao Hu† 1 Wenrui Huang 2 Weidong Wang 2 Haoyi Wang 1 Tiancheng Hu 1 Qin Zhang 3 Hao Feng 3

Xusheng Chen 3 Yizhou Shan 3 Tao Xie 4

Abstract
Large Language Models (LLMs) show great capa-
bilities in a wide range of applications, but serv-
ing them efficiently becomes increasingly chal-
lenging as requests (prompts) become more com-
plex. Context caching improves serving perfor-
mance by reusing Key-Value (KV) vectors, the
intermediate representations of tokens that are re-
peated across requests. However, existing context
caching requires exact prefix matches across re-
quests, limiting reuse cases in settings such as
few-shot learning and retrieval-augmented gener-
ation, where immutable content (e.g., documents)
remains unchanged across requests but is pre-
ceded by varying prefixes. Position-Independent
Caching (PIC) addresses this issue by enabling
modular reuse of the KV vectors regardless of pre-
fixes. We formalize PIC and advance prior work
by introducing EPIC, a serving system incorporat-
ing our new LegoLink algorithm, which mitigates
the inappropriate “attention sink” effect at every
document beginning, to maintain accuracy with
minimal computation. Experiments show that
EPIC achieves up to 8× improvements in Time-
To-First-Token (TTFT) and 7× throughput gains
over existing systems, with negligible or no accu-
racy loss.

1. Introduction
Large Language Models (LLMs) are now fundamental to
various emerging applications such as question answering,

†This work was completed during his internship at Huawei
Cloud. 1SCS, Peking University; Key Lab of HCST (PKU),
MOE, China 2School of Computer Science, Nanjing University,
Nanjing, China 3Huawei Cloud, Shanghai, China 4Key Lab of
HCST (PKU), MOE; SCS, Peking University, China. Correspon-
dence to: Tao Xie <taoxie@pku.edu.cn>, Yizhou Shan <shany-
izhou@huawei.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Naive FR

CacheBlend

Ours

N
o 

R
ec

om
pu

ta
tio

n

Full R
ecom

putation

Dynamic Sparsity

Static Sparsity

Figure 1. Left: Design space of position-independent context
caching. Right: The x-axis shows the computation overhead or
TTFT, while the y-axis shows accuracy. Different shades of the
same color indicate variants of the same algorithm.

chatbots, education, and medicine (Zhou et al., 2024). Users
interact with LLMs by submitting requests, or prompts that
consist of text-like tokens. As LLMs’ capabilities continue
to grow, their usage has shifted from simple dialogues to
more complex tasks, such as multi-document question an-
swering, few-shot learning, and tool use. These tasks typi-
cally involve long prompts comprising relatively immutable
token chunks (compared to mutable user instructions) such
as system messages, few-shot examples, and documents.
Notably, such immutable chunks are frequently repeated
across requests.

Context Caching1 (CC) is an emerging approach that reuses
Key-Value (KV) vectors, the intermediate representations of
repeated tokens in previous requests to reduce computation,
and is generally categorized into two types. First, prefix-
based CC matches the current request against previous ones
to reuse the KV vectors of the longest common prefix. Al-
though prefix-based CC remains the dominant approach in
existing systems (kim; gem, b; Zheng et al., 2024; Kwon
et al., 2023), it requires exact prefix matches across requests,
limiting reuse cases in settings such as few-shot learning and
Retrieval-Augmented Generation (RAG), where immutable
chunks (e.g., documents) remain unchanged across requests
but are preceded by varying prefixes. Second, Position-
Independent Caching (PIC) (Figure 2 (b)) extends prefix-

1Also referred to as prompt caching.

1



EPIC: Efficient Position-Independent Caching for Serving Large Language Models

based CC, enabling modular reuse of the KV vectors of
immutable tokens, regardless of their prefixes (Yao et al.,
2025). Although PIC significantly increases reuse opportu-
nities (Figure 6), it deviates from standard attention mech-
anisms, resulting in potential accuracy degradation; thus,
ensuring accurate recovery becomes its main challenge.

To tackle the challenge of PIC, we formalize its usage within
a two-step framework analogous to compilation and link-
ing (Figure 2). First, the compile step involves submitting
individual immutable chunks to the LLM to generate and
store their respective KV vectors. Second, the link step re-
trieves and concatenates cached KV vectors and recomputes
a subset of KV vectors to maintain accuracy.

To the best of our knowledge, CacheBlend (Yao et al., 2025)
is the first2 work that fits into our PIC framework (Figure 1),
and has two major limitations. First, the time and resource
complexity of the recomputation in the link step are the same
as the original attention mechanism—O(N2), where N is
the number of tokens in the given prompt. Figure 1 shows
that, although CacheBlend-15 dynamically selects 15% of
tokens for recomputation, for very long prompts, common
in many applications today, this O(15%N2) complexity
remains slow and prone to out-of-memory (OOM) errors
(Figure 9). Second, CacheBlend relies on dynamic attention
sparsity, which incurs heavy runtime overhead in addition to
the O(N2) recomputation. Figure 10 shows that the runtime
overhead of CacheBlend takes around 16.3% to 63.56% of
Time-To-First-Token (TTFT).

To overcome the limitations of CacheBlend, we develop
EPIC (Efficient Position-Independent Caching), a serving
system that incorporates our simple but effective algorithm
named LegoLink with two characteristics. First, LegoLink
reduces recomputation complexity to O(kN) ∼ O(N),
where k ≪ N and increases with the number of immutable
chunks instead of N . As described in Section 5, k could
potentially become zero. Second, LegoLink relies on static
attention sparsity, which selects the tokens to recompute
beforehand, further improving performance. The static to-
ken selection is based on our key insight: the initial tokens
of each immutable chunk disproportionately absorb atten-
tion, impeding subsequent tokens from attending to relevant
context—a phenomenon known as “attention sink” (Xiao
et al., 2024). LegoLink recomputes k (k ≤ 32) initial tokens
of each chunk (except the first chunk), allowing these tokens
to recognize their non-initial positions and crippling their
attention-sink ability.

We implement the EPIC serving system with the LegoLink
algorithm based on one of the most widely used infer-
ence frameworks, vLLM (Kwon et al., 2023). We evaluate

2Another related approach called PromptCache (Gim et al.,
2024) is not of the PIC type.

EPIC against the state-of-the-art CacheBlend (Yao et al.,
2025) system, across six tasks with distinct characteris-
tics and three model architectures with diverse training
recipes. Compared to CacheBlend, EPIC achieves up to
a 3× improvement in TTFT with accuracy losses limited
to within 7% (Figure 1) when serving single requests. Fur-
thermore, EPIC provides up to an 8× reduction in TTFT
and a 7× increase in throughput when serving multiple
requests under varying rates. The code is available at:
https://github.com/DerekHJH/epic.

In summary, this paper makes three major contributions:

• We formalize the PIC usage into a two-step framework,
within which we consolidate existing literature and
highlight potential directions for future research.

• We provide a detailed analysis of existing algorithms,
based on which we propose a new LegoLink algorithm,
which reduces up to 3× TTFT while keeping accuracy
losses limited to within 7%, compared to the state-of-
the-art CacheBlend system.

• We implement the EPIC serving system by incorporat-
ing OpenAI-compatible context caching APIs, a KV
store, and LegoLink. EPIC reduces up to 8× TTFT and
increases up to 7× throughput when serving multiple
requests under varying rates.

2. Background and Motivation
This section provides a primer on transformers, context
caching, and its variant, Position-Independent Caching
(PIC), along with a review of an existing PIC algorithm.

2.1. Autoregressive Generation and KV Cache

The generation process of Large Language Models (LLMs)
consists of two distinct stages: the prefill stage and the
decode stage. In the prefill stage, the model processes a
sequence of prompt tokens all at once. It computes the Key
(K) and Value (V) vectors for all prompt tokens, stores these
vectors in the KV cache, and generates the first output token
to initiate the decode stage. The time required to gener-
ate the first token is referred to as the Time-To-First-Token
(TTFT). The prefill stage is primarily compute-bound, as
it involves processing multiple tokens in parallel. In the
decode stage, the model iteratively processes each newly
generated token. It computes the KV vectors for the new
token, appends these vectors to the KV cache, and generates
the next token. This process repeats until a specified stop-
ping criterion is met. Unlike the prefill stage, the decode
stage is memory-bound as it computes little compared to
the amount of memory access.

2

https://github.com/DerekHJH/epic


EPIC: Efficient Position-Independent Caching for Serving Large Language Models

Source files Compiler PIC (Code) Dynamic-linked lib

User source file Compiler & Linker Executable

Immutable tokens LLM PIC (Cache) KV cache

Mutable tokens LLM & KVLink Prefill-stage KV

(a) Position-Independent Code 

(b) Position-Independent Cache 

Figure 2. An analogy between position-independent code and
position-independent cache.

2.2. Context Caching

LLMs’ usage has shifted from simple dialogues to more
complex tasks, such as multi-document question answer-
ing, few-shot learning, and tool use. These tasks typically
involve long prompts comprising relatively immutable to-
ken chunks (compared to mutable user instructions/queries)
such as system messages, few-shot examples, and docu-
ments. Notably, such immutable chunks are frequently re-
peated across requests. Context Caching (CC), also referred
to as prompt caching, is an emerging approach that reuses
the KV vectors of repeated tokens in previous requests (Hu
et al., 2024a; Zheng et al., 2024; Liu et al., 2024; Kwon
et al., 2023), speeding up the prefill stage and reducing
TTFT. Context caching can be categorized into two types:
prefix-based caching and Positional-Independent Caching
(PIC).

Prefix-based caching, implemented in nearly all existing
context caching systems (Kwon et al., 2023; Zheng et al.,
2024; Gim et al., 2024), matches the current request against
previous ones to reuse the KV vectors of the longest com-
mon prefix. This approach, however, requires an exact prefix
match, as each token’s KV vector depends on all preceding
tokens and their absolute position IDs in the prompt. Con-
sequently, even minor differences in the prefix invalidate
the KV vectors of otherwise immutable chunks, requiring
full recomputation. This constraint significantly limits reuse
opportunities (lmc; Yao et al., 2025), especially in scenarios
such as multi-document question answering or Retrieval-
Augmented Generation (RAG), where immutable chunks
(e.g., documents) remain unchanged across requests but are
preceded by varying prefixes.

Position-Independent Caching (PIC), inspired by the clas-

sical position-independent code3 that can be executed at any
memory address (Hu et al., 2023), enables modular reuse
of the KV vectors of immutable tokens (Yao et al., 2025),
regardless of their prefix (Figure 2). PIC significantly in-
creases reuse opportunities (Figure 6), but it deviates from
standard attention mechanisms, resulting in potential accu-
racy degradation; thus, ensuring accurate recovery becomes
its main challenge.

We formalize PIC usage within a two-step framework. First,
the compile step involves submitting individual immutable
chunks to the LLM to generate and store their respective
KV vectors. In this step, each chunk is encoded with po-
sition IDs starting from zero, and the LLM performs only
the prefill stage—generating KV vectors without any pre-
fix or further token generation. This process is analogous
to compiling C source files into position-independent re-
locatable code. The resulting KV vectors are stored in a
cache, conceptually similar to packaging object code into a
dynamically linked library. Second, the link step retrieves
and concatenates cached KV vectors and recomputes a sub-
set of KV vectors to mitigate accuracy degradation due to
deviations from the standard attention mechanism. This
recomputation involves both cached tokens and uncached
tokens, such as user instruction/query tokens, which are
computed for the first time4. This process is analogous to
linking dynamically linked libraries with source code to
produce an executable.

2.3. Existing Algorithms for PIC

CacheBlend (Yao et al., 2025) is the first PIC algorithm
focusing on the link step, but two simpler algorithms also
deserve attention, although they are too rudimentary to be
classified as proper algorithms. First, Naive reuses cached
KV vectors directly in the link step, without any recom-
putation (Figure 4, first row below the dashed line). This
algorithm incurs zero linking overhead but leads to sub-
stantial accuracy degradation (Figure 6) due to violations
of the attention mechanism—the PIC challenge. Second,
Fully Recompute (FR) recomputes all KV vectors in the
link step (Figure 4, second row below the dashed line). This
algorithm preserves the standard attention mechanism and
achieves the highest accuracy, but it eliminates the efficiency
benefits of caching, resulting in the highest linking overhead
(Figure 6).

To strike a balance between accuracy and linking overhead,
CacheBlend (Yao et al., 2025) works as follows. First, it
retrieves the needed KV vectors and concatenates them to
obtain KV old. Second, it recomputes all KV vectors in
the first layer of the LLM, generating KV new 1. Third,

3https://en.wikipedia.org/wiki/Position-independent code
4Strictly speaking, uncached tokens are not recomputed, but

for simplicity, we use “recomputation” to refer to both cases.

3



EPIC: Efficient Position-Independent Caching for Serving Large Language Models

Immutable 
chunks

User

KVLink Prefill

EPIC system

chat_completion

Cache IDs + 
Mutable Tokens Response

Scheduler

Decode
StageStandard Prefill

KVCompile

Prefill Stage

KVCache
Indexing
(e.g. Cache ID, 
Tree, or, Hash)

generate_context_cache

Chunks of 
Immutable 

Tokens
Cache IDs

Figure 3. The architecture of EPIC serving system.

it compares the attention maps produced by KV old 1 and
KV new 1, selecting the 15% of tokens that exhibit the most
discrepancy. Fourth, it recomputes only these 15% of tokens
in all subsequent layers5. Only 15% of tokens are necessary
because attention exhibits sparsity—only a small subset of
tokens significantly influence attention computation.

However, CacheBlend has two limitations. First, the time
and resource complexities of the recomputation in the link
step are the same as the original attention mechanism—
O(N2), where N is the number of tokens in the prompt.
Figure 1 shows that, although CacheBlend-15 dynami-
cally selects 15% of tokens for recomputation, for very
long prompts, common in many applications today, this
O(15%N2) complexity remains slow and prone to out-of-
memory (OOM) errors (Figure 9). Second, CacheBlend re-
lies on dynamic attention sparsity—recomputing all KV vec-
tors in the first layer; this recomputation incurs heavy run-
time overhead in addition to the O(N2) recomputation. Fig-
ure 10 shows that the runtime overhead of CacheBlend takes
around 16.3% to 63.56% of Time-To-First-Token (TTFT).

3. System Overview
To support PIC, we develop EPIC (Efficient Position-
Independent Caching), a serving system whose workflow
aligns with the PIC framework described in Section 2 and
consists of two main steps (Figure 3). First, in the com-
pile step, ① users submit immutable chunks via the context
caching API. The KVCompile component processes each
chunk using a standard prefill pass to generate KV vectors,
which are then stored in the KVCache. For each chunk,

5The recomputation rate might decrease in deeper layers.

KVCompile returns a unique cache ID, which users can
later reference to enable KV reuse. Second, in the link step,
② users submit requests containing mutable tokens (e.g.,
new instructions/queries) along with cache IDs (if any), us-
ing an extended chat completion API. The Scheduler
component handles these requests by initiating a KVLink
prefill. KVLink retrieves the relevant KV vectors from
KVCache using the provided cache IDs, concatenates them,
recomputes a subset of KV vectors to ensure correctness,
and proceeds to the decode stage for subsequent token gen-
eration. The final response is then returned to users. At the
core of KVLink is the LegoLink algorithm, which we detail
in Section 4.

Discussion of implicit vs. explicit caching. Many existing
systems (Kwon et al., 2023; Zheng et al., 2024; Hu et al.,
2024a) adopt an implicit caching paradigm, where the sys-
tem automatically manages cache generation, storage, and
reuse through internal mechanisms such as hash tables or
radix trees. In contrast, EPIC adopts an explicit caching
paradigm, where users manage cache generation and reuse
via explicit APIs that expose cache IDs. This paradigm,
also used by systems such as Google Gemini and Moon-
cake (kim; gem, b), reduces indexing overhead and provides
greater user control over cache management—particularly
beneficial in RAG scenarios.

4. Algorithm Design
In this section, we analyze existing algorithms and propose
a new algorithm LegoLink based on the analysis results.

4.1. Analysis of Existing Algorithms

We analyze the attention map of Naive, FR, and CacheBlend
algorithms (Section 2), shown in the bottom right of Fig-
ure 4. First, in the Naive’s attention map, most attention
scores concentrate on the initial tokens of each chunk, ev-
ident from the four bright vertical lines along the x-axis.
This pattern arises because EPIC independently compiles
each chunk with position IDs starting from zero. As a result,
the initial tokens disproportionately absorb attention—a
phenomenon known as “attention sink” (Xiao et al., 2024)—
which prevents subsequent tokens from attending to the
answer “Chrysan Company,” located at the end of the third
chunk (Chunk 1). Second, in the FR’s attention map, the
initial tokens of each chunk release part of their attention
to more relevant positions, including “Chrysan Company”.
However, they still retain relatively strong attention scores
partly because they are special begin-of-sentence tokens,
such as “<s>” in Llama models. Third, in the CacheBlend’s
attention map, the pattern closely resembles that of FR, re-
flecting its design goal of approximating FR’s attention map.
Further analysis of CacheBlend’s selected 15% of tokens
shows that initial tokens of each chunk are frequently in-

4



EPIC: Efficient Position-Independent Caching for Serving Large Language Models

Answer the question 
based on the given 

passages.

Derek is a single 
man living in the 
Thenum District.

Which company does 
Derek work in? 
Answer within 5 

words and do not…

All people living in 
the Thenum District 
work in the Chrysan 

Company.

Chunk 1 Chunk 2 Chunk 3 Query

Query Chrysan Company

Fully Recompute 
(FR)

Query Chrysan Company
CacheBlend

Chrysan CompanyQuery
LegoLink

1.Derek
Naive

Recompute no tokens

Recompute all tokens

Recompute 15% tokens to numerically approach FR

Recompute k initial tokens of each chunk

KV 1 KV 2 KV 3

KV 3 KV 2 KV 1 Query

KV 3 KV 2 KV 1 Query

KV 3

KV 2

KV 1

KV 3 KV 1

KV 2

KV 1KV 2KV 3

KVCompile

KVLink

Figure 4. Comparison of PIC Algorithms. The area above the dashed line corresponds to the compile step, while the area below
corresponds to the link step. KVLink recomputes a subset of tokens, highlighted in dark colors. Four algorithms include Naive, Fully
Recompute (FR), CacheBlend, and LegoLink. The bottom right visualizes attention maps (layer 5, head 5 of Llama 3.1 8B) for four
decoded tokens. The x-axis marks the position ID of the first token of each chunk. To highlight the differences between attention maps,
we normalize the QKT results to the [0, 1] range using min-max scaling instead of Softmax.

cluded, reinforcing the importance of recomputing these
tokens to improve accuracy.

4.2. The LegoLink Algorithm

Based on the preceding analysis, we propose LegoLink,
which recomputes each chunk’s first k tokens (except the
first chunk), thus linking chunks like Lego pieces. By re-
computing these initial tokens, LegoLink enables them to
recognize their non-initial status, thereby mitigating their
tendency to dominate attention and redirecting attention to
relevant positions, as shown in LegoLink’s attention map
in Figure 4. Evaluation results in Section 5 demonstrate
that LegoLink consistently preserves accuracy across a wide
range of datasets and models. See LegoLink’s details in the
next paragraph.

Assuming that we have selected k′ (k tokens from each
chunk plus the user query) tokens from a total of N (prompt
length) tokens, we recompute them as follows. First, we
obtain the embedding matrix E (with shape (k′, d)) of the
k′ tokens, where d is the hidden size. Second, at layer
i, we compute the new K, Q, and V matrices (each with
shape (k′, d)) for these k′ tokens: Q = EWQ, K = EWK ,
V = EWV , where WQ, WK , and WV are model param-
eters with shape (d, d)6. Third, we expand the K and V
matrices by incorporating the cached KV vectors of the

6For notation simplicity, d represents all possible hidden di-
mension sizes, which may be further divided into the number of
heads and head dimensions.

N−k′ unselected tokens at correct positions, forming Kexp

and Vexp (both with shape (N, d)). Fourth, we compute the
attention matrix A (with shape (k′, N)) by multiplying Q
(with shape (k′, d)) with KT

exp (with shape (d,N)), allow-
ing the k′ tokens to attend to all N tokens:

A = softmax(QKT
exp · MASK) (1)

where MASK assures that the k′ tokens attend to only tokens
before them. Finally, we multiply A (with shape (k′, N))
with Vexp (with shape (N, d)) to obtain the output (or in-
put to the next layer, with shape (k′, d)): O = AVexpWO,
where WO is a matrix with shape (d, d).

In addition to preserving accuracy and simple de-
sign/implementation, LegoLink offers two key advantages
over CacheBlend. First, LegoLink reduces recomputation
complexity to O(kN) ∼ O(N), where k ≪ N and in-
creases with the number of immutable chunks instead of N .
As described in Section 5, k could potentially become zero.
Second, LegoLink relies on static attention sparsity, which
selects each chunk’s first k tokens to recompute beforehand,
further improving performance.

5. Evaluation
We begin by describing the experimental setup, including
implementation details, datasets, models, evaluation metrics,
and software/hardware environment. We then present four
key evaluation results.

5



EPIC: Efficient Position-Independent Caching for Serving Large Language Models

0 5000 10000 15000
Prompt length (tokens)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) Prompt length distribution

2WikiMQA
MuSiQue

SAMSum
MultiNews

HotpotQA
Needle

0 200 400 600 800
Answer length (tokens)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Answer length distribution

Figure 5. Prefill and decode length distribution.

5.1. Experiment Setup

Implementation. We implement EPIC based on vLLM
0.4.1 (Kwon et al., 2023), with 2K lines of code in Python.
We incorporate the four PIC algorithms presented in Fig-
ure 4. We port CacheBlend from their public repository7.

Dataset. Following CacheBlend, we evaluate on four
LongBench datasets (Bai et al., 2024): 2WikiMQA (multi-
document question answering), MuSiQue (multi-document
question answering), SAMSum (few-shot instruction follow-
ing), and MultiNews (multi-document summarization). We
also include HotpotQA (multi-document question answer-
ing) from LongBench, which identifies the two supporting
documents containing the answer, enabling fine-grained
analysis. To evaluate long-context retrieval, we include
the Needle in a Haystack dataset (LLM), which tests the
model’s ability to locate and retrieve a single inserted fact
from unrelated documents of varying lengths. All datasets
contain 200 test cases, with the distribution of prompt (pre-
fill) lengths and answer (decode) lengths shown in Figure 5.
Immutable tokens constitute approximately 95%-99% of
the prompt, while mutable tokens are fewer than 50.

Metrics. We use the following three metrics to evaluate per-
formance and model accuracy. First, Time-To-First-Token
(TTFT) (Kwon et al., 2023) (lower is better) is used to evalu-
ate all datasets. This metric measures the prefill-stage time:
the time from when users send a request to when users re-
ceive the first token; this time could be reduced by using con-
text caching. Second, F1 score (Bai et al., 2024) (higher is
better) is used to evaluate 2WikiMQA, MuSiQue, HotpotQA,
and needle in a haystack. This metric measures the simi-
larity between LLMs’ output and the ground-truth answer
based on their common words. Third, Rough-L score (Lin,
2004) (higher is better) is used to evaluate SAMSum and
MultiNews. This metric measures the similarity between
LLMs’ output and the ground-truth answer by calculating
the length of their longest common subsequence.

7https://github.com/YaoJiayi/CacheBlend. Accessed in Sep
2024.

Models. We evaluate EPIC and LegoLink using three state-
of-the-art open-source LLMs: Mistral 7B Instruct (Jiang
et al., 2023), Llama 3.1 8B Instruct (Dubey et al., 2024),
and Yi Coder 9B Chat (Young et al., 2024). These models
represent diverse architectures and training recipes. Rather
than employing quantized versions of larger models, we
select smaller models to accommodate our limited GPU
resources. Additionally, we do not choose models fine-
tuned for the six specific task types, as the number of such
models is extensive. While our chosen general-purpose
base models may exhibit lower absolute accuracy on these
tasks, the relative accuracy drop compared to the base model
is sufficient to demonstrate the effectiveness of EPIC and
LegoLink.

Baselines. We compare LegoLink with the other three
recomputation algorithms in Figure 4: FR, Naive, and
CacheBlend (Yao et al., 2025). Additionally, we evaluate
different variants of CacheBlend, denoted as CacheBlend-r,
where r represents the ratio of tokens recomputed. Simi-
larly, we evaluate different variants of LegoLink, denoted as
LegoLink-k, where k refers to each chunk’s first k tokens.

Environment. We run experiments on a single NVIDIA
A100 server with one A100-80GB GPU available. The
server has 128-core Intel(R) Xeon(R) Platinum 8358P
CPU@2.60GHz with 2 hyperthreading and 1TB DRAM.
We use Ubuntu 20.04 with Linux kernel 5.16.7 and CUDA
12.6.

5.2. Workloads

We construct the following two kinds of workflows out of
the six datasets.

Synchronous workload. To evaluate the accuracy–latency
trade-off without interference from concurrent requests, we
process test cases sequentially, ensuring that each completes
before the next begins. First, for each test case, we compile
all immutable chunks to obtain their corresponding cache
IDs. For the LongBench dataset (excluding SAMSum), we
treat each document as a chunk. For SAMSum and Needle-
in-a-Haystack, we split all immutable tokens into 512-token
chunks. Second, we send a request containing the cache
IDs of cached chunks along with the query to obtain the
response.

Asynchronous workload. To evaluate the latency and
throughput of EPIC under varying request rates (requests per
second), we simulate a PIC scenario as follows8. First, we
select d test cases from 2WikiMQA to simulate d active users.
As the number of users increases, a larger portion of the
GPU HBM is allocated to their position-independent cache.

8PIC is a relatively new approach and lacks publicly available
traces or request arrival patterns. We try our best to mitigate
potential bias in constructing this asynchronous workload.

6



EPIC: Efficient Position-Independent Caching for Serving Large Language Models

0.0 0.2 0.40.0

0.2

0.4

0.6

F1
 sc

or
e

Ne
ed

le

Mistral 7B Instruct

FR
Naive
CacheBlend-20

CacheBlend-15
CacheBlend-10
CacheBlend-5

CacheBlend-1
LegoLink-32
LegoLink-16

LegoLink-8
LegoLink-4
LegoLink-2

0.0 0.2 0.40.0

0.2

0.4

0.6

Llama 3.1 8B Instruct

0.0 0.2 0.40.0

0.2

0.4

0.6

Yi Coder 9B Chat

0.0 0.5 1.0 1.50.0

0.1

0.2

0.3

F1
 sc

or
e

Ho
tp

ot
QA

0.0 0.5 1.0 1.50.0

0.1

0.2

0.3

0.0 0.5 1.0 1.50.0

0.1

0.2

0.3

0.0 0.1 0.20.00

0.02

0.04

0.06

0.08

Ro
ug

e-
L 

sc
or

e
M

ul
tiN

ew
s

0.0 0.1 0.20.00

0.02

0.04

0.06

0.08

0.0 0.1 0.20.00

0.02

0.04

0.06

0.08

0.0 0.5 1.00.0

0.1

0.2

0.3

0.4

Ro
ug

e-
L 

sc
or

e
SA

M
Su

m

0.0 0.5 1.00.0

0.1

0.2

0.3

0.4

0.0 0.5 1.00.0

0.1

0.2

0.3

0.4

0.0 0.5 1.0 1.50.00

0.05

0.10

0.15

0.20

F1
 sc

or
e

M
uS

iQ
ue

0.0 0.5 1.0 1.50.00

0.05

0.10

0.15

0.20

0.0 0.5 1.0 1.50.00

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6
TTFT / s

0.0

0.1

0.2

F1
 sc

or
e

2W
ik

iM
QA

0.0 0.2 0.4 0.6
TTFT / s

0.0

0.1

0.2

0.0 0.2 0.4 0.6
TTFT / s

0.0

0.1

0.2

Figure 6. Accuracy vs. TTFT. Each point indicates the average
TTFT and accuracy for running synchronous workloads of one
dataset (row) on one model (column) using one specific algorithm
(each legend label). The k in LegoLink-k denotes the number of re-
computed initial tokens for each chunk, while the r in CacheBlend-
r represents the ratio of all recomputed tokens. The black star
represents LegoLink-0, a zero-linking algorithm.

This portion is defined as the Context Cache Ratio (CCR).
Second, each user compiles all immutable chunks in the test
case once and then repeatedly sends the same request (con-
taining cache IDs of cached chunks along with the query) at
a constant rate over a 40-second period. Although each user
resends identical requests, this setup effectively simulates a
user having different queries over the same document set,
with all other context caching mechanisms, such as prefix
caching, disabled. Third, we simulate request arrival times
by sampling from a Poisson distribution.

5.3. Accuracy-Latency Trade-off of LegoLink

Using the synchronous workload described earlier, we draw
three key insights from the results in Figure 6. First,

0 16 26 40 56

Figure 7. Attention map of LegoLink-0 using the example in Fig-
ure 4.

LegoLink variants (a series of gradient blue stars) establish a
new Pareto frontier, outperforming CacheBlend variants (a
series of gradient orange rectangles) in most cases. Second,
LegoLink-2 is sufficient to limit accuracy drops within 0 -
7% and reduces up to 300% TTFT, compared to the default
CacheBlend-15 configuration. On the contrary, CacheBlend-
1 or CacheBlend-5, which recomputes a similar number of
tokens as most LegoLink variants (except on SAMSum), ex-
hibits significant accuracy degradation—up to 80% worse
than FR. Third, increasing the number of recomputed tokens
in LegoLink yields diminishing accuracy gains. Recomput-
ing only a small number of initial tokens suffices to restore
most of the accuracy, whereas CacheBlend requires substan-
tially more recomputation for marginal benefits.

In addition, we also have three unusual observations that
warrant further explanation. First, all algorithms, including
FR, CacheBlend, and LegoLink, exhibit low accuracy in
the Yi Coder model due to its poor handling of document
understanding. This observation suggests that, to ensure
that PIC algorithms perform optimally, robust models well
suited to the task are required. Second, all approaches us-
ing all models perform poorly on the MultiNews dataset.
This phenomenon can be attributed to the inherent diffi-
culty of summarizing long documents with small models.
Third, CacheBlend and LegoLink exhibit similar TTFT in
the MultiNews and SAMSum datasets. Each document in
these datasets is relatively short (around one hundred to-
kens), making the number of tokens recomputed (k tokens
in LegoLink-k) equivalent to the ratio of tokens recomputed
(r% in CacheBlend-r).

5.4. Algorithm Analysis

To further understand LegoLink, we introduce LegoLink-
0, a variant that shifts all linking overhead to the compile
step and comprises two different PIC steps. First, EPIC
prepends four dummy tokens (e.g., begin-of-sentence to-
kens) to each immutable chunk during compilation, then
discards their corresponding KV vectors. This removal elim-
inates “attention sink” tokens in advance, preventing them
from interfering with subsequent attention computations.
Second, in the link step, LegoLink-0 skips recomputation
entirely, incurring zero runtime overhead.

Using the synchronous workload, we draw two key insights
from the results in Figure 6 and Figure 7. First, LegoLink-0,
despite its minimal link-time cost, LegoLink-0 preserves

7



EPIC: Efficient Position-Independent Caching for Serving Large Language Models

2.5 5.0 7.5 10.0 12.5
Request rate (req/s)

0.2

0.4

0.6

0.8

TT
FT

 (s
)

LegoLink-16; #CCR=11%
LegoLink-16; #CCR=32%
LegoLink-16; #CCR=44%
LegoLink-16; #CCR=57%

LegoLink-16; #CCR=76%
LegoLink-16; #CCR=92%
CacheBlend-15; #CCR=11%
CacheBlend-15; #CCR=32%

CacheBlend-15; #CCR=44%
CacheBlend-15; #CCR=57%
CacheBlend-15; #CCR=76%
CacheBlend-15; #CCR=92%

2.5 5.0 7.5 10.0 12.5
Request rate (req/s)

0

2

4

6

8

Th
ro

ug
hp

ut
 (t

ok
en

/s
)

×10
4

Figure 8. Latency and throughput comparison of LegoLink-16 and
CacheBlend-15 under asynchronous workloads with varying re-
quest rates and context cache ratios (CCR). Each data point rep-
resents the average and standard deviation from five experiments.
LegoLink-16 is shown using solid lines, while CacheBlend-15 is
represented with dashed lines. Two algorithms with the same CCR
are shown in the same color.

accuracy remarkably well. Second, the “attention sink” phe-
nomenon disappears in the middle (Figure 7), reinforcing
the importance of mitigating chunk-initial tokens’ influence
on subsequent attention computations. On the other hand,
the previously raised concern in CacheBlend regarding lim-
ited cross-attention across chunks proves less impactful in
practice. Query and decoded tokens can still attend to all ear-
lier chunks, enabling effective aggregation of cross-chunk
information.

Discussion of lengthy outputs in sparsity algorithms.
LegoLink variants occasionally show reduced accuracy on
cases such as (MultiNews, Llama 3.1) and (Needle, Yi).
However, this drop stems not from incorrect answers but
from unnecessarily lengthy outputs. For the example in Fig-
ure 4, LegoLink-0 correctly begins with “Chrysan Company”
but continues with unrelated content such as “and that Derek
is living in ...,” which lowers F1 or ROUGE-L scores. We
observe similar behaviors in other sparsity-based algorithms
such as StreamingLLM (Xiao et al., 2024), H2O (Zhang
et al., 2023), and Quest (Tang et al., 2024). Such behavior
undermines the primary goals of sparsity—reducing latency
and resource usage. We leave a more detailed investigation
of this behavior to future work.

5.5. Latency and Throughput of EPIC

We employ the artificial asynchronous workloads on
LegoLink-16 (16 is the block size of vLLM and a mod-
erate number of tokens to recompute) and CacheBlend-15,
presenting results in Figure 8. Notably, the numbers in this
section should be interpreted cautiously when considering
real-world scenarios.

Regarding TTFT versus request rates (left of Figure 8), we

0 10000 20000 30000 40000 50000
Context length (# tokens)

0
1
2
3
4
5
6

TT
FT

 (s
)

FR
CacheBlend-15
LegoLink-16

Figure 9. TTFT vs. context length of FR, CacheBlend-15, and
LegoLink-16, using a fixed chunk size of 512 tokens. For FR, we
do not compile context cache to display its full quadratic time
complexity trend, as it would otherwise run out of memory earlier
than CacheBlend-15 and LegoLink-16.

observe three key trends. First, LegoLink-16 achieves up to
an 8× reduction in TTFT compared to CacheBlend-15. Sec-
ond, as the Context Cache Ratio (CCR) increases, LegoLink-
16 remains stable TTFT, whereas CacheBlend-15 fluctu-
ates around 0.5 seconds. This stability likely results from
LegoLink-16 generating fewer intermediate results; higher
CCR reduces available memory for intermediate computa-
tion, but LegoLink-16 incurs less recomputation overhead
than CacheBlend-15. Third, TTFT plateaus as request rate
increases, rather than growing exponentially. This plateau
reflects vLLM’s scheduling policy, which limits the number
of concurrent running requests based on available memory.
If we included the TTFT of all waiting (queued) requests,
the average TTFT would approach infinity.

Regarding throughput versus request rates (right of Fig-
ure 8), we observe two notable facts. First, LegoLink-
16 achieves a throughput that is up to 7× higher than
CacheBlend-15, as it recomputes fewer tokens, allowing
more requests (about 7×) to be processed simultaneously.
Second, as CCR increases, LegoLink-16’s throughput con-
tinues to improve until the CCR reaches a threshold (approx-
imately 30%), beyond which further increases in CCR lead
to a reverse effect because requests start to severely interfere
with each other. In contrast, CacheBlend-15’s throughput
remains constant as it becomes incapable of handling addi-
tional requests.

5.6. EPIC’s Performance on Long Context

We send requests of varying context lengths with a fixed
chunk size (512 tokens) synchronously to EPIC, yield-
ing two observations from the results (Figure 9). First,
as context length increases, the TTFT of both FR and
CacheBlend-15 grows quadratically, while LegoLink-16 ex-
hibits nearly linear growth. This difference arises because
FR and CacheBlend-15 have time and resource complexities
of O(N2), while LegoLink-16 operates with a complexity
of O(kN), where k represents the number of recomputed

8



EPIC: Efficient Position-Independent Caching for Serving Large Language Models

tokens (k ≪ N ). Second, LegoLink-16 supports a longer
context length compared to CacheBlend-15. Specifically,
CacheBlend-15 encounters an out-of-memory (OOM) error
at approximately 35,000 tokens, while LegoLink-16 avoids
OOM until the context length reaches 50,000 tokens. This
difference is due to CacheBlend-15’s need to recompute
more tokens and generate additional intermediate results,
leading to higher GPU memory usage.

6. Related Work
This work formalizes Position-Independent Context
Caching (PIC) and advances the state of the art in this
emerging area. Below, we outline the broader design space
relevant to our work.

LLM-serving optimizations. Numerous systems have
recently emerged to improve LLM serving efficiency.
vLLM (Kwon et al., 2023) introduces PagedAttention to
achieve high throughput, while SGLang (Zheng et al., 2024)
provides both a domain-specific frontend language and an
optimized backend runtime. DeepFlow (Hu et al., 2025b) in-
tegrates the advantages of existing research work into a sys-
tem running on Ascend accelerators at Huawei Cloud. In ad-
dition to full systems, researchers have proposed scheduling
techniques such as disaggregated prefill and decode (Zhong
et al., 2024; Hu et al., 2024a;b; Patel et al., 2024), contin-
uous batching (Yu et al., 2022), and multi-LoRA integra-
tion (Sheng et al., 2024; Li et al., 2024). Storage-related opti-
mizations such as KV-cache-centric inference systems (Qin
et al., 2025; Hu et al., 2024a) also contribute to this space.

Context Caching (CC). Two primary types of context
caching have emerged. First, prefix-based CC emerged
in late 2023, represented by Pensieve (Yu et al., 2025),
CacheGen (Liu et al., 2024), and SGLang (Zheng et al.,
2024). Recently, vendors such as Kimi (kim) and Gem-
ini (gem, b) have begun offering explicit CC APIs. Sec-
ond, PIC emerged in mid-2024 and CacheBlend (Yao et al.,
2025) represents the first attempt to tackle the PIC challenge,
although it does not formally define the challenge. Prompt-
Cache (Gim et al., 2024) aims to support PIC, but its reuse
remains position-dependent. In this paper, we formally de-
fine PIC and advance the state of the art by introducing
LegoLink, a low-overhead or even zero-overhead linking
algorithm.

Sparsity. Sparsity plays a crucial role in improving long-
context inference and falls into two types: dynamic and
static. First, dynamic sparsity (e.g., H2O (Zhang et al.,

2023), Quest (Tang et al., 2024), ArkVale (Chen et al., 2024),
RaaS (Hu et al., 2025a)) determines important tokens at
runtime. Second, static sparsity (e.g., Longformer (Beltagy
et al., 2020), StreamingLLM (Xiao et al., 2024)) relies on
predefined sparse patterns. CacheBlend leverages dynamic
sparsity while LegoLink leverages static sparsity to enable
efficient linking.

Retrieval-Augmented Generation (RAG). RAG (Li et al.,
2022; Jin et al., 2024; Gao et al., 2023; Jeong et al., 2024;
Ram et al., 2023; Mao et al., 2021) enhances LLMs’ capa-
bilities by integrating external knowledge to improve factu-
ality and relevance. For example, at the application level,
Adaptive-RAG (Jeong et al., 2024) dynamically selects re-
trieval and generation strategies based on query complexity.
At the system level, RAGCache (Jin et al., 2024) reduces
latency by caching and reusing intermediate states from
retrieved documents. PIC has strong potential in RAG sce-
narios, where reusing documents’ KV cache across requests
can yield significant performance gains.

7. Conclusion
In this paper, we have formalized the Positional-
Independent-Cache (PIC) framework. Within this frame-
work, we have proposed EPIC, a system that incorporates
the LegoLink algorithm to address key limitations of ex-
isting approaches. By leveraging static attention sparsity,
LegoLink significantly reduces recomputation complexity
in the link step while maintaining accuracy. Extensive eval-
uation across six datasets and three LLM models has shown
that EPIC achieves significant improvements in TTFT and
throughput compared to existing systems, with minimal or
no accuracy loss.

Acknowledgments
This work was partially supported by National Natural Sci-
ence Foundation of China under Grant No. 92464301. We
would also like to thank the anonymous reviewers for their
insightful comments and suggestions, which helped improve
the quality of this paper.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

9



EPIC: Efficient Position-Independent Caching for Serving Large Language Models

References
Needle In A Haystack. https://github.com/
gkamradt/LLMTest_NeedleInAHaystack.

Gemini. https://gemini.google.com/, a.

Gemini context caching. https://ai.google.dev/
gemini-api/docs/caching?lang=python, b.

Kimi context caching. https://platform.
moonshot.cn/docs/api/caching.

LMCache. https://github.com/LMCache.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,
Du, Z., Liu, X., Zeng, A., Hou, L., Dong, Y., Tang, J.,
and Li, J. LongBench: A bilingual, multitask bench-
mark for long context understanding. In Proceedings of
the Sixty-Second Annual Meeting of the Association for
Computational Linguistics, pp. 3119–3137, 2024.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The
long-document transformer. CoRR, 2020.

Chen, R., Wang, Z., Cao, B., Wu, T., Zheng, S., Li, X., Wei,
X., Yan, S., Li, M., and Liang, Y. ArkVale: Efficient gen-
erative LLM inference with recallable key-value eviction.
In Proceedings of the Advances in Neural Information
Processing Systems, pp. 113134–113155, 2024.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A.,
Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravanku-
mar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A.,
Rodriguez, A., Gregerson, A., Spataru, A., Rozière, B.,
Biron, B., Tang, B., Chern, B., Caucheteux, C., Nayak,
C., Bi, C., Marra, C., McConnell, C., Keller, C., Touret,
C., Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C., Al-
lonsius, D., Song, D., Pintz, D., Livshits, D., Esiobu, D.,
Choudhary, D., Mahajan, D., Garcia-Olano, D., Perino,
D., Hupkes, D., Lakomkin, E., AlBadawy, E., Lobanova,
E., Dinan, E., Smith, E. M., Radenovic, F., Zhang, F.,
Synnaeve, G., Lee, G., Anderson, G. L., Nail, G., Mialon,
G., Pang, G., Cucurell, G., Nguyen, H., Korevaar, H.,
Xu, H., Touvron, H., Zarov, I., Ibarra, I. A., Kloumann,
I. M., Misra, I., Evtimov, I., Copet, J., Lee, J., Geffert,
J., Vranes, J., Park, J., Mahadeokar, J., Shah, J., van der
Linde, J., Billock, J., Hong, J., Lee, J., Fu, J., Chi, J.,
Huang, J., Liu, J., Wang, J., Yu, J., Bitton, J., Spisak, J.,
Park, J., Rocca, J., Johnstun, J., Saxe, J., Jia, J., Alwala,
K. V., Upasani, K., Plawiak, K., Li, K., Heafield, K.,
Stone, K., and et al. The Llama 3 herd of models. CoRR,
2024.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai,
Y., Sun, J., Guo, Q., Wang, M., and Wang, H. Retrieval-
augmented generation for large language models: A sur-
vey. CoRR, 2023.

Gim, I., Chen, G., Lee, S., Sarda, N., Khandelwal, A., and
Zhong, L. Prompt cache: Modular attention reuse for
low-latency inference. In Proceedings of the Seventh
Annual Conference on Machine Learning and Systems,
pp. 325–338, 2024.

Hu, C., Huang, H., Hu, J., Xu, J., Chen, X., Xie, T., Wang,
C., Wang, S., Bao, Y., Sun, N., and Shan, Y. MemServe:
Context caching for disaggregated LLM serving with
elastic memory pool. CoRR, 2024a.

Hu, C., Huang, H., Xu, L., Chen, X., Xu, J., Chen, S.,
Feng, H., Wang, C., Wang, S., Bao, Y., Sun, N., and
Shan, Y. Inference without interference: Disaggregate
LLM inference for mixed downstream workloads. CoRR,
2024b.

Hu, J., Wang, C., Huang, H., Luo, H., Jin, Y., Deng, Y.,
and Xie, T. Predicting compilation resources for adap-
tive build in an industrial setting. In Proceedings of the
Thity-Eighth IEEE/ACM International Conference on Au-
tomated Software Engineering, pp. 1808–1813, 2023.

Hu, J., Huang, W., Wang, W., Li, Z., Hu, T., Liu, Z., Chen,
X., Xie, T., and Shan, Y. Efficient long-decoding in-
ference with reasoning-aware attention sparsity. CoRR,
2025a.

Hu, J., Xu, J., Liu, Z., He, Y., Chen, Y., Xu, H., Liu, J.,
Zhang, B., Wan, S., Dan, G., Dong, Z., Ren, Z., Meng, J.,
He, C., Liu, C., Xie, T., Lin, D., Zhang, Q., Yu, Y., Feng,
H., Chen, X., and Shan, Y. DeepFlow: Serverless large
language model serving at scale. CoRR, 2025b.

Jeong, S., Baek, J., Cho, S., Hwang, S. J., and Park, J.
Adaptive-RAG: Learning to adapt retrieval-augmented
large language models through question complexity. In
Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 7036–7050, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de Las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.,
Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix, T.,
and Sayed, W. E. Mistral 7b. CoRR, 2023.

Jin, C., Zhang, Z., Jiang, X., Liu, F., Liu, X., Liu, X., and
Jin, X. RAGCache: Efficient knowledge caching for
retrieval-augmented generation. CoRR, 2024.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with PagedAttention. In Proceedings of the Twenty-Ninth
Symposium on Operating Systems Principles, pp. 611–
626, 2023.

10

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://gemini.google.com/
https://ai.google.dev/gemini-api/docs/caching?lang=python
https://ai.google.dev/gemini-api/docs/caching?lang=python
https://platform.moonshot.cn/docs/api/caching
https://platform.moonshot.cn/docs/api/caching
https://github.com/LMCache


EPIC: Efficient Position-Independent Caching for Serving Large Language Models

Li, H., Su, Y., Cai, D., Wang, Y., and Liu, L. A survey on
retrieval-augmented text generation. CoRR, 2022.

Li, S., Lu, H., Wu, T., Yu, M., Weng, Q., Chen, X., Shan, Y.,
Yuan, B., and Wang, W. CaraServe: CPU-assisted and
rank-aware LoRA serving for generative LLM inference.
CoRR, 2024.

Lin, C.-Y. Rouge: A package for automatic evaluation of
summaries. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, pp. 74–81,
2004.

Liu, Y., Li, H., Cheng, Y., Ray, S., Huang, Y., Zhang, Q.,
Du, K., Yao, J., Lu, S., Ananthanarayanan, G., Maire, M.,
Hoffmann, H., Holtzman, A., and Jiang, J. Cachegen: KV
cache compression and streaming for fast large language
model serving. In Proceedings of the ACM SIGCOMM
2024 Conference, pp. 38–56, 2024.

Mao, Y., He, P., Liu, X., Shen, Y., Gao, J., Han, J., and Chen,
W. Generation-augmented retrieval for open-domain
question answering. In Proceedings of the Fifty-Ninth
Annual Meeting of the Association for Computational Lin-
guistics and the Eleventh International Joint Conference
on Natural Language Processing, pp. 4089–4100, 2021.

Patel, P., Choukse, E., Zhang, C., Shah, A., Goiri, Í., Maleki,
S., and Bianchini, R. Splitwise: Efficient generative LLM
inference using phase splitting. In Proceedings of the
Fifty-First Annual International Symposium on Computer
Architecture, pp. 118–132, 2024.

Qin, R., Li, Z., He, W., Cui, J., Ren, F., Zhang, M., Wu, Y.,
Zheng, W., and Xu, X. Mooncake: Trading more storage
for less computation - A KVCache-centric architecture for
serving LLM chatbot. In Proceedings of the Twenty-Third
USENIX Conference on File and Storage Technologies,
pp. 155–170, 2025.

Ram, O., Levine, Y., Dalmedigos, I., Muhlgay, D., Shashua,
A., Leyton-Brown, K., and Shoham, Y. In-context
retrieval-augmented language models. Transactions of
the Association for Computational Linguistics, pp. 1316–
1331, 2023.

Sheng, Y., Cao, S., Li, D., Hooper, C., Lee, N., Yang, S.,
Chou, C., Zhu, B., Zheng, L., Keutzer, K., Gonzalez, J.,
and Stoica, I. SLoRA: Scalable serving of thousands
of lora adapters. In Proceedings of the Seventh Annual
Conference on Machine Learning and Systems, pp. 296–
311, 2024.

Tang, J., Zhao, Y., Zhu, K., Xiao, G., Kasikci, B., and
Han, S. QUEST: query-aware sparsity for efficient long-
context LLM inference. In Proceedings of the Forty-

First International Conference on Machine Learning, pp.
47901–47911, 2024.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Effi-
cient streaming language models with attention sinks. In
Proceedings of the Twelfth International Conference on
Learning Representations, 2024.

Yao, J., Li, H., Liu, Y., Ray, S., Cheng, Y., Zhang, Q., Du,
K., Lu, S., and Jiang, J. CacheBlend: Fast large language
model serving for RAG with cached knowledge fusion.
In Proceedings of the Twentieth European Conference on
Computer Systems, pp. 94–109, 2025.

Young, A., Chen, B., Li, C., Huang, C., Zhang, G., Zhang,
G., Li, H., Zhu, J., Chen, J., Chang, J., Yu, K., Liu, P., Liu,
Q., Yue, S., Yang, S., Yang, S., Yu, T., Xie, W., Huang,
W., Hu, X., Ren, X., Niu, X., Nie, P., Xu, Y., Liu, Y.,
Wang, Y., Cai, Y., Gu, Z., Liu, Z., and Dai, Z. Yi: Open
foundation models by 01.AI. CoRR, 2024.

Yu, G., Jeong, J. S., Kim, G., Kim, S., and Chun, B. Orca:
A distributed serving system for transformer-based gen-
erative models. In Proceedings of the Sixteenth USENIX
Symposium on Operating Systems Design and Implemen-
tation, pp. 521–538, 2022.

Yu, L., Lin, J., and Li, J. Stateful large language model
serving with Pensieve. In Proceedings of the Twentieth
European Conference on Computer Systems, pp. 144–158,
2025.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai, R.,
Song, Z., Tian, Y., Ré, C., Barrett, C. W., Wang, Z., and
Chen, B. H2O: heavy-hitter oracle for efficient generative
inference of large language models. In Proceedings of
the Advances in Neural Information Processing Systems,
pp. 34661–34710, 2023.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Barrett,
C. W., and Sheng, Y. SGLang: Efficient execution of
structured language model programs. In Proceedings of
the Advances in Neural Information Processing Systems,
pp. 62557–62583, 2024.

Zhong, Y., Liu, S., Chen, J., Hu, J., Zhu, Y., Liu, X., Jin,
X., and Zhang, H. DistServe: Disaggregating prefill
and decoding for goodput-optimized LLM serving. In
Proceedings of the Eighteenth Symposium on Operating
Systems Design and Implementation, pp. 193–210, 2024.

Zhou, Z., Ning, X., Hong, K., Fu, T., Xu, J., Li, S., Lou, Y.,
Wang, L., Yuan, Z., Li, X., Yan, S., Dai, G., Zhang, X.,
Dong, Y., and Wang, Y. A survey on efficient inference
for large language models. CoRR, 2024.

11



EPIC: Efficient Position-Independent Caching for Serving Large Language Models

0 10 20 300

5

10

15

tim
e 

/ m
s

Runtime overhead
32.33%

Ne
ed

le

Mistral 7B Instruct

0 10 20 300

5

10

15

Runtime overhead
32.31%

Llama 3.1 8B Instruct

0 20 400

5

10

15

Runtime overhead
28.82%

Yi Coder 9B Chat

0 10 20 300

10

20

30

40

tim
e 

/ m
s

Runtime overhead
58.40%

Ho
tp

ot
QA

0 10 20 300

10

20

30

40

Runtime overhead
51.96%

0 20 400

10

20

30

40

Runtime overhead
52.11%

0 10 20 300

2

4

6

8

tim
e 

/ m
s

Runtime overhead
20.05%

M
ul

tiN
ew

s

0 10 20 300

2

4

6

8

Runtime overhead
17.68%

0 20 400

2

4

6

8

Runtime overhead
16.37%

0 10 20 300

10

20

30

tim
e 

/ m
s

Runtime overhead
49.49%

SA
M

Su
m

0 10 20 300

10

20

30

Runtime overhead
42.31%

0 20 400

10

20

30

Runtime overhead
44.11%

0 10 20 300

20

40

tim
e 

/ m
s

Runtime overhead
63.56%

M
uS

iQ
ue

0 10 20 300

20

40
Runtime overhead

58.79%

0 20 400

20

40
Runtime overhead

58.39%

0 10 20 30
Layer ID

0

5

10

15

20

tim
e 

/ m
s

Runtime overhead
40.67%

2W
ik

iM
QA

0 10 20 30
Layer ID

0

5

10

15

20

Runtime overhead
35.97%

0 20 40
Layer ID

0

5

10

15

20

Runtime overhead
35.68%

Figure 10. TTFT breakdown of CacheBlend-15.

A. Runtime Overhead of CacheBlend
We evaluate the runtime overhead of CacheBlend-15, us-
ing the synchronous workloads described in Section 5.

Figure 10 presents the average time-to-first-token (TTFT)
across 200 requests, with a breakdown of computational
costs. The second transformer layer—where 15% of tokens
for recomputation are dynamically selected—contributes
16.37% − 63.56% of the total TTFT. This finding under-
scores the substantial overhead introduced by dynamic spar-
sity in CacheBlend. In contrast, static sparsity, which pre-
defines the recomputed tokens, significantly reduces this
overhead, as detailed in Section 4.

B. Implementation Details
We implement KVCache9 based on vLLM’s original mem-
ory management and prefix caching subsystem with the
following changes. First, we add a cache-ID-based indexing
mechanism using the sequence group ID as the cache ID.
Second, since the original vLLM manages historical KV
cache residing in HBM only, we extend it to include DRAM
and local filesystem, akin to Mooncake (Qin et al., 2025).
Third, we modify the scheduler to retain block tables and
memory for PIC compile requests. Fourth, we also imple-
ment helper APIs that allow users to manage the lifecycle
of KV cache, such as expire cache(cache id).

We implement KVCompile as a standalone module that
handles CC APIs that are similar to those in Kimi (kim)
and Gemini (gem, a). KVCompile forwards a request to
Regular Prefill with maximum generation token set
to 0.

We implement KVLink as a parallel module of the
Regular Prefill. First, we adapt the model archi-
tecture to support masked attention across tokens scattered
in different positions. Second, we modify the attention
backends to handle data placement, movement, and the
computational steps required by PIC algorithms, to ensure
efficient recomputation.

9As building a highly efficient KVCache is not the core focus
of this paper, we build a minimal working system.

12


