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Abstract

The study of classroom discourse is essential001
for enhancing child development and educa-002
tional outcomes in academic settings. Prior003
research has focused on the annotation of con-004
versational talk-turns within the classroom, of-005
fering a statistical analysis of the various types006
of discourse prevalent in these environments.007
In this work, we explore the generalizability008
and transferability of these discourse codes009
across different educational domains via auto-010
matic text classifiers. We examine two distinct011
English-language classroom datasets from the012
domains of literacy and mathematics. Our re-013
sults show that models exhibit high accuracy014
and generalizability when the training and test015
datasets originate from the same or similar do-016
mains. However, as the distance between the017
training and test domains increases in terms of018
subject matter and teaching methodology, we019
observe a decline in model performance. We020
also observe that accompanying each talk turn021
with dialog-level context improves the accu-022
racy of the generative models. We conclude023
by offering suggestions on how to enhance the024
generalization of these methods to novel do-025
mains, proposing directions for future studies026
to investigate new methods and techniques for027
boosting the model adaptability across varied028
educational domains.029

1 Introduction030

In recent years, computational approaches have031

increasingly demonstrated their potential in captur-032

ing and analyzing discourse-level features within033

educational settings (Ganesh et al., 2021). Previ-034

ous research in this domain has provided valuable035

insights, particularly in the context of specific ed-036

ucational domains or settings (Wang et al., 2023).037

However, these studies often limit their focus to038

single domains, leaving a gap in understanding039

the adaptability and effectiveness of these models040

across varied educational contexts.041

Figure 1: Cross Domain Training in an educational
context where model trained on classroom discourse
from the literacy domain is applied to the math domain
to predict talk moves in a new context.

Addressing this gap, we aim to understand the 042

divide between domain-specific and generalizable 043

models in educational discourse analysis. We in- 044

corporate a varied set of models, from fine-tuned 045

transformer-based models to in-context learning 046

approaches using generative language models. Our 047

focus is to evaluate how the performance of these 048

models varies when the distance between the con- 049

texts of the training and test domains is increased. 050

By ’distance,’ we refer not only to the difference 051

in academic domains (e.g., English vs. Mathemat- 052

ics) but also to differences in educational materials 053

such as textbooks used and instructional variations 054

among teachers. Our approach allows us to assess 055

the generalizability of various computational meth- 056

ods across diverse educational settings. Figure 1 057

illustrates an example of cross-domain training in 058

an educational context where a machine learning 059

model trained on classroom discourse from the one 060

domain is applied to an unseen domain to predict 061

talk moves in a new context. 062

The primary contributions of this research are (1) 063

an in-depth analysis of the generalizability of lan- 064

guage models across diverse educational domains 065

thus providing critical insights into the adaptabil- 066

ity and limitations of these models when applied 067
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in different educational contexts; (2) experiments068

evaluating several types of models, ranging from069

fine-tuned transformer-based encoder models to070

in-context learning approaches, for classifying ed-071

ucational talk-turns with discourse codes; and (3)072

the creation of a ground truth dataset for testing073

the generalizability and accuracy of various lan-074

guage models for cross-application classification075

of discourse codes.076

Using data ranging from read-aloud discussions077

in early education classrooms to interactions from078

mathematics classes, we investigate how model079

performance varies across contexts. We aim to080

shed light on the strengths and limitations of cur-081

rent computational approaches in educational dis-082

course analysis. Our results demonstrate that mod-083

els exhibit high accuracy of discourse codes when084

the training and test datasets originate from the085

same domains, but as expected, the effectiveness of086

these models begins to decrease when the distance087

between the training and testing data increases.088

Despite this decline in performance, the explo-089

ration into transformer-based and in-context learn-090

ing models in cross-domain scenarios remains cru-091

cial in this area of study in order to precisely quan-092

tify the extent of this performance dip, especially093

given recent advancements in large language mod-094

els (LLMs). Further, we investigate how the choice095

of model or the inclusion of additional information096

such as conversational context might help mitigate097

this drop-off, seeking to highlight which computa-098

tional approaches might exhibit greater resilience099

against the challenges posed by domain variance,100

thereby contributing to the generalizability of these101

models across diverse educational settings.102

2 Related Work103

The dynamics of student-teacher classroom dis-104

course play a pivotal role in shaping the experience105

and outcomes of students. Several papers have stud-106

ied this phenomenon, particularly in the context of107

K-12 mathematics education and other childhood108

learning environments. For example, Suresh et al.109

(2022a) found that sustained classroom discourse110

is a critical component of equitable and a rich learn-111

ing environment. Towards that goal, they built an112

extensive collection of human-annotated transcripts113

from K-12 classroom mathematics lessons as they114

can be effective tools for understanding discourse115

patterns in classroom instructions. Furthermore,116

Demszky et al. (2021) argue that teachers’ acknowl-117

edgement, repetition and reformulation of students’ 118

responses has been linked to higher student engage- 119

ment and achievement. The impact of building 120

upon student contributions in the classroom is ex- 121

plored in studies by Brophy and Good (1984) and 122

Faculty and Michaels (1993). They demonstrate 123

that acknowledgment, repetition, and elaboration 124

of student inputs can significantly enhance student 125

learning and academic achievement. Wright (2019) 126

delves into the significance of read-aloud activities 127

in nurturing children’s reading skills and knowl- 128

edge. They deduce that engaging in interactive 129

read-alouds is beneficial for children in acquiring 130

new vocabulary, understanding textual functions, 131

and developing a diverse set of skills essential for 132

independent reading. Giroir et al. (2015) explore ef- 133

fective methodologies for implementing read-aloud 134

programs. Their research particularly focuses on 135

integrating aspects of second language acquisition 136

and culturally responsive teaching methods, outlin- 137

ing critical steps and applications for an effective 138

read-aloud strategy. 139

In the context of early childhood education, 140

Christ et al. (2023) study the interactions between 141

teacher and child talk-turns during read-aloud ses- 142

sions. The statistical discourse analysis conducted 143

in this study provides insights into how certain 144

talk-turns can influence children’s comprehension 145

responses, thereby emphasizing the critical role of 146

teacher mediation in shaping learning outcomes. 147

Their findings also demonstrate that when chil- 148

dren’s talk-turns mediate other children’s actions, 149

they act as a predictor for those children’s subse- 150

quent responses in terms of comprehension. 151

Given the breadth of actionable findings in this 152

area, a promising direction is to develop tools that 153

assist teachers in refining their instructional strate- 154

gies. Suresh et al. (2022b) outline the development 155

of the TalkBack application. Their tool leverages 156

deep learning capabilities to provide teachers with 157

automated feedback on their discourse strategies, 158

highlighting the importance of automated feedback 159

to enhance and enrich teacher learning. Specif- 160

ically, it aids in refining instructional strategies, 161

thereby enhancing the learning environment. 162

In recent years, advancements in NLP have 163

opened new and effective means of analyzing and 164

enhancing classroom discourse. Ganesh et al. 165

(2021) aims to enhance classroom learning and 166

engagement by developing a system to predict the 167

next talk move (an utterance strategy) in a class- 168
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room discussion, based on the academically pro-169

ductive talk (APT) framework. They present a170

neural network model aimed at predicting the next171

talk move in a conversation based on its history172

and associated talk moves potentially leading to173

more interactive and personalized learning expe-174

riences. In this study (Suresh et al.) incorporate175

enriched contextual cues from previous and subse-176

quent utterances using a transformer model, called177

RoBERTa to improve the automated classification178

of “talk moves" in educational settings. Similarly,179

(Alic et al., 2022) address the task of creating spe-180

cific types of questions that promote responsive181

teaching. The authors created an annotated dataset182

and employed various supervised and unsupervised183

learning methods to demonstrate the importance of184

incorporating computational tools to assist teachers185

in refining their instructional techniques.186

While existing work demonstrated the effective-187

ness of computational tools to assist in classroom188

settings, these have typically focused on a single do-189

main. However, in order to use these tools broadly,190

they must generalize across topical areas and class-191

room contexts. Therefore, we set out to evaluate192

the extent to which current methods are able to ac-193

curately transfer to new contexts, in terms of both194

classrooms and teaching domains.195

3 Data196

In this study, we leveraged existing classroom dis-197

course datasets comprising of turn-level student-198

teacher interactions that were broken down into199

dialogue discourse moves and annotated by educa-200

tional experts. To investigate the generalizability of201

these codes across different academic domains, we202

re-annotated a small subset from each dataset using203

the discourse codes that were originally developed204

for the other datasets.205

3.1 Datasets Used206

We used four existing English-language datasets:207

The MuMo Talk moves dataset (Christ et al.,208

2023), the National Center for Teacher Effective-209

ness (NCTE) Transcripts dataset (Demszky and210

Hill, 2023), and two additional datasets referred to211

by the pseudonymous teachers of their respective212

classrooms: Mason (Christ and Cho, 2023) and213

Newman (Cho and Christ, 2022).214

The MuMo Talk moves dataset includes three215

kindergarten teachers’ interactive read-alouds com-216

prising of 736 talk-turns across six video recorded217

Variable MuMo Mason Newman
Response Evaluation 67 345 656

Providing Information 115 290 344
Revoicing 113 330 335

Strategy Related 62 206 302
Questioning 219 563 503

Behavior Management 55 326 354
Turn Management 207 283 325

Total 736 2550 2467

Table 1: Number of talk turns with each label across
MuMo, Mason, and Newman datasets. Total indicates
the number of talk turns in the dataset. Note that each
talk turn may have more than one label.

and transcribed sessions. The talk-turns were coded 218

using a priori and emergent codes. 219

The NCTE transcripts consists of the largest 220

dataset of mathematics classroom transcripts avail- 221

able. The dataset consists of 2348 anonymous tran- 222

scripts of whole lessons collected as part of the 223

National Center for Teacher Effectiveness, NCTE 224

main study, spanning across the K-12 math class- 225

rooms across four districts serving largely histori- 226

cally marginalized students. 227

In the Mason dataset (Christ and Cho, 2023), the 228

authors investigated the engagement of four second- 229

grade emergent bilingual students and their teacher 230

with listening comprehension during interactive 231

read-aloud sessions. These sessions used books 232

with varying levels of cultural relevance. The study 233

aimed to understand how this engagement related 234

to the teacher’s implementation of culturally rele- 235

vant and sustaining pedagogical practices. To con- 236

duct the analysis, the researchers collected data 237

through cultural relevance ratings of the books, 238

video recordings, and transcripts of nine 20-minute 239

lessons, resulting in a total of 2781 talk-turns. 240

The Newman dataset investigates how two emer- 241

gent bilingual students from refugee families inter- 242

acted with texts of varying cultural relevance in a 243

third-grade class in the Midwest U.S by using video 244

recordings and transcripts of 12 read-aloud discus- 245

sions, interviews, and cultural relevance ratings. In 246

this paper, they analyzed the students’ inference- 247

making processes and examined students’ use of 248

text information, background knowledge, and the 249

coherence of their inferences. This dataset had a 250

total of 2470 talk-turns. Table 1 shows class dis- 251

tribution of variables belonging to Class 1 across 252

MuMo, Mason and Newman datasets and Table 2 253

shows class distribution of variables belonging to 254

Class 1 across the NCTE dataset. 255

In assembling our datasets for this study, we 256

3



began with the established MuMo talk moves code-257

book. Recognizing the similarities across vari-258

ous datasets in the literacy domain, we extended259

this codebook to include the Mason and New-260

man datasets. This decision was taken due to261

the fact that, despite originating from different ini-262

tial codebooks, the discourse codes and categories263

across these datasets (MuMo, Mason and New-264

man) shared enough similarities to justify a unified265

codebook. This also allows for a comprehensive266

cross-dataset analysis. Originally, the discourse267

codes within these three datasets had over over268

100 unique codes across the MuMo, Mason, and269

Newman datasets, capturing the subtleties of class-270

room interactions between teachers and students.271

However, for the purposes of our research, we we272

decided to streamline this approach by consolidat-273

ing these codes into 15 broader categories. By274

implementing this approach we not only simplify275

the analysis but also enhances the classification per-276

formance of our models, including both generative277

and transformer architectures.278

3.2 Annotation Process279

To investigate the cross-domain generalizability of280

large language models, we sampled data points281

from our datasets. Specifically, we chose 140282

data points from the MuMo, Mason, and Newman283

datasets combined, selecting 10 talk-turns from284

each session. MuMo contributed data from 6 ses-285

sions, while Mason and Newman each had 4 ses-286

sions, collectively providing the 140 data points.287

In contrast, the NCTE dataset, which is comprised288

of a single extensive session, contributed a total of289

100 data points. This selection was made to ensure290

a balanced representation of interactions across dif-291

ferent educational settings. Once the annotation292

guidelines were established, five trained annotators293

re-annotated these subsets from each dataset. With294

the goal of creating a ground truth for evaluating295

the language models, the annotators applied the296

discourse codes from the math domain dataset (i.e.,297

NCTE) to the literacy domain datasets (i.e., MuMo,298

Mason, and Newman) and vis-versa. Each talk-299

turn was annotated by at least three annotators to300

ensure reliable accuracy and consistency. The inter-301

annotator agreement was quantitatively measured302

using Krippendorff’s alpha (Krippendorff, 2011)303

which yielded the following scores. Please refer304

to Table 3 for the results. In case of discrepancies305

among annotators, we employed a majority vote306

Variable Count
Student on Task 1964
Teacher on Task 2004

High Uptake 813
Focusing Question 359

Total 2348

Table 2: Number of talk turns with each label in the
NCTE dataset. Total indicates the number of talk turns
in the dataset. Note that each talk turn may have more
than one label.

Label Alpha Source Dataset Target Dataset
Response Evaluation 0.849

M
M

N

N
C

T
E

Providing Information 0.958
Revoicing 0.899
Strategy-related 0.818
Questioning 0.909
Behavior Management 0.801
Turn Management 0.936
Misinformation N/A
Student on Task 0.912

N
C

T
E

M
M

NTeacher on Task 0.943
High Uptake 0.847
Focusing Question 0.851

Table 3: Krippendorff’s α intercoder agreement scores
for the combined datasets of MuMo, Mason, and New-
man (MMN) using labels created for the NCTE dataset
and vice versa. The label “Misinformation” was never
assigned to any text.

system, where the label that received the majority 307

consensus among the three annotators was chosen 308

as the final label for each talk-turn in our test set. 309

4 Experimental Methodology 310

In our experimental methodology, specifically for 311

experiments within the same domain, the NCTE 312

dataset was partitioned using an 80-10-10 split, 313

allocating 80% of the data for training, 10% for 314

validation, and the remaining 10% for testing. For 315

cross-domain experiments, we adopted a distinct 316

approach where one dataset served as both the train- 317

ing and validation set, while a dataset from a dif- 318

ferent domain was designated as the test set. This 319

strategy was applied to explore the adaptability of 320

models across varied educational contexts. In the 321

case of the MuMo, Mason, and Newman datasets, 322

our experimental design included two setups. 323

First, for intra-domain experiments where the 324

test set originated from the same dataset, we se- 325

lected one entire session to function as the test set. 326

Secondly, for experiments within the domain but 327

across different datasets, the same session that was 328

used as the test set in the previous experimental 329

setup was held out to serve as the test set. This 330
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Figure 2: Prompt components for generative models for
the math setting (used for NCTE). From top to bottom,
the blocks display the context (green), labels (blue), few-
shot examples (yellow).

approach allowed us to examine both the domain-331

specific and cross-domain efficacy of our models.332

We investigated both fine-tuned transformer en-333

coder models, and auto-regressive generative mod-334

els focusing on in-context learning.1335

For transformer-based deep learning models, we336

chose BERT (Devlin et al., 2019) and RoBERTa337

(Liu et al., 2019) models, using weights and fine-338

tuning code from the HuggingFace transform-339

ers Wolf et al. (2019) library. We utilized the340

bert-base-uncased and roberta-base check-341

points along with their default tokenizers. The342

output from the [CLS] input token was then used343

as the input for a trainable classification layer. The344

training hyperparameters for these models are also345

specified in the Appendix.346

For the generative models, we opted to use the347

Llama2-7B (Touvron et al., 2023) and Mistral-7B-348

Instruct-v0.2 (Jiang et al., 2023)2 models specifi-349

1We also explored classical machine learning approaches
using bag-of-words features, but found these to always under-
perform the transformer-based approaches.

2Henceforth referred to simply as “Mixtral.”

cally due to their open weights3 availability. The 350

decision to use open-weights models align with our 351

commitment to transparency and reproducibility 352

allowing others to replicate and extend our exper- 353

iments without the barriers often associated with 354

proprietary models, and also helps avoid leakage of 355

datasets without the consent of the participants of 356

the original studies (Balloccu et al., 2024). These 357

models operate by receiving an instruction or a 358

prompt as input and generating a response that 359

aligns with the given context or question. The 360

primary objective of employing these models in 361

our experiment was to determine whether auto- 362

regressive models are capable of accurately predict- 363

ing talk-turn labels particularly in scenarios where 364

there is limited data availability. This focus also 365

aligns with the broader objective of exploring the 366

potential of generative language models to adapt 367

in data-constrained environments, a common chal- 368

lenge in the field of educational discourse analysis. 369

The experimental setup for the auto-regressive 370

models was conducted in both a zero-shot and a 371

few-shot learning context. In the zero shot setup, 372

the context and label description are prepended 373

to the prompt followed by a transcript from the 374

test set. Finally we ask the model if the given 375

label is appropriate for the transcript. The model 376

is parametrically constrained to answer only in a 377

Yes or No format for calculating accuracy, F1 score 378

and other metrics. We repeated the experiments 379

with same prompt three times to check for any 380

variability in the model’s outputs. 381

In the few-shot setup, several example interac- 382

tions between teachers and students, along with 383

their correct labels, were prepended to the prompt 384

in a question-answer format along with the defini- 385

tions of each output label. Additional instructions 386

developed by the annotators as part of the annota- 387

tion guidelines were also provided to the model as 388

the input. Each experiment was conducted three 389

times to account for any variance in the model’s 390

results. Similar to the zero-shot setup, experiments 391

were conducted using three different prompts for 392

both Llama2 7B and Mixtral 8x7B. In case of the 393

generative models, the average of the three turns 394

of the best performing prompt was reported. A 395

summary of the various components utilized in this 396

setup can be found in Figures 2 and 3 397

3We distinguish between “open source” and “open
weights”, where the former includes cases where all code to
fully reproduce the model is available, while the latter refers
to the open availability of the trained model’s parameters.
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Figure 3: Prompt components for generative
models for the read-aloud setting (used for
MuMo/Mason/Newman). From top to bottom,
the blocks display the context (green), labels (blue),
few-shot examples (yellow).

We also experimented with varying the num-398

ber of prior talk turns provided as context. This399

setup was only applied to the generative models400

due to the input size limitations of 512 tokens for401

the BERT-based models. In this setup, each talk402

turn was accompanied by the preceding interac-403

tion(s) and the speaker tag (whether the talk turn404

was uttered by a teacher or a student) to provide ad-405

ditional context (where context = 1, 3, and 5 prior406

interactions) to the model.407

5 Results408

Tables 5, 6, 7, and 8 present the performance of409

different classes of models averaged across all the410

output labels for the domains of literacy and math-411

ematics. Please refer to appendix E for a full break-412

down of results for each label and for each model.413

Among these, fine-tuned models, i.e., BERT and414

RoBERTa, demonstrated superior performance in415

most of the experiments over generative models416

with in-context learning. This was consistent across417

a majority of test scenarios and across domains.418

Among the generative models, Mixtral outper- 419

formed Llama2 in most scenarios. Interestingly, 420

Mixtral, when prompted with prior interactions, 421

outperformed BERT and RoBERTa models for cer- 422

tain variables in the binary classification tasks. De- 423

spite their overall lower performance compared to 424

fine-tuned models, the fact that these generative 425

models utilized far fewer training data (few shots 426

with n = 3 and context c = {3, 5}) while learning 427

highlights their potential in specific contexts. 428

The performance metrics, i.e., the F1 scores, 429

showcased a common trend across all models: a 430

higher degree of accuracy when both the training 431

and test sets originated from the same domain. 432

However, we observed a decline as the contex- 433

tual distance between training and testing data in- 434

creased. This reflects the challenge of applying 435

machine learning models to diverse educational 436

content due to their varying subject matter and 437

teaching methodology. 438

A critical observation from our experiments is 439

the distribution of classes within our datasets. No- 440

tably, several variables have only a very small num- 441

ber of positive examples in the data. The lack of 442

sufficient support for the majority class in these 443

datasets likely contributed to the lower F1 scores 444

observed for those variables in many scenarios. 445

5.1 Error Analysis 446

In this section we investigate the discrepancies be- 447

tween the ground truth labels and the model predic- 448

tions on the test set. We used the best performing 449

model, i.e. BERT out of all the various experi- 450

ments on a specific test set for this analysis. Ta- 451

ble 4 shows paraphrased examples of interactions 452

where the model failed to accurately predict the 453

output label. We found that the model’s predic- 454

tions were mostly incorrect due to the lack of prior 455

interactions as context. Classroom discourse is in- 456

herently continuous and time-series, meaning that 457

understanding any given talk-turn often depends 458

on the preceding turns, and the output labels rely 459

heavily on the interactional context to be accurately 460

classified. For example, in the MuMo dataset, the 461

model mislabels the talk turn “Rocks?" as Class 1 462

(Questioning) because the context was insufficient 463

and the ground truth wasn’t Class 1 in this specific 464

scenario. The teacher wanted the students to sim- 465

ply repeat the utterance. Similarly, according to the 466

codebook used for this paper, a compliment given 467

by a teacher can be considered Providing Informa- 468

6



Test Set Category Speaker Transcript Actual Label Pred Label

MuMo

Questioning Student Rocks? 0 1
Turn
Management Teacher Very good. And let me see what this is down here. A mallow. 1 0

Questioning Teacher Rocks? 1 0
Providing
Information Teacher Very good. And a home for everyone. 1 0

Mason

Providing
Information Teacher We’re going to listen to that story now, talk to each other if we notice

certain things. We can discuss more tomorrow as well. 1 0

Revoicing Teacher I understand, I get that you are sleepy. But that also means you need
to go to bed earlier. 1 0

Literal
Responses Student Then we can have two weddings 0 1

Behavior
Management Teacher

Can you sit down please?
[T reading: After the cake was served... We are doing the flower girl]
They are pretending to be a flower girl while dancing.

1 0

Questioning Teacher
Can you sit down please?
[T reading: After the cake was served... We are doing the flower girl]
They are pretending to be a flower girl while dancing.

0 1

Newman

Literal
Responses Student I was attached last winter, everybody hit me. James is their boss. I was

very upset. I threw Quincy on accident. 0 1

Questioning Student You know the paper? I mixed the two up. I was gonna write sad
and the word said how they feel and then how they feel. How they feel 0 1

Reading Teacher [reads from the book]. So was it okay for Jack to go to the library since
there was no book to read from? 1 0

Questioning Student Can I see? I cannot see the book. 0 1

NCTE

Focusing
Question Teacher Oops, I bet, you know what? I made something, you

know what happens? 0 1

Focusing
Question Teacher Where would you line up those Xs? 1 0

Student on
Task Student I am going to do a shout out. 0 1

Table 4: Error Analysis of Model Predictions Across Different Test Sets

tion, but the model struggled to label some of those469

interactions accurately.470

Furthermore, in the Mason dataset, we noticed471

that the model failed to label the talk turn “I under-472

stand, I get that you are sleepy, but that also means473

you need to go to bed earlier" as Revoicing. In474

the prior interaction, the student told the teacher475

that they were sleepy, and missing this context led476

to a misclassification. Another issue arose when477

the teacher’s instructions were mixed with read-478

ing sections of a book. For example, the teacher’s479

phrase “Can you sit down please?" accompanied480

by the teacher reading a small paragraph from the481

textbook in the same interaction led to prediction482

errors. This problem was observed in both the Ma-483

son and Newman datasets. Additionally, quite a484

few errors in the student’s talk turns were a result of485

short sentences and the lack of context provided to486

the models. These short, isolated statements were487

often misclassified because the model couldn’t ac-488

cess the surrounding interactions that would clarify489

their meaning. While the fine-tuned models gave490

the best performance, they are limited in their abil-491

ity to incorporate the necessary context for precise492

predictions in certain scenarios. Therefore future493

work might explore the fine-tuning of models with494

large context windows to reap the benefits of both495

additional context and fine-tuning.496

6 Conclusion 497

Understanding classroom discourse is pivotal for 498

improving educational outcomes and child develop- 499

ment. In this study, we assess the generalizability 500

of discourse codes across distinct educational do- 501

mains of literacy and mathematics using automatic 502

text classifiers such as transformer based models 503

and in context learning based open weights gen- 504

erative models. We utilized several datasets from 505

prior studies both from literacy and mathematics 506

disciplines; annotated a subset of those data sets to 507

generate ground truths for cross domain classifica- 508

tion of educational classifiers. Our findings suggest 509

show that transformer-based models, particularly 510

BERT, and RoBERTa were better at classifying 511

classroom discourse compared to open weights gen- 512

erative models. We further noticed a performance 513

drop when transitioning between different educa- 514

tional domains highlighting the challenges of using 515

large language models in the field of education. 516

In addition to these findings, we conducted a 517

comprehensive error analysis using the best per- 518

forming model, providing a fresh perspective on 519

the model failures. We also experimented with 520

providing context to the generative models in the 521

form of prior interactions, and found out that such 522

context could significantly impact the models’ abil- 523

ity to understand and classify discourse accurately. 524
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Train Set BERT RoBERTa Mixtral Llama2
c=0 c=1 c=3 c=5 c=0 c=1 c=3 c=5

MuMo 0.375 0.367 0.326 0.355 0.375 0.363 0.313 0.332 0.351 0.348
Mason 0.497 0.475 0.390 0.426 0.466 0.499 0.357 0.398 0.439 0.495
Newman 0.473 0.466 0.379 0.409 0.448 0.474 0.348 0.387 0.425 0.460
Ms+Nw 0.473 0.453 0.348 0.395 0.430 0.470 0.334 0.378 0.421 0.450
Mu+Ms 0.471 0.463 0.351 0.400 0.422 0.427 0.331 0.376 0.413 0.418
Mu+Nw 0.448 0.438 0.361 0.384 0.419 0.409 0.329 0.362 0.401 0.407

Table 5: Average F1-score for each model across different training sets for test set Mason. c denotes the number of
prior interactions provided as context to the generative models during classification.

Train Set BERT RoBERTa Mixtral Llama2
c=0 c=1 c=3 c=5 c=0 c=1 c=3 c=5

MuMo 0.350 0.336 0.325 0.321 0.341 0.345 0.306 0.306 0.326 0.316
Mason 0.527 0.471 0.384 0.407 0.423 0.435 0.337 0.364 0.392 0.400
Newman 0.494 0.462 0.387 0.407 0.439 0.447 0.341 0.373 0.399 0.415
Ms+Nw 0.486 0.468 0.379 0.401 0.420 0.421 0.337 0.368 0.392 0.386
Mu+Ms 0.464 0.453 0.342 0.361 0.399 0.395 0.320 0.351 0.378 0.371
Mu+Nw 0.469 0.431 0.343 0.357 0.388 0.407 0.318 0.338 0.388 0.401

Table 6: Average F1-score for each model across different training sets for test set Newman. c denotes the number
of prior interactions provided as context to the generative models during classification.

Train Set BERT RoBERTa Mixtral Llama2
c=0 c=1 c=3 c=5 c=0 c=1 c=3 c=5

MuMo 0.542 0.517 0.419 0.480 0.485 0.484 0.348 0.420 0.451 0.466
Mason 0.541 0.536 0.455 0.519 0.532 0.570 0.404 0.463 0.516 0.523
Newman 0.515 0.529 0.393 0.455 0.470 0.497 0.342 0.407 0.448 0.471
Ms+Nw 0.488 0.488 0.335 0.367 0.396 0.436 0.306 0.348 0.390 0.406
Mu+Ms 0.601 0.582 0.405 0.448 0.479 0.473 0.352 0.413 0.447 0.445
Mu+Nw 0.577 0.561 0.406 0.475 0.518 0.506 0.338 0.413 0.444 0.454

Table 7: Average F1-score for each model across different training sets for test set MuMo. c denotes the number of
prior interactions provided as context to the generative models during classification.

Train Set BERT RoBERTa Mixtral Llama2
c=0 c=1 c=3 c=5 c=0 c=1 c=3 c=5

NCTE 0.437 0.488 0.358 0.395 0.401 0.382 0.326 0.351 0.361 0.339

Table 8: Average F1-score for each model across different training sets for NCTE data. c denotes the number of
prior interactions provided as context to the generative models during classification.

The cross-domain experiments involving the Ma-525

son, Momo, and Newman datasets, labeled with the526

NCTE labels, achieved decent scores, except for527

the high uptake variable. This indicates a potential528

for these models to understand and classify dis-529

course in educational settings to some extent. How-530

ever, the experiments relating to NCTE data labeled531

for the literacy discourse codes did rather poorly,532

highlighting the difficulties in accurately captur-533

ing and generalizing discourse patterns within this534

domain. Given these challenges, we recommend535

future directions in this area of study to enhance536

the effectiveness of these models in the field of ed-537

ucation. Enhancing the collection and annotation538

of classroom discourse data across a wider range 539

of educational settings could improve the represen- 540

tation within training datasets. This could help the 541

models learn more generalized features of class- 542

room discourse that are not specific to any single 543

domain. Implementing novel cross-domain tech- 544

niques could help with better transfer learning and 545

adaptation. Using better architectures and state- 546

of-the-art (SOTA) models to help generalize the 547

discourse codes across domains more effectively. 548

Limitations 549

In case of generative models, we used only open 550

weights models and local data processing strictly 551
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adhering to our data privacy and ethical standards.552

While this approach aligns with our ethical stance553

and ensures data confidentiality, it also narrows554

our selection of computational tools. Potentially555

more sophisticated and proprietary models with556

higher performance metrics were not considered557

in this study due to these constraints. The nature558

of our datasets presents another potential limita-559

tion. The datasets utilized in our analysis were560

shared by the original authors of the work on the561

condition that we do not make them publicly avail-562

able. This restriction could impose a barrier to563

the reproducibility of our study for future research.564

Our research primarily concentrates on specific565

subject domains like mathematics in English lit-566

eracy. These subjects represent only a fraction of567

the diverse disciplines within the educational field,568

which our current paper does not account for.569

Ethics Statement570

The study utilized existing datasets derived from571

prior research that were shared with us by the au-572

thors of that work. In alignment with our com-573

mitment to confidentiality, we have anonymized574

all personal information. Names and other iden-575

tifying details of students and teachers have been576

replaced with pseudonyms, thereby protecting their577

identities. Furthermore, the tools and models ap-578

plied in our research such as Mixtral and Llama2579

7B are open-weights generative models. The de-580

cision to use open-weights models supports trans-581

parency of our methods and further protects pri-582

vacy by eliminating the need to transfer sensitive583

data to external servers. The use of open-weights584

models can also facilitate reproducibility in the re-585

search, allowing other researchers to validate and586

build upon the findings in our paper. The primary587

goal of the research was to investigate the efficacy588

of cross domain classification of educational dis-589

course, particularly doctors within the classroom590

setting. We recognize the implications of applying591

AI in analyzing children’s classroom interactions.592

It is important to approach the application of our593

research with the understanding of the potential im-594

pacts of AI application, making sure that it serves595

to enhance the educational experience rather than596

compromising it.597
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A Annotation Guidelines for the 737

Classroom interaction dataset 738

These guidelines are designed to assist coders to 739

accurately annotate classroom interactions between 740

students and the teacher based on four specific la- 741

bels from Demszky and Hill (2023). The output 742

labels are: student on task, teacher on task, high 743

uptake and focusing question. 744

The dataset consists of turn level utterances 745

(paired annotations) between students and the 746

teacher. 747

The table provided is set up to display a dia- 748

logue between students and their teacher, captured 749

as turn-level utterances. Each row in the table rep- 750

resents a pair of exchanges, with the left column 751

titled Student Transcript showing what the student 752

said, and the right column titled Teacher Transcript 753

presenting the teacher’s response. 754

When annotating, it’s important to note that the 755

student’s utterance comes first, followed by the 756

teacher’s response in the same row. So, this se- 757

quential flow indicates that the teacher’s comment 758

is a direct response to the student’s immediately 759

preceding utterance. 760

For example, if a student makes an observation 761

or asks a question, the corresponding teacher’s 762

utterance in the same row will be a response or 763

follow-up to that particular student’s input. 764
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A.1 Labels and Definitions765

1. Student on Task: This label indicates766

whether a student’s utterance is relevant to767

the current topic being discussed in the class-768

room.769

2. Teacher on Task: This label reflects whether770

the teacher’s utterance pertains to the topic of771

the current classroom session.772

3. High Uptake: This label identifies instances773

where a speaker (teacher or student) builds774

upon what their interlocutor has said, demon-775

strating an understanding and extension of the776

conversation.777

4. Focusing Question: This label is used when a778

teacher asks a question that prompts students779

to articulate, clarify, or reflect upon their own780

thoughts or those of their classmates.781

A.2 Labeling Process782

1. Student on Task783

(a) Label as 1 (On Task): If a student’s ut-784

terance directly relates to the topic of785

the lecture or session. For example, dis-786

cussing a specific math problem when787

the topic is math. Or if the classroom788

session is discussing the NLP textbook,789

then the topic would be NLP or anything790

related to it.791

(b) Label as 0 (Off Task): If a student’s utter-792

ance is unrelated to the topic of the lec-793

ture. Such as talking about the weather794

or making a joke unrelated to the topic at795

hand.796

2. Teacher on Task797

(a) Label as 1 (On Task): If the teacher’s798

utterance is directly related to the subject799

matter of the current session similar to800

student on task label.801

(b) Label as 0 (Off Task): If the teacher’s802

utterance is not related to the topic of the803

session.804

3. High Uptake805

(a) Label as 1 (High Uptake): When a806

teacher acknowledges, repeats, or re-807

formulates what the student has said,808

thereby extending the conversation.809

(b) Label as 0 (Low Uptake): When the re- 810

sponse does not build upon the previous 811

speaker’s (student’s) contribution. 812

4. Focusing Question 813

(a) Label as 1 (Focusing Question): If a 814

teacher’s question prompts the student to 815

think deeply, articulate their understand- 816

ing, or engage in reflection about their 817

own thoughts or those of other students. 818

(b) Label as 0 (Funneling Question): If the 819

teacher’s question or teacher’s set of 820

questions to lead students to a desired 821

procedure or conclusion, while giving 822

limited attention to student responses 823

that veer from the desired path 824

A.3 Examples for Each Category 825

1. Student on Task / Teacher on Task 826

(a) Example (Label 1): Topic is English 827

textbook “My friend Jamal”. S: “It is 828

because Jamal was a friend of joseph 829

and they lived nearby.” T: “yes! They 830

were friends and what does that mean for 831

joseph??” 832

(b) Example (Label 0): Topic is English text- 833

book “My friend Jamal. S: “I played 834

soccer yesterday.” T: “Shhh! Sit down 835

quietly. We have 15 minutes left.” 836

2. High Uptake 837

(a) Example (Label 1): S: “Cause you took 838

away 10 and 70 minus 10 is 60”. T: 839

“Why did we take away 10?”. 840

(b) Example (Label 1): S: “There’s not 841

enough seeds”. T: “There’s not enough 842

seeds. How do you know right away that 843

128 or 132 or whatever it was you got 844

doesn’t make sense?”. 845

(c) Example (Label 0): S: “Because the base 846

of it is a hexagon”. T: “Student K?”. 847

3. Focusing Question 848

(a) Example (Label 1): S: “I disagree with 849

Student A because if you skip count by 850

100 ten times, that will get you to 1,000”. 851

T: “Let’s try it. You ready? Let’s start 852

right here with Student F”. S: “A hun- 853

dred.” 854
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(b) Example (Label 1): S: I first got 32 and855

then I got 48. T: And how did you find856

that? S: “Because I did 16 times two is857

32”.858

(c) Example (Label 0): S: “Do we eat pizza859

today”. T: “Student K? What are you860

doing there???”.861

B Annotation Guidelines to label NCTE862

dataset863

These guidelines are designed to assist annotators864

in labeling the classroom interactions between stu-865

dents and the teacher based on the categories de-866

fined in the research conducted by Christ, T., et al867

(2022). Note that this is a multi-label classification868

task and each individual interaction can have one869

or more possible output labels.870

B.1 Labels and Definitions871

1. Response Evaluation: When the teacher ei-872

ther compliments a child or expresses uncer-873

tainty about an incorrect response.874

2. Providing Information: Extending or elabo-875

rating what was said either by the teacher or876

the student, building background knowledge,877

defining, using target words that are utilized878

in the context.879

3. Misinformation: Either by providing misin-880

formation or verifying an incorrect response.881

4. Revoicing: When the teacher acknowledges882

and repeats what the student has said earlier.883

5. Strategy related: Teacher directs a child to884

look at or think about text clues, or asks chil-885

dren to check their prediction.886

6. Questioning: When a teacher questions a887

child to get a more detailed response, or elicit888

noticing text clues, or to define a target vocab-889

ulary etc.890

7. Behavior Management: Gives children or a891

particular child a behavioral directive.892

8. Turn Management: Teacher calls on particu-893

lar child to respond or acknowledges or rejects894

a child’s initiative to talk.895

B.2 Labeling Process 896

To annotate this dataset: 897

(a) We read a transcript, and identify the pos- 898

sible codes that apply to that utterance 899

using the codebook provided in the orig- 900

inal paper. 901

(b) Look up the category that those particu- 902

lar codes fall under, and label either 1 or 903

0 on the spreadsheet. NOTE: The idea is 904

to map the codes back to their categories 905

and use them as labels instead. 906

(c) For example, when the teacher says “He 907

is mowing the grass. Good!! What will 908

the mower do to the flower if the dad 909

gets closer? What would the mower 910

do? Student K??”, the authors of the 911

paper identified that the teacher repeated 912

the student’s response. Then proceeded 913

to compliment the child, acknowledging 914

that the child has given the correct an- 915

swer. Then proceeds to ask a question 916

while directing that question to a particu- 917

lar child. Therefore we ended up with 4 918

possible codes for that one teacher utter- 919

ance. Now we map those codes back to 920

their categories. 921

C Model Hyperparameters 922

For the transformer-based deep learning models, 923

we initialize each from the model checkpoint and 924

fine-tune on our training data for 5 epochs with 925

a batch size of 16, weight decay of 0.01, and a 926

learning rate of 2e-5. 927

Details of the hyperparameter tuning for the gen- 928

erative models, Mixtral and Llama2: 929

1. Do sample: Set to false, this parameter en- 930

sures deterministic outputs by selecting tokens 931

based on their probability distribution rather 932

than introducing variability. This aligns with 933

the experiment’s objective of restricting out- 934

puts to only "yes" and "no" tokens. 935

2. Max new tokens: With a value of 1, this pa- 936

rameter confines the model to generate exactly 937

one token after the input prompt. Given our 938

experiment’s focus on producing either "yes" 939

or "no," a value of one facilitates the desired 940

output format of one token per response. 941

3. Temperature: Set to 0, indicating no ran- 942

domness in output selection. By eliminating 943
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randomness, the model consistently chooses944

the same sequence of tokens from the input945

prompt, thereby ensuring deterministic out-946

put.947

4. Top k: Set to 2, this parameter limits consid-948

eration to the top two tokens with the highest949

probabilities. Since the objective of this exper-950

iment is binary output ("yes" or "no"), setting951

Top k to 2 effectively restricts the model’s952

outputs to these two options.953

5. Num_return_sequence: set to 1954

D Dataset Statistics955

In order to evaluate the generalization performance956

of the models, we annotated new data as described957

in subsection 3.2. The number of datapoints as-958

signed each label are presented in Tables 9 and959

10.960

Variable Class 0 Class 1
Student on Task 21 119
Teacher on Task 13 127

High Uptake 74 66
Focusing Question 83 57

Table 9: Class distribution of MuMo/Mason/Newman
data annotated with NCTE labels. Class 0 indicates the
label does not apply and Class 1 indicates that it does.

Variable Class 0 Class 1
Response
Evaluation

55 45

Providing
Information

58 42

Revoicing 74 26
Strategy
Related

69 31

Questioning 32 68
Behavior

Management
90 10

Turn
Management

70 30

Table 10: Class distribution of NCTE data when anno-
tated with MuMo/Mason/Newman label set. Class 0
indicates the label does not apply and Class 1 indicates
that it does.

E Experimental Details961
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Train Set Models Questioning Response
Evaluation

Providing
Information Revoicing Strategy

Related
Behavior

Management
Turn

Management
Baseline 0.241 0.414 0.151 0.178 0.230 0.194 0.198

MuMo

BERT 0.641 0.331 0.320 0.444 0.233 0.323 0.269
RoBERTa 0.612 0.266 0.319 0.415 0.279 0.303 0.253

Mixtral 0.450 0.285 0.294 0.371 0.320 0.307 0.250
Mixtral (c=1) 0.462 0.270 0.299 0.364 0.303 0.310 0.248
Mixtral (c=3) 0.525 0.299 0.316 0.386 0.288 0.313 0.252
Mixtral (c=5) 0.537 0.283 0.333 0.405 0.284 0.322 0.255

Llama2 0.438 0.276 0.239 0.310 0.244 0.279 0.259
Llama2 (c=1) 0.445 0.240 0.240 0.313 0.241 0.290 0.250
Llama2 (c=3) 0.484 0.279 0.282 0.333 0.274 0.300 0.251
Llama2 (c=5) 0.487 0.270 0.311 0.347 0.266 0.304 0.251

Mason

BERT 0.699 0.460 0.324 0.538 0.333 0.460 0.458
RoBERTa 0.699 0.422 0.315 0.530 0.329 0.459 0.457

Mixtral 0.535 0.340 0.330 0.397 0.332 0.350 0.420
Mixtral (c=1) 0.601 0.360 0.315 0.455 0.327 0.365 0.421
Mixtral (c=3) 0.637 0.407 0.315 0.473 0.331 0.384 0.443
Mixtral (c=5) 0.644 0.436 0.318 0.470 0.333 0.401 0.444

Llama2 0.488 0.281 0.284 0.395 0.275 0.334 0.351
Llama2 (c=1) 0.503 0.312 0.281 0.423 0.292 0.365 0.369
Llama2 (c=3) 0.585 0.303 0.293 0.488 0.307 0.372 0.397
Llama2 (c=5) 0.599 0.326 0.305 0.544 0.330 0.351 0.405

Newman

BERT 0.710 0.489 0.339 0.535 0.396 0.473 0.510
RoBERTa 0.702 0.460 0.325 0.530 0.383 0.472 0.497

Mixtral 0.472 0.384 0.349 0.420 0.313 0.370 0.400
Mixtral (c=1) 0.510 0.412 0.352 0.429 0.327 0.384 0.428
Mixtral (c=3) 0.666 0.440 0.343 0.481 0.367 0.386 0.459
Mixtral (c=5) 0.669 0.490 0.336 0.493 0.365 0.368 0.450

Llama2 0.444 0.340 0.287 0.359 0.304 0.344 0.401
Llama2 (c=1) 0.592 0.365 0.295 0.382 0.324 0.359 0.403
Llama2 (c=3) 0.594 0.425 0.316 0.436 0.315 0.387 0.418
Llama2 (c=5) 0.571 0.484 0.344 0.443 0.339 0.368 0.435

Ms+Nw

BERT 0.689 0.479 0.353 0.530 0.388 0.462 0.495
RoBERTa 0.676 0.472 0.353 0.492 0.364 0.444 0.453

Mixtral 0.478 0.367 0.311 0.400 0.345 0.369 0.381
Mixtral (c=1) 0.614 0.384 0.325 0.427 0.353 0.392 0.409
Mixtral (c=3) 0.617 0.427 0.335 0.438 0.370 0.429 0.403
Mixtral (c=5) 0.582 0.401 0.352 0.427 0.374 0.457 0.419

Llama2 0.413 0.352 0.279 0.333 0.326 0.388 0.325
Llama2 (c=1) 0.497 0.336 0.291 0.369 0.344 0.402 0.334
Llama2 (c=3) 0.500 0.361 0.330 0.437 0.360 0.440 0.353
Llama2 (c=5) 0.490 0.379 0.339 0.428 0.341 0.460 0.333

Mu+Ms

BERT 0.666 0.457 0.350 0.466 0.378 0.446 0.494
RoBERTa 0.641 0.446 0.327 0.428 0.354 0.429 0.507

Mixtral 0.430 0.360 0.241 0.279 0.292 0.314 0.377
Mixtral (c=1) 0.473 0.384 0.252 0.315 0.315 0.317 0.401
Mixtral (c=3) 0.577 0.412 0.304 0.379 0.345 0.344 0.402
Mixtral (c=5) 0.654 0.449 0.300 0.353 0.373 0.354 0.396

Llama2 0.414 0.345 0.248 0.245 0.250 0.279 0.383
Llama2 (c=1) 0.479 0.349 0.270 0.286 0.271 0.307 0.401
Llama2 (c=3) 0.567 0.404 0.308 0.379 0.327 0.336 0.444
Llama2 (c=5) 0.562 0.392 0.299 0.369 0.375 0.343 0.419

Mu+Nw

BERT 0.691 0.463 0.347 0.419 0.396 0.430 0.500
RoBERTa 0.676 0.460 0.324 0.412 0.376 0.423 0.471

Mixtral 0.468 0.301 0.350 0.344 0.319 0.355 0.306
Mixtral (c=1) 0.504 0.333 0.356 0.366 0.329 0.366 0.342
Mixtral (c=3) 0.612 0.404 0.353 0.387 0.360 0.405 0.346
Mixtral (c=5) 0.694 0.472 0.349 0.411 0.401 0.427 0.343

Llama2 0.384 0.300 0.275 0.286 0.325 0.287 0.295
Llama2 (c=1) 0.453 0.328 0.285 0.308 0.340 0.313 0.337
Llama2 (c=3) 0.573 0.393 0.320 0.362 0.367 0.379 0.324
Llama2 (c=5) 0.680 0.462 0.344 0.411 0.400 0.432 0.310

Table 11: F1-score when training on various train sets and evaluating on the test set from Newman. Bold indicates
the best score for each column for each training set, underline indicates the best overall score for each column.
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Train Set Model Questioning Response
Evaluation

Providing
Information Revoicing Strategy

Related
Behavior

Management
Turn

Management
Baseline 0.706 0.308 0.625 0.625 0.308 0.533 0.308

NCTE

BERT 0.821 0.480 0.525 0.000 0.333 0.000 0.800
RoBERTa 0.7724 0.666 0.649 0.000 0.495 0.000 0.813

Mixtral 0.692 0.389 0.363 0.241 0.337 0.000 0.525
Llama2 0.614 0.321 0.381 0.219 0.238 0.190 0.316

Mixtral c=1 0.686 0.359 0.370 0.258 0.322 0.200 0.569
Mixtral c=3 0.721 0.378 0.365 0.255 0.317 0.214 0.555
Mixtral c=5 0.714 0.377 0.333 0.263 0.309 0.179 0.565
Llama c=1 0.604 0.338 0.383 0.222 0.281 0.222 0.407
Llama c=3 0.628 0.334 0.385 0.246 0.325 0.222 0.411
Llama c=5 0.624 0.313 0.342 0.210 0.287 0.213 0.405

Table 12: Generalization performance on NCTE data labeled with MuMo, Mason and Newman dataset labels.
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Train Set Model
Student

on
Task

Teacher
on

Task

High
Uptake

Focusing
Question

Baseline 1.000 1.000 0.929 0.636

Mu+Ms+Nw

BERT 0.962 0.800 0.333 0.694
RoBERTa 0.941 0.785 0.369 0.656

Mixtral 0.784 0.601 0.303 0.666
Mixtral (c=1) 0.740 0.600 0.300 0.661
Mixtral (c=3) 0.767 0.637 0.297 0.628
Mixtral (c=5) 0.749 0.615 0.270 0.612

Llama2 0.678 0.610 0.263 0.537
Mixtral (c=1) 0.684 0.580 0.284 0.550
Mixtral (c=3) 0.647 0.613 0.289 0.523
Mixtral (c=5) 0.666 0.600 0.251 0.501

Table 13: Generalization performance on subset of
MuMo Data labeled using NCTE’s labels.
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Train Set Models Questioning Response
Evaluation

Providing
Information Revoicing Strategy

Related
Behavior

Management
Turn

Management
Baseline 0.470 0.230 0.200 0.364 0.105 0.036 0.364

MuMo

BERT 0.904 0.375 0.564 0.522 0.362 0.533 0.737
RoBERTa 0.871 0.344 0.555 0.501 0.370 0.555 0.747

Mixtral 0.790 0.318 0.231 0.444 0.333 0.378 0.478
Mixtral (c=1) 0.881 0.320 0.324 0.451 0.333 0.415 0.538
Mixtral (c=3) 0.888 0.337 0.362 0.484 0.345 0.467 0.594
Mixtral (c=5) 0.865 0.330 0.363 0.476 0.358 0.525 0.575

Llama2 0.643 0.275 0.286 0.310 0.219 0.344 0.404
Llama2 (c=1) 0.726 0.294 0.323 0.371 0.252 0.387 0.480
Llama2 (c=3) 0.810 0.297 0.404 0.375 0.303 0.465 0.511
Llama2 (c=5) 0.807 0.280 0.417 0.380 0.306 0.541 0.518

Mason

BERT 0.722 0.345 0.542 0.500 0.500 0.557 0.688
RoBERTa 0.718 0.333 0.514 0.500 0.500 0.548 0.680

Mixtral 0.523 0.327 0.289 0.346 0.334 0.694 0.675
Mixtral (c=1) 0.657 0.335 0.439 0.451 0.402 0.690 0.689
Mixtral (c=3) 0.685 0.335 0.447 0.447 0.430 0.734 0.680
Mixtral (c=5) 0.636 0.347 0.452 0.492 0.439 0.697 0.701

Llama2 0.551 0.287 0.282 0.322 0.321 0.474 0.595
Llama2 (c=1) 0.580 0.294 0.353 0.381 0.354 0.493 0.614
Llama2 (c=3) 0.651 0.323 0.434 0.422 0.420 0.533 0.652
Llama2 (c=5) 0.658 0.348 0.436 0.417 0.419 0.521 0.653

Newman

BERT 0.741 0.460 0.461 0.470 0.330 0.500 0.595
RoBERTa 0.742 0.440 0.562 0.476 0.388 0.528 0.555

Mixtral 0.464 0.349 0.387 0.341 0.307 0.444 0.463
Mixtral (c=1) 0.696 0.376 0.405 0.364 0.309 0.454 0.487
Mixtral (c=3) 0.695 0.409 0.430 0.426 0.323 0.485 0.545
Mixtral (c=5) 0.735 0.461 0.452 0.466 0.329 0.502 0.599

Llama2 0.400 0.350 0.378 0.330 0.240 0.295 0.301
Llama2 (c=1) 0.568 0.371 0.390 0.358 0.262 0.340 0.355
Llama2 (c=3) 0.655 0.416 0.430 0.411 0.298 0.422 0.481
Llama2 (c=5) 0.663 0.454 0.452 0.465 0.330 0.507 0.585

Ms+Nw

BERT 0.620 0.333 0.499 0.458 0.333 0.430 0.467
RoBERTa 0.611 0.333 0.504 0.443 0.327 0.442 0.476

Mixtral 0.525 0.298 0.395 0.354 0.311 0.380 0.294
Mixtral (c=1) 0.542 0.307 0.411 0.378 0.315 0.386 0.331
Mixtral (c=3) 0.570 0.322 0.462 0.410 0.323 0.405 0.405
Mixtral (c=5) 0.620 0.327 0.494 0.464 0.332 0.435 0.470

Llama2 0.485 0.290 0.371 0.350 0.279 0.320 0.344
Llama2 (c=1) 0.522 0.300 0.404 0.377 0.291 0.345 0.369
Llama2 (c=3) 0.573 0.316 0.455 0.419 0.311 0.382 0.414
Llama2 (c=5) 0.623 0.337 0.499 0.460 0.330 0.423 0.463

Mu+Ms

BERT 0.840 0.369 0.542 0.492 0.351 0.511 0.651
RoBERTa 0.822 0.338 0.530 0.464 0.351 0.500 0.666

Mixtral 0.622 0.295 0.389 0.400 0.317 0.381 0.471
Mixtral (c=1) 0.776 0.308 0.420 0.412 0.320 0.450 0.571
Mixtral (c=3) 0.750 0.378 0.422 0.474 0.333 0.458 0.588
Mixtral (c=5) 0.743 0.342 0.450 0.457 0.309 0.501 0.547

Llama2 0.595 0.244 0.352 0.373 0.308 0.331 0.386
Llama2 (c=1) 0.651 0.273 0.397 0.396 0.330 0.408 0.441
Llama2 (c=3) 0.734 0.295 0.465 0.436 0.332 0.442 0.443
Llama2 (c=5) 0.729 0.269 0.434 0.414 0.341 0.469 0.413

Mu+Nw

BERT 0.832 0.364 0.518 0.490 0.323 0.509 0.668
RoBERTa 0.833 0.349 0.516 0.489 0.330 0.510 0.640

Mixtral 0.643 0.313 0.334 0.387 0.307 0.363 0.444
Mixtral (c=1) 0.858 0.325 0.422 0.447 0.315 0.430 0.563
Mixtral (c=3) 0.801 0.347 0.442 0.493 0.321 0.515 0.609
Mixtral (c=5) 0.786 0.345 0.428 0.487 0.325 0.486 0.622

Llama2 0.594 0.238 0.248 0.278 0.231 0.321 0.367
Llama2 (c=1) 0.748 0.268 0.298 0.374 0.246 0.353 0.430
Llama2 (c=3) 0.739 0.360 0.413 0.410 0.282 0.436 0.473
Llama2 (c=5) 0.819 0.326 0.408 0.402 0.317 0.405 0.573

Table 14: F1-score when training on various train sets and evaluating on the test set from MuMo. Bold indicates the
best score for each column for each training set, underline indicates the best overall score for each column.
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Train Set Models Questioning Response
Evaluation

Providing
Information Revoicing Strategy

Related
Behavior

Management
Turn

Management
Baseline 0.420 0.120 0.033 0.275 0.160 0.065 0.128

MuMo

BERT 0.644 0.305 0.327 0.458 0.255 0.341 0.294
RoBERTa 0.638 0.284 0.306 0.443 0.306 0.322 0.273

Mixtral 0.472 0.295 0.277 0.380 0.303 0.288 0.269
Mixtral (c=1) 0.556 0.303 0.289 0.389 0.296 0.300 0.357
Mixtral (c=3) 0.581 0.344 0.308 0.420 0.280 0.323 0.370
Mixtral (c=5) 0.552 0.303 0.327 0.455 0.259 0.345 0.303

Llama2 0.444 0.300 0.264 0.339 0.263 0.306 0.279
Llama2 (c=1) 0.493 0.303 0.280 0.366 0.261 0.316 0.310
Llama2 (c=3) 0.477 0.327 0.302 0.450 0.258 0.330 0.324
Llama2 (c=5) 0.453 0.309 0.322 0.466 0.252 0.341 0.295

Mason

BERT 0.729 0.462 0.334 0.610 0.365 0.480 0.501
RoBERTa 0.700 0.445 0.337 0.608 0.325 0.434 0.478

Mixtral 0.560 0.380 0.309 0.399 0.316 0.367 0.400
Mixtral (c=1) 0.704 0.389 0.318 0.436 0.322 0.394 0.418
Mixtral (c=3) 0.748 0.433 0.321 0.515 0.352 0.428 0.465
Mixtral (c=5) 0.727 0.467 0.337 0.614 0.365 0.486 0.493

Llama2 0.562 0.291 0.275 0.401 0.269 0.318 0.383
Llama2 (c=1) 0.689 0.328 0.285 0.444 0.288 0.351 0.405
Llama2 (c=3) 0.669 0.391 0.313 0.522 0.323 0.409 0.448
Llama2 (c=5) 0.718 0.463 0.338 0.602 0.361 0.480 0.506

Newman

BERT 0.711 0.447 0.339 0.541 0.328 0.449 0.495
RoBERTa 0.693 0.444 0.309 0.517 0.326 0.461 0.512

Mixtral 0.500 0.422 0.300 0.381 0.279 0.344 0.425
Mixtral (c=1) 0.643 0.427 0.305 0.406 0.285 0.361 0.433
Mixtral (c=3) 0.714 0.438 0.320 0.486 0.309 0.410 0.460
Mixtral (c=5) 0.721 0.447 0.344 0.543 0.328 0.448 0.489

Llama2 0.469 0.375 0.238 0.366 0.278 0.343 0.366
Llama2 (c=1) 0.608 0.396 0.258 0.406 0.287 0.358 0.394
Llama2 (c=3) 0.633 0.412 0.299 0.467 0.314 0.400 0.448
Llama2 (c=5) 0.614 0.452 0.335 0.541 0.327 0.448 0.502

Ms+Nw

BERT 0.716 0.434 0.329 0.563 0.348 0.444 0.478
RoBERTa 0.707 0.432 0.313 0.520 0.341 0.400 0.463

Mixtral 0.475 0.353 0.279 0.342 0.268 0.332 0.384
Mixtral (c=1) 0.633 0.366 0.290 0.388 0.287 0.361 0.438
Mixtral (c=3) 0.692 0.404 0.305 0.468 0.311 0.391 0.440
Mixtral (c=5) 0.719 0.400 0.325 0.568 0.351 0.443 0.482

Llama2 0.527 0.301 0.233 0.344 0.287 0.300 0.348
Llama2 (c=1) 0.654 0.341 0.253 0.390 0.304 0.328 0.375
Llama2 (c=3) 0.718 0.337 0.294 0.467 0.319 0.383 0.430
Llama2 (c=5) 0.680 0.326 0.324 0.567 0.351 0.452 0.448

Mu+Ms

BERT 0.703 0.440 0.323 0.587 0.349 0.444 0.455
RoBERTa 0.694 0.438 0.319 0.560 0.347 0.429 0.454

Mixtral 0.512 0.373 0.304 0.331 0.296 0.259 0.382
Mixtral (c=1) 0.650 0.380 0.302 0.481 0.304 0.293 0.390
Mixtral (c=3) 0.698 0.419 0.316 0.493 0.334 0.273 0.422
Mixtral (c=5) 0.630 0.435 0.323 0.501 0.355 0.338 0.407

Llama2 0.499 0.334 0.292 0.306 0.297 0.251 0.340
Llama2 (c=1) 0.593 0.355 0.293 0.427 0.305 0.292 0.368
Llama2 (c=3) 0.617 0.401 0.308 0.453 0.332 0.368 0.408
Llama2 (c=5) 0.628 0.437 0.325 0.445 0.349 0.353 0.388

Mu+Nw

BERT 0.683 0.436 0.310 0.540 0.316 0.405 0.444
RoBERTa 0.665 0.428 0.307 0.527 0.300 0.421 0.421

Mixtral 0.489 0.366 0.264 0.460 0.247 0.301 0.399
Mixtral (c=1) 0.569 0.379 0.270 0.473 0.263 0.323 0.412
Mixtral (c=3) 0.598 0.409 0.297 0.547 0.268 0.380 0.434
Mixtral (c=5) 0.616 0.401 0.267 0.521 0.261 0.354 0.443

Llama2 0.420 0.341 0.251 0.414 0.233 0.258 0.384
Llama2 (c=1) 0.540 0.359 0.259 0.445 0.250 0.290 0.396
Llama2 (c=3) 0.573 0.403 0.292 0.485 0.283 0.345 0.427
Llama2 (c=5) 0.543 0.403 0.305 0.535 0.249 0.400 0.412

Table 15: F1-score when training on various train sets and evaluating on the test set from Mason. Bold indicates the
best score for each column for each training set, underline indicates the best overall score for each column.
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