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Current machine learning algorithms are successful in
learning clearly defined tasks from large i.i.d. data. Con-
tinual learning (CL) requires learning without iid-ness and
developing algorithms capable of knowledge retention and
transfer, the later one can be boosted through systematic
generalization. Dropping the i.i.d. assumption requires re-
placing it with another hypothesis. While there are several
candidates, here we advocate that the independent mecha-
nism assumption (IM) (Schölkopf et al. 2012) is a useful hy-
pothesis for representing knowledge in a form, that makes
it easy to adapt to new tasks in CL. Specifically, we review
several types of distribution shifts that are common in CL
and point out in which way a system that represents knowl-
edge in form of causal modules may outperform monolithic
counterparts in CL. Intuitively, the efficacy of IM solution
emerges since: (i) causal modules learn mechanisms invari-
ant across domains; (ii) if causal mechanisms must be up-
dated, modularity can enable efficient and sparse updates.

Setup. We consider the observation space consisting of
variables X and T . We think of T as a subset of ob-
served input variables that carry information about the
task to be performed (e.g. operations in a math equa-
tion), while X caries contextual information (e.g. input
digits) that can be thought of as an argument to the un-
derlying causal mechanisms. Here we assume the set-
ting of supervised learning, where the label Y must be
predicted from X and T – each observation is a tu-
ple (X,Y, T ). Observations are sampled from the joint
that factorizes as pt(Y,X, T ) = p(Y |X,T )pt(X,T ) =∑

Z p(Y |X,T, Z)pt(X,T, Z), where Z denotes a set of po-
tentially unobserved attributes and t is the time/task index.
Such setting can be instantiated in the math equations do-
main similar to Mittal, Bengio, and Lajoie (2022): X1, X2 ∼
R[−1,1], and T describe the math operations to be performed
(+/-/* etc.) (one or many operations per equation).

The Independent mechanisms (IM) assumption states
that in causal factorization of the joint, the mechanism
p(Y |X,T, Z) contains no information about the causes
pt(X,T, Z) and VV (Schölkopf et al. 2012). Hence, the true
causal mechanism p(Y |X,T, Z) is invariant across tasks
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and environments. For simplicity, here we assume the inde-
pendence of X , Z and T : pt(X,T, Z) = pt(X)pt(T )pt(Z).

The IM assumption can be extended to the mechanism
p(Y |X,T ), which can be thought of as a composition of
autonomous modules that operate independently from each
other (Parascandolo et al. 2018; Goyal et al. 2019). That is,
it can be approximated with a learnable function fθ(·) that
is compositional. The most general definition of composi-
tionality is that the meaning of the whole is a function of
the meanings of its parts (Hirst 1992). We envision a model
fθ(·) parameterized with a set of M modules that compete
with each other for explaining the current observation. The
benefit of such system for CL is discussed next.

Different distribution shifts. Compositonal solutions can
be useful under different types of distribution shifts in CL.

Domain shift: shift in the joint p(X,Y, T ) caused by
shift in p(X). Domain shift can be leveraged for learning
causal mechanisms, that is the mechanism invariant across
domains, under some structural assumptions (i.e. sparse
change in the underlying graph). This principle is used by
Arjovsky et al. (2019) for learning invariant (causal) rep-
resentations. Perry, von Kügelgen, and Schölkopf (2022)
showed that domain shifts can provide useful learning signal
for identifying causal structures if the shift in the underly-
ing causal graph is sparse. Importantly, domain annotation
is needed for such learning, which is natural in CL—every
detected distribution shift signals a new domain. Once the
true mechanism is learned, faster generalisations to new do-
mains is possible. Importantly, leveraging domain shift for
learning causal mechanisms likely requires storing samples
from seen domains in a replay buffer (Rolnick et al. 2019).

New tasks: shift in the joint p(X,Y, T ) caused by shift
in p(T ) that introduces a new causal mechanism (e.g. math
operation) to be learned by a new module. Existing CL
methods like regularization (Kirkpatrick et al. 2017) of re-
play (Rolnick et al. 2019) applied to monolithic networks
may perform on par with modular solutions under this shift
in terms of forgetting. Later, however, should achieve better
transfer and faster learning under the assumption that tasks
share mechanisms (i.e. “+” is used in combination with two
other distinct operation in two different task). Additionally,
monolithic architectures have been shown to loose plasticity
throughout CL (Dohare, Mahmood, and Sutton 2021) — a



drawback that may be mitigated through modularity.
Hidden shift: shift in the joint p(X,Y, T ) caused by shift

in p(Z). Consider an example, where the task is to interpret
the meaning of a nodding gesture at some geographical loca-
tion, that is unknown. When moving e.g from Canada to In-
dia the meaning of the nodding gesture can change while the
meanings of other gestures (supposedly) may remain iden-
tical. In the example of math equations, a new environment
can hypothetically change the meaning of the multiplication
operation to, say, subtraction while not effecting other op-
erations. Since Z is unobserved, this drift requires sparse
knowledge of a single mechanism without effecting other
operations. Standard CL methods are likely to underperform
in this setting, as old and new tasks become contradictory.

Data amount shift: knowledge about previously seen
mechanisms needs to be updated as more training data
becomes available. Modular architecture may be able to
sparsely update only the affected modules, while a mono-
lithic solution, with entangled mechanisms, would suffer
from forgetting if no measures to prevent it are taken.

Spurious correlation shift: attributes correlate under pt
but not under pk, t ̸= k. For example operation “+” has been
seen together in the same equation with “-” in task t, which
may result in routing mechanism of a modular solutions to
mistakenly associate the high level variable “+” with the
mechanism of subtraction. For modular solutions this shift
might require updating only the routing mechanism, while
monolithic one would require updating the whole net. The
problematic of spurious features in the context of CL has
been recently studied out by (Lesort 2022).

How to learn modules representing true causal mecha-
nisms is hence an important open question. While several
attempts have been made to design systems capable of dis-
covering the true underlying data generative modules that
comprise p(Y |X,T ) (Goyal et al. 2019, 2021; Parascandolo
et al. 2018), there is no clear receipt to do it yet. Several in-
ductive biases have been proposed, that facilitate learning of
independent composable mechanisms, including competi-
tion (Parascandolo et al. 2018), information bottlenecks such
as attention (Goyal et al. 2019) or functional bottlenecks (i.e.
limiting the number of inputs a module can take) (Goyal
et al. 2021; Ostapenko et al. 2022), or restricting modular
communication to discrete variables (Liu et al. 2021).

Preliminary result with Mixture of Experts (MoE).
Here, we design a simple attention based MoE model and
train it continually on two streams of 5 and 7 tasks. In both
streams X is sampled uniformly from R[−1,1], and the cor-
responding T (here task description is represented by a sin-
gle variable) is samples uniformly from a set of predefined
math operations. Labels Y are generated by applying sam-
pled mechanisms T to the inputs X . Stream 1 represents
new task shift (i.e. new operations are introduced with op-
erations overlapping across tasks) and consists of 5 tasks
(t = 0...5). First 5 tasks of Stream 2 are identical to stream
1, tasks 5 to 7 simulate the hidden shift. For example, the
operation encoded in the input of t = 5 is addition, which
is identical to t = 0 and t = 1, but the meaning of ad-
dition has changed from x1 + x2 to (x1 + x2)/5, which is
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Figure 1: Stream 1.
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Figure 2: Stream 2.

reflected in the training data of these tasks. The modular con-
tinual learner (MCL) receives as input a set of 3 entities: x1,
x2 and an operation (e.g. addition, subtraction, multiplica-
tion etc.). All three variables are first projected into a vector
space, thereby we use a fixed embedding table for the op-
erations and an encoder, that is only trained during the first
task, for x1 and x2. MCL performs module selection using
key-value attention mechanism and a functional bottleneck
similar to NPS (Goyal et al. 2021) (MCL is an adopted ver-
sion of NPS for CL). We formulate these tasks as regression
problems. We test on novel randomly sampled x’s. We use
20,000 samples per task for training and 2,000 for testing.

In Figure 1 we plot the average mean squared error (MSE)
of all tasks after learning each task incrementally. MCL has
a much larger mean MSE at the beginning, it reaches MSE
comparable to EWC (Kirkpatrick et al. 2017) at the end of
the sequence. In Figure 2 we measure MSE averaged over
the current state of the world on Stream 2, i.e. if the mean-
ing of “+” changes in t = 5 from x1 + x2 to (x1 + x2)/5,
this change is incorporated in the test sets after this task (i.e.
the addition operation in test sets of all tasks is replaced with
addition and division by 5). Here, we observe that only MCL
is able to perform well on this stream. EWC performs well
up until T4 as it is able to alleviate forgetting. After T4, when
the mechanisms shifts, EWC’s regularization strategy, aimed
at reducing plasticity, prevents the model from incorporat-
ing knowledge about the shift in the mechanism reflected
in the new training data of tasks 5 to 7. MCL is able to
sparsely update only the modules which are specialized on
the shifted mechanisms. Importantly, MCL can eleviate for-
getting solely through routing samples to correct modules.

Conclusion. We advocate for the usefulness of IM hypoth-
esis in CL (it is not mutually exclusive with i.i.d). This may
open a door for developing algorithms with better transfer
and efficiency. We point out the potential advantages of such
solutions under different distribution shifts and show in sim-
ple toy experiments that the IM principle can address some
problems of CL in practice. Open challenges include de-
termining useful inductive biases and further assumptions
for designing modular solutions beyond MoE, where causal
mechanisms can be discover when modules are applied in
superposition resulting in a more fine-grained task decom-
position (Ostapenko et al. 2022).
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