
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADVERSARIAL ATTACKS AND DEFENSES ON GRAPH-
AWARE LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are increasingly integrated with graph-structured
data for tasks like node classification, a domain traditionally dominated by Graph
Neural Networks (GNNs). While this integration leverages rich relational informa-
tion to improve task performance, its robustness against adversarial attacks remains
unexplored. We take the first step to explore the vulnerabilities of graph-aware
LLMs by leveraging existing adversarial attack methods tailored for graph-based
models, including those for poisoning (training-time attacks) and evasion (test-time
attacks), on two representative models, LLAGA and GRAPHPROMPTER. Ad-
ditionally, we discover a new attack surface for LLAGA where an attacker can
inject malicious nodes as placeholders into the node sequence template to severely
degrade performance. Our systematic analysis reveals that certain design choices
in graph encoding can enhance attack success, in particular: (1) the node sequence
template in LLAGA increases its vulnerability; (2) the GNN encoder used in
GRAPHPROMPTER demonstrates greater robustness; and (3) both approaches re-
main susceptible to imperceptible feature perturbation attacks. Finally, we propose
an end-to-end defense framework GALGUARD, that combines an LLM-based
feature correction module to mitigate feature-level perturbations and GNN-based
defenses to protect against structural attacks.

1 INTRODUCTION

Graphs, characterized by nodes and edges that represent entities and relationships, are used to model
complex structures in various real-world domains, including social networks (Fan et al., 2019),
biology (Dong et al., 2022), finance (Wang et al., 2021), and healthcare (Ahmedt-Aristizabal et al.,
2021). Graph Neural Networks (GNNs) (Hamilton et al., 2017; Kipf & Welling, 2022; Veličković
et al., 2018), designed specifically for graph-structured data, excel in tasks such as node classification
and link prediction. Recently, the success of large language models (LLMs) such as GPT-4 (Achiam
et al., 2023), Gemini (Team et al., 2023), LLaMA (Touvron et al., 2023; Dubey et al., 2024), Vicuna
(Chiang et al., 2023), and PaLM-2 (Anil et al., 2023), trained on vast amounts of textual data, has
sparked interest in their potential to enhance graph-related tasks. This fusion of graph data with LLMs
(called graph-aware LLMs (Xie et al., 2023)) has opened a new line of research, where LLMs are
increasingly being utilized to perform tasks traditionally handled by GNNs (Ye et al., 2023; Fatemi
et al., 2023; Kuang et al., 2023; Zhang et al., 2023; Chen et al., 2023b; 2024). In fact, recent research
has shown that graph-aware LLMs can outperform GNNs on various graph-related tasks (Wenkel
et al., 2023; Chen et al., 2023b; Zhu et al., 2024; Chen et al., 2024), positioning them as powerful
alternatives.

Despite their growing popularity, the vulnerabilities of graph-aware LLMs to adversarial attacks
remain largely unexplored. Existing adversarial attacks on GNNs, including those for poisoning
(training-time attacks) and evasion (test-time attacks) (Zügner et al., 2018; Zügner & Günnemann,
2019; Dai et al., 2023), operate under a black-box setting where the attacker has no knowledge of
the model’s internal workings. These attacks undermine model integrity by intentionally degrading
model performance by subtly altering graph structure or node features. While GNN research
has predominantly focused on structural attacks, the textual nature of graph-aware LLMs makes
imperceptible perturbations to node features a significant concern that has been largely overlooked.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Graph Encoder
G

Adjacency: In an undirected graph, (i,j) means
that node i and node j are connected with an
undirected edge. G describes a graph among

nodes A, B, C, D, E, F, G, H, and I. The edges in G
are: (A, B) (A, C) … (E, G) (E, H).

Prompt
G describes a graph among nodes A, B, C, D, E, F, G, H,

and I. In this graph:
Node A is connected to nodes B and C.

Node B is connected to nodes A and G. …
Question: What is the degree of node A?F

B

G

I

C

H

E

A

D

LLM Answer

Sequence Template / GNN Encoder

A

A G

B C

A

D

A E F

GNN
Prompt

Given a node-centered graph: <node sequence> /
graph, we need to classify the center node into
8 classes: Blue, Red, …, please tell me which

class the center node belongs to?

LLM

Answer

Projector Layer

Graph
1. Textual Description Graph Representation

2. Learned Projector Graph Representation

Figure 1: Graph encoding-based adaptations of LLMs. In the textual description graph representa-
tion, graphs are explained textually (top part). In the learned projector representation (bottom part),
graphs are encoded either by node templates that turn the graph into sequences or by GNNs. Note
that in both cases, the LLM is frozen. Only the projector that maps the graph into tokens is trained.

Motivated by three key observations: 1) the recent shift from GNNs to LLMs for graph tasks, 2) the
black-box nature of current adversarial attacks on GNNs, and 3) the potentially new vulnerabilities
to feature perturbations, we ask the critical question of whether adversarial attacks designed for
GNNs remain effective against the emerging graph-aware LLM paradigm. In addition, the success of
graph-aware LLMs in handling graph tasks highly depends on the effective integration of graphs into
the LLM. While processing the node features is relatively straightforward given LLM’s proficiency
in handling textual data, incorporating the graph structure is more complex and requires innovative
techniques to capture relational information (Chen et al., 2024; Guo et al., 2023; Liu & Wu, 2023;
Zhang et al., 2023; Sun et al., 2023; Bi et al., 2024; Pan et al., 2024). Therefore, to effectively
answer our research question, we first categorize existing graph-aware methods into two classes
based on their approach to encoding graphs into LLMs; one that represents graph data as textual
descriptions, converting graph information into natural language, and another that utilizes learned
projectors to bridge the inherent differences between graph and text domains. While conventional
text-based adversarial attacks on LLMs should generally suffice to compromise LLMs handling
textual descriptions of graphs, we focus our investigation on learned projector methods to better
understand the contribution of each modality, i.e., graph or text, to attack success. Specifically, we
investigate two computationally efficient representative models, LLAGA (Chen et al., 2024) and
GRAPHPROMPTER (Liu et al., 2024), which both utilize frozen pre-trained LLM.

Our analysis reveals that certain design choices in graph encoding for LLMs can unexpectedly
enhance the success of attacks. Notably, we identify a new attack surface in LLAGA that could allow
an attacker to severely degrade the model’s performance by injecting malicious nodes as placeholders
within the node sequence template. In addition, we propose an end-to-end graph-aware LLM defense,
GALGUARD, which integrates an LLM-based feature corrector with adapted GNN-based structural
defenses to provide robust protection. We are the first to investigate the vulnerability of graph-aware
LLMs to adversarial attacks. The contributions of the paper are summarized as follows:

• We create a taxonomy for graph-aware LLMs based on their encoding approaches to understand how
different methodologies integrate graph structures into LLMs.

• We investigate the transferability of representative adversarial attacks on GNNs, i.e., NET-
TACK (Zügner et al., 2018) and METAATTACK (Zügner & Günnemann, 2019), to graph-aware
LLMs.

• We discover a new attack surface in LLAGA, showing that injecting malicious nodes as placeholders
into the node sequence template can degrade its performance.

• We provide a holistic assessment of the vulnerabilities of graph-aware LLMs by performing imper-
ceptible attacks on textual node features, a perspective often overlooked attack in GNNs.

• We propose GALGUARD, a novel end-to-end defense strategy that integrates LLM-based feature
correction with the adaptation of existing GNN-based structural defenses.

2 GRAPH ENCODING-BASED TAXONOMY OF LLM ADAPTATIONS

Graph encoding methods for LLMs can be categorized into two main approaches: textual descriptions
of graphs (where graph information is encoded as natural language) and learned graph projectors

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(where a projector is utilized to encode graph data into embeddings or structured forms that LLMs can
directly process). We briefly describe the different encoding approaches in each category. Figure 5
provides the illustration of both approaches. A detailed description is in Appendix A.1 and the related
work on GNN attacks is in Appendix A.2.

Graph Representation as a Textual Description. This approach converts graph data into natural
language, enabling LLMs to process them as textual descriptions, often with specific instructions
to query LLMs (Guo et al., 2023; Liu & Wu, 2023; Ye et al., 2023; Wenkel et al., 2023; Wei et al.,
2024b; Fatemi et al., 2023; Tan et al., 2023; Zhao et al., 2023; Wei et al., 2024a; Zhang, 2023). In
multimodal applications, Liu et al. (2023) and Su et al. (2022) linked molecule graphs with textual
descriptions. Furthermore, Huang et al. (2023a) investigated incorporating graph structure into LLM
prompts. Their findings revelas that LLMs tend to process graph-related prompts as contextual
paragraphs, underscoring the importance of prompt design, as seen in studies like (Brannon et al.,
2023; Zhang et al., 2023; Sun et al., 2023; Bi et al., 2024; Pan et al., 2024; He et al., 2024). Other
research has focused on using LLMs to enhance node features, graph structures, act as predictors, or
serve as feature extractors for GNNs (Chen et al., 2023a; Chandra et al., 2020; Chen et al., 2023b;
Mavromatis et al., 2023). For inference, Zhu et al. (2024) proposed a fine-tuning method for textual
graph that combined LLMs and GNNs, and Duan et al. (2023) introduced an effective approach that
enhances textual graph learning. While these methods offer a straightforward way to use LLMs for
graph tasks, they often struggle to fully capture structural intricacies (especially for large graphs) and
are heavily dependent on prompt engineering.

Graph Representation as a Learned Projector. To address the limitations of textual representations,
learned projector methods transform graph data into embeddings or graph vectors that LLMs can
process more directly. This includes methods like LLAGA, which uses node-level templates and
a linear projector (Chen et al., 2024), and others that incorporate GNN layers into a pre-trained
LLM (Liu et al., 2024; Qin et al., 2023). Other approaches use graph neural prompts to encode
knowledge graphs (Tian et al., 2024), develop prompt-based node feature extractors with a GNN
adapter (Huang et al., 2023b), or condense graph information into fixed-length prefixes using graph
transformers (Chai et al., 2023; Yang et al., 2021; Peng et al., 2024).

This Work: We focus on projector methods that utilize frozen pre-trained LLMs because they are
computationally efficient and avoid the substantial costs of retraining (Chen et al., 2024; Liu et al.,
2024; Qin et al., 2023; Tian et al., 2024; Huang et al., 2023b). For our investigation, we use two
representative models: LLAGA (Chen et al., 2024), which employs node-level templates with a
linear projector, and GRAPHPROMPTER (Liu et al., 2024), which uses a GNN with a linear projector.
We do not consider textual description methods, as they often struggle with scalability and do not
introduce the novel, graph-specific vulnerabilities we aim to investigate.

2.1 THREAT MODEL

We characterize our threat model based on established research on adversarial attacks in graphs,
and extend its applicability to graph-aware LLMs (Zügner et al., 2018; Wu et al., 2019; Zügner
& Günnemann, 2019; Ma et al., 2020; Jin et al., 2021; Dai et al., 2023; Li et al., 2023). For
example, in social networks, attackers often control only a few bot accounts; this limited access
aligns with our threat model, where adversaries manipulate a small subset of nodes to evade detection
or influence legitimate user classification. Another example is Wikipedia, where hoax articles with
sparse connections to legitimate ones can be strategically linked to manipulate the classification
of genuine content, causing misclassification of real articles’ categories. This transferability is
particularly concerning as these advanced models have the potential of being deployed in critical
applications such as recommendation system, social media analysis or even healthcare, potentially
replacing GNNs. Thus, following existing works on adversarial attacks in graphs, we characterize the
threat model along three dimensions; model access, adversarial capabilities, and attack strategies,
followed by defining the attacker’s goal.

Model Access. The attacker operates in a black-box setting, with no knowledge of the model’s
architecture or parameters. The attacker can only influence the model indirectly by interacting with
the training or test data.

Adversarial Capabilities. Consistent with existing poisoning (evasion) attacks, the attacker has
complete access to the training (inference) data of the target model. Within a predefined budget

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Performance of NETTACK and METAATTACK on Cora, Citeseer, and PubMed datasets for
graph-aware LLMs LLAGA and GRAPHPROMPTER.

Attack Type Cora Citeseer PubMed

LLAGA GRAPHPROMPTER LLAGA GRAPHPROMPTER LLAGA GRAPHPROMPTER

Clean — 0.89±0.07 0.60±0.03 0.71±0.04 0.70±0.03 0.90±0.04 0.90±0.02

NETTACK
Poisoning 0.87±0.04 (2%) 0.60±0.03 (0%) 0.64±0.05 (10%) 0.68±0.02 (3%) 0.89±0.03 (1%) 0.88±0.02 (2%)
Evasion 0.55±0.09 (38%) 0.53±0.05 (12%) 0.59±0.04 (19%) 0.61±0.03 (14%) 0.84±0.05 (7%) 0.81±0.02 (10%)

METAATTACK
Poisoning 0.79±0.03 (11%) 0.58±0.05 (3%) 0.63±0.04 (12%) 0.65±0.06 (7%) 0.89±0.08 (1%) 0.85±0.02 (6%)
Evasion 0.44±0.06 (51%) 0.52±0.04 (13%) 0.50±0.03 (35%) 0.56±0.02 (22%) 0.73±0.04 (19%) 0.77±0.03 (14%)

and under unnoticeability constraints (aiming to avoid detection), the attacker can modify or inject
data. The attacker leverages two primary strategies: feature manipulation (altering node features) and
structure manipulation (adding or removing edges).

Attacker’s Goal. The attacker’s goal is to compromise model integrity by degrading the overall
performance, specifically by increasing the misclassification rate of the classification model.

In the following sections, we present our evaluation setup and then assess the success of adversarial
attacks on graph-aware LLMs.

3 EXPERIMENTAL SETUP

Dataset and Tasks. We utilize three widely used graph datasets: Cora, Citeseer, and PubMed (Yang
et al., 2016). These text-attributed graph datasets, which vary in size and sparsity from small to
medium scales, are common benchmarks for models like those in our study (Chen et al., 2023a; 2024;
Liu et al., 2024). To further validate scalability, we also include the larger ArXiv dataset (Hu et al.,
2020) in an additional experiment (see Appendix A.6). We adopt standard train/validation/test splits
of 6:2:2 for the three smaller datasets and 5:2:3 for ArXiv, as in (Chen et al., 2024). Detailed statistics
are provided in Table 5. We use node classification as our primary task, a widely used method for
evaluating graph machine learning models and the primary setting for adversarial attacks (Zügner
et al., 2018; Zügner & Günnemann, 2019; Liu & Wu, 2023).

Evaluation Metrics. We employ accuracy as the evaluation metric, , which measures the proportion
of correctly predicted labels. Each experiment is repeated three times, and we report the mean and
standard deviation. All experiments were conducted on a machine equipped with NVIDIA A40 GPU
with 48GB of memory.

Graph-Aware LLM Methods. We employ two representative graph-aware LLM methods:
LLAGA (Chen et al., 2024) and GRAPHPROMPTER (Liu et al., 2024). Both methods utilize a
frozen pre-trained LLM, making them computationally efficient and adaptable to various graph tasks
and LLM architectures. LLAGA uses node-level templates with a linear projector, while GRAPH-
PROMPTER employs a GNN-based encoder and a linear projector. In both cases, the projector is a 2-
layer multi-layer perceptron (MLP). The foundational LLMs for LLAGA and GRAPHPROMPTER are
Vicuna-7B (Chiang et al., 2023) and LLAMA2-7B (Touvron et al., 2023), respectively.

Adversarial Attack Methods. We employ the poisoning and evasion attack from two represen-
tative adversarial attack methods NETTACK (Zügner et al., 2018) and METAATTACK (Zügner &
Günnemann, 2019) for conducting our investigation. NETTACK is a targeted attack that finds minimal
perturbations to misclassify specific nodes, while METAATTACK performs untargeted attacks by
treating the graph structure as a hyperparameter to optimize. For NETTACK, we adopt the approach
of (Li et al., 2023; Zügner & Günnemann, 2019) by sequentially targeting each node and aggregating
the results, effectively transforming it into an untargeted evaluation. For all experiments, we perturb
only 10% of the edges to maintain the unnoticeability constraint, as in (Zügner et al., 2018; Zügner &
Günnemann, 2019). The full details is in Appendix A.3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 ASSESSING THE VULNERABILITY OF GRAPH-AWARE LLMS TO
ADVERSARIAL ATTACKS

In this section, we first assess the vulnerability of graph-aware LLMs to existing adversarial attacks
on GNNs, including poisoning and evasion attacks (Section 4.1). Then, we analyze why LLAGA is
more susceptible to graph adversarial attacks (Section 4.2). Furthermore, we propose several new
adversarial attacks specifically tailored for graph-aware LLMs, with higher attack accuracies than
NETTACK and METAATTACK (Sections 4.3 to 4.5). Finally, in Section 4.2, we study the impact of
varying feature perturbation and the choice of LLM.

4.1 ADAPTING POISONING AND EVASION ATTACKS ON GRAPH-AWARE LLMS

We analyze poisoning and evasion attacks by adapting methods from NETTACK (Zügner &
Günnemann, 2019) and METAATTACK (Zügner & Günnemann, 2019). For poisoning attacks
on LLAGA, we use a perturbed graph to generate the node-level sequences and then retrain the
projector. For poisoning attacks on GRAPHPROMPTER, we use the perturbed graph to re-encode
the graph using a GAT and retrain its projector. For evasion attacks, both models are trained on
unperturbed data, and perturbations are introduced only during the inference phase.

Results. Our experiments reveal several key insights, as summarized in Table 1. First, we observe
that poisoning attacks have a limited impact on graph-aware LLMs, with a maximum performance
degradation of 11% on both attack methods. This suggests that the models’ robust representations
and reliance on additional context from the LLM provide resilience. In contrast, evasion attacks prove
highly effective, causing significant performance degradation of up to 51%. Secondly, for the different
adversarial attack methods, METAATTACK generally outperforms NETTACK for both poisoning and
evasion attacks across all datasets. This is attributed to METAATTACK’s ability to create small but
highly effective perturbations by treating graph edges as hyperparameters. Finally, we observe that
denser datasets are more vulnerable to attacks than sparse ones. For instance, LLAGA achieved a
51% performance decrease on the denser Cora during an evasion attack with METAATTACK, but only
a 19% decrease on the sparser PubMed dataset.

4.2 WHICH GRAPH-AWARE PARADIGM IS MORE SUSCEPTIBLE TO GRAPH ADVERSARIAL
ATTACKS AND WHY?

Our experiments (Table 1) show that LLAGA is more susceptible to attacks than GRAPH-
PROMPTER due to its sensitivity to structural perturbations. LLAGA integrates the graph structure
in two ways: 1) by generating a fixed-length node-level sequence for each node and 2) by computing
a graph Laplacian embedding. Each position in this sequence uniquely corresponds to a relative
structural position within the original graph. Since the node embeddings are directly derived from the
perturbed graph structure, these attacks significantly influence the information processed by the LLM,
leading to performance degradation. In contrast, GRAPHPROMPTER’s textual node embeddings
remain unchanged during structural perturbations, as only the GNN component is affected. This
design allows the unperturbed textual features to augment the perturbed graph structure, enhancing
robustness.

4.3 NODE SEQUENCE TEMPLATE INJECTION ATTACKS

We demonstrate a new attack surface in LLAGA. Specifically, by exploiting the neighborhood
detail template used to construct the node sequences. The attack is illustrated in Figure 2 and the
algorithm is in Appendix A.4. To obtain the node sequence for a particular node u, the neighborhood
detail template in LLAGA first constructs a fixed-shape computational tree for each node, where the
children of a node are its sampled 1-hop neighbors. This process is repeated to sample neighbors for
each subsequent level of the tree. If a node has an insufficient number of neighbors, a placeholder is
used to maintain the fixed size of e.g. k = 10 children, which is consistent with LLAGA’s original
design (see ”Clean” from Figure 2 and lines 1-14 in the algorithm). This fixed structure provides a
new attack surface.

We demonstrate a new attack surface in LLAGA by exploiting its neighborhood detail template
algorithm. An attacker can craftily inject malicious nodes as placeholders through graph manipulation

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Node Sequence:
A B C D A G [pad] A [pad] [pad] A E F

Node Sequence:
A B C D A G H A H I A E F

E
F

D
A

B

G

I

Neighborhood Detail Template
(Clean)

Neighborhood Detail Template
(Attacked)

Graph

H

C

A

B

A G H

C

A H I

D

A E F

A

C

A

D

A E F

B

A G

Figure 2: Illustration of the node sequence template injection attacks. The attack shown here is the
Non-adjacent Injection attack (NI). The red dashed lines are the edge perturbation by the attacker.
For the Supernode Injection (SI) and Multiple Supernode Injection (MSI) attack, the supernode(s)
are injected in the place of the placeholders. Here, k = 3.

Table 2: Results of the node sequence template injection attack across different datasets and methods.
NI, SI, and MSI indicates the non-adjacent, single supernode, and multiple supernodes injection
attacks respectively. Clean refers to the performance of the model without any attack.

Data Attack NI SI MSI

Cora Clean ——– 0.89±0.07 ——–
Poisoning 0.86±0.03 0.84±0.06 0.82±0.04
Evasion 0.42±0.08 0.36±0.05 0.30±0.05

Citeseer Clean ——– 0.71±0.04 ——–
Poisoning 0.69±0.05 0.66±0.03 0.62±0.02
Evasion 0.36±0.06 0.30±0.04 0.24±0.05

PubMed Clean ——– 0.90±0.04 ——–
Poisoning 0.88±0.04 0.85±0.05 0.81±0.03
Evasion 0.85±0.07 0.82±0.04 0.76±0.03

to significantly degrade model performance. We propose three strategies for this attack. The
first, termed Non-Adjacent Injection (NI), involves injecting nodes that are not within the 2-hop
neighborhood of a target node u (see ”Attacked” from Figure 2 and lines 21-27). The second approach,
referred to as Supernode Injection (SI), involves injecting a high-degree node as a placeholder,
ensuring it is outside the target node’s 2-hop neighborhood. The third, Multiple Supernode Injection
(MSI) is a variant of SI that injects multiple distinct supernodes as placeholders (lines 35-43). The
rationale is that the inclusion of uninformative nodes in the node sequence corrupts the representation
of the target node, leading to a poorly trained projection layer. This compromises the integrity of the
model’s learning and inference process.

Results. As shown in Table 2, LLAGA shows high resilience to poisoning attacks on the Cora
and Citeseer datasets, but suffers a significant performance drop during evasion, with accuracies
decreasing to 0.42, 0.36, and 0.30 for Cora and to 0.36, 0.30, and 0.24 for Citeseer on the NI, SI,
and MSI attacks respectively. Conversely, on the larger PubMed dataset, the model demonstrates a
stronger resilience to all injection attacks, with only a modest drop in accuracy for evasion (0.85,
0.82, and 0.76). One reason is that in smaller, more tightly-connected graphs like Cora and Citeseer,
a localized injection has a more concentrated impact, severely disrupting the model’s ability to reason
about the local neighborhood. In contrast, on the much larger PubMed graph, the effect of the same
attack is diluted, leading to a less significant performance degradation. Compared to traditional graph
adversarial methods, node injection attacks are more effective. For instance, the MSI method achieved
evasion attack accuracies of 0.30, 0.24 and 0.76 on Cora, CiteSeer and PubMed, respectively, while
METAATTACK only reached 0.44, 0.50 and 0.73 (Table 1).

4.4 POISONING AND EVASION ATTACK VIA FEATURE PERTURBATION

Existing graph adversarial attacks primarily focus on structural perturbations (Li et al., 2023; Wu
et al., 2019; Dai et al., 2018; Sun et al., 2022; Zügner & Günnemann, 2019), with the exception
of NETTACK (Zügner et al., 2018), which is not transferable to the textual domain. Given that
structural attacks are only moderately successful on robust models like GRAPHPROMPTER, and that
textual features have proven to be important for model robustness, we explore unnoticeable feature
perturbation attacks to degrade model performance. We adopt the imperceptible attack strategies

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Performance of feature perturbation attacks, with percentage
drop from clean accuracy in parentheses.

Data Method Poisoning Evasion

LLAGA GRAPHPROMPTER LLAGA GRAPHPROMPTER

Cora Homoglyph 0.65±0.05 (27%) 0.52±0.04 (13%) 0.41±0.04 (54%) 0.38±0.03 (37%)
Reordering 0.58±0.06 (35%) 0.45±0.05 (25%) 0.24±0.05 (73%) 0.20±0.03 (67%)

Citeseer Homoglyph 0.54±0.04 (23%) 0.65±0.04 (7%) 0.32±0.03 (55%) 0.52±0.05 (26%)
Reordering 0.46±0.03 (35%) 0.39±0.02 (44%) 0.20±0.05 (72%) 0.27±0.02 (61%)

PubMed Homoglyph 0.72±0.04 (20%) 0.83±0.04 (8%) 0.36±0.06 (60%) 0.55±0.03 (39%)
Reordering 0.67±0.05 (26%) 0.80±0.03 (11%) 0.28±0.04 (69%) 0.42±0.04 (53%)

(b) Unified imperceptible attack. Percentage
drop from clean accuracy in parentheses.

Data Attack LLAGA GRAPHPROMPTER

Cora Poisoning 0.35±0.05 (61%) 0.28±0.08 (53%)
Evasion 0.14±0.06 (84%) 0.11±0.05 (82%)

Citeseer Poisoning 0.26±0.04 (63%) 0.22±0.03 (69%)
Evasion 0.10±0.09 (86%) 0.13±0.07 (81%)

PubMed Poisoning 0.39±0.07 (57%) 0.32±0.04 (64%)
Evasion 0.12±0.05 (87%) 0.19±0.04 (79%)

P-Struc P-Feat E-Struc E-Feat0

20

40

60

Pe
rc

en
ta

ge
 D

ec
re

as
e

Cora

P-Struc P-Feat E-Struc E-Feat

CiteSeer

P-Struc P-Feat E-Struc E-Feat

PubMed

(a) LLAGA

P-Struc P-Feat E-Struc E-Feat0

20

40

60

Pe
rc

en
ta

ge
 D

ec
re

as
e

Cora

P-Struc P-Feat E-Struc E-Feat

CiteSeer

P-Struc P-Feat E-Struc E-Feat

PubMed

(b) GRAPHPROMPTER

Figure 3: Performance of structure and feature-based adversarial attacks on graph-aware LLMs. The
attack success rate here is measured by the percentage decrease (y-axis) to the original accuracy.
P-Struc, P-Feat, E-Struc, E-Feat refer to the poisoning and evasion attacks based on structural
perturbation and feature perturbation.

proposed by (Boucher et al., 2022) but with a key modification: we use a task-agnostic translation
objective (English to French) to generate perturbations. The objective is to modify the input text
such that the changes are visually identical but lead to an incorrect translation, thereby corrupting
the encoded semantics. The intuition is that if the translation for a given text is wrong, the encoded
semantics would also be wrong. We employ two imperceptible attacks: Homoglyphs, which replaces
characters with visually similar ones and Reorderings, which use direction control characters to
alter the rendering sequence. Examples of Homoglyphs and Reorderngs are in Appendix A.7.1.
Following (Boucher et al., 2022), we use differential evolution (Storn & Price, 1997) to optimize these
perturbations, maximizing the Levenshtein distance between the model’s output on the perturbed and
unperturbed text. The perturbation budget is set to 10% of the average length of each textual feature.

Results. As shown in Table 3a, Reordering attacks are generally more potent than Homoglyph
attacks across all models and datasets. On Cora and CiteSeer, LLAGA shows vulnerability to both
attack types, with poisoning attacks causing accuracy drops of 27% and 23% for Homoglyph and a
more significant 35% and 25% for Reordering, respectively. In both cases, GRAPHPROMPTER proves
more resilient. The PubMed dataset exhibits similar trends, though the overall impact is less
pronounced than on the smaller datasets. A comparison with structural perturbations reveals a
fundamental shift in vulnerabilities, as shown in Figure 3. Feature perturbation attacks (specifically
Reordering) outperform structural attacks (METAATTACK) by a large margin on both LLAGA and
GRAPHPROMPTER. This suggests that graph-aware LLMs place a greater emphasis on input features
than on graph structure, making them more vulnerable to feature perturbations. We further explore
this by combining both attack types in a unified setting in the next section.

4.5 A UNIFIED IMPERCEPTIBLE ATTACK ON GRAPH-AWARE LLMS

We propose a unified attack that combines both feature and structural perturbations to create a
more imperceptible and effective adversarial strategy. We hypothesize that combining these attack
types will more significantly degrade model accuracy than either method alone, while maintaining
imperceptible alterations to the graph structure and features. For the structural perturbation, we use
METAATTACK, which modifies graph structure by subtly adjusting edges. For the feature component,
we use a combination of Homoglyph and Reordering attacks, as described in previous section.
Together, these perturbations create a highly imperceptible attack that simultaneously targets the
relational and textual information on which graph-aware LLMs rely.

Results. As shown in Table 3b, the unified attack, which jointly applies structural and feature
perturbations, is significantly more effective than either perturbation method alone in degrading model
performance across various datasets. This analysis offers a key insight into the architecture of graph-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

E

F

D

A

B

G

C

H

I

Adversarial Graph

Extract Feature
Detector / Corrector

Approx. Clean Features

Adapted
GNN Defenses

Features

LLM

Extract
Structure

F

D

A

B

G

I

H

E

C

Sanitized Graph

Robustness Training
Projector

Figure 4: Overview of GALGUARD defense. Perturbed node features and edges are colored in blue
and red, respectively. The LLM identifies perturbations in node features extracted from an adversarial
graph and generates a corrected version. The refined features, together with the perturbed edges, are
then passed through existing GNN defenses, which can either be used to obtain a sanitized graph or
adapted for projectors’ robustness training.

aware LLMs: unlike traditional GNNs, which are primarily impacted by structural perturbations,
these models exhibit substantial vulnerability to feature-level attacks. The effectiveness of the unified
attack indicates that these models rely on the consistency of both graph structure and node features,
making them highly susceptible to such combined, inconspicuous modifications.

4.6 ABLATION STUDY

Varying Feature Perturbation. To better understand the relationship between perturbation level
and attack success, we study the impact of varying the percentage of perturbed features. Our analysis
of the Reordering attack, which exhibits similar patterns to the Homoglyph attack, reveals a consistent
trend as the perturbation percentage varies from 1% to 10%. For all models and datasets (Cora,
Citeseer, and PubMed), reducing the percentage of perturbed features leads to a less successful attack,
as expected. Notably, as the perturbation level decreases, the success rates of poisoning and evasion
attacks tend to converge. This is because with fewer perturbations, the adversarial signal becomes too
weak to significantly impact the model, regardless of whether it was introduced during the training
(poisoning) or inference (evasion) phase. A detailed plot illustrating these trends is in Figure 6.

Does the Choice of LLM Affect Attack Performance? We evaluate whether the foundation
LLM influences adversarial robustness in graph-aware LLMs. LLAGA uses Vicuna-7B (Chiang
et al., 2023) and GRAPHPROMPTER uses Llama2-7B (Touvron et al., 2023). We replace LLAGA’s
backbone with Llama2-7B and compare performance under poisoning and evasion attacks on all
datasets. Both models achieve similar accuracy in clean settings (e.g. Vicuna: 0.89± 0.07, Llama2:
0.90 ± 0.03 on Cora) and exhibit comparable vulnerability under attacks. The trend holds when
swapping LLMs in GRAPHPROMPTER. These results suggest that the choice of foundation LLM has
minimal impact on adversarial robustness. The full results are in Table 7 in the Appendix.

5 OUR GALGUARD DEFENSE

Existing GNN defenses against adversarial attacks are ineffective for graph-aware LLMs due to their
dual vulnerability to structural and feature perturbations. Many defenses rely on node feature similar-
ity to prune or reweight edges Wu et al. (2019); Dai et al. (2018); Zhang & Zitnik (2020); Jin et al.
(2020); Zhang & Ma (2024), but they assume access to clean features. When features are perturbed,
these methods fail (see Figure 8 in the Appendix). Similarly, defenses that decouple structure and
features Shanthamallu et al. (2021); Wu et al. (2021) and even OCR-based sanitization Boucher et al.
(2022) break down under coordinated attacks. This dual vulnerability necessitates a new, integrated
defense.

To address this, we propose graph-aware LLM defense (GALGUARD), an end-to-end defense strategy
combining two complementary approaches: (1) an LLM-based feature corrector and (2) adapted
GNN-based structural defenses.

Feature Robustness Strategy. As shown in Figure 4, an LLM serves as an adaptive mechanism
to analyze textual node features for anomalous patterns. It provides approximate corrections to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Performance of METAATTACK and the proposed defense GALGUARD under poisoning and
evasion attacks. GALGUARDp combines feature correction with graph purification.

Data Method LLAGA GRAPHPROMPTER

Poisoning Evasion Poisoning Evasion

C
or

a METAATTACK 0.79±0.03 0.44±0.06 0.58±0.05 0.52±0.04
GALGUARDp 0.82±0.05 0.62±0.04 0.59±0.03 0.56±0.04
GALGUARD 0.85±0.04 0.83±0.04 0.60±0.05 0.59±0.03

C
ite

Se
er MetaAttack 0.63±0.04 0.50±0.03 0.65±0.06 0.56±0.03

GALGUARDp 0.64±0.03 0.56±0.02 0.67±0.05 0.60±0.06
GALGUARD 0.67±0.04 0.62±0.04 0.68±0.04 0.64±0.05

Pu
bM

ed MetaAttack 0.89±0.08 0.73±0.04 0.85±0.02 0.77±0.03
GALGUARDp 0.90±0.06 0.78±0.03 0.85±0.04 0.81±0.04
GALGUARD 0.90±0.01 0.87±0.02 0.89±0.02 0.89±0.01

restore feature integrity, thereby mitigating the effect of feature-level perturbations. This LLM-based
correction is a practical solution for feature vulnerabilities. The specific instructions and prompts are
in Appendix A.7.2. For our experiments, we employ GPT-4 Turbo as the LLM corrector.

Graph Structure Robustness Strategy. To enhance structural robustness, we employ a two-step
approach. First, we adopt a graph purification heuristic (Wu et al., 2019) as a preprocessing step.
For each node v, we compute the cosine similarity between its embedding ϕ(xv) and its neighbors’
embeddings ϕ(xu) and remove edges with low similarity. Second, we integrate GNNGuard Zhang
& Zitnik (2020). We directly apply GNNGuard’s principles to the message-passing layers of
GRAPHPROMPTER. For LLAGA, we propose a novel adaptation: we incorporate the purification
step into the construction of the computational tree for its node sequence. Furthermore, we introduce
a learnable global structural context embedding (Mglobal) as a learnable parameter in LLAGA’s
projector. By concatenating Mglobal with the purified node sequence embedding and jointly training
them, the model learns to operate robustly on potentially perturbed graph inputs. The plug-and-play
design of GALGUARD’s allows other defenses, e.g. Pro-GNN Jin et al. (2020), to be used instead of
GNNGuard.

Results. Table 4 summarizes the performance, measured in accuracy, of models under METAAT-
TACK, as well as our defense approaches: GALGUARDp, which combines a feature corrector with a
graph purification module, and the full GALGUARD, which integrates the feature corrector, the graph
purification module, and GNNGuard (or its adaptation). Across all evaluated datasets (Cora, CiteSeer,
and PubMed) and for both poisoning and evasion attack types, our defenses consistently mitigate
the impact of METAATTACK. Specifically, GALGUARDp proves to be an effective foundational
step, demonstrating that addressing feature perturbations with the LLM corrector and applying initial
graph purification significantly improve robustness. Notably, the full GALGUARD consistently yields
superior improvements in model robustness compared to GALGUARDp, highlighting the synergistic
effect of integrating the GNN-inspired structural defense.

6 CONCLUSION

In this paper, we take a substantial first step in uncovering the vulnerabilities of graph-aware LLMs to
adversarial attacks, a largely unexplored area. Our work reveals that the methods used for integrating
graph data are a critical source of vulnerability. We discovered new attack surfaces, demonstrating
that design choices like the node sequence template in LLAGA significantly increase a model’s
susceptibility. Furthermore, our findings show that feature perturbation attacks are highly effective
(unlike traditional GNNs), often outperforming traditional structural attacks, and that a unified attack
combining both perturbations can render graph-aware LLMs near-useless.

To address this, we propose an end-to-end defense, GALGUARD, which integrates an LLM-based
feature corrector with adapted GNN-based structural defenses to provide robust protection. As
these models become more prevalent and has potentials in applications spanning social networks,
healthcare, and finance, ensuring their resilience to adversarial exploitation is of the essence. We
hope this work serves as a foundation for further research, inspiring deeper exploration into the
vulnerabilities and defenses of graph-aware LLMs and fostering both theoretical insights and practical
safeguards for their real-world deployment.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement. To facilitate reproducibility, we provide the full
source code for our experiments at https://anonymous.4open.science/r/
AdvAttackGraphAwareLLMs-C217/ . This includes scripts for data preprocessing,
model training, evaluation and defense.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton Fookes, and Lars
Petersson. Graph-based deep learning for medical diagnosis and analysis: past, present and future.
Sensors, 21(14):4758, 2021.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Baolong Bi, Shenghua Liu, Yiwei Wang, Lingrui Mei, and Xueqi Chen. Scalable link prediction on
large-scale heterogeneous graphs with large language models. arXiv preprint arXiv:2401.13227,
2024.

Nicholas Boucher, Ilia Shumailov, Ross Anderson, and Nicolas Papernot. Bad characters: Impercep-
tible nlp attacks. In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1987–2004. IEEE,
2022.

William Brannon, Suyash Fulay, Hang Jiang, Wonjune Kang, Brandon Roy, Jad Kabbara, and Deb
Roy. Congrat: Self-supervised contrastive pretraining for joint graph and text embeddings. arXiv
preprint arXiv:2305.14321, 2023.

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang
Yang. Graphllm: Boosting graph reasoning ability of large language model. arXiv preprint
arXiv:2310.05845, 2023.

Shantanu Chandra, Pushkar Mishra, Helen Yannakoudakis, Madhav Nimishakavi, Marzieh Saeidi,
and Ekaterina Shutova. Graph-based modeling of online communities for fake news detection.
arXiv preprint arXiv:2008.06274, 2020.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language and
graph assistant. In Forty-first International Conference on Machine Learning, 2024.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language models (llms)
in learning on graphs. arXiv preprint arXiv:2307.03393, 2023a.

Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han, Wei Jin, Haiyang Zhang, Hui Liu, and Jiliang
Tang. Label-free node classification on graphs with large language models (llms). arXiv preprint
arXiv:2310.04668, 2023b.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Mauro Conti, Jiaxin Li, Stjepan Picek, and Jing Xu. Label-only membership inference attack
against node-level graph neural networks. In Proceedings of the 15th ACM Workshop on Artificial
Intelligence and Security, pp. 1–12, 2022.

Enyan Dai, Minhua Lin, Xiang Zhang, and Suhang Wang. Unnoticeable backdoor attacks on graph
neural networks. In Proceedings of the ACM Web Conference 2023, pp. 2263–2273, 2023.

10

https://anonymous.4open.science/r/AdvAttackGraphAwareLLMs-C217/
https://anonymous.4open.science/r/AdvAttackGraphAwareLLMs-C217/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on
graph structured data. In International conference on machine learning, pp. 1115–1124. PMLR,
2018.

Ngan Dong, Stefanie Mücke, and Megha Khosla. Mucomid: A multitask graph convolutional learning
framework for mirna-disease association prediction. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 19(6):3081–3092, 2022.

Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng Yan, Wei Tsang Ooi, Qizhe Xie, and Junxian
He. Simteg: A frustratingly simple approach improves textual graph learning. arXiv preprint
arXiv:2308.02565, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. Quantifying privacy leakage in graph embed-
ding. In MobiQuitous 2020-17th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, pp. 76–85, 2020.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. arXiv preprint arXiv:2310.04560, 2023.

Neil Zhenqiang Gong and Bin Liu. Attribute inference attacks in online social networks. ACM
Transactions on Privacy and Security (TOPS), 21(1):1–30, 2018.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. Gpt4graph: Can large
language models understand graph structured data ? an empirical evaluation and benchmarking.
arXiv preprint arXiv:2305.15066, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Harness-
ing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation learning.
In The Twelfth International Conference on Learning Representations, 2024.

Xinlei He, Rui Wen, Yixin Wu, Michael Backes, Yun Shen, and Yang Zhang. Node-level membership
inference attacks against graph neural networks. arXiv preprint arXiv:2102.05429, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Jin Huang, Xingjian Zhang, Qiaozhu Mei, and Jiaqi Ma. Can llms effectively leverage structural
information for graph learning: When and why. arXiv preprint arXiv:2309.16595, 2023a.

Xuanwen Huang, Kaiqiao Han, Dezheng Bao, Quanjin Tao, Zhisheng Zhang, Yang Yang, and Qi Zhu.
Prompt-based node feature extractor for few-shot learning on text-attributed graphs. arXiv preprint
arXiv:2309.02848, 2023b.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 66–74, 2020.

Wei Jin, Yaxing Li, Han Xu, Yiqi Wang, Shuiwang Ji, Charu Aggarwal, and Jiliang Tang. Adversarial
attacks and defenses on graphs. ACM SIGKDD Explorations Newsletter, 22(2):19–34, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haoyu Kuang, Jiarong Xu, Haozhe Zhang, Zuyu Zhao, Qi Zhang, Xuanjing Huang, and Zhongyu Wei.
Unleashing the power of language models in text-attributed graph. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pp. 8429–8441. Association for Computational
Linguistics, 2023.

Kuan Li, Yang Liu, Xiang Ao, and Qing He. Revisiting graph adversarial attack and defense
from a data distribution perspective. In The Eleventh International Conference on Learning
Representations, 2023.

Chang Liu and Bo Wu. Evaluating large language models on graphs: Performance insights and
comparative analysis. arXiv preprint arXiv:2308.11224, 2023.

Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei
Xiao, and Animashree Anandkumar. Multi-modal molecule structure–text model for text-based
retrieval and editing. Nature Machine Intelligence, 5(12):1447–1457, 2023.

Zheyuan Liu, Xiaoxin He, Yijun Tian, and Nitesh V Chawla. Can we soft prompt llms for graph
learning tasks? In Companion Proceedings of the ACM on Web Conference 2024, pp. 481–484,
2024.

Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards more practical adversarial attacks on graph
neural networks. Advances in neural information processing systems, 33:4756–4766, 2020.

Costas Mavromatis, Vassilis N Ioannidis, Shen Wang, Da Zheng, Soji Adeshina, Jun Ma, Han Zhao,
Christos Faloutsos, and George Karypis. Train your own gnn teacher: Graph-aware distillation on
textual graphs. arXiv preprint arXiv:2304.10668, 2023.

Iyiola E Olatunji, Wolfgang Nejdl, and Megha Khosla. Membership inference attack on graph
neural networks. In 2021 Third IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems and Applications (TPS-ISA), pp. 11–20. IEEE, 2021.

Iyiola E Olatunji, Anmar Hizber, Oliver Sihlovec, and Megha Khosla. Does black-box attribute infer-
ence attacks on graph neural networks constitute privacy risk? arXiv preprint arXiv:2306.00578,
2023a.

Iyiola E Olatunji, Mandeep Rathee, Thorben Funke, and Megha Khosla. Private graph extraction via
feature explanations. Proceedings on Privacy Enhancing Technologies, 2023b.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
language models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and Data
Engineering, 2024.

Yun Peng, Sen Lin, Qian Chen, Lyu Xu, Xiaojun Ren, Yafei Li, and Jianliang Xu. Chatgraph: Chat
with your graphs. arXiv preprint arXiv:2401.12672, 2024.

Yijian Qin, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Disentangled representation learning with
large language models for text-attributed graphs. arXiv preprint arXiv:2310.18152, 2023.

Uday Shankar Shanthamallu, Jayaraman J Thiagarajan, and Andreas Spanias. Uncertainty-matching
graph neural networks to defend against poisoning attacks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 9524–9532, 2021.

Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization, 11:341–359, 1997.

Bing Su, Dazhao Du, Zhao Yang, Yujie Zhou, Jiangmeng Li, Anyi Rao, Hao Sun, Zhiwu Lu, and
Ji-Rong Wen. A molecular multimodal foundation model associating molecule graphs with natural
language. arXiv preprint arXiv:2209.05481, 2022.

Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, S Yu Philip, Lifang He, and Bo Li.
Adversarial attack and defense on graph data: A survey. IEEE Transactions on Knowledge and
Data Engineering, 35(8):7693–7711, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shengyin Sun, Yuxiang Ren, Chen Ma, and Xuecang Zhang. Large language models as topological
structure enhancers for text-attributed graphs. arXiv preprint arXiv:2311.14324, 2023.

Yanchao Tan, Zihao Zhou, Hang Lv, Weiming Liu, and Carl Yang. Walklm: A uniform language
model fine-tuning framework for attributed graph embedding. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang, Ziqing Hu, Fang Wang, Nitesh V Chawla, and
Panpan Xu. Graph neural prompting with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 19080–19088, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Jianian Wang, Sheng Zhang, Yanghua Xiao, and Rui Song. A review on graph neural network
methods in financial applications. arXiv preprint arXiv:2111.15367, 2021.

Xiuling Wang and Wendy Hui Wang. Group property inference attacks against graph neural networks.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
pp. 2871–2884, 2022.

Yanbin Wei, Shuai Fu, Weisen Jiang, James T Kwok, and Yu Zhang. Rendering graphs for graph
reasoning in multimodal large language models. arXiv preprint arXiv:2402.02130, 2024a.

Yanbin Wei, Qiushi Huang, James T Kwok, and Yu Zhang. Kicgpt: Large language model with
knowledge in context for knowledge graph completion. arXiv preprint arXiv:2402.02389, 2024b.

Frederik Wenkel, Guy Wolf, and Boris Knyazev. Pretrained language models to solve graph tasks in
natural language. In ICML workshop on Structured Probabilistic Inference & Generative Modeling,
2023.

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial
examples on graph data: Deep insights into attack and defense. arXiv preprint arXiv:1903.01610,
2019.

Xugang Wu, Huijun Wu, Xu Zhou, and Kai Lu. Cog: a two-view co-training framework for defending
adversarial attacks on graph. arXiv preprint arXiv:2109.05558, 2021.

Han Xie, Da Zheng, Jun Ma, Houyu Zhang, Vassilis N Ioannidis, Xiang Song, Qing Ping, Sheng
Wang, Carl Yang, Yi Xu, et al. Graph-aware language model pre-training on a large graph corpus
can help multiple graph applications. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 5270–5281, 2023.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
learning on textual graph. In Proceedings of the 35th Conference on Neural Information Processing
Systems, 2021.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Natural language is all
a graph needs. arXiv preprint arXiv:2308.07134, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ao Zhang and Jinwen Ma. Defensevgae: Defending against adversarial attacks on graph data via a
variational graph autoencoder. In International Conference on Intelligent Computing, pp. 313–324.
Springer, 2024.

Jiawei Zhang. Graph-toolformer: To empower llms with graph reasoning ability via prompt aug-
mented by chatgpt. arXiv preprint arXiv:2304.11116, 2023.

Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adversarial
attacks. Advances in neural information processing systems, 33:9263–9275, 2020.

Zaixi Zhang, Qi Liu, Zhenya Huang, Hao Wang, Chengqiang Lu, Chuanren Liu, and Enhong
Chen. Graphmi: Extracting private graph data from graph neural networks. arXiv preprint
arXiv:2106.02820, 2021.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, and Wenwu Zhu. Llm4dyg: Can
large language models solve problems on dynamic graphs? arXiv preprint arXiv:2310.17110,
2023.

Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, and Yang Zhang. Inference attacks against
graph neural networks. In 31st USENIX Security Symposium (USENIX Security 22), pp. 4543–4560,
2022.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and
Jian Tang. Graphtext: Graph reasoning in text space. arXiv preprint arXiv:2310.01089, 2023.

Yun Zhu, Yaoke Wang, Haizhou Shi, and Siliang Tang. Efficient tuning and inference for large
language models on textual graphs. arXiv preprint arXiv:2401.15569, 2024.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2847–2856, 2018.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations (ICLR), 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: Graph encoding-based adaptations of LLMs. In the textual description graph represen-
tation, graphs are explained textually (top part). In the learned projector representation, graphs are
encoded either by node templates that turns the graph into sequences or by GNNs (bottom part). Note
that in both cases, the LLM is frozen. Only the projector that maps the graph into tokens is trained.

A APPENDIX

Organization: The Appendix is organized as follows. Appendix A.1 provides a detailed taxonomy
of graph-aware LLMs. We discuss related work on attacks against Graph Neural Networks (GNNs)
in Appendix A.2. Appendix A.3 gives an overview of the adversarial attacks, NETTACK and
METAATTACK, while Appendix A.4 details the algorithm for the node sequence injection attack
on LLAGA. We present the results of our ablation studies in Appendix A.5, including the effect
of varying the amount of perturbed features and the choice of base LLM on attack performance.
Additional experiment on the ArXiv dataset is in Appendix A.6. Finally, Appendix A.7 shows
examples of feature attacks and the template for the LLM corrector, and Appendix A.8 discusses the
implications of our research.

Table 5: Dataset statistics.

Data #Node #Edge Sparsity (‰)

Cora 2708 5429 14.81

CiteSeer 3327 4614 8.34

PubMed 19717 44338 2.28

A.1 GRAPH ENCODING-BASED TAXONOMY OF LLM ADAPTATIONS

The integration of large language models (LLMs) with graph data has been an emerging area of
research, with various approaches exploring how LLMs can be adapted or enhanced for graph-related
tasks such as reasoning, representation, and inference. These approaches can be largely divided
into two categories based on their methods for encoding graphs for LLMs: textual descriptions
of graphs, where graph information is encoded as natural language, and learned graph projector,
where a projector is utilized to encode graph data into embeddings or structured forms that LLMs can
directly process. In this section, we describe the methods used in the different encoding approaches
for integrating graph data into LLMs. Figure 5 provides the illustration of both approaches and
Table 6 provides a summary of the differences between both approaches.

A.1.1 GRAPH REPRESENTATION AS A TEXTUAL DESCRIPTION

In this first category, graph data is represented as natural language, allowing LLMs to process graph
structures as textual descriptions. This approach has been explored extensively with works such
as (Guo et al., 2023; Liu & Wu, 2023; Ye et al., 2023; Wenkel et al., 2023; Wei et al., 2024b;
Fatemi et al., 2023; Tan et al., 2023; Zhao et al., 2023; Wei et al., 2024a) converting graph data

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

into textual formats, often paired with specific instructions to query LLMs. For example, Tan
et al. (2023) introduced a unified framework for attributed graph embedding by generating random
walk-based textual sequences from graphs, which are then used to fine-tune LLMs. Similarly, Zhao
et al. (2023) focused on graph reasoning within text spaces, translating graph structures into natural
language to facilitate LLM interaction. Extending this idea, Wei et al. (2024a) augmented textual
representations of graphs with visual representations of the graph, enhancing the reasoning capabilities
of LLMs on graph data. In multimodal applications, Liu et al. (2023) and Su et al. (2022) linked
molecule graphs with textual descriptions, enabling advances in drug discovery and molecular
retrieval. Furthermore, Huang et al. (2023a) investigated how incorporating graph structure into LLM
prompts can enhance predictive performance. Their findings revealed that LLMs tend to process
graph-related prompts as contextual paragraphs, rather than explicitly recognizing graph structures.
This further underscores the importance of prompt design, as seen in studies like (Brannon et al.,
2023; Zhang et al., 2023; Sun et al., 2023; Bi et al., 2024; Pan et al., 2024), which extended LLMs to
heterogeneous and large-scale graph tasks. Complementing these efforts, (He et al., 2024) explored
using LLM-generated explanations as features to enhance both the performance and interpretability
of LLMs on graphs.

While still representing graphs as textual description, another line of work integrates pretraining
strategies with GNNs to enhance the LLMs’ graph reasoning capabilities. For instance, Chen et al.
(2023a) proposed two LLM-GNN integration approaches: 1) using LLMs to enhance node features
for node classification, and 2) employing LLMs as direct predictors for graph tasks. In line with
this, Chandra et al. (2020) utilized LLMs as text encoders and GNNs as graph structure encoders for
tasks such as fake news detection in online communities. Similarly, Chen et al. (2023b) explored the
possibility of performing node classification without explicit labels by using LLMs to annotate nodes,
which are then used in training a GNN model. Likewise, Mavromatis et al. (2023) utilized LLM as a
feature extractor for GNNs.

For inference, Zhu et al. (2024) proposed a fine-tuning method for textual graph that combined LLMs
and GNNs through a tunable side structure alongside each layer of the LLM, enhancing both training
efficiency and inference speed. Similarly, Duan et al. (2023) introduced SimTeG, a simple yet effective
approach that enhances textual graph learning by leveraging LLMs. In their method, the LLM is
first fine-tuned on a downstream task, such as node classification. Afterward, node embeddings are
generated by extracting the last hidden states from the fine-tuned LLM. Additionally, Zhang (2023)
proposed Graph-toolformer, which leverages prompt engineering, powered by ChatGPT, to augment
LLMs’ graph reasoning capabilities.

While these approaches make LLMs more accessible for graph-related tasks, they often struggle to
fully capture the structural intricacies inherent in graph data. Moreover, the performance of these
methods remains heavily dependent on effective prompt engineering, which can be a challenging
process, requiring careful design and experimentation to obtain optimal results.

A.1.2 GRAPH REPRESENTATION AS A LEARNED PROJECTOR

To address the challenges posed by textual representation approaches, learned projector methods
offer an alternative by transforming graph data into embeddings or graph vectors that LLMs can
process more directly. For instance, Chen et al. (2024) introduced LLAGA, a large language and
graph assistant that retains the general-purpose nature of LLMs while transforming graph structures
into graph tokens, a format suitable for LLM processing. Similarly, (Liu et al., 2024; Qin et al., 2023)
incorporated graph structure information into a pre-trained LLM through a tailored disentangled
graph neural network layers. Tian et al. (2024) proposed using graph neural prompts to encode
knowledge graph, transforming them into graph embeddings that LLMs can leverage during inference.
Furthermore, Huang et al. (2023b) introduced a prompt-based node feature extractor (G-Prompt) for
few-shot learning on text-attributed graphs. Their method combines a graph adapter (a learnable
GNN layer) with task-specific prompts to capture neighborhood information and extract informative
node features.

Another promising line of work condenses graph information into fixed-length prefixes using graph
transformers, which are attached to each layer of the LLM to enhance its reasoning capabilities (Chai
et al., 2023). Similarly, Yang et al. (2021) developed GraphFormers which seamlessly integrates text
encoding and graph aggregation in an iterative workflow by nesting GNNs alongside the transformer
blocks of a language model. Additionally, Peng et al. (2024) developed ChatGraph, an interactive

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Comparison of graph encoding-based adaptations of LLMs.

Aspect Textual Description Approach Learned Projector Approach
Graph Encoding Converts graph data (nodes,

edges) into natural language de-
scriptions.

Uses a learned projector to en-
code graph structures into em-
beddings or graph tokens.

LLM Modifications No modification to the LLM. No modification to the LLM.

Graph Structure
Representation

Describes graph topology and re-
lationships using textual narra-
tives.

Encodes relational and structural
information directly into vector
representations.

Flexibility Can only be used for simple
graphs.

More flexible in representing
complex graph structures.

Computational Cost No additional training is re-
quired. Lower cost.

Lightweight projector is trained,
typically a linear layer. Minimal
cost.

Suitability for
Graph Tasks

May lose some relational nuance
due to limitations in textual de-
scriptions.

Captures detailed structural in-
formation, improving perfor-
mance on graph-specific tasks.

interface that allows users to interact with their graphs through natural language. Here, graphs are
represented as sequential paths and the LLM is fine-tuned on the graph data to support graph analysis.

In this paper, we do not consider projector adaptations that require retraining the LLM, as they
significantly increase computational costs without yielding substantial performance gains. Instead,
we focus on adaptation methods that utilize frozen pre-trained LLMs (Chen et al., 2024; Liu
et al., 2024; Qin et al., 2023; Tian et al., 2024; Huang et al., 2023b). This approach not only
reduces computational costs but also offers greater flexibility in integrating with various LLM models.
Additionally, we can take advantage of LLMs’ extensive knowledge and capabilities without the
overhead of retraining while still adapting them for specific graph tasks. Throughout this work, we
employ two representative projector methods: LLAGA (Chen et al., 2024), which utilizes node-
level templates and a linear projector, and GRAPHPROMPTER (Liu et al., 2024), which employs a
GNN-based projector to encode the graph.

This work. In this work, we do not consider textual description methods, as they often struggle to
fully capture the structural intricacies inherent in graph data. These methods are generally limited
to simpler tasks, such as describing basic graph properties like node degree, and become infeasible
for larger graphs due to scalability issues. In particular, the token limit in prompts restricts the
detailed descriptions required for larger graph structures, quickly exceeding allowable token counts.
Additionally, from a vulnerability perspective, textual description methods do not introduce any
unique attack surface; since the graph is represented as simple text descriptions (e.g., ”Node A is
connected to Node B”), they are susceptible to traditional text-based adversarial attacks rather than the
structural or feature perturbations specific to graph-based models. Therefore, they lack the complexity
that would expose them to novel, graph-specific vulnerabilities, making them less relevant for our
investigation into adversarial robustness of graph-aware LLMs.

A.2 ATTACKS ON GNN

Several types of attacks exist on GNNs, including membership inference attacks (Olatunji et al.,
2021; He et al., 2021; Conti et al., 2022), which aim to determine whether a specific node was part
of the model’s training set; attribute inference attacks (Gong & Liu, 2018; Olatunji et al., 2023a;
Duddu et al., 2020), which exploit the GNN’s output and learned embeddings to infer sensitive
or missing node attributes; property inference attacks (Zhang et al., 2022; Wang & Wang, 2022),
which seek to extract global properties of the entire graph; adversarial attacks (Zügner et al., 2018;
Zügner & Günnemann, 2019; Li et al., 2023; Dai et al., 2018; Sun et al., 2022), which attempt to
degrade the model’s performance by introducing subtle perturbations to the graph or node features;

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

and graph reconstruction attacks (Zhang et al., 2021; Olatunji et al., 2023b), which aim to reconstruct
the underlying graph structure using the learned embeddings or model outputs.

Among these attack types, adversarial attacks are of particular concern due to their direct impact on the
model’s performance. In adversarial attacks, small, carefully crafted perturbations are introduced into
the graph, such as modifying node features or altering edges, with the goal of significantly degrading
the GNN’s performance. These attacks can be categorized into two types: poisoning attacks, which
occur during the training phase by manipulating the training data, and evasion attacks, which
occur at test time, where the adversary introduces perturbations to the input graph to mislead the
model’s predictions. For instance, Zügner et al. (2018) demonstrated that adversarial perturbations on
graph structures or node features can significantly degrade the performance of GNNs. Their method,
NETTACK, employed a greedy optimization technique to compute the minimal perturbations that
would maximize the model’s loss function during training. This approach effectively identifies the
smallest changes in the features or graph structure needed to disrupt the model’s predictions. Li et al.
(2023) revisited the problem of adversarial attacks on graph data from a data distribution perspective,
highlighting how adversarial examples can significantly alter the underlying data distribution and
proposed a novel defense mechanism to mitigate such effects. Similarly, Wu et al. (2019) provided a
comprehensive analysis of adversarial examples on graph data, offering deep insights into both attacks
and defenses. They focused on the vulnerabilities of GNNs to small perturbations and proposed
defense techniques designed to detect and counteract adversarial modifications, thus enhancing model
robustness. METAATTACK (Zügner & Günnemann, 2019) performed both poison and evasion attacks
on GNNs by treating the graph structure as a hyperparameter that can be optimized. The attack
directly modifies the graph structure using gradient descent, formulating the problem as a bi-level
optimization task. Their method utilized meta-gradients, which capture how small perturbations in
the graph structure affect the attacker’s loss after training, enabling precise updates to the graph that
degrade the model’s performance.

In this paper, we leverage NETTACK (Zügner et al., 2018) and METAATTACK (Zügner &
Günnemann, 2019) as representative adversarial attack methods, encompassing both poisoning
and evasion strategies, to conduct our investigation. Specifically, poisoning attacks target model
integrity during training, while evasion attacks compromise performance at inference or test time.

A.3 HOW NETTACK AND METAATTACK WORK

NETTACK performs graph structure perturbation by adding and removing edges between nodes,
while ensuring that the degree of the perturbed graph is preserved. It uses a greedy optimization
technique to compute the minimal perturbations that will maximize the model’s loss function during
training, with respect to a surrogate model. This surrogate model is a linearized 2-layer graph
convolutional network (GCN), which approximates how changes in the graph structure affect the
classification result. The primary objective of NETTACK is to increase the model’s confidence in
incorrect classifications by maximizing the distance between the logits of the perturbed graph and
those of the clean graph. To achieve this, NETTACK identifies candidate edges for perturbation around
a target node and evaluates a score function, for each connected edge. This score indicates how
significantly altering a particular edge will impact the classification result of the target node. The
edge with the highest score is then selected, and the graph is updated by either adding or removing
that edge. Since NETTACK is a targeted attack (only cause misclassification of a specific single node),
we adapt the same method in (Zügner & Günnemann, 2019) to convert it into untargeted attack
(compromise node classification performance of the model) which randomly select one test node and
attack it using NETTACK while considering all nodes in the network. We then aggregate the result
over the test nodes.

METAATTACK optimizes the graph structure directly via gradient descent by treating the adjacency
matrix (graph structure) as a hyperparameter. It frames the attack as a bi-level optimization problem:
the inner level minimizes the training loss on the original graph, while the outer level minimizes the
loss on the poisoned graph. To achieve this, METAATTACK utilizes a surrogate model, specifically
a linearized two-layer GCN, to approximate how changes in the graph structure affect model per-
formance. A score function evaluates the impact of each perturbation, and the attack flips the sign
of meta-gradients (gradient wrt hyperparameters) for connected nodes, indicating which edges to
remove. The algorithm then greedily selects perturbations—either adding or removing edge based on
those with the highest scores, to maximize the attack’s impact.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

10% 5% 1%
Feature Perturbation

0.25

0.50

0.75
Ac

cu
ra

cy

Cora

10% 5% 1%
Feature Perturbation

0.25

0.50

0.75
CiteSeer

10% 5% 1%
Feature Perturbation

0.25

0.50

0.75
PubMed

Attack Type
Poisoning
Evasion

(a) LLAGA

10% 5% 1%
Feature Perturbation

0.25

0.50

0.75

Ac
cu

ra
cy

Cora

10% 5% 1%
Feature Perturbation

0.25

0.50

0.75
CiteSeer

10% 5% 1%
Feature Perturbation

0.25

0.50

0.75
PubMed

Attack Type
Poisoning
Evasion

(b) GRAPHPROMPTER

Figure 6: Performance of the Graph-aware LLM when the percentage of the perturbed feature is
varied. The lower the accuracy, the better.

For both methods, we use the same unoticeability constraint introduced by (Zügner et al., 2018),
which ensures that the graph’s degree distribution only changes slightly. Therefore, we only perturb
10% of the edges.

In our poisoning attack experiments with LLAGA, we employ the perturbed graph structure obtained
from NETTACK or METAATTACK to generate the node-level sequences and retrain the projector
that converts the node-level sequences into a sequence of token embeddings. Similarly, for GRAPH-
PROMPTER, we utilize the perturbed graph structure, re-encode the graph using a graph attention
network (GAT), and retrain the projector with the perturbed graph. For evasion attacks, the graph-
aware LLM is trained on unperturbed data, with perturbations introduced only during the inference
stage.

A.4 ALGORITHM FOR NODE SEQUENCE TEMPLATE INJECTION ATTACKS

We present the algorithm for the node sequence template injection attack in LLAGA in Algorithm 1.
The model constructs a fixed-shape computational tree for each node u, sampling k neighbors per
node up to depth d (lines 1–14). When a node has fewer than k neighbors, placeholders are inserted,
creating an attack surface. We exploit this by injecting malicious nodes into placeholder positions
through graph manipulation. We propose three strategies: Non-Adjacent Injection (NI) inserts nodes
outside the 2-hop neighborhood of u (lines 21–27); Supernode Injection (SI) injects a high-degree
node into one placeholder (lines 29–33); and Multiple Supernode Injection (MSI) distributes distinct
high-degree nodes across all placeholders (lines 35–43). These uninformative nodes corrupt the node
sequence, degrading the projection layer’s performance. The inclusion of uninformative nodes in the
sequence corrupts the target’s representation, impairing training of the projection layer.

A.5 ABLATION STUDIES

Here, we present the results for the ablation studies presented in the main paper.

A.5.1 ABLATION RESULTS: VARYING FEATURE PERTURBATION

In Figure 6, we present the performance of two graph-aware LLMs, LLAGA and GRAPHPROMPTER,
as the percentage of perturbed features is varied. We observe that increasing the proportion of
perturbed features consistently degrades model accuracy for both models, indicating their sensitivity
to feature-level attacks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 1 Injection Attacks on Neighborhood Detail Template for Obtaining Node Sequence.

Input: Graph G = (V,E), target node u, tree depth d, children size k
Output: Modified graph G′ with injected nodes

1: procedure NEIGHBORHOODDETAILTEMPLATE(u, d, k)
2: T ← ∅ ▷ Initialize empty tree
3: T .root← u
4: for level ℓ = 1 to d do
5: for each node v at level ℓ− 1 do
6: Nv ← Sample(N (v), k) ▷ Sample k neighbors
7: if |Nv| < k then
8: Fill remaining slots with placeholders
9: end if

10: Add Nv as children of v in T
11: end for
12: end for
13: return T
14: end procedure
15: procedure ATTACK(G, u, d, k,AttackStrategy)
16: G′ ← G ▷ Create copy of original graph
17: T ← NEIGHBORHOODDETAILTEMPLATE(u, d, k)
18: P ← GetPlaceholders(T)
19: if |P | > 0 then
20: N2 ← 2-hop neighborhood of u
21: if AttackStrategy = NI then
22: Vnon-adjacent ← V \ N2

23: Vinject ← Sample(Vnon-adjacent, |P |)
24: for each placeholder position p ∈ P do
25: v ← Next node from Vinject
26: Add edge (parent(p), v) to G′

27: end for
28: else if AttackStrategy = SI then
29: Vnon-adjacent ← V \ N2

30: s← GetHighestDegreeNode(Vnon-adjacent)
31: for first placeholder position p ∈ P do
32: Add edge (parent(p), s) to G′

33: break ▷ Only use first placeholder
34: end for
35: else if AttackStrategy = MSI then
36: Vnon-adjacent ← V \ N2

37: S ← GetNodesOrderedByDegree(Vnon-adjacent)
38: for i = 1 to |P | do
39: s← Get i-th node from S
40: p← Get i-th placeholder from P
41: Add edge (parent(p), s) to G′

42: end for
43: end if
44: end if
45: return G′

46: end procedure

A.5.2 ABLATION RESULTS: DOES THE CHOICE OF LLM AFFECT ATTACK PERFORMANCE?

The results in Table 7 show that the choice of base LLM has minimal impact on both clean perfor-
mance and adversarial vulnerability in the LLAGA framework. Across Cora, Citeseer, and PubMed,
models built on Vicuna-7B and Llama2-7B achieve nearly identical accuracy under clean condi-
tions and exhibit similar degradation under both poisoning and evasion attacks. For instance, under
METAATTACK evasion, Cora performance drops to 0.44± 0.06 for Vicuna-7B and 0.43± 0.08 for

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Impact of base model on model’s performance and under different attacks. We show the
result for LLAGA. The results demonstrate that the choice of base model does not significantly affect
susceptibility to attacks.

Data Base Model Clean Poisoning Evasion

NETTACK METAATTACK MSI NETTACK METAATTACK MSI

Cora Vicuna-7B 0.89 ± 0.07 0.87 ± 0.04 0.79 ± 0.03 0.82 ± 0.04 0.55 ± 0.09 0.44 ± 0.06 0.30 ± 0.05
Llama2-7B 0.90 ± 0.03 0.86 ± 0.02 0.77 ± 0.05 0.82 ± 0.02 0.56 ± 0.07 0.43 ± 0.08 0.31 ± 0.01

Citeseer Vicuna-7B 0.71 ± 0.04 0.64 ± 0.05 0.63 ± 0.04 0.62 ± 0.02 0.59 ± 0.04 0.50 ± 0.03 0.24 ± 0.05
Llama2-7B 0.71 ± 0.05 0.65 ± 0.03 0.60 ± 0.03 0.61 ± 0.04 0.58 ± 0.03 0.48 ± 0.05 0.26 ± 0.03

PubMed Vicuna-7B 0.90 ± 0.04 0.89 ± 0.03 0.89 ± 0.08 0.81 ± 0.03 0.84 ± 0.05 0.73 ± 0.04 0.76 ± 0.03
Llama2-7B 0.91 ± 0.06 0.88 ± 0.04 0.90 ± 0.02 0.80 ± 0.04 0.85 ± 0.03 0.75 ± 0.02 0.77 ± 0.02

Table 8: Results of the node sequence template injection attack across different datasets and methods.
NI, SI, and MSI indicates the non-adjacent, single supernode, and multiple supernodes injection
attacks respectively. Clean refers to the performance of the model without any attack.

Data Attack NI SI MSI

Cora Clean ——– 0.89±0.07 ——–
Poisoning 0.86±0.03 0.84±0.06 0.82±0.04

Evasion 0.42±0.08 0.36±0.05 0.30±0.05

Citeseer Clean ——– 0.71±0.04 ——–
Poisoning 0.69±0.05 0.66±0.03 0.62±0.02

Evasion 0.36±0.06 0.30±0.04 0.24±0.05

PubMed Clean ——– 0.90±0.04 ——–
Poisoning 0.88±0.04 0.85±0.05 0.81±0.03

Evasion 0.85±0.07 0.82±0.04 0.76±0.03

ArXiv Clean ——– 0.73±0.02 ——–
Poisoning 0.50±0.03 0.43±0.04 0.42±0.03

Evasion 0.71±0.06 0.69±0.02 0.60±0.03

Llama2-7B. These differences are well within standard deviation. Similar patterns hold across all
datasets and attack types. This indicates that attack effectiveness is largely independent of the base
LLM.

A.6 RESULTS ON THE ARXIV DATASET

We now evaluate our attack on the large-scale ArXiv dataset, which consists of 169,343 nodes,
1,166,243 edges, and has a sparsity of 0.81. This experiment aims to investigate the effectiveness
of node sequence template attacks in large, real-world graphs. As shown in Table 8, we observe a
significant gap between the success rates of poisoning and evasion attacks, with poisoning attacks
consistently outperforming evasion across all three injection strategies, which is not the case for the
other datasets, Cora, Citeseer and PubMed. This suggests that ArXiv may have inherent structural
differences that make it more vulnerable to poisoning yet more robust to evasion. While the sparsity
of the ArXiv dataset is very low, inserting a single supernode could significantly affect the model
performance.

A.7 FEATURE ATTACK EXAMPLES AND DEFENSE TEMPLATE

A.7.1 FEATURE ATTACK EXAMPLES

The examples in the prompt, as shown in Appendix A.7.2, illustrate our adversarial attacks on real
features from the Cora dataset. The ”input” is the text received by the LLM where the attack is
being applied. It is important to note that while a human reader perceives the original text and the
perturbed text as visually identical or very similar, the LLM processes a sequence of different Unicode
characters or a different character order, which can alter its behavior. We show this in Table 9 for
homoglyph and Table 10 for reordering attack.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: An illustration of the imperceptible homoglyph attack. While the perturbed text is processed
as distinct characters by the LLM, the visual output is nearly identical for a human, as shown in the
image.

Original Feature What LLM Sees What a Human Sees

Title: The megaprior heuris-
tic for discovering protein se-
quence patterns
Abstract: Several computer al-
gorithms for discovering pat-
terns in groups of protein se-
quences are in use that are
based on fitting the parame-
ters of a statistical model to
a group of related sequences.

Title: The
mgprir huristic
fr discvring
prtin squnc pttrns
Abstract: Svrl
cmputr lgrithms fr
discvring pttrns
in grups f prtin
squncs r in us tht
r bsd on fitting th
prmtrs f sttisticl
mdl to grup of
rltd squncs.

Table 10: An illustration of the imperceptible reordering attack. While the perturbed text is processed
as distinct characters by the LLM, the visual output is nearly identical for a human, as shown in the
image.

Original Feature What LLM Sees What a Human Sees

Title: Applications of machine
learning: a medical follow up
study.
Abstract: This paper describes
preliminary work that aims to
apply some learning strategies
to a medical follow-up study.
An investigation of the appli-
cation of three machine learn-
ing algorithms-1R, FOIL and
InductH to identify risk factors
that govern the colposuspen-
sion cure rate has been made.

Title:
Appliatcions of
machine lreanign:
a medical
foall-up study
Abstract: This
ppaer dsceribes
pmerlinary work
that aims to aplpy
smoe learning
sttraegies to a
meidcal flolow-up
study. An
inestivagiotn of
the apclpiation
of three
machine larening
algorithms-1R,
FOIL and InductH
to ientify risk
frcatos that govern
the clopsuspension
cure rtae has been
mdae.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.7.2 FEATURE CORRECTOR DEFENSE TEMPLATE

We designed a feature corrector module to mitigate the effects of imperceptible attacks, specifically
homoglyph substitutions and character reorderings. This module is implemented as a prompt-based
defense using LLMs. The prompt is carefully crafted to instruct the LLM to act as a linguistic
validator, focusing on detecting and correcting subtle, human-imperceptible perturbations.

The template for our prompt is shown in Figure 7. It explicitly states the task and provides a clear
output format, which significantly improves the LLM’s performance.

A.8 DETAILED DISCUSSION

The findings of our work raise several critical insights into the vulnerabilities and design consider-
ations of graph-aware LLMs. As the integration of graph-structured data into LLMs continues to
gain traction for graph tasks, it is important to explore not only the performance benefits but also
the vulnerabilities of these novel architectures. Our systematic investigation of adversarial attacks
on two representative graph-aware LLMs, LLAGA and GRAPHPROMPTER —reveals significant
weaknesses, particularly when exposed to poisoning and evasion attacks, which are traditionally used
to undermine GNNs. Our key observations are discussed below.

A.8.1 IMPACT OF GRAPH ENCODING ON ADVERSARIAL VULNERABILITY

The key observation from our results is that the integration method of graph structure into LLMs
can inadvertently increase their susceptibility to adversarial attacks. Specifically, the node sequence
template employed in LLAGA appears to create a vulnerability that can be exploited by adversaries,
leading to substantial degradation in model performance. This attack surface, unique to LLAGA,
highlights a critical tradeoff in graph-aware LLM design: while the use of node-level templates
provides an effective means of incorporating graph structure and achieves better performance on
graph task, it also exposes the model to new attack vectors not present in traditional GNNs. On the
other hand, GRAPHPROMPTER, which uses a GNN-based projector for graph encoding, demonstrates
comparatively greater resilience to these attacks, underscoring the potential advantages of hybrid
architectures that leverage the strengths of both LLMs and GNNs.

A.8.2 SENSITIVITY OF GRAPH-AWARE LLMS TO FEATURE PERTURBATIONS

In addition to the vulnerabilities in the graph encoding techniques, our results also highlight the
effectiveness of feature perturbation attacks across both graph-aware LLMs. Despite differences in
how graph structure is encoded, both LLAGA and GRAPHPROMPTER exhibit significant sensitivity
to imperceptible perturbations in the node features. This highlights a broader trend observed in the
LLM paradigm: while these models excel in handling textual data, their robustness to adversarial
perturbations, especially those targeting node features, remains a critical challenge. The ability of
adversaries to degrade model performance by subtly altering node attributes without being detected
calls into question the integrity of graph-aware LLMs, especially in security-sensitive applications.
While text sanitization techniques, such as those discussed by Boucher et al. (2022), offer potential
defenses, addressing these imperceptible attacks such as homoglyph-based manipulations remains a
complex challenge. As proposed, using LLMs as a corrector is one way to mitigate such vulnerabili-
ties, by prompting the model to detect and repair suspicious or malformed inputs before downstream
processing.

A.8.3 DATA-DEPENDENT VARIABILITY OF POISONING AND EVASION ATTACKS ON
GRAPH-AWARE LLMS

Our findings reveal that the efficacy of poisoning and evasion attacks in the context of graph-aware
LLMs is not uniform across datasets. While attacks are particularly effective on the Cora, Citeseer and
PubMed datasets, we observe a more nuanced interaction between the attack strategies and the graph
structure on the ArXiv dataset. This variation emphasizes the importance of dataset characteristics in
evaluating the vulnerabilities of graph-aware LLMs. As these models are increasingly deployed in
diverse real-world settings, their vulnerabilities must be assessed not only in terms of algorithmic
design but also in relation to the specific domains and data they are applied to.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Prompt for Feature Corrector

You are a linguistic validator. Your task is to detect and correct any subtle, imperceptible text perturba-
tions such as homoglyph substitutions (e.g., replacing ”o” with ””) and character reorderings. These
changes are often used to attack machine learning models.
Given a text string, carefully analyze it. If you identify any perturbations, provide the corrected,
original-looking version of the text. If no perturbations are found, return the original text unchanged.
Example 1 (Homoglyph Substitution):
Input: Title: The mgprir huristic fr discvring prtin squnc pttrns
Abstract: Svrl cmputr lgrithms fr discvring pttrns in grups f
prtin squncs r in us tht r bsd on fitting th prmtrs f sttisticl
mdl to grup of rltd squncs.
Output: Title: The megaprior heuristic for discovering protein
sequence patterns Abstract: Several computer algorithms for
discovering patterns in groups of protein sequences are in use that
are based on fitting the parameters of a statistical model to a
group of related sequences.

Example 2 (Character Reordering):
Input: Title: Appliatcions of machine lreanign: a medical foall-up
study Abstract: This ppaer dsceribes pmerlinary work that aims
to aplpy smoe learning sttraegies to a meidcal flolow-up study.
An inestivagiotn of the apclpiation of three machine larening
algorithms-1R, FOIL and InductH to ientify risk frcatos that govern
the clopsuspension cure rtae has been mdae.
Output: Title: Applications of machine learning: a medical follow
up study Abstract: This paper describes preliminary work that aims
to apply some learning strategies to a medical follow-up study.
An investigation of the application of three machine learning
algorithms-1R, FOIL and InductH to identify risk factors that
govern the colposuspension cure rate has been made.

Example 3 (Mixed Homoglyph & Reordering):
Input: Title: Submitted to NIPS96, Sctin: Applcations. Prfrnc:
Oral prsentatin Reinforcement Lrning for Dynmic Channl Alloction in
Abstract: In cllulr tlphne systms, n imrtnt prblm is to dynmiclly
alloct th cmmunictin rsurc (chnnls) so as to mximize srvic in
stchstic cllr nvirnmnt. This prblem is naturally frmultd s dynmic
prgrmming prblm and we us a reinforcement lerning (RL) mthd to find
dynmic chnnl llction plicies that ar bttr than prvius heuristic
slutins.
Output: Title: Submitted to NIPS96, Section: Applications.
Preference: Oral presentation Reinforcement Learning for Dynamic
Channel Allocation in Abstract: In cellular telephone systems,
an important problem is to dynamically allocate the communication
resource (channels) so as to maximize service in a stochastic
caller environment. This problem is naturally formulated as a
dynamic programming problem and we use a reinforcement learning
(RL) method to find dynamic channel allocation policies that are
better than previous heuristic solutions.

Your Task: Text to correct: {perturbed text here}

Corrected Text:

Figure 7: The prompt template used for the LLM-based feature corrector module. It explicitly defines
the role, task, and expected output format for the LLM.

A.8.4 IMPLICATIONS FOR GRAPH-AWARE LLM DEVELOPMENT

The vulnerabilities exposed in this study have broader implications for the future development and
deployment of graph-aware LLMs. Given their increasing adoption for tasks that were traditionally
the domain of GNNs, it is crucial to consider the tradeoffs between performance and vulnerabilities in

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

the design of these paradigms. As graph-aware LLMs continue to evolve, there is a pressing need for
the development of more robust encoding techniques and defenses against adversarial manipulation,
particularly in the context of feature perturbations. Furthermore, understanding how adversarial
attacks transfer from GNNs to graph-aware LLMs opens new avenues for research in protecting these
models against sophisticated adversaries.

A.8.5 DIFFICULTY IN APPLYING EXISTING GNN DEFENSES AGAINST ADVERSARIAL
ATTACKS ON GRAPH-AWARE LLMS

Defenses on adversarial attacks based on feature perturbation. Adversarial attacks on GNNs
have predominantly focused on structural perturbations, as feature-based perturbations typically
fail to influence the predicted class of the target node Dai et al. (2018); Wu et al. (2019); Zügner &
Günnemann (2019), making them ineffective attack strategies. Consequently, there are no known
defenses against feature-based attacks on GNNs, given their limited effectiveness. However,
as demonstrated in the main paper, attacks based on feature perturbations proves effective in the
graph-aware LLM paradigm. This introduces a novel challenge within the graph-aware LLM
framework, where feature-based attacks, previously ineffective against GNNs, can now successfully
manipulate model behavior. This shift highlights the need for developing new defenses that address
both structural and feature-based adversarial perturbations. While text sanitization techniques, such
as the use of optical character recognition (OCR) as a pre-processsing step for encoding text for the
LLM, offer potential defenses, addressing these imperceptible attacks such as homoglyph-based
manipulations remains a complex challenge as OCR is imperfect and tends to misinterpret homoglyph
at a higher rate than unperturbed text Boucher et al. (2022). This led to our design of self-correcting
mechanism for feature perturbation using LLMs.

Defenses on adversarial attacks based on structural perturbation. Due to the transferability of
structure-based adversarial attacks from GNNs to graph-aware LLMs, particularly in evasion attacks,
it is natural to expect that defenses developed for GNNs would also be effective in this paradigm.
However, this assumption does not hold. Unlike traditional GNN settings, graph-aware LLMs are
also susceptible to feature perturbations, rendering these defenses ineffective.

One such defense mechanism in GNNs involves making the adjacency matrix trainable, allowing
edge weights to adapt during training to mitigate adversarial perturbations. This approach assigns
lower weights to edges connecting dissimilar nodes and higher weights to edges linking nodes with
greater feature similarity. Several preprocessing-based defenses have been proposed building on
this approach, such as removing edges between nodes with low feature similarity (Wu et al., 2019) or
introducing randomized edge dropping (Dai et al., 2018). However, these defenses rely heavily on
clean, unperturbed node features to compute reliable similarity scores. When node features are also
perturbed, as in the case of our attacks, such defenses become ineffective and may even exacerbate
the problem by connecting incorrect edges. We demonstrate this effect on a random node in the Cora
dataset (Figure 8). As observed, while the clean feature similarity graph preserves some original
edges alongside introducing some wrong connections, the edges reconstructed by the perturbed
features fail to preserve any original connections, leading to entirely incorrect reconstructions.

Another line of work focuses on decoupling reliance on the graph structure. For instance, (Shan-
thamallu et al., 2021) proposed a defense that trains a surrogate predictor dependent solely on node
features and employs an uncertainty matching strategy to extract graph information from the GNN.
Similarly, Wu et al. (2021) introduced a co-training framework that trains submodels independently
on feature and structural views, allowing knowledge distillation through the inclusion of confident
unlabeled data into the training set. However, these approaches also assume access to unperturbed
node features, an assumption that does not hold in our setting, where both structure and features
are adversarially perturbed. Consequently, structural defense strategies developed for GNNs are not
directly applicable to the graph-aware LLM paradigm, which calls for novel defenses tailored to this
paradigm.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

809

812

814

10441365

1341

Original Graph

1893

812

1044

1365

2260

1983

Feature Similarity Graph

716

1391

1044 2582

508

Perturbed Feature Similarity Graph

Figure 8: Edges reconstructed for a random node 1044. Original (left) is the ground truth edges
from the original graph. Feature Similarity (middle) shows the edges reconstructed using clean
node features, where blue nodes indicate preserved connections from the original graph. Perturbed
Feature Similarity (right) shows the edges reconstructed using perturbed node features.

26

	Introduction
	Graph Encoding-Based Taxonomy of LLM Adaptations
	Threat Model

	Experimental Setup
	Assessing the Vulnerability of Graph-aware LLMs to Adversarial Attacks
	Adapting Poisoning and Evasion Attacks on Graph-aware LLMs
	Which Graph-aware Paradigm is More Susceptible to Graph Adversarial Attacks and Why?
	Node Sequence Template Injection Attacks
	Poisoning and Evasion Attack via Feature Perturbation
	A Unified Imperceptible Attack on Graph-aware LLMs
	Ablation Study

	Our GaLGuard Defense
	Conclusion
	Appendix
	Graph Encoding-Based Taxonomy of LLM Adaptations
	Graph Representation as a Textual Description
	Graph Representation as a Learned Projector

	Attacks on GNN
	How Nettack and MetaAttack Work
	Algorithm for Node Sequence Template Injection Attacks
	Ablation Studies
	Ablation Results: Varying Feature Perturbation
	Ablation Results: Does the Choice of LLM Affect Attack Performance?

	Results on the ArXiv Dataset
	Feature Attack Examples and Defense Template
	Feature Attack Examples
	Feature Corrector Defense Template

	Detailed Discussion
	Impact of Graph Encoding on Adversarial Vulnerability
	Sensitivity of Graph-aware LLMs to Feature Perturbations
	Data-dependent Variability of Poisoning and Evasion Attacks on Graph-aware LLMs
	Implications for Graph-aware LLM Development
	Difficulty in Applying Existing GNN defenses Against Adversarial Attacks on Graph-aware LLMs

