
GRACE-C: Generalized Rate Agnostic Causal
Estimation via Constraints

Anonymous Author(s)
Affiliation
Address
email

Abstract

Graphical structures estimated by causal learning algorithms from time series data1

can provide highly misleading causal information if the causal timescale of the2

generating process fails to match the measurement timescale of the data. Existing3

algorithms provide limited resources to respond to this challenge, and so researchers4

must either use models that they know are likely misleading, or else forego causal5

learning entirely. Existing methods face up-to-four distinct shortfalls, as they might6

a) require that the difference between causal and measurement timescales is known;7

b) only handle very small number of random variables when the timescale difference8

is unknown; c) only apply to pairs of variables (albeit with fewer assumptions about9

prior knowledge); or d) be unable to find a solution given statistical noise in the data.10

This paper aims to address these challenges. We present an algorithm that combines11

constraint programming with both theoretical insights into the problem structure12

and prior information about admissible causal interactions to achieve speed up of13

multiple orders of magnitude. The resulting system scales to significantly larger14

sets of random variables (> 100) without knowledge of the timescale difference15

while maintaining theoretical guarantees. This method is also robust to edge16

misidentification and can use parametric connection strengths, while optionally17

finding the optimal among many possible solutions.18

1 Introduction19

Dynamic causal models play a pivotal role in modeling real-world systems in diverse domains,20

including economics, education, climatology, and neuroscience. Given a sufficiently accurate causal21

graph over random variables, one can predict, explain, and potentially control some system; more22

generally, one can understand it. In practice, however, specifying or learning an accurate causal23

model of a dynamical system can be challenging for both statistical and theoretical reasons.24

One particular challenge arises when data are not measured at the speed of the underlying causal25

connections. For example, fMRI scanning of the brain measures bloodflow and oxygen level changes26

in different brain regions, thereby indirectly measuring neural activity (which leads to increased27

oxygen consumption). fMRI thus provides data about an important dynamical system, but these28

measures take place (at most) every second while the brain’s actual dynamics is known to proceed at a29

faster rate [16], though we do not know how much faster. In general, when the measurement timescale30

is significantly slower than the causal timescale (as with fMRI), learning can output importantly31

incorrect causal information. For instance, if we only measure every other timestep in Figure 1,32

then the true graph (top left) would differ from the data graph (top right). For example, we might33

conclude that variable 2 directly influences variable 5, when variable 3 is the actual direct cause.34

This type of error can lead to inefficient or costly methods of control. More generally, understanding35

of a system depends on the causal-timescale (i.e., non-undersampled) causal relations, not the36

measurement-timescale (apparent) relations.37

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

In this paper, we consider the problem of learning the causal structure at the causal timescale from38

data collected at an unknown measurement timescale. This challenge has received significant attention39

in recent years [19, 7, 10, 18], but all current algorithms have significant limitations (see Section 2)40

that make them unusable for many real-world scientific challenges. Current algorithms show the41

theoretical possibility of causal learning from undersampled data, but their practical applicability42

is limited to small graph sizes, sometimes including only a pair of variables [7]. In contrast, we43

present a provably correct and complete algorithm that can operate on 100-node graphs and hence44

be potentially useful in biological and other domains for learning causal timescale structure from45

undersampled data.46

2 Related Work And Notation47

Figure 1: Causal graph G1 and its un-
dersampled version G2: unrolled and
compressed versions.

A directed dynamic causal model is a generalization of “regu-48

lar” causal models [17, 23]: graph G includes n distinct nodes49

for random variables V = {V1,V2, ...,Vn} at both the current50

timestep t (Vt), and also each previous timesteps (Vt−k) in51

which there is a direct cause of some V t
i . We assume that52

the “true” underlying causal structure is first-order Markov:53

the independence Vt ⊥⊥ Vt−k | Vt−1 holds for all k > 11 (i.e.54

causal sufficiency assumption [24]). G is thus over 2V, and the55

only permissible edges are V t−1
i → V t

j, where possibly i = j.56

The quantitative component of the dynamic causal model is57

fully specified by parameters for P(Vt |Vt−1). We assume that58

these conditional probabilities are stationary over time, but the59

marginal P(Vt) need not be stationary.60

We denote the timepoints of the underlying causal structure61

as {t0, t1, t2, ..., tk, ...}. The data are said to be undersampled62

at rate u if measurements occur at {t0, tu, t2u, ..., tku, ...}. We63

denote undersample rate with superscripts: the true causal64

graph (i.e., undersampled at rate 1) is G1 and that same graph undersampled at rate u is Gu. To65

determine the implied G at other timescales, the graph is first “unrolled” by adding instantiations of66

G1 at previous and future timesteps, where Vt−2 bear the same causal relationships to Vt−1 that Vt−1
67

bear to Vt, and so forth. In this unrolled (time-indexed by t) graph, all V at intermediate timesteps68

are not measured; this lack of measurement is equivalent to marginalizing out (the variables in)69

those timesteps to yield Gu. This problem has been parametrically addressed by [7]. Yet, a very70

interesting approach proposed in the paper was demonstrated only on a 2-variable system. Although71

an interesting approach, it has not been developed further and made practical.72

Various representations have been developed for graphs with latent confounders, including partially-73

observed ancestral graphs (PAGs) [20] and maximal ancestral graphs (MAGs) [26]. However, these74

graph-types cannot easily capture the types of latents produced by undersampling [14]. Instead, we75

use compressed graphs, along with properties that were previously proven for this representation [1].76

A condensed graph includes only V, where temporal information is implicitly encoded in the edges.77

In particular, a condensed graph version G of dynamic causal graph G has Vi → V j in G iff V t−1
i → V t

j78

is in G. Undersampling (i.e., marginalizing intermediate timesteps) is a straightforward operation for79

compressed graphs: (1) Vi → V j in Gu iff there is a length-u directed path from Vi to V j in G1 iff there80

is a directed path from V t−u
i to V t

j in G1; and (2) Vi ↔ V j in Gu iff there exists length-s < u directed81

paths from Vk to Vi, and to V j, in G1 (i.e., Vk is an unobserved common cause in G1 fewer than u82

timesteps back). See Appendix for additional proofs. The bottom row of Figure 1 shows compressed83

graphs for the unrolled ones on the top row; the left shows the causal timescale and the right shows84

the graphs undersampled at rate 2.85

Given this framework, the overall causal learning challenge can now be restated as: given Gu but not u86

(or given dataset D at unknown undersample rate), what is the set of possible G1? There will often be87

many possible G1 for given Gu, and so we use ⟦H⟧ to denote the equivalence class of G1 that could88

yieldH (the given causal graph inferred from data D) for some u. That is, ⟦H⟧ = {G1 : ∃u(Gu = H)}89

1This assumption is relatively weak, as we do not assume that we measure at this “true” causal timescale.
The system timescale can be arbitrarily fast to capture all connections.

2

Various algorithms have been developed to infer ⟦H⟧, each with distinctive shortcomings. There are90

2n2
possible G1, so perhaps unsurprisingly, this problem is NP-complete:91

Theorem 1 ([10][Theorem 1]). Deciding whether a consistent G1 exists for a givenH is NP-complete,92

for all undersampling rates u ≥ 2.293

Figure 2: Comparison of sRASL (red) with pre-
vious state-of-the-art RASL (blue).

Mesochronal Structure Learning (MSL) [19] showed it94

is possible to learn ⟦H⟧ in a non-brute force manner95

if we know u. Every edge in Gu corresponds to one96

or more paths of length u in G1, and so G1 can be97

constructed by identifying u − 1 intermediate nodes98

for each edge in Gu. MSL searches the state space of99

possible identifications in a Depth-First Search (DFS)100

manner. Each identification implies a G1, and if Gu =101

H , then G1 ∈ ⟦H⟧. Otherwise, search continues. MSL102

backtracks in the DFS whenever some Gu includes an103

edge that is absent fromH , as the candidate G1 and all104

its supergraphs cannot be in ⟦H⟧.105

Although [19] showed that the concept that causal infer-106

ence from undersampled data is feasible, MSL is com-107

putationally intractable on even moderate-sized graphs.108

[10] used the implied constraints to develop an Answer109

Set Programming (ASP) [22, 15, 6, 11] method that for-110

mulated this causal inference challenge as a rule-based111

constraint satisfaction problem. ASP is a rule-based112

declarative constraint satisfaction paradigm that is well-113

suited for representing and solving various NP-hard114

problems (e.g. Theorem 1). In essence, the algorithm115

in [10] takes as input the measured causal graph H ,116

determines the set of implied constraints on G1, and then uses the general-purpose Answer Set Solver117

Clingo [5] to determine the set of possible G1 significantly faster than MSL. The same idea of using118

Boolean satisfiability solvers to integrate (in)dependent data constraints has been used for various119

other causal learning challenges [9, 25].120

Although the method in [10] is significantly faster, one must specify the undersampling rate u (or else121

run the method sequentially for all possible u, thereby losing much of the computational advantage).122

In contrast, the Rate-Agnostic (Causal) Structure Learning (RASL) approach (with three different123

versions) [18] makes no such assumption. These algorithms are similar to MSL, but consider each124

possible u for some G1. RASL reduces computational complexity with two additional stopping rules125

for given G1: (1) if some Gk has previously been seen, then further undersampling of G1 will not126

produce new graphs; and (2) if Gk is not an edge-subset of H for all k, then do not consider any127

edge-superset of G1 [18]. However, despite these improvements, RASL still faces memory and128

run-time constraints for even moderate numbers of nodes.129

One key observation from all of these learning algorithms is the importance of strongly connected130

components (SCCs) [1]:131

Definition 2.1. An SCC in compressed graphH is a maximal set of nodes S ⊆ V such that, for every132

X,Y ∈ S there is a directed path from X to Y .133

Note that the variables in a compressed graphH can be fully partitioned based on SCC membership.134

SCCs can be highly stable, as the node-membership of an SCC will not change as we undersample,135

as long as the greatest common divisor (gcd) of the set of lengths of all simple loops (directed cycles136

without repeated nodes) in the SCC is 1:3137

Theorem 2 ([1][Theorem 3]). S is an SCC in Gu for all u iff gcd(LS) = 1 for SCC S ∈ G1
138

In this paper, we develop sRASL (for solver-based RASL), a novel algorithm that leverages insights139

from multiple sources, such as the constraints implied by SCC stability (Theorem 2). We show that140

2Proof provided in [10]. In general, we omit previously published proofs.
3The condition easily holds, as it requires only (1) the graph is relatively dense with different loop lengths or

(2) any node in the SCC has a self-loop (i.e., is autocorrelated).

3

sRASL significantly outperforms previous methods. The contributions of this paper are threefold:141

first, we reformulated the RASL algorithm from a search-based procedure to a constraint satisfaction142

problem encoded in a declarative language [4]. Second, this reformulation enables us to add additional143

constraints based on SCC structure, and thereby gain significant speed-up. Third, we ensure that144

sRASL provides a straightforward way to find approximate solutions when H is an unreachable145

graph (i.e., when ⟦H⟧ = ∅). These advances collectively provide up to three orders of magnitude146

improvements in speed, thereby enabling causal inference given undersampling data involving over147

100 nodes. As a concreate example of the improvements, Figure 2 compares sRASL (red) with the148

previously-fastest RASL [18] method (blue) on the same graphs. The same input graph H took149

RASL nearly 1000 minutes to compute ⟦H⟧, but only 6 seconds for sRASL.150

3 sRASL: Optimized ASP-based Causal Discovery151

The sRASL algorithm takes as input a (potentially) undersampled graphH , whether learned from data152

D, expert domain knowledge, a combination of the two, or some other source. sRASL’s agnosticism153

about the source of the input graph enables wider applicability, as we can use whatever information is154

available [2]. In the asymptotic (data) limit, the sRASL output is the full ⟦H⟧.155

sRASL leverages the fact that connections between SCCs inH must form a directed acylic graph.156

More specifically: if X → Y with X ∈ A,Y ∈ B for SCCs A , B, then C ↚ D for all C ∈ A,D ∈ B.4157

Moreover, Theorem 2 provides the (weak) condition under which SCC membership is preserved158

under undersampling. These two observations imply that structural features potentially provide159

additional constraints beyond the obvious ones (See Section4.3). In particular, ifH has a roughly160

modular structure–that is, the SCCs are not too large–then sRASL generates many more constraints161

than the algorithm of [10].162

Listing 1 shows the Clingo (for a brief Introduction on Clingo and Answer Set Programming,163

refer to Appendix C) code of sRASL, which is based on exactly representing the conditioning and164

marginalization operations (defined in Section 2) in ASP. In the first line, we input the first-order165

graph-specific specification of H (e.g., the edge 1 → 10 translates to hdirected(1, 10)). Line 2166

encodes the second-order structure ofH , including the partition of V into SCCs. These predicates167

and basic descriptive information are added to the Clingo code (lines 3, 4, 5) in an automated way.5168

maxu on line 3 specifies the maximum undersampling rate, as there is provably such a u where169

Gu = Gk for all k > u, if we have the same condition that leads to stable SCC membership:170

Theorem 3 ([18][Theorem 3.1]). If gcd(LS) = 1 for all SCCs S ⊆ V, then Gu = Gu+1 for all171

u > f ≤ nF + γ + d + 1.172

where γ is the transit number6, d is graph diameter7 and nF is the Frobenius number.8 In practice, the173

plausible undersampling rate will often be much lower than the theoretical upper bound in Theorem 3.174

For example, consider fMRI data. The underlying rate of brain activity is generally thought to be175

∼ 100 milliseconds and fMRI devices measure approximately every two seconds. Hence, u = 20 is a176

plausible upper bound on undersampling in fMRI studies.9177

Line 6 in Listing 1 stipulates that all edges in G1 are possible (by default), and so the output will178

contain any possible model that does not violate the integrity constraints of lines 11 − 16. Lines179

7 and 8 define paths of length L in the graph (i.e., an edge in GL). As described in Section 2:180

X → Y ∈ Gu ⇐⇒ X
u
⇝ Y ∈ G1 where

u
⇝ is a path of length u. Line 10 similarly defines bidirected181

edges in GL: X ↔ Y ∈ Gu ⇐⇒ ∃Z, l : (X
l
f Z

l
⇝ Y ∈ G1).182

4If C ← D, then by definition of SCC, there exists π : X ← . . . ← C ← D ← . . . ← Y . X,Y are thus
mutually reachable so must be in the same SCC, contra A , B.

5The code is available at removed for anonymity
6Transient number is the length of the “longest shortest path” from a node that touches all simple loops of

the SCC.
7Graph diameter the length of the “longest shortest path” between any two graph nodes.
8For set B of positive integers with gcd(B) = 1, nF is the max integer with nF ,

∑b
i=1 αiBi for αi ≥ 0

9Of course, the actual undersample rate could be much lower than 20. Voxels typically contain 8 − 10 layers
of neurons, so the “causal timescale of a voxel” could easily be as high as 1000 ms (i.e., u = 2).

4

1 %(* input graph edge specifications here * e.g.: hdirected(1,5) ...)
2 %(* input graph SCC specifications here * e.g.: sccsize(0, 5). scc(1, 0) ...)
3 #const n = 10, maxu = 20
4 node(1..n).
5 1 {u(1..maxu)} 1.
6 {edge1(X,Y)} :- node(X), node(Y).
7 directed(X, Y, 1) :- edge1(X, Y).
8 directed(X, Y, L) :- directed(X, Z, L-1),
9 edge1(Z, Y), L <= U, u(U).

10 bidirected(X, Y, U) :- directed(Z, X, L), directed(Z, Y, L), node(X;Y;Z), X < Y, L
< U, u(U).

11 :- directed(X, Y, L), not hdirected(X, Y), node(X;Y), u(L).
12 :- bidirected(X, Y, L), not hbidirected(X, Y), node(X;Y), u(L), X < Y.
13 :- not directed(X, Y, L), hdirected(X, Y), node(X;Y), u(L).
14 :- not bidirected(X, Y, L), hbidirected(X, Y), node(X;Y), u(L), X < Y.
15 % the following is only used when SCC accounting is enabled
16 :- edge1(X, Y), scc(X, K), scc(Y, L), K != L, sccsize(L, Z), Z > 1, not dag(K,L).

Listing 1: Clingo code for sRASL

1 :~ directed(X, Y, L), no_hdirected(X, Y, W), node(X;Y), u(L). [W@1,X,Y]
2 :~ bidirected(X, Y, L), no_hbidirected(X, Y, W), node(X;Y), u(L), X < Y.

[W@1,X,Y]
3 :~ not directed(X, Y, L), hdirected(X, Y, W), node(X;Y), u(L). [W@1,X,Y]
4 :~ not bidirected(X, Y, L), hbidirected(X, Y, W), node(X;Y), u(L), X < Y.

[W@1,X,Y]

Listing 2: Integrity constraints for turning sRASL algorithm into an optimization problem when they replace
lines 11 through 14 in Listing 1

Lines 11 − 14 provide the core constraints, as they ensure that sRASL returns only G1 for which183

there exists u such that Gu = H . Line 16 adds the additional constraints based on impermissibility of184

cycles between SCCs. That is, if we consider each SCC as a super-node, Line 16 ensures that the185

edges of the directed acyclic graph (DAG) connecting SCCs inH are not violated in the outputs.186

If sRASL initially returns the empty set (i.e., there are no suitable G1), then it is possible to run187

sRASL in an optimization mode instead to find optimal (though not perfect) outputs (see Section188

4.5 for details). One potential reason for ⟦H⟧ = ∅ is statistical noise or other errors in estimating or189

specifyingH .10 In such cases, sRASL finds the set of G1 that are, for some u, closest toH by the190

objective function:191

G1∗, u∗ ∈ argmin
∑
e∈H

I[e < Gu] · w(e ∈ H) +
∑
e<H

I[e ∈ Gu] · w(e < H), (1)

where the indicator function I(c) = 1 if the condition holds and zero otherwise. w(e ∈ H) indicates192

the importance (i.e., reliability) of edge e; w(e < H) indicates the reliability of the absence of an edge.193

SinceH is an undersampled graph, it consists of directed and bidirected edges. We thus implement194

both w(e ∈ H) and w(e < H) as two pairs of n × n matrices, one pair for existence and absence195

of directed edges, and one pair for bidirected edges. To learn the optimal graph at the true causal196

timescale, for every G1 in the solutions set, the corresponding Gu is compared to the input H and197

penalized for the difference according to weights representing the reliability of the measurement198

timescale estimates.199

In order to incorporate Equation 5 in Listing 1, we replace its exact integrity constraints (Lines 11-14)200

with the optimization formulation [5] in Listing 2. In Listing 2 we specify a weight for each edge (or201

lack there of) inH using W and the importance of these weights can be specified for each integrity202

constraint using the W@i syntax with i being the importance.203

10Note, among all possible graphs that have a combination of both directed (2n2
) and bidirected (2(n

2)) edges
only a fraction may be obtained by undersampling a G1.

5

3.1 sRASL Completeness and Correctness204

sRASL exhibits significant improvements in computation time, so it is important to show that we do205

not lose generality or theoretical guarantees. We demonstrate correctness and completeness using206

the notion of a direct encoding of the problem (i.e., the space of solutions is fully characterized, and207

any non-solution violates a constraint). We first prove (Appendix A) that we have provided a direct208

encoding:209

Theorem 4. Listing 1 is a direct encoding of the undersampling problem.210

Clingo is a complete solver, based on CDNL (Conflict-Driven Nogood Learning) [3], itself based on211

CDCL (Conflict-Driven Clause Learning) [12, 13]. [8][Theorem 2] and [9][Section 5.2] show that, if212

the ASP encoding is the direct encoding of the problem, then ASP will produce the complete set of213

solutions in the infinite sample space limit. In other words, Theorem 5 implies: since our algorithm214

yields at least one sound solution, Clingo will produce all possible solutions. Therefore, soundness215

results in completeness. That is, sRASL’s success is not due to heuristics or some incomplete or216

not-everywhere-correct algorithmic step.11
217

4 Results218

A major virtue of sRASL is its empirical performance, so we now consider a range of simulations (to219

ensure known ground truth) to understand this performance in more detail. For these experiments, we220

used Clingo in parallel mode using 10 threads and computing on AMD EPYC 7551 CPUs. To cope221

with the multiple repeated calculations and hundreds of graphs we have tested per parameter setting222

all experiments were run on a slurm cluster which submits jobs to one of the 19 machines on the223

same network. Each of the 19 nodes was equipped with 64 cores and 512 GB of RAM.224

4.1 Comparing sRASL vs. RASL225

We first compare sRASL with the existing RASL method (Figure 2). We generated 100 6-node SCCs226

for each density in [0.2, 0.25, 0.3], and then undersampled each graph by 2, 3, and 4. We used 6-node227

graphs as RASL struggles to handle larger graphs in reasonable time and space [18]. Each column of228

Figure 2 consists of graphs of approximately same density (increasing density from left-to-right), and229

subcolumns represent different undersample rates (for that density). As Figure 2 shows, sRASL is230

typically three orders of magnitude faster than RASL, even on relatively small graphs.231

4.2 Comparing Graph Size232

It is perhaps unsurprising that sRASL runs much faster than RASL, as sRASL uses an ASP solver233

(which were previously known to yield faster algorithms [10]). We next wanted to see just how234

much larger the graphs could be. More generally, we aimed to better understand how sRASL’s235

computational performance scales with the number of nodes for single-SCC graphs. The focus on236

single SCCs is motivated by the theoretical need to understand the size-speed tradeoff, and also237

scientific applicability since many real-world systems consist of tightly coupled factors with many238

feedback loops (i.e., they are a single SCC). We consider multiple-SCC graphs in later subsections.239

We generated 50 random single-SCC graphs each of 8, 16 and 32 nodes, all with average degree240

of 1.4 outgoing edges per node. We then undersampled each graph by 2, 3 and 4, and used each241

individual undersampled graph as input to sRASL. We used a 24-hour timeout (i.e., we stopped an242

sRASL run if it did not finish in 24 hours). Figure 3 shows the increasing computational costs as both243

number of nodes and undersample rate increase. Notably, sRASL was able to learn ⟦H⟧ for 32-node244

single-SCC graphs, though it reached timeout for allH at u = 4 32-node graphs. That is, for low u,245

sRASL scales to much larger single-SCC graphs than RASL.246

4.3 Comparing SCC Size247

The other major innovation of sRASL is incorporation of constraints derived from the SCC structure.248

We thus investigated the performance of sRASL on large, structured, multiple-SCC graphs. Many249

11Simulation testing provides further evidence. We found that sRASL and RASL produced identical outputs
for 1000 different input graphs, and RASL is known to be correct and complete [18][Theorem 3.6].

6

Figure 3: Time behavior of graphs of size 8, 16 and 32.
The time out for this experiment indicated by the red
line was 24 hours. Green dots represent graphs that
has been computed within the 24-hours window. Gray
represent graphs that could not be fully computed
within 24−hours window.

Figure 4: Time behavior of graphs of size 64 with var-
ious sub SCC sizes. The time out for this experiment
was 24 hours (1440 Minutes).

real-world systems exhibit some degree of modularity, where there are dense or feedback connections250

within a module or subsystem, and relatively sparser connections between modules or subsystems.251

In theory, sRASL should perform well on these kinds of structures since it incorporates SCC-based252

constraints. Please refer to Appendix B for an ablation study on effect of using additional constraints253

for SCC structures.254

We tested the value of SCC-based constraints using graphs with 64 nodes that differed in their SCC255

structure. Specifically, we randomly generated 50 graphs each of: 32 size-2 SCCs; 16 size-4 SCCs; 8256

size-8 SCCs; 4 size-16 SCCs; or 2 size-32 SCCs. We then undersampled each graph by u = 2, 3, or 4,257

and ran sRASL (again with a 24-hour timeout).258

Figure 4 shows the computation time for these graphs, with increasing SCC size (and decreasing259

number of SCCs) from left to right. The first key observation is that sRASL successfully found260

⟦H⟧ for 64-node graphs, at least when there was some internal structure. Second, and relatedly, we261

observe a wide range of computation times for these graphs, even though all had the same number262

of nodes (64). We clearly see the impact of SCC structure, as sRASL was dramatically faster when263

there were many small SCCs, rather than a few large SCCs. The results in Figure 3 might seem to264

suggest an “upper bound” around 30 nodes for sRASL. But the results in Figure 4 make it clear that265

any potential “upper bound” is primarily on the number of nodes in the SCCs, rather than the total266

number of nodes in the graph.267

4.4 Comparing Graph Size With Constant SCC Size268

The previous results suggest that sRASL might be able to solve much larger graphs, as long as269

the SCCs are not overly large. More generally, the previous simulations showed that sRASL’s270

computational cost scales (at least) exponentially in the size of the SCC, but did not reveal how it271

scales in the number of SCCs.272

We again generated 50 different graphs for each of several settings. We considered SCCs with 7, 8,273

and 10 nodes, and varied the number of SCCs within the graph (again for u = 2, 3, and 4). Figure 5274

shows the computational cost of sRASL, where each row includes graphs with SCCs of the same275

size, but the number of SCCs increasing from left-to-right. The critical observation here is that the276

time complexity grows approximately linearly, rather than exponentially (or worse). For example,277

the graph shown in Figure 5 has 98 nodes, but sRASL successfully computes ⟦H⟧ in approximately278

20 minutes. (Recall that RASL took 17 hours to compute a graph with only 6 nodes.)279

This simulation demonstrates that sRASL is usable on relatively large graphs, as long as there is280

appropriate internal structure. One might worry, though, whether real-world systems do not have the281

right structure. If we consider fMRI (brain) data, [21] recently aggregated a number of simulations of282

7

Figure 5: Time behaviour of graphs with the same SCCs sizes but with multiple number of SCCs. Top row
graphs of SCC size 7 with 1, 2, ..., 14 number of SCCs. Middle row graphs of SCC size 8. Bottom row graphs of
SCC size 10.Bottom right corner is an example of a structured graph with 98 nodes structured as 14 SCCs of
size 7. Each color represents one Strongly Connected Component.

realistic causal graphs for brain processes studied with fMRI, and the largest SCC in these widely-283

accepted models has only seven nodes. Moreover, typical brain parcellations contain 50− 100 regions284

(= nodes), and sRASL can easily handle graphs with 100 nodes if the SCC size is in the 8 − 10 range.285

The results in this subsection suggest that we could potentially find ⟦H⟧ for each larger graphs, as286

long as they were composed of reasonably-sized SCCs. However, we found that the Clingo language287

and solver seems to be limited in the number of atoms that it can handle. In our simulations, graphs288

of size 100 seem to be the limit for Clingo to handle all the predicates. An open question is whether289

sRASL can be optimized to produce fewer predicates (or Clingo improved to handle more atoms).290

4.5 Optimization291

Finally, we explored the optimization capability of Clingo. Recall that sometimes ⟦H⟧ = ∅ due292

to statistical errors or other noise in learningH . Clingo can solve an optimization problem based293

on user-specified weights and priorities, and output a single solution with minimum cost function294

(along with u for this solution). In particular, we can use Clingo to find G1 whose Gu (for some u)295

are closest (relative to the edge weights) toH .12
296

In this simulation, we first randomly generate G1 and undersample it to a random u to get Gu = H297

such that ⟦H⟧ , ∅. We then assign weights to the edges ofH and randomly break one edge from it.298

We then run sRASL on this “broken”H to learn a suitable G1. Red bars in Figure 6 show the edge299

omission and commission errors for this approach. We see that, except for high undersamplings, the300

optimization capability of Clingo can be used to frequently retrieve the true G1; that is, this version301

of sRASL is robust to small errors inH in many settings.302

A more complex approach to finding suitable solutions is to first run the optimization method to303

identify a solution G1
opt and undersample rate uopt. We can then undersample this solution G1

opt by uopt304

to get Gu
opt. We then use sRASL to obtain ⟦Gu

opt⟧ (i.e., the full equivalence class of the undersampled305

graph that is “nearest” to H). We then compute the error based on the minimum error among all306

12If ⟦H⟧ , ∅, then this optimization will return a graph from ⟦H⟧,

8

Figure 6: The omission (top) and commission (bottom) error of different graph sizes and undersampling of two,
three and four from left to right.

G1 ∈ ⟦Gu
opt⟧; that is, we ask whether the true graph was actually found. This approach is motivated307

by the intended use of sRASL by domain scientists, where the final decision on which graph in the308

equivalence class better suits the question is made by the scientist using the algorithm. Blue bars in309

Figure 6 show that this more complex method provides improved performance compared to regular310

optimization.311

5 Conclusion and Discussion312

Real-world scientific problems frequently involve measurement processes that operate at a different313

timescale than the causal structure of the system under study. As causal learning and analysis methods314

are increasingly used to address societal and policy challenges, it is increasingly critical that we315

use methods that reveal usable information (while also being clear when we cannot infer some316

information). Obviously, like any method, sRASL could yield information that is misused, but the317

aim here is to provide another useful tool in the scientists’ policy-makers’ toolboxes. If measurements318

occur at a slower rate than the causal influences, then causal discovery from those undersampled319

data can yield highly misleading outputs. Multiple methods have been developed to infer aspects320

of the underlying causal structure from the undersampled data/graph. However, the assumptions or321

computational complexities of those algorithms make them unusable for most real-world challenges.322

In this paper, we have developed and tested sRASL, a novel algorithm that is less subject to those323

same limitations. More specifically, sRASL provides all consistent solutions (without knowledge324

of exact undersampling rate) for large (100-node) graphs in a usable amount of time. sRASL also325

shows reasonable robustness to statistical error in the estimated graph by finding the closest consistent326

solution. Future research will focus on application of sRASL to actual neuroimaging data, and327

extensions to situations with multiple measurement modalities.328

References329

[1] Danks, D., and Plis, S. Learning causal structure from undersampled time series. In NIPS330

Workshop on Causality (2013), vol. 1, pp. 1–10.331

[2] Danks, D., and Plis, S. Amalgamating evidence of dynamics. Synthese 196, 8 (2019), 3213–332

3230.333

[3] Drescher, C., andWalsh, T. Conflict-driven constraint answer set solving with lazy nogood334

generation. In Twenty-Fifth AAAI Conference on Artificial Intelligence (2011).335

[4] Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., and Zugal, S.336

Declarative versus imperative process modeling languages: The issue of understandability. In337

Enterprise, Business-Process and Information Systems Modeling. Springer, 2009, pp. 353–366.338

9

[5] Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., and Schneider, M.339

Potassco: The Potsdam answer set solving collection. Ai Communications 24, 2 (2011),340

107–124.341

[6] Gelfond, M., and Lifschitz, V. The stable model semantics for logic programming. ICSLP,342

1988.343

[7] Gong, M., Zhang, K., Schoelkopf, B., Tao, D., and Geiger, P. Discovering temporal causal344

relations from subsampled data. In International Conference on Machine Learning (2015),345

PMLR, pp. 1898–1906.346

[8] Hyttinen, A., Eberhardt, F., and Järvisalo, M. Constraint-based Causal Discovery: Conflict347

Resolution with Answer Set Programming. In UAI (2014), pp. 340–349.348

[9] Hyttinen, A., Hoyer, P. O., Eberhardt, F., and Jarvisalo, M. Discovering cyclic causal models349

with latent variables: A general SAT-based procedure. arXiv preprint arXiv:1309.6836 (2013).350

[10] Hyttinen, A., Plis, S., Järvisalo, M., Eberhardt, F., and Danks, D. A constraint optimization351

approach to causal discovery from subsampled time series data. International Journal of352

Approximate Reasoning 90 (2017), 208–225.353

[11] Lifschitz, V. The stable model semantics for logic programming, 1988.354

[12] Marques Silva, J., and Sakallah, K. GRASP-A new search algorithm for satisfiability. In355

Proceedings of International Conference on Computer Aided Design (1996), pp. 220–227.356

[13] Marques-Silva, J. P., and Sakallah, K. A. GRASP: A search algorithm for propositional357

satisfiability. IEEE Transactions on Computers 48, 5 (1999), 506–521.358

[14] Mooij, J. M., and Claassen, T. Constraint-based causal discovery using partial ancestral graphs359

in the presence of cycles. In Conference on Uncertainty in Artificial Intelligence (2020), PMLR,360

pp. 1159–1168.361

[15] Niemelä, I. Logic programs with stable model semantics as a constraint programming paradigm.362

Annals of mathematics and Artificial Intelligence 25, 3 (1999), 241–273.363

[16] Oram, M., and Perrett, D. Time course of neural responses discriminating different views of364

the face and head. Journal of neurophysiology 68, 1 (1992), 70–84.365

[17] Pearl, J., et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress366

19 (2000), 2.367

[18] Plis, S., Danks, D., Freeman, C., and Calhoun, V. Rate-agnostic (causal) structure learning. In368

Advances in neural information processing systems (2015), pp. 3303–3311.369

[19] Plis, S., Danks, D., and Yang, J. Mesochronal structure learning. In Uncertainty in artificial in-370

telligence: proceedings of the... conference. Conference on Uncertainty in Artificial Intelligence371

(2015), vol. 31, NIH Public Access.372

[20] Richardson, T., and Spirtes, P. Ancestral graph Markov models. The Annals of Statistics 30, 4373

(2002), 962–1030.374

[21] Sanchez-Romero, R., Ramsey, J. D., Zhang, K., Glymour, M. R., Huang, B., and Glymour, C.375

Estimating feedforward and feedback effective connections from fMRI time series: Assessments376

of statistical methods. Network Neuroscience 3, 2 (2019), 274–306.377

[22] Simons, P., Niemelä, I., and Soininen, T. Extending and implementing the stable model semantics.378

Artificial Intelligence 138, 1-2 (2002), 181–234.379

[23] Spirtes, P., Glymour, C., and Scheines, R. Causation, Prediction, and Search. Springer New380

York, 1993.381

[24] Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman, D. Causation, Prediction, and382

Search. MIT press, 2000.383

[25] Triantafillou, S., Tsamardinos, I., and Tollis, I. Learning causal structure from overlapping384

variable sets. In Proceedings of the Thirteenth International Conference on Artificial Intelligence385

and Statistics (2010), JMLR Workshop and Conference Proceedings, pp. 860–867.386

[26] Zhang, J. Causal reasoning with ancestral graphs. Journal of Machine Learning Research 9387

(2008), 1437–1474.388

10

Checklist389

1. For all authors...390

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s391

contributions and scope? [Yes] See Sections 3.1 and 4.392

(b) Did you describe the limitations of your work? [Yes] See Sections 4.3 and 4.4.393

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See394

Section 5.395

(d) Have you read the ethics review guidelines and ensured that your paper conforms to396

them? [Yes]397

2. If you are including theoretical results...398

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See footnote399

number 3.400

(b) Did you include complete proofs of all theoretical results? [Yes] For theorems directly401

borrowed from other papers, we have cited the papers where the proofs are present. For402

other theorems, we have provided proofs.403

3. If you ran experiments...404

(a) Did you include the code, data, and instructions needed to reproduce the main ex-405

perimental results (either in the supplemental material or as a URL)? [Yes] We have406

provided a URL to complete reproducible code and data. However, we obscured the407

link until after the review for anonymity.408

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they409

were chosen)? [Yes] In Section 4 we specified the hyperparameters and why we chose410

them.411

(c) Did you report error bars (e.g., with respect to the random seed after running experi-412

ments multiple times)? [Yes] See Figure 6. We have also shown the variations of our413

method by running on 50 or 100 random graphs(See Section 4).414

(d) Did you include the total amount of compute and the type of resources used (e.g., type415

of GPUs, internal cluster, or cloud provider)? [Yes] See first paragraph of Section 4.416

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...417

(a) If your work uses existing assets, did you cite the creators? [Yes] We use Clingo and418

we have cited the reference. See Section 2 paragraph 6.419

(b) Did you mention the license of the assets? [N/A]420

(c) Did you include any new assets either in the supplemental material or as a URL? [No]421

(d) Did you discuss whether and how consent was obtained from people whose data you’re422

using/curating? [N/A]423

(e) Did you discuss whether the data you are using/curating contains personally identifiable424

information or offensive content? [N/A]425

5. If you used crowdsourcing or conducted research with human subjects...426

(a) Did you include the full text of instructions given to participants and screenshots, if427

applicable? [N/A]428

(b) Did you describe any potential participant risks, with links to Institutional Review429

Board (IRB) approvals, if applicable? [N/A]430

(c) Did you include the estimated hourly wage paid to participants and the total amount431

spent on participant compensation? [N/A]432

A Appendix433

We start with proving some results used in conversion of the DBN structures to their compressed434

graph representations.435

Lemma 1. For all u, Gu contains no directed edges between variables at the same time step.436

11

Proof. u = 1 holds by assumption for G1. For u > 1, every directed edge corresponds to a directed437

path of length u in G1. Since all directed edges in G1 are from t − 1 to t (or more generally, from t − k438

to t − (k + 1)), every directed path in G1 is from an earlier time step to the current one. Hence, no439

directed edge in Gu can be from V t
i to V t

j. □440

Lemma 2. If the Markov order of G1 is 1, then the Markov order of all Gu is also 1 (relative to441

measurement at rate u).442

Proof. The Markov order of a dynamic causal graph is the smallest m such that Vt is independent of443

Vt−r given Vt−1, . . . ,Vt−m for all r > m. If the Markov order of G1 is 1, then all paths from Vt−r to Vt
444

must be blocked by Vt−1 for r > 1. Since graphical structure is replicated across timesteps, it follows445

that all paths from Vt−r to Vt must be blocked by Vt−u for r > u. Therefore, the Markov order of Gu446

is u, which corresponds to Markov order 1 for measurements at rate u. □447

The following theorem demonstrates correctness of our ASP algorithm.448

Theorem 5. Listing 1 is a direct encoding of the undersampling problem.449

Proof. We will prove this by contradiction. Let us call the undersampled input graph to the algorithm450

H , considering that is the undersampled version of a graph G1
true at rate utrue. By definition, every451

directed edge inH corresponds to a path of length utrue in G1
true. Similarly, every bidirected edge in452

H corresponds to an unobserved common cause fewer than utrue timesteps back(refer to Section 2 for453

exact definition). Line 7 − 11 in Listing 1 considers all such G1s without exclusion. Let us call the454

set all the pairs of graphs and corresponding undersampling rates u described by Listing 1 S.455

Let us assume there is a pair G1
a and ua that is in S but if we undersample G1

a by ua, let us call it Gu
a,456

will not be the same as H . If Gu
a has an extra directed(bidirected) edge, this will contradict with457

line 12(13) of Listing 1. Similarly, if H has a directed(bidirected) edge that in not present in Gu
a,458

it will contradict with line 14(16). Therefore, Listing 1 is a direct encoding of the undersampling459

problem. □460

B The Effects of Accounting for SCCs In sRASL461

In this section, we show the results of additional experiments on the effects of accounting for strongly462

connected components (SCCs) when the graph has a modular structure (i.e., consists of several463

interconnected strongly connected components). For this experiment, we generated 50 random464

graphs sized 8 to 15 with multiple SCCs as described in Table1. Then on the same set of graphs,465

we ran sRASL once with using our additional constraints for SCC structures and once without466

accounting for the modular structure. We limited the computational resources available to each run to467

24 hours time cutoff with a RAM limit of 50 GB. The results presented in Figure8 show that using468

additional constraints to account for SCC structure dramatically reduces the time and memory needed469

to compute equivalent classes for undersampled graphs. Furthermore, the difference between time470

and memory requirements to solve for these graphs with and without constraints for SCCs increases471

for larger graphs as the computational requirements for the latter grow at a much faster pace. This472

result allows us to handle much larger graphs as shown in Figure 5 of the main paper.473

Table 1: Number of SCCs and nodes per SCC of the graphs in the benchmark dataset
Num Nodes 8 9 10 11 12 13 14 15
Num SCCs 2 3 3 3 3 3 3 3
SCC Sizes 4,4 3,3,3 3,3,4 3,4,4 4,4,4 4,4,5 4,5,5 5,5,5

C Brief Introduction on clingo and Answer Set Programming (ASP)474

clingo [5] combines a grounder gringo and a solver clasp. clingo is a declarative programming475

system based on logic programs and their answer sets, used to accelerate solutions of computationally476

involved combinatorial problems. The grounder converts all parts of a clingo program to “atoms,”477

(grounds the statements) and the solver finds “stable models.” In ASP, the answer set is a model in478

12

36 3811 223
3 7 10 9 8

2

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

50G RAM
24 hours

Figure 7: Time behavior of the same set of graphs when solved with and without accounting for additional
constraints accounting for the SCC structure. While sRASL most of the 15-node graphs in a 24 hours period
without the SCC constraints due to either timeout or Out Of Memory error(OOM), the longest it takes to solve
a 15-node graph with SCC constraints is 14 seconds. None of the graphs failed to compute the complete
equivalence class within the time and memory allocated when solved accounting for the SCC structure.

0.3 0.3 0.3 0.3 0.3 0.3

SCC Flase (original)

SCC False (with
domain knowledge)

Figure 8: A knowledge of a definite presence of an edge in G1 between, for example, nodes 3 and 4, i.e.
V t

3 → V t+1
4 , can be easily encoded by adding ‘ edge1(3,4).‘ to Listing 1. In this experiment, we have added

knowledge about a pair of arbitrary selected edges of G1 to the problem specification (orange dots) and compared
the run time with the ASP specification that does not include this additional information about the solution (blue
dots). The time out for the new computation was set to 1 hours and the examples were all the same as the ones
already shown in Figure 1. The speed up with the additional constraints is clearly visible on the plots.

which all the atoms are derived from the program and each “answer” is a stable model where all the479

atoms are simultaneously true.480

A general clingo program includes three main sections, which we show below using our algorithm481

as an example:482

1. Facts: these are the known elements of the problem. For example, the input to Listing 1 is a483

graph for which we know the edges. A directed edge from node 1 to node 5 is in H translates to484

hdirected(1,5) (line 1) or if node 1 is part of the SCC number 2, we state this fact in clingo by485

scc(1,2) (line 2).486

2. Rules: much like an if-else statement, a rule in clingo consists of a body and a head, formatted487

as head :- body. If all the literals in the body are true, then the head must also be true. Rules can488

include variables (starting with capital letters), and they are used to derive new facts after grounding.489

For example:490

directed(X, Y, 1) :- edge1(X, Y). (2)

means that for any instantiations of the variables X and Y , if we have an edge from X to Y , there is a491

directed path from X to Y of length 1. Before this line, if the model contained the fact edge1(2,3),492

this line would generate a new fact: directed(2,3,1).493

Another type of rule is the “choice rule” that describes all the possible ways to choose which atoms494

are included in the model. For example, in line 5 of Listing 1 we used a choice rule to state that the495

13

undersampling rate u can be anything from 1 to maxu. The cardinality constraint:496

{u(1..20)}. (3)

will generate 220 different models (they will not all actually be generated if they conflict with other497

predicate in each model, or else it would not be possible). In each of these 220 models, one subset498

of all possible atoms generated with this choice rule exists (ϕ, {u(1)}, {u(1), u(2)}, . . .). An499

example of an unconstrained choice rule is line 6 in Listing 1, where we want to generate one model500

for each possible way edges can be present in a graph between two nodes X and Y . We can also limit501

the choice rule. In our problem, only one undersampling rate is present at each solution. We limit the502

cardinality constraint to have only one member in each model:503

1 {u(1..20)} 1. (4)

the 1 on the left is the minimum instantiations of this atom in the model and the 1 on the right is504

the maximum. Therefore, we only generate
(

20
1

)
= 20 models with this rule, namely one for each505

undersampling rate. Having several choice rules will multiply the number of generated models by506

each choice rule.507

3. Integrity Constraints: if choice rules are to generate new models, integrity constraints are there508

to remove the wrong models from the answers set. More specifically, an integrity constraint is of the509

form:510

:- L0, L1, (5)
where literals L0, L1, cannot be simultaneously positive. For example, in line 16 of Listing1, we511

have:512
:- edge1(X, Y), scc(X, K), scc(Y, L), K != L,

sccsize(L, Z), Z > 1, not dag(K,L).
(6)

for cases where the graph consists of several SCCs that are connected using a DAG. If the SCCs are513

connected by a cyclic directed graph, then the whole graph will become one big Strongly Connected514

Component. Integrity constraint 6 states that if there is not a directed edge from a node in SCC K to a515

node in SCC L as part of the initial DAG, there cannot be such edge1(X, Y) from node X to node516

Y, if node X is in SCC K and node Y is in SCC L.517

14

	Introduction
	Related Work And Notation
	sRASL: Optimized ASP-based Causal Discovery
	sRASL Completeness and Correctness

	Results
	Comparing sRASL vs. RASL
	Comparing Graph Size
	Comparing SCC Size
	Comparing Graph Size With Constant SCC Size
	Optimization

	Conclusion and Discussion
	Appendix
	The Effects of Accounting for SCCs In sRASL
	Brief Introduction on clingo and Answer Set Programming (ASP)

